ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Thread for basic questions

For general discussion about Conway's Game of Life.

Re: Thread for basic questions

Postby dvgrn » September 17th, 2018, 1:37 pm

KittyTac wrote:
dvgrn wrote:
KittyTac wrote:How big is the entire rule table rulespace?

I think it's (2^512)^256 -- each possible MAP-rule bit can point to any of 256 different states.

Maybe someone else can think about it with more brain cells than I have to spare at the moment, and confirm or deny. In any case it's pretty definitely a Painfully Large Number.

What about only isotropic ones?

According to the same logic, it would be (2^102)^256... which is so much smaller than the number for all the MAP rules that it's practically zero, but it's still so much bigger than any reasonable number that it might as well be infinity:

Number of possible isotropic rule table definitions for 256 states: 3127856194787505254707963572275023180289252774816379936232800134350766108812584160566962488291505359620551750132569995893756948066586521404005707125066485989503884413125553917453076905419026582119081816561328664106194867990962725498739325683099922893255960995877811696344434868025054040404564274442904811304692244314597189563585874259136839752132930048152223577283006787452188644284235814833071329167541824038719236900682914285848498983670758631557918546500459374470161563368888876020155772948484090468721817793448265666277363448963014441364714458375881987182883965586196875257633909421153209108408442533662602592693716362780551052813441075139283764825832202452885239167935924061529454804425028777231387239663067038771887919640025670044206998013712499254407328963033271185327982541669281109732093635164971766002951162729937420864946826006400565739212400133333946407502042491431948297996689286451902404271700231681926563332991740362468912005999768171291405711996041515013637701482156305723851617506343419266331903504639001703451761168440723506808176464250226015204826929405882642053551757920314965683774597249742680415419620845596901046911446676845183963769903154276097345004240365079121478233309862784983137290593869262882951307692496200071772918091978352425616214822034995057270817900283356362736224417695816307860845305041389766761340604174285293961586108419699675409713227044647044186432817942802904837528143123008669318735392867315114824216451940706209891899296930501259018629277280244840836077547425383639025232687188132255758433640840541846082195612470383966130203587255524525472728398087484162296569941762283933838515431989397271876919408401897414872948790621300905655795562030058045211021745023500195435117702136907415861276155205419764624605693054538194901558640904671996752240676866522815549390418652416890582599110638709565758548824000778570379516628778769358137807205312154950607069157894614506037000654308437082542386251955173788906531259081294369719965550813893190538668257632779835820801493508802025195770255847274990472343514197562287913685394878979720243924798458572499257229943508643219625846117666027595026468152872230143363156645641141876277019282173850908278353750842884758585643502998611000837905527213623572931382727374562837649816810315860518919054755198825308652750043307001254485243097326417317113242126629155437731647671996415380375340785323812465848552187045497629431184651655533967963901269910146387753865951206891014817476021603235445370275117115043599227971567223730137573943911913959722093947096021201071222421901927902557713592023757165836958409182379233721299147907241846356155020491800225414104964286846347766972207367317751512718112710927146660206636897494862635305829200170983834213113082346525371664731910913107789429514052247810821277219276616476592487345763542611864465921612963194469593917608751739273207303869295118982518870435204621350747359305838190559048801397280438527519847629317044411543994556283965938060289755741805764338470356175968425356293301717143665966533129197798718083678499003986198925915529914404560134043746198605027821190389744968476219068888009866592318840451248578692588478459362636349446592954000251599020434326353784445496072929545845197689757535858363653717561259120319505108017483267668370448068321911607671812093585596784366813979131074875105412896765339843035752975907325454664360310953246129441387169835935385604129340550187245341508452287152806214480084716197139915990884409874577756822589252817072691049751846688963474365908179345350202844083223995060532795088021822375902262320189446266539387718271176209598800635318878981127559710838594542007525183319319868547934913908374355329941159543775923904577701056430114201504799885639799689398343540442131636794960781648398599716832761244119077619554755415364610863373834953754585471484082309597503209301657824670187328596898176632403392388302943933972623310914770754370120442483826009262471808904989017082609419646213900286217057100946424462090597983250703735077848091114765700323096369250894935477549463566220242330663403792560172780694973077484986909809041791725746625037420039987332511497314392295357317280355005428657940656870860919893431885605202679534399023083649095978794382885953318500884678283779258668059382187117019953540550515301696072471205464373478974076324558422264518394009476484508000668708083930019813718884530434821907105688196585171041416768031877219411960611382949546089016902938433467629501096239770414579614661537203397203831375070692641001281234861305030753567915256035582163716972556776285510960855099645939057413255582310719631746885180126002022571691934166116512629277074463031728455713274552885109068046139271588334935790737336536011300748340045386567297710977628413494610038359206994049302004070392650341775646934472170286478532369258544785293829840044169029702591807291810149662059236878810999951780547455974752864505426716163447504690269987219054002869255714591143349810465517739776027525667850339834069397262122820694261595551226845641523454323783124803681738135056871857155516570966623375103256431100159149461664370618537730605206154278535989193243633789192047613832172301112450068450182121932406188200267897247681365197879382567713458187647499151039251413665409882324803488731799758404263637150241463697183096439532003381647062662833601197359194094800061928158258169670142174260713537335272823961319297521614820102263316120988081492231985623010706570553344092817881334975841172765598228082453771972492778609049752229365465770731953480535194235094773166032132322054719030890016676475036916529789374347546685977319448542585443979115216969851361353650563350553888244907114200782265044720545668516502624305800610140584524295498491721228781776788184354833102654377875481004284160544571131358345973039726021722583091273801685021377696738878617662300229752156796351213148560556940979453615984663458587920753615154845252554762482470298862578991919741691777315050166168530597699551813044020459017204246522603970448624838306542821222162289228279267190180312209618381774601767931314645983741694773486922678740247278944976892890255437805068547810936745198214757685275600996301317808383930745254832357472956081870710516469722860861355477446268324664412230239689047391968843978894327552884567107634816900523892982300498392375032886423314729001948517839082735219508530353007646016424960059426076399908735489074080091721398789771669160443840250302396534379474390230863174190700541512937726840791076194939641857945604236298424821487105200837708712789755692576902424022490237887355219812860958460059481937439743433301697266714648023959818357801680718080772501254299177742317035608601049911321150831317820500208054255929535807400381719653183904072267767967101897795259154043648699469382284247367517831886885466186431062511554797657014514980571212803347011759777219785603071692157188933773145643784089690474654658493230892976292015464645704375633280637565790668123404372054813718914319697501951709650517313599011676135163064944558408248397981499290902101523472788440850987454988161439212030637074829101170951278929286154382424382359727846978103018193870140352389256505552316774418891453873797420936634061285154305633045407995787396392745606247054986927083190696772704185316893565167201271099517406610708413916152355896905801352127154698455320745048063886287260257253946615366424860305133817583833486995791689331910956551032952129716920542185451832248261318196505198239588155860276267923286457769861451309669780507608115182763465311746750065169697908904841680838326787611039767060010820869198902649126550485100775468450288203489704078525746238412032751052297764696014405179467727999781352804654794145973656013632968571613763497729375071243618444983658534590328184769198721866604369971590624615081177888623702464984007212241047328580182438938168488522541368777926429518002225552498910092931982860007918542854806824781716554405380096
User avatar
dvgrn
Moderator
 
