Home  •  LifeWiki  •  Forums  •  Download Golly

## Thread for basic questions

For general discussion about Conway's Game of Life.

### Re: Thread for basic questions

The issue with the caterpillar isn't that things have to be a multiple of 4. The waterbear uses *WSS for a p158 helix, which last I checked is 2*79. Successive spaceships in the helix are just in different phases, like this.
x = 37, y = 71, rule = B3/S234b3o$6bo$5bo2$16b3o$15bo2bo$18bo$18bo$15bobo3$24b3o$24bo2bo$24bo$18bo5bo$3bo13b3o5bobo$2b3o12bob2o$b2obo13b3o$b3o14b2o$2b2o7$b3o$o2bo$3bo$3bo$obo3$2b3o$2bo2bo$2bo$2bo$3bobo20b3o$26bo2bo$26bo$26bo$27bobo3$34b3o$33bo2bo$36bo$28bo7bo$13bo13b3o3bobo$12b3o11b2obo$12bob2o10b3o$13b3o11b2o$13b2o7$11b3o$11bo2bo$11bo$11bo$12bobo3$12b3o$11bo2bo$14bo$14bo$11bobo!#C [[ TRACK 5/79 -23/79 ]] The issue is one of spacing, as well as one of helix technology. First spacing, because it can set a hard lower bound. The spacing between the ships has to be such that after one full period, the front is advanced by the ship's speed. Let's work out what that means for the caterpillar. At 17c/45, a p45 helix would need to move forward by 17 cells in 45 generations, while a *WSS moves 22.5 cells in that time. This means there is only 5.5 cells between ships; 5 cells on some phases and 6 on others. x = 5, y = 11, rule = B3/S232bo$b3o$2obo$3o$b2o2$b3o$bo2bo$bo$bo$2bobo!

You can see why that won't work.

With p90, we get 11 cells. Now we get workable spacing, even for HWSS.
x = 20, y = 18, rule = B3/S23b3o11b3o$o2bo10bo2bo$3bo13bo$3bo9bo3bo$obo10bo3bo$17bo$14bobo5$b3o11b3o$bo2bo10bo2bo$bo13bo$bo13bo3bo$2bobo10bo3bo$15bo$16bobo! So p90 is the absolute minimum period for a caterpillar running on burning spaceships. But the current way helices are built is by having a glider reaction burn them, left to right and then right to left, repeating. If we use that technology, there needs to be room for a signal to pass between the consecutive ships to get back to the other side. That limits us further. Lastly, there are only a handful of known glider reactions that help build a real working helix. codeholic made a helix searcher script to assemble helices for a given velocity using all the collisions known. The fastest a signal can propagate upwards is 11c/24, and that reaction spits the glider out in the same direction it came in. x = 19, y = 9, rule = B3/S2310bo$9b3o$2b3o3b2obo4b2o$bo2bo3b3o5bobo$4bo4b2o5bo$o3bo$o3bo$4bo$bobo!#C [[ TRACK 0 -11/24 STOP 40 ]] Reactions that turn the glider around are slower. The p270 helix for the caterpillar uses the 11c/24 straightaway reaction a bunch in the middle to compensate for the slow turns. The best found with all the present-day collisions is p225. If there was a way to burn the helix not using gliders, it could reach the minimum of p90, but we really have no idea how to search for it. Edit: If I recall correctly, "oblique" ran a search specific to the waterbear trying to find a non-glider helix to support the reaction. Despite very nearly succeeding, the reaction was too messy and couldn't work. If it hadn't been so messy, and a 2-ship salvo could sustain the front end, a construction cluster could have been built with only 4 total helix spaceships, cutting off 60% or so of the ship's size. That demonstrates the other likely problem in building minimum-period helices. Whatever burns the front end cannot interfere with the next ship in line until the full period has passed. Physics: sophistication from simplicity. biggiemac Posts: 504 Joined: September 17th, 2014, 12:21 am Location: California, USA ### Re: Thread for basic questions What are the average densities used for Sparse Life soup? (aka early universe) SoL : FreeElectronics : DeadlyEnemies : 6a-ite : Rule X3VI what is “sesame oil”? Rhombic Posts: 1056 Joined: June 1st, 2013, 5:41 pm ### Re: Thread for basic questions Rhombic wrote:What are the average densities used for Sparse Life soup? (aka early universe) Sparse Life density is more of a range than a specific number. Non-zero but arbitrarily low. So low that you don't get any qualitatively different behavior by lowering it further. Low enough that, even though in an infinite grid there will still be an infinite number of ON cells, no infinitely large cluster will be present anywhere. Lowering the density beyond that point basically just moves the individual clusters farther and farther apart, without really changing What Happens If You Wait Long Enough. Anybody have a better link to a complete PDF of a Sparse Life paper, or are they all hiding behind previews? dvgrn Moderator Posts: 5832 Joined: May 17th, 2009, 11:00 pm Location: Madison, WI ### Re: Thread for basic questions Several times recently when I have been trying to find nice natural syntheses for objects, I have come across this component which I have been unable to synthesise. x = 4, y = 4, rule = B3/S232bo$b3o$o2bo$3o!