Posts: 4845
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Thread for basic questions

Postby gameoflifemaniac » September 18th, 2018, 3:09 pm

There are 1+2^2^9+3^3^9+4^4^9+5^5^9+...+254^254^9+255^255^9 range 1 rules.
https://www.youtube.com/watch?v=q6EoRBvdVPQ
One big dirty Oro. Yeeeeeeeeee...
User avatar
gameoflifemaniac
 
Posts: 662
Joined: January 22nd, 2017, 11:17 am
Location: There too

Re: Thread for basic questions

Postby KittyTac » September 18th, 2018, 10:27 pm

gameoflifemaniac wrote:There are 1+2^2^9+3^3^9+4^4^9+5^5^9+...+254^254^9+255^255^9 range 1 rules.

AUGGGGGH!
User avatar
KittyTac
 
Posts: 507
Joined: December 21st, 2017, 9:58 am

Re: Thread for basic questions

Postby dvgrn » September 19th, 2018, 8:09 am

KittyTac wrote:
gameoflifemaniac wrote:There are 1+2^2^9+3^3^9+4^4^9+5^5^9+...+254^254^9+255^255^9 range 1 rules.

AUGGGGGH!

It definitely doesn't have to be _that_ complicated. The maximum is 256 states, not 255, so it seems to me that the last term should be 256^256^9 if anything -- but that last term will include all the previous terms (i.e., a 256-state rule in which one of the states never happens to be chosen, is really a 255-state rule).

That will happen 255 times, for the 255 different possible non-zero states that can be left out. (The zero state is a little strange and special, since we're guaranteed to have some of those states around the edges.) So in a practical sense, even with just one term instead of 255 terms, the formula is counting a lot of functionally equivalent rules as different. The question of how many rule tables there are seems a little bit different from how many rules there are.

(Now I have to go think again about whether the formula is really correct or not...)

EDIT: Yeah, it seems like (256^9)^256 is the number of different rule tables. Many of them produce rules that are functionally isomorphic to each other -- i.e., you could substitue all state S1 cells for state S2 cells, and then the pattern would behave exactly the same from then on with S2 always appearing where S1 did -- but they're still distinct rules.

So that's a mere 5550-digit number

38448559958689582446977056492823062848927500337801248175571406455205640359363297329514829541070592676457967314688087605622316283099436819343890491013635088466499729825070976031210275483598854650564606111014665118125927723996499339432016213581444364821345016492704280888753836915090019089891021956471980034903237378400465979859826540187609718141492082898673816622337123245934288996076604339638524418394253023635460869167245612500247759155716272608571716958636926667805605753641932050068903767467165937176253315864988785133650181824849372103644977934119026825380749068108066872357582754400729634791720080164446537402135117661781469236359174184255596033792669086827411915986015838150656848431408992911771591624913941525780483938691571136538834822539584780911120126939399103070964745357217580167614907010324711156089416280463510336088047045004415745873169503686247087308031500178696881177302535389100298789242479384645073132351705737430484773132931574739815631252123422088074872372420202820360457330362118560631777500785925332990575820431004243688532105196903898543880465330550104758220492216377002140369482478254204390083473034586963001593132129378013492383581515627940015744644254953670143816119601465095726473112229478950729757709871425341485860918764648625881275487722015393560501796730878520888361812411650414282946262045476883178592995488364563880126578286951607355735992947731781538294875271574864043108188539109119918277016773246558167048666085193765160124264190947420400645854469508014776755883989972065875639618553446753825836144875262993424412684554556898756972714184734041991686692081821547127972614988059962571969025831790124999327826103472589043482166860944335563305313733753718974625930549278520594961590025279061819898430504890594651542030355356712920957135982522276103401297842683130400014844612945480945116470621327528087145999056500069274154450643588945060068255600120128885964595474682275618783873088243118219745124777903386837399811094658903562890136512940695482752032031808086815733887292852972336277631358557245113042785818028051234887370149420184820248600593508295242689017771401347522072896573378892123196299780401472964400022154953633543845395087356920833120210730705011855968171103867054322048889349241026647431540276824581324251471335305137613210452034008440330746299711661622469116156548292474296008218098552544333228771438814286275417774489280051686677036552028331663254360440592548720586690433130063140540114058064527982221082862164986576526942793763175079583002874559996712571073894078195183501370725252885453637960201238946868676704110226218852035688645870611182416843308352284639191207991983695852572958929112314976838541136669254081533813799126406405859720539994908516479854848301589373052500259590217147630533104470624038420535996537794398168556941689489640590025493737279963818741514851666330909146526690531131709880043528697041489213387210197441399336846028145341896358640909788006549837881428946105757595856448280368524742297818185817412680662660258958441387230755918575863934176465654300391746741973083621319557095445725462131414155911712013461673012726532528323680913900239598800737988323416624314219337539777582831138070457165646115997641224672692221125637111123732207977809418046079624113902168870945867329326278996425619089432645727236803104861591666361945805373249913689827164734590878498462786698283811077576686035697346883127932791702533774526352910857830279322367021165325386944768843132906644432143161038078918177112498627500208496202955180688087245450366196193864679352522944682019035419149105624897885390781969271541302191353712405440163953084005922519105018976327469686328255007397145963155262198675302949968271388691940362274767798076328607378638440486543891012727297778268255277026160910530357786644939919306653741443016100824786550126143125924489015012723962504052636184076541884054667789069600066921840220577878306346214272726027010242839821689530872073373999328339098568843763904574053249005460846820910932792707741310744602737806382175467523259723497880623436622585852541326384059959995143312091736735843249441506666014129572853323906202386567067638700947859246730291156601125272415511900919608531548328979621028717360314901833032365958594603475955686744170452409666419029111578818803036900869624373440575853216805793950656085549318966062263612496388862306204701273007349199949990079715873565509967880817971018426048058146068039800158577047061243337199803725265207339575928474688454010509360930063137390729226079007289045496751180410993944295642503355698510297924224644240753414126413706400103044149165908557074617237622080932446184169932297882164792564014718276494215637734995241343815930987865825647133828470637438944808041762845059451803399725505863858011570199292519794533344377559174398017366476326492384814758816154748041122844387670552125008043076417403088411607080337480550534303802771112912581428328885557869146753007103287223391486780332361239355963432012493496051285072027635618926443633387893019054756343722688074200391334446252106751133882642438547367391301229272298694451522040433810620207374283045600853922309924495353348734859731800287200050286615033184132697017296572340419013735770106600797612496359412588114138431619220641386838078912450881641429040837254213276369578953312144755186685359585141180598398368235739814200624474677442416064830195463694588605124744950362063529234545240378021620895676803531848237377551457882046712672355146932491169091236445252690403712024392627335056563543107562770803672059136162039931331357996511511072625851039832806754552212807873198131511296

... which is just infinitesimally small compared to that 7862-digit number I quoted earlier.
User avatar
dvgrn
Moderator
 
Posts: 4845
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Thread for basic questions

Postby KittyTac » September 19th, 2018, 8:14 am

And rule tables have nothing on range-2 rules. Kind of interesting that even a very limited section of the CA space has more rules than there are stars in the universe. It's incomprehensibly vast.
User avatar
KittyTac
 
Posts: 507
Joined: December 21st, 2017, 9:58 am

Re: Thread for basic questions

Postby gameoflifemaniac » September 19th, 2018, 11:11 am

dvgrn wrote:So that's a mere 5550-digit number

38448559958689582446977056492823062848927500337801248175571406455205640359363297329514829541070592676457967314688087605622316283099436819343890491013635088466499729825070976031210275483598854650564606111014665118125927723996499339432016213581444364821345016492704280888753836915090019089891021956471980034903237378400465979859826540187609718141492082898673816622337123245934288996076604339638524418394253023635460869167245612500247759155716272608571716958636926667805605753641932050068903767467165937176253315864988785133650181824849372103644977934119026825380749068108066872357582754400729634791720080164446537402135117661781469236359174184255596033792669086827411915986015838150656848431408992911771591624913941525780483938691571136538834822539584780911120126939399103070964745357217580167614907010324711156089416280463510336088047045004415745873169503686247087308031500178696881177302535389100298789242479384645073132351705737430484773132931574739815631252123422088074872372420202820360457330362118560631777500785925332990575820431004243688532105196903898543880465330550104758220492216377002140369482478254204390083473034586963001593132129378013492383581515627940015744644254953670143816119601465095726473112229478950729757709871425341485860918764648625881275487722015393560501796730878520888361812411650414282946262045476883178592995488364563880126578286951607355735992947731781538294875271574864043108188539109119918277016773246558167048666085193765160124264190947420400645854469508014776755883989972065875639618553446753825836144875262993424412684554556898756972714184734041991686692081821547127972614988059962571969025831790124999327826103472589043482166860944335563305313733753718974625930549278520594961590025279061819898430504890594651542030355356712920957135982522276103401297842683130400014844612945480945116470621327528087145999056500069274154450643588945060068255600120128885964595474682275618783873088243118219745124777903386837399811094658903562890136512940695482752032031808086815733887292852972336277631358557245113042785818028051234887370149420184820248600593508295242689017771401347522072896573378892123196299780401472964400022154953633543845395087356920833120210730705011855968171103867054322048889349241026647431540276824581324251471335305137613210452034008440330746299711661622469116156548292474296008218098552544333228771438814286275417774489280051686677036552028331663254360440592548720586690433130063140540114058064527982221082862164986576526942793763175079583002874559996712571073894078195183501370725252885453637960201238946868676704110226218852035688645870611182416843308352284639191207991983695852572958929112314976838541136669254081533813799126406405859720539994908516479854848301589373052500259590217147630533104470624038420535996537794398168556941689489640590025493737279963818741514851666330909146526690531131709880043528697041489213387210197441399336846028145341896358640909788006549837881428946105757595856448280368524742297818185817412680662660258958441387230755918575863934176465654300391746741973083621319557095445725462131414155911712013461673012726532528323680913900239598800737988323416624314219337539777582831138070457165646115997641224672692221125637111123732207977809418046079624113902168870945867329326278996425619089432645727236803104861591666361945805373249913689827164734590878498462786698283811077576686035697346883127932791702533774526352910857830279322367021165325386944768843132906644432143161038078918177112498627500208496202955180688087245450366196193864679352522944682019035419149105624897885390781969271541302191353712405440163953084005922519105018976327469686328255007397145963155262198675302949968271388691940362274767798076328607378638440486543891012727297778268255277026160910530357786644939919306653741443016100824786550126143125924489015012723962504052636184076541884054667789069600066921840220577878306346214272726027010242839821689530872073373999328339098568843763904574053249005460846820910932792707741310744602737806382175467523259723497880623436622585852541326384059959995143312091736735843249441506666014129572853323906202386567067638700947859246730291156601125272415511900919608531548328979621028717360314901833032365958594603475955686744170452409666419029111578818803036900869624373440575853216805793950656085549318966062263612496388862306204701273007349199949990079715873565509967880817971018426048058146068039800158577047061243337199803725265207339575928474688454010509360930063137390729226079007289045496751180410993944295642503355698510297924224644240753414126413706400103044149165908557074617237622080932446184169932297882164792564014718276494215637734995241343815930987865825647133828470637438944808041762845059451803399725505863858011570199292519794533344377559174398017366476326492384814758816154748041122844387670552125008043076417403088411607080337480550534303802771112912581428328885557869146753007103287223391486780332361239355963432012493496051285072027635618926443633387893019054756343722688074200391334446252106751133882642438547367391301229272298694451522040433810620207374283045600853922309924495353348734859731800287200050286615033184132697017296572340419013735770106600797612496359412588114138431619220641386838078912450881641429040837254213276369578953312144755186685359585141180598398368235739814200624474677442416064830195463694588605124744950362063529234545240378021620895676803531848237377551457882046712672355146932491169091236445252690403712024392627335056563543107562770803672059136162039931331357996511511072625851039832806754552212807873198131511296

... which is just infinitesimally small compared to that 7862-digit number I quoted earlier.