Does anyone know a synthesis?

Goldtiger997

Posts: 538
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

### Re: Thread for basic questions

Has anyone ever done a systematic search to find all chaotic outer-totalistic rules?
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

A for awesome

Posts: 1883
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

### Re: Thread for basic questions

Are there any fuses that burn a boat/barge slower than c/4?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik

Posts: 3467
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

### Re: Thread for basic questions

what will be the long-run result of this soup?
x = 150, y = 150, rule = B1237/S02346:T150,150obobobo10bo2bo2bo2bo2bo2bobo2bobo2bo3b2ob3obobo3b5obob3ob2obobobo4b5o5b2ob3obo3b5obobobobob2o18bobobo2bobobo$b2obobob4ob4ob2obo2bobob5ob5obobob2o2b4obobob2obo2bobo4b2o2bobobob4o4b5obo5b3o6b2obobob2ob2ob5ob9obobo2bobobo$bob2obobo2bobob3obo2bobobob2o6b2ob2obo3bo2b2o2bob2o2bobobob6obobobobobo3b4o3bob2obobo4b4ob3obobobo3bob3o5bo2b2ob3obo2bobob3o$bobobobob2o6bob2obobob9ob5obobob5o2bobobo2b2obo2b2o2bobobobob2ob2o5b2obob2obo2bobo2bobo2bob2obobobo3bob3ob3obo3b3ob3o4bobo$bobobobo2b8o4bobob2o8bob2o2b3obo6bob3obo2bobob3obobobob2obobob5obobob4o2bob5ob2ob2o2bobobob3o4b2obo3bobobob3o2b2ob2o$bobo3bobo shouldsee Posts: 406 Joined: April 8th, 2016, 8:29 am ### Re: Thread for basic questions I have seen quite a few of these naturally x = 4, y = 4, rule = B3/S23o$3o$2b2o$b2o!

and I was wondering whether they are a source of natural toads (when their evolution is changed by a glider or else) because they seem rather common
SoL : FreeElectronics : DeadlyEnemies : 6a-ite : Rule X3VI
what is “sesame oil”?

Rhombic

Posts: 1056
Joined: June 1st, 2013, 5:41 pm

### Re: Thread for basic questions

That is "the other octomino", a predecessor of "the" octomino:

x = 81, y = 96, rule = LifeHistory58.2A$58.2A3$59.2A17.2A$59.2A17.2A3$79.2A$79.2A2$57.A$56.A$56.3A4$27.A$27.A.A$27.2A21$3.2A$3.2A2.2A$7.2A18$7.2A$7.2A2.2A$11.2A11$2A$2A2.2A$4.2A18$4.2A$4.2A2.2A$8.2A! Gamedziner Posts: 791 Joined: May 30th, 2016, 8:47 pm Location: Milky Way Galaxy: Planet Earth ### Re: Thread for basic questions Given my original wording, this would be a solution: x = 11, y = 10, rule = B3/S234bo$6bo$4bobo$2bobo2$2o3bo2b2o$5bob4o$bo5b4o$3bo4b2o$3bobo! So I suppose I should say that the phoenix must be an oscillator, just to be rigorous. Still, just because one cell dying of overpopulation requires more around it, I don't see why that has to run away to infinity. For example, why couldn't the 12-omino in my "solution" appear during the phoenix's period? EDIT: I see now, the cells in the 12-omino must have previously been off, so there's no way for its central cells to be born. I wonder, could the proof rely solely on looking at the phases immediately before and after the one with the overpopulated cell? Do we really have to consider the phoenix's entire cycle? 0.1485̅ Caenbe Posts: 51 Joined: September 20th, 2016, 4:24 pm Location: Nowhere Land, USA ### Re: Thread for basic questions Caenbe wrote:EDIT: I see now, the cells in the 12-omino must have previously been off, so there's no way for its central cells to be born. I wonder, could the proof rely solely on looking at the phases immediately before and after the one with the overpopulated cell? Do we really have to consider the phoenix's entire cycle? That was along the lines of what I was hoping for in my previous post -- that when you boringly enumerate all the relevant cases in a 5x5 or 7x7 square around the overpopulated T=0 cell, it would turn out that there's a cell that has to stay on for more than one tick, in every case. If there's some spark pattern like BlinkerSpawn's spark pattern, above, that has predecessors coming in from far away with no cells that are ON for more than one tick, then you'd have to look at the entire cycle. But I think it can be shown that BlinkerSpawn's example doesn't have a phoenix-compatible T-2 -- you can't turn on the central cell in the X shape and the four corner cells, without having some supporting cell stay on for two ticks. E.g., the yellow cell can't be made to die of underpopulation, and if you make it die of overpopulation then some of the red cells will fail to turn ON: x = 9, y = 9, rule = LifeHistory4.D$2.D.D.D$.D5.D$3.DED$2D.CDC.2D$3.D.D$.D2C.2CD$2.D.D.D$4.D! It might take a search utility to run through all the cases, but it seems very possible that a contradiction can be found by T=-2 in every case, somewhere in the eight cells around the overpopulated cell. dvgrn Moderator Posts: 5832 Joined: May 17th, 2009, 11:00 pm Location: Madison, WI ### Re: Thread for basic questions Is there any quantity conserved under B3/S23? shouldsee Posts: 406 Joined: April 8th, 2016, 8:29 am ### Re: Thread for basic questions shouldsee wrote:Is there any quantity conserved under B3/S23? In principle, yes. One can assign a quantity to a universe ,where two universes share the same value if and only if one can evolve into the other. In practice, it's hard to say. A pattern with its glider destruction shares the same value with the empty universe. A much easier question: Is there any quantity that monotonically increases during the evolution of a infinite 50% soup? Still drifting. Bullet51 Posts: 535 Joined: July 21st, 2014, 4:35 am ### Re: Thread for basic questions shouldsee wrote:Is there any quantity conserved under B3/S23? Does symmetry count? Bullet51 wrote:A much easier question: Is there any quantity that monotonically increases during the evolution of a infinite 50% soup? Fraction of cells that have ever been on is the only example I can think of right now. Edit: I suppose fraction of cells that have ever been off also works. x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt) $$x_1=\eta x$$ $$V^*_\eta=c^2\sqrt{\Lambda\eta}$$ $$K=\frac{\Lambda u^2}2$$ $$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$ http://conwaylife.com/wiki/A_for_all Aidan F. Pierce A for awesome Posts: 1883 Joined: September 13th, 2014, 5:36 pm Location: 0x-1 ### Re: Thread for basic questions Conservation laws are really difficult to come up with. Candidates: The least useful conserved quantity - a constant. F(universe) = C is conserved for all universes but cannot distinguish one universe from another. More useful but not generally calculable. F(universe) = average(G(that universe at t->infinity)), where G is any well-behaved function, preferably finite for any universe. For example, the integral of a 2D Gaussian envelope windowed by living cells. The average is taken over the period of the universe. The issue with this is that it requires knowledge of the state of the universe as t->infinity, so while it is necessarily conserved it isn't much more helpful. Probably also someone can create a pattern that breaks this approach, maybe by making some aperiodic pseudorandom device that remains near where it starts, so that its average can't be computed nor neglected. What's needed to produce a true conservation law is some feature invariant under the evolution operator. Symmetry works, as A for Awesome pointed out. The evolution operator is isotropic (totalistic as well but that doesn't help). That at least means that any definition of angular momentum is conserved. The only patterns that I can associate angular momentum with are rotating oscillators. The evolution operator is also the same for all space, so linear momentum is conserved. This means spaceships are viable. The evolution operator is also the same for all time, so energy can be considered conserved. This means oscillators and spaceships go on forever in an isolated universe. In a random soup though, standard definitions of angular momentum, momentum or energy are pretty meaningless, since particles are springing in and out of existence before acquiring any specific attributes. Physics: sophistication from simplicity. biggiemac Posts: 504 Joined: September 17th, 2014, 12:21 am Location: California, USA ### Re: Thread for basic questions biggiemac wrote:The evolution operator is also the same for all space, so linear momentum is conserved. This means spaceships are viable. Is this really a valid conclusion? This pattern would seem to give a counterexample: x = 4, y = 6, rule = B3/S232o$2o2$2bo$2b2o\$bobo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

A for awesome

Posts: 1883
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

PreviousNext