WRONG.
256^(256^9), not (256^256)^9.
https://www.youtube.com/watch?v=q6EoRBvdVPQ
One big dirty Oro. Yeeeeeeeeee...
User avatar
gameoflifemaniac
 
Posts: 662
Joined: January 22nd, 2017, 11:17 am
Location: There too

Re: Thread for basic questions

Postby dvgrn » September 19th, 2018, 11:39 am

gameoflifemaniac wrote:WRONG.
256^(256^9), not (256^256)^9.

Heh. Have you calculated the difference between those two rather large numbers?
User avatar
dvgrn
Moderator
 
Posts: 4845
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Thread for basic questions

Postby Redstoneboi » September 20th, 2018, 5:59 am

to account for state function switching, divide by factorial
let s = max states
let n = number of possible neighbors
(s^[s^n])/(s!)

which by substitution becomes
(256^[256^9])/(256!)
and I can’t calculate this
c(>^x^<c)~
This is Fluffy the cat.
Fluffy wants to discover new things that everyone likes.
Fluffy likes to watch spaceship guns in Golly.

There’s one problem,

Fluffy doesn’t exist :(
User avatar
Redstoneboi
 
Posts: 255
Joined: May 14th, 2018, 3:57 am

Re: Thread for basic questions

Postby dvgrn » September 20th, 2018, 8:30 am

Redstoneboi wrote:to account for state function switching, divide by factorial
let s = max states
let n = number of possible neighbors
(s^[s^n])/(s!)

which by substitution becomes
(256^[256^9])/(256!)
and I can’t calculate this

Python can do it, though not terribly quickly. It's a 5043-digit number:

44821360741006920927118125563344294069712618441345403098562857255809227239160043579760371886464596995489062274108744120199671762251468517721753419132979862379056953100468497385599593285559686138634035432205756236470775283882790175378123396983120793247149663296331150517544915673719501890339158202008041570762128564641914095283548440101107158073165558844344006117324199034608910304702943457842657623268037234276167642902877246877148973187197700009919097525078135810516499124934591510551141722914994756267817818446404637183464253121251345517642811185472338560896975045079227351075854551876046679813081975920731276030681726233101583481614300065209856122290708493750240170850166491339033131194951975843214384462875238344589029086429610311507821912016121274818017035383117393896405801826096649450701667324815003114219392417727247709992428533794821334638598303372122199984460499584494476048815413242387990236881323981327610991088342207527990697121304636721300423926050673623583992051738547124071865833572495808748464842960039679952507438565983596903271684726921402286358983372514110724436618616038627078171751571374981193481389239738018911847753040012042787717918908254528251383698867573135156939084331086758097907106095031547377278425617974502609591951482145610903954114723199175023668647127177171005078000230111841493293005098907252636413635633920751956022278837329406458663016725225858003022739549055062274361677955303156553396862455151776202367024537323175120553029177103272539450743286199138801302521724010186618263274929550795001141051128801614407279190360193127735430043687153224887844534769888437163665155800807463266843575103824059767284025940207275881960101519957916237708399875030372830269982631590567036289112792996676043853858411636406315981937522523463993396230828303434497509207051224667499492669294263050230559229676800568132382747151593579043989050178300829184643383595462517549306306474120786647700402892258487237997035359714591336600967370844334051004556584697268688966747575103026127402993600525260976910157191425375547783663028991220655494093577189810628207736824408765366252321547962537934163945058829871740990197017995479964655862858093533840154857599880559772822085707880357574223432953948114891117934451277005092303052452112158056476214906893587342030175547626651425026074833715152032952805169562075282179294553771261840060129307917562327518559447865560261869530619146796289605068773232280672043579212840213614934562130900927235803520092924949100933582669717418978032456490181287614496615337772202853561213724015646715694758940324144982567076229510224248921269187933597475519063663022757442713208129469622210659669536778045973317494731118990707967432774062244466075136722917025925009563913590052330611701222318368085100464973062147652246689225209600815677748233777662320645699744705636073421345796240053484790947490102494432936503470044285598487443191685499243787281532963627704292193424182943705360756645473340519414095571075906987921999994589589249185617638227290154466026945274766811106853096897936712824729657611432539798592716143987257658160530629482056080902245386837930231790704750654110781542255930924919874882282807461734345268621370264400363276081835323582898730664274722057146166965002489980037918333408523044028288630105000226961017101057911404439308945076014236700573803528075158097441596911890827780594707319154983659005344832899989561862660959130461722456610784770149431378576981345529022912974211559543506305874845139436429418602990811191514032095585427455050829742344137591691348336147594598106232787833354040920189543974857608087516319325230734952899760499184322016189412875490908364556014134221232189516514253131071953417743398305589250283949261639322480246103908899019192671003341114354426222279503260239379692002985820083691324001543770026121010659342635445175882283119028061806900247656062778452104695825791668229271089888239843678595833605360724031910208269201857832241519399456091000654999671882890157573953350680493959697423700920901526125561420840938619531572833243566141585750413363948101918633369088210553267837344133868481064157510091231648167146402765497018622521934157217722918252710260861762416803881844816281447193383020785507195544179097074683012618228156526573236865056979474673439761228079452790416346816424130437119160272875853115945840525610376098515206314549528779229566898655488992808412813208562567700649548920845247917159464920671204614608676010207017439945964053006478732190315269878558458539540181809600425140618593764715981322774361251735765127792981232516384702849531086986944407544314789200697349264961671890330493802893110038511078271458814149142021655319206993546999133764203804932225589425469230702521448316281442925721214305246932327940087990549046630745347388589661441788910366674227288837479995222348373760460096558952661701401872750873953119275134250746383544419899256714480402248874512152723381345337540041756915746027205111642496652868369791480941583725296478152527798879329044426981726565780911968075053031970793542854637797317255345847697294565655250581166197143757

k = (256**256)**9
for i in range(1, 257):
   k = k / i
   print str(k) + "\n"

But that certainly can't be an accurate formula. Doesn't even come out to an integer, really. The above code ends up doing integer division, because I definitely didn't care about anything after the decimal point.
User avatar
dvgrn
Moderator
 
Posts: 4845
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Thread for basic questions

Postby KittyTac » September 20th, 2018, 9:19 am

dvgrn wrote:
Redstoneboi wrote:to account for state function switching, divide by factorial
let s = max states
let n = number of possible neighbors
(s^[s^n])/(s!)

which by substitution becomes
(256^[256^9])/(256!)
and I can’t calculate this

Python can do it, though not terribly quickly. It's a 5043-digit number:

44821360741006920927118125563344294069712618441345403098562857255809227239160043579760371886464596995489062274108744120199671762251468517721753419132979862379056953100468497385599593285559686138634035432205756236470775283882790175378123396983120793247149663296331150517544915673719501890339158202008041570762128564641914095283548440101107158073165558844344006117324199034608910304702943457842657623268037234276167642902877246877148973187197700009919097525078135810516499124934591510551141722914994756267817818446404637183464253121251345517642811185472338560896975045079227351075854551876046679813081975920731276030681726233101583481614300065209856122290708493750240170850166491339033131194951975843214384462875238344589029086429610311507821912016121274818017035383117393896405801826096649450701667324815003114219392417727247709992428533794821334638598303372122199984460499584494476048815413242387990236881323981327610991088342207527990697121304636721300423926050673623583992051738547124071865833572495808748464842960039679952507438565983596903271684726921402286358983372514110724436618616038627078171751571374981193481389239738018911847753040012042787717918908254528251383698867573135156939084331086758097907106095031547377278425617974502609591951482145610903954114723199175023668647127177171005078000230111841493293005098907252636413635633920751956022278837329406458663016725225858003022739549055062274361677955303156553396862455151776202367024537323175120553029177103272539450743286199138801302521724010186618263274929550795001141051128801614407279190360193127735430043687153224887844534769888437163665155800807463266843575103824059767284025940207275881960101519957916237708399875030372830269982631590567036289112792996676043853858411636406315981937522523463993396230828303434497509207051224667499492669294263050230559229676800568132382747151593579043989050178300829184643383595462517549306306474120786647700402892258487237997035359714591336600967370844334051004556584697268688966747575103026127402993600525260976910157191425375547783663028991220655494093577189810628207736824408765366252321547962537934163945058829871740990197017995479964655862858093533840154857599880559772822085707880357574223432953948114891117934451277005092303052452112158056476214906893587342030175547626651425026074833715152032952805169562075282179294553771261840060129307917562327518559447865560261869530619146796289605068773232280672043579212840213614934562130900927235803520092924949100933582669717418978032456490181287614496615337772202853561213724015646715694758940324144982567076229510224248921269187933597475519063663022757442713208129469622210659669536778045973317494731118990707967432774062244466075136722917025925009563913590052330611701222318368085100464973062147652246689225209600815677748233777662320645699744705636073421345796240053484790947490102494432936503470044285598487443191685499243787281532963627704292193424182943705360756645473340519414095571075906987921999994589589249185617638227290154466026945274766811106853096897936712824729657611432539798592716143987257658160530629482056080902245386837930231790704750654110781542255930924919874882282807461734345268621370264400363276081835323582898730664274722057146166965002489980037918333408523044028288630105000226961017101057911404439308945076014236700573803528075158097441596911890827780594707319154983659005344832899989561862660959130461722456610784770149431378576981345529022912974211559543506305874845139436429418602990811191514032095585427455050829742344137591691348336147594598106232787833354040920189543974857608087516319325230734952899760499184322016189412875490908364556014134221232189516514253131071953417743398305589250283949261639322480246103908899019192671003341114354426222279503260239379692002985820083691324001543770026121010659342635445175882283119028061806900247656062778452104695825791668229271089888239843678595833605360724031910208269201857832241519399456091000654999671882890157573953350680493959697423700920901526125561420840938619531572833243566141585750413363948101918633369088210553267837344133868481064157510091231648167146402765497018622521934157217722918252710260861762416803881844816281447193383020785507195544179097074683012618228156526573236865056979474673439761228079452790416346816424130437119160272875853115945840525610376098515206314549528779229566898655488992808412813208562567700649548920845247917159464920671204614608676010207017439945964053006478732190315269878558458539540181809600425140618593764715981322774361251735765127792981232516384702849531086986944407544314789200697349264961671890330493802893110038511078271458814149142021655319206993546999133764203804932225589425469230702521448316281442925721214305246932327940087990549046630745347388589661441788910366674227288837479995222348373760460096558952661701401872750873953119275134250746383544419899256714480402248874512152723381345337540041756915746027205111642496652868369791480941583725296478152527798879329044426981726565780911968075053031970793542854637797317255345847697294565655250581166197143757

k = (256**256)**9
for i in range(1, 257):
   k = k / i
   print str(k) + "\n"

But that certainly can't be an accurate formula. Doesn't even come out to an integer, really. The above code ends up doing integer division, because I definitely didn't care about anything after the decimal point.

Is that bigger than the number of atoms in a human?
User avatar
KittyTac
 
Posts: 507
Joined: December 21st, 2017, 9:58 am

Re: Thread for basic questions

Postby dvgrn » September 20th, 2018, 9:59 am

KittyTac wrote:Is that bigger than the number of atoms in a human?

Not quite sure if that's a serious question. "Yes" hardly seems to be an adequate answer. If you divide that number by the number of atoms in a human, you'll still have well over a 5000-digit number left.

If you packed the observable universe chock full of protons (which is a very bad idea, by the way, don't really do that) and if each proton was really its own universe, and you packed all those universes completely full of neutrons (only slightly safer), and each of those neutrons was its own universe, and you packed each of _those_ universes full of electrons (really bad idea again), and then counted all the electrons in all the sub-sub-universes inside the sub-universes inside our known universe...

-- well, you'd still have a long way to go. You wouldn't have gotten to a five-hundred-digit number yet, let alone a five-thousand-digit number.
User avatar
dvgrn
Moderator
 
Posts: 4845
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Thread for basic questions

Postby Gamedziner » September 20th, 2018, 11:26 am

dvgrn wrote:You wouldn't have gotten to a five-hundred-digit number yet, let alone a five-thousand-digit number.


What about photons? If you had that many photons, all of them having a wavelength of the observable universe, would they pack so tightly a universe-sized kugelblitz would form?
Gamedziner
 
Posts: 531
Joined: May 30th, 2016, 8:47 pm
Location: Milky Way Galaxy: Planet Earth

Re: Thread for basic questions

Postby wwei23 » September 20th, 2018, 8:02 pm

dvgrn wrote:
Redstoneboi wrote:to account for state function switching, divide by factorial
let s = max states
let n = number of possible neighbors
(s^[s^n])/(s!)

which by substitution becomes
(256^[256^9])/(256!)
and I can’t calculate this

Python can do it, though not terribly quickly. It's a 5043-digit number:

44821360741006920927118125563344294069712618441345403098562857255809227239160043579760371886464596995489062274108744120199671762251468517721753419132979862379056953100468497385599593285559686138634035432205756236470775283882790175378123396983120793247149663296331150517544915673719501890339158202008041570762128564641914095283548440101107158073165558844344006117324199034608910304702943457842657623268037234276167642902877246877148973187197700009919097525078135810516499124934591510551141722914994756267817818446404637183464253121251345517642811185472338560896975045079227351075854551876046679813081975920731276030681726233101583481614300065209856122290708493750240170850166491339033131194951975843214384462875238344589029086429610311507821912016121274818017035383117393896405801826096649450701667324815003114219392417727247709992428533794821334638598303372122199984460499584494476048815413242387990236881323981327610991088342207527990697121304636721300423926050673623583992051738547124071865833572495808748464842960039679952507438565983596903271684726921402286358983372514110724436618616038627078171751571374981193481389239738018911847753040012042787717918908254528251383698867573135156939084331086758097907106095031547377278425617974502609591951482145610903954114723199175023668647127177171005078000230111841493293005098907252636413635633920751956022278837329406458663016725225858003022739549055062274361677955303156553396862455151776202367024537323175120553029177103272539450743286199138801302521724010186618263274929550795001141051128801614407279190360193127735430043687153224887844534769888437163665155800807463266843575103824059767284025940207275881960101519957916237708399875030372830269982631590567036289112792996676043853858411636406315981937522523463993396230828303434497509207051224667499492669294263050230559229676800568132382747151593579043989050178300829184643383595462517549306306474120786647700402892258487237997035359714591336600967370844334051004556584697268688966747575103026127402993600525260976910157191425375547783663028991220655494093577189810628207736824408765366252321547962537934163945058829871740990197017995479964655862858093533840154857599880559772822085707880357574223432953948114891117934451277005092303052452112158056476214906893587342030175547626651425026074833715152032952805169562075282179294553771261840060129307917562327518559447865560261869530619146796289605068773232280672043579212840213614934562130900927235803520092924949100933582669717418978032456490181287614496615337772202853561213724015646715694758940324144982567076229510224248921269187933597475519063663022757442713208129469622210659669536778045973317494731118990707967432774062244466075136722917025925009563913590052330611701222318368085100464973062147652246689225209600815677748233777662320645699744705636073421345796240053484790947490102494432936503470044285598487443191685499243787281532963627704292193424182943705360756645473340519414095571075906987921999994589589249185617638227290154466026945274766811106853096897936712824729657611432539798592716143987257658160530629482056080902245386837930231790704750654110781542255930924919874882282807461734345268621370264400363276081835323582898730664274722057146166965002489980037918333408523044028288630105000226961017101057911404439308945076014236700573803528075158097441596911890827780594707319154983659005344832899989561862660959130461722456610784770149431378576981345529022912974211559543506305874845139436429418602990811191514032095585427455050829742344137591691348336147594598106232787833354040920189543974857608087516319325230734952899760499184322016189412875490908364556014134221232189516514253131071953417743398305589250283949261639322480246103908899019192671003341114354426222279503260239379692002985820083691324001543770026121010659342635445175882283119028061806900247656062778452104695825791668229271089888239843678595833605360724031910208269201857832241519399456091000654999671882890157573953350680493959697423700920901526125561420840938619531572833243566141585750413363948101918633369088210553267837344133868481064157510091231648167146402765497018622521934157217722918252710260861762416803881844816281447193383020785507195544179097074683012618228156526573236865056979474673439761228079452790416346816424130437119160272875853115945840525610376098515206314549528779229566898655488992808412813208562567700649548920845247917159464920671204614608676010207017439945964053006478732190315269878558458539540181809600425140618593764715981322774361251735765127792981232516384702849531086986944407544314789200697349264961671890330493802893110038511078271458814149142021655319206993546999133764203804932225589425469230702521448316281442925721214305246932327940087990549046630745347388589661441788910366674227288837479995222348373760460096558952661701401872750873953119275134250746383544419899256714480402248874512152723381345337540041756915746027205111642496652868369791480941583725296478152527798879329044426981726565780911968075053031970793542854637797317255345847697294565655250581166197143757

k = (256**256)**9
for i in range(1, 257):
   k = k / i
   print str(k) + "\n"

But that certainly can't be an accurate formula. Doesn't even come out to an integer, really. The above code ends up doing integer division, because I definitely didn't care about anything after the decimal point.

Plugged this into one of my bots that evaluates arbitrary JavaScript.
A91355C7-CC18-40DB-9E60-05EAEBD473F3.jpeg
A91355C7-CC18-40DB-9E60-05EAEBD473F3.jpeg (119.5 KiB) Viewed 1476 times
User avatar
wwei23
 
Posts: 865
Joined: May 22nd, 2017, 6:14 pm
Location: The (Life?) Universe

Re: Thread for basic questions

Postby KittyTac » September 21st, 2018, 8:51 am

dvgrn wrote:
KittyTac wrote:Is that bigger than the number of atoms in a human?

Not quite sure if that's a serious question. "Yes" hardly seems to be an adequate answer. If you divide that number by the number of atoms in a human, you'll still have well over a 5000-digit number left.

If you packed the observable universe chock full of protons (which is a very bad idea, by the way, don't really do that) and if each proton was really its own universe, and you packed all those universes completely full of neutrons (only slightly safer), and each of those neutrons was its own universe, and you packed each of _those_ universes full of electrons (really bad idea again), and then counted all the electrons in all the sub-sub-universes inside the sub-universes inside our known universe...

-- well, you'd still have a long way to go. You wouldn't have gotten to a five-hundred-digit number yet, let alone a five-thousand-digit number.

Ouch. That kind of stumps my brain.
User avatar
KittyTac
 
Posts: 507
Joined: December 21st, 2017, 9:58 am

Re: Thread for basic questions

Postby wildmyron » September 21st, 2018, 9:35 am

Gamedziner wrote:
dvgrn wrote:You wouldn't have gotten to a five-hundred-digit number yet, let alone a five-thousand-digit number.


What about photons? If you had that many photons, all of them having a wavelength of the observable universe, would they pack so tightly a universe-sized kugelblitz would form?

Photons are bosons, not fermions like protons, neutrons and electrons, and as such they don't have the same limitation on packing. In other words, quantum mechanics imposes no limit on how many photons can be in one place.

Even without actually working out what order of magnitude the equivalent mass of 1 Exp 5000 ultra low energy photons is, I think we can safely say it's well in excess of that required to create a kugelblitz the size of the observable universe.
wildmyron
 
Posts: 845
Joined: August 9th, 2013, 12:45 am

Re: Thread for basic questions

Postby gameoflifemaniac » September 21st, 2018, 9:48 am

dvgrn wrote:Python can do it, though not terribly quickly. It's a 5043-digit number:

44821360741006920927118125563344294069712618441345403098562857255809227239160043579760371886464596995489062274108744120199671762251468517721753419132979862379056953100468497385599593285559686138634035432205756236470775283882790175378123396983120793247149663296331150517544915673719501890339158202008041570762128564641914095283548440101107158073165558844344006117324199034608910304702943457842657623268037234276167642902877246877148973187197700009919097525078135810516499124934591510551141722914994756267817818446404637183464253121251345517642811185472338560896975045079227351075854551876046679813081975920731276030681726233101583481614300065209856122290708493750240170850166491339033131194951975843214384462875238344589029086429610311507821912016121274818017035383117393896405801826096649450701667324815003114219392417727247709992428533794821334638598303372122199984460499584494476048815413242387990236881323981327610991088342207527990697121304636721300423926050673623583992051738547124071865833572495808748464842960039679952507438565983596903271684726921402286358983372514110724436618616038627078171751571374981193481389239738018911847753040012042787717918908254528251383698867573135156939084331086758097907106095031547377278425617974502609591951482145610903954114723199175023668647127177171005078000230111841493293005098907252636413635633920751956022278837329406458663016725225858003022739549055062274361677955303156553396862455151776202367024537323175120553029177103272539450743286199138801302521724010186618263274929550795001141051128801614407279190360193127735430043687153224887844534769888437163665155800807463266843575103824059767284025940207275881960101519957916237708399875030372830269982631590567036289112792996676043853858411636406315981937522523463993396230828303434497509207051224667499492669294263050230559229676800568132382747151593579043989050178300829184643383595462517549306306474120786647700402892258487237997035359714591336600967370844334051004556584697268688966747575103026127402993600525260976910157191425375547783663028991220655494093577189810628207736824408765366252321547962537934163945058829871740990197017995479964655862858093533840154857599880559772822085707880357574223432953948114891117934451277005092303052452112158056476214906893587342030175547626651425026074833715152032952805169562075282179294553771261840060129307917562327518559447865560261869530619146796289605068773232280672043579212840213614934562130900927235803520092924949100933582669717418978032456490181287614496615337772202853561213724015646715694758940324144982567076229510224248921269187933597475519063663022757442713208129469622210659669536778045973317494731118990707967432774062244466075136722917025925009563913590052330611701222318368085100464973062147652246689225209600815677748233777662320645699744705636073421345796240053484790947490102494432936503470044285598487443191685499243787281532963627704292193424182943705360756645473340519414095571075906987921999994589589249185617638227290154466026945274766811106853096897936712824729657611432539798592716143987257658160530629482056080902245386837930231790704750654110781542255930924919874882282807461734345268621370264400363276081835323582898730664274722057146166965002489980037918333408523044028288630105000226961017101057911404439308945076014236700573803528075158097441596911890827780594707319154983659005344832899989561862660959130461722456610784770149431378576981345529022912974211559543506305874845139436429418602990811191514032095585427455050829742344137591691348336147594598106232787833354040920189543974857608087516319325230734952899760499184322016189412875490908364556014134221232189516514253131071953417743398305589250283949261639322480246103908899019192671003341114354426222279503260239379692002985820083691324001543770026121010659342635445175882283119028061806900247656062778452104695825791668229271089888239843678595833605360724031910208269201857832241519399456091000654999671882890157573953350680493959697423700920901526125561420840938619531572833243566141585750413363948101918633369088210553267837344133868481064157510091231648167146402765497018622521934157217722918252710260861762416803881844816281447193383020785507195544179097074683012618228156526573236865056979474673439761228079452790416346816424130437119160272875853115945840525610376098515206314549528779229566898655488992808412813208562567700649548920845247917159464920671204614608676010207017439945964053006478732190315269878558458539540181809600425140618593764715981322774361251735765127792981232516384702849531086986944407544314789200697349264961671890330493802893110038511078271458814149142021655319206993546999133764203804932225589425469230702521448316281442925721214305246932327940087990549046630745347388589661441788910366674227288837479995222348373760460096558952661701401872750873953119275134250746383544419899256714480402248874512152723381345337540041756915746027205111642496652868369791480941583725296478152527798879329044426981726565780911968075053031970793542854637797317255345847697294565655250581166197143757

k = (256**256)**9
for i in range(1, 257):
   k = k / i
   print str(k) + "\n"

But that certainly can't be an accurate formula. Doesn't even come out to an integer, really. The above code ends up doing integer division, because I definitely didn't care about anything after the decimal point.

GAHHHHHHHHHHH!
256^(256^9), not (256^256)^9!!!
(256^256)^9 is 3.844855995870422 × 10^5548, but 256^(256^9) is 10^(1.1372591694895835 × 10^22).
https://www.youtube.com/watch?v=q6EoRBvdVPQ
One big dirty Oro. Yeeeeeeeeee...
User avatar
gameoflifemaniac
 
Posts: 662
Joined: January 22nd, 2017, 11:17 am
Location: There too

Re: Thread for basic questions

Postby Apple Bottom » September 21st, 2018, 10:10 am

gameoflifemaniac wrote:256^(256^9), not (256^256)^9!!!
(256^256)^9 is 3.844855995870422 × 10^5548, but 256^(256^9) is 10^(1.1372591694895835 × 10^22).


Even so, the point still stands that 256^(256^9)/256! cannot possibly be correct, on account of not even being a natural number.

(You may also want to reconsider the number of exclamanation marks you're using.)
If you speak, your speech must be better than your silence would have been. — Arabian proverb

Catagolue: Apple Bottom • Life Wiki: Apple Bottom • Twitter: @_AppleBottom_

Proud member of the Pattern Raiders!
User avatar
Apple Bottom
 
Posts: 969
Joined: July 27th, 2015, 2:06 pm

Re: Thread for basic questions

Postby Sarp » September 22nd, 2018, 10:21 am

How the "score" of a soup in apgsearch calculated?
Sarp
 
Posts: 63
Joined: March 1st, 2015, 1:28 pm

Re: Thread for basic questions

Postby Bamboonium » September 24th, 2018, 8:25 pm

Weird Golly Thing.JPG
Weird Golly Thing.JPG (268.2 KiB) Viewed 1240 times
So I found this patter that turns into what I think is a three period repeater. Can anybody tell me what this is or if it is just a common repeater? An image showing the pattern and what it turns into is attached.

- Regards,
Bamboonium
Bamboonium
 
Posts: 9
Joined: September 24th, 2018, 8:05 pm

Re: Thread for basic questions

Postby M. I. Wright » September 24th, 2018, 8:48 pm

Hello, and welcome!
What you've found is the pulsar -- definitely a beautiful oscillator.

If you want to share patterns more-easily in the future, by the way, Golly happens to make it really simple: look toward the top of the screen and you'll notice the row of buttons that contains a pencil icon, an eyedropper, a dashed rectangle, a hand, and two magnifying glasses. Click on the dashed rectangle (it's a selection tool) and click+drag across the board until your pattern is selected, then simply hit ctrl+C -- that'll copy a "run-length encoded" form of the pattern (an "RLE") to your clipboard.

Here's what selecting it looks like:Image

And this is what ends up on my clipboard after hitting ctrl+C:
x = 17, y = 15, rule = B3/S23
$4b2o5b2o$5b2o3b2o$2bo2bobobobo2bo$2b3ob2ob2ob3o$3bobobobobobo$4b3o3b
3o2$4b3o3b3o$3bobobobobobo$2b3ob2ob2ob3o$2bo2bobobobo2bo$5b2o3b2o$4b2o
5b2o!

Notice that that text is in its own little box -- you can get that by writing the BBCode tags "[code ][ /code]" (but remove the spaces!) and pasting your pattern right in the middle of the two. The "show in viewer" link pops up if there's an RLE pattern detected inside the code-block, and users can click it to see the pattern in real time on their own screens :)

--

You may be interested in the pulsar's bigger cousins, by the way -- what's neat is that its sort-of quadrants can be split up and duplicated and rearranged in a bunch of different ways. Here's a quasar:
x = 29, y = 29, rule = B3/S23
10b3o3b3o2$8bo4bobo4bo$8bo4bobo4bo$8bo4bobo4bo$10b3o3b3o2$8b3o7b3o$2b
3o2bo4bo3bo4bo2b3o$7bo4bo3bo4bo$o4bobo4bo3bo4bobo4bo$o4bo17bo4bo$o4bo
2b3o7b3o2bo4bo$2b3o19b3o2$2b3o19b3o$o4bo2b3o7b3o2bo4bo$o4bo17bo4bo$o4b
obo4bo3bo4bobo4bo$7bo4bo3bo4bo$2b3o2bo4bo3bo4bo2b3o$8b3o7b3o2$10b3o3b
3o$8bo4bobo4bo$8bo4bobo4bo$8bo4bobo4bo2$10b3o3b3o!
Last edited by M. I. Wright on September 24th, 2018, 10:49 pm, edited 1 time in total.
M. I. Wright
 
Posts: 356
Joined: June 13th, 2015, 12:04 pm

Re: Thread for basic questions

Postby Bamboonium » September 24th, 2018, 9:10 pm

Thank you for the insight :D ! I Will make sure to use this function next time it is applicable. I will also look into working with quasars!

Also, I would like to know how to import this BBcode into Golly. The run in browser function works fine, but I would like to do further experimentation on it in in Golly.
[Edit] Nevermind, I figured out that it Is the copy clipboard function under the file menu.

Regards,
Bamboonium
Bamboonium
 
Posts: 9
Joined: September 24th, 2018, 8:05 pm

Re: Thread for basic questions

Postby Bamboonium » September 24th, 2018, 9:27 pm

Is there some sort of mathematical equation or method for finding patterns that don't die over time or are all of the known ones just the result of millions of hours of experimenting?

Regards,
Bamboonium
Bamboonium
 
Posts: 9
Joined: September 24th, 2018, 8:05 pm

Re: Thread for basic questions

Postby dvgrn » September 24th, 2018, 9:34 pm

Bamboonium wrote:Is there some sort of mathematical equation or method for finding patterns that don't die over time or are all of the known ones just the result of millions of hours of experimenting?

"Millions of (CPU) hours of experimenting" is a good summary of how a lot of oscillators and other persistent objects have been found (Catagolue, and its predecessors).

However, a lot of "engineered" patterns that don't die over time are more the result of careful assembly than random experimentation. Once you have a few key reactions, like the Snark reflector catalyst or Herschel conduits, you can use them to build signal loops and more complicated circuits that are guaranteed not to die off.
User avatar
dvgrn
Moderator
 
Posts: 4845
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Thread for basic questions

Postby KittyTac » September 24th, 2018, 11:48 pm

Is a rule table metacell possible?
User avatar
KittyTac
 
Posts: 507
Joined: December 21st, 2017, 9:58 am

Re: Thread for basic questions

Postby dvgrn » September 25th, 2018, 6:05 am

KittyTac wrote:Is a rule table metacell possible?

Scary thought. You mean, a Life metacell with programmable elements that can support variables and permutation symmetry and 256 states and nearly unlimited numbers of rule lines?

It's certainly theoretically possible, but to be able to support a memory storage area big enough to hold the maximum number of rule lines, it would have to be so big and have such a high period that even StreamLife couldn't run it.

Of course, Golly can't run a rule table with the maximum number of rule lines on any existing computer, either. So if you set some very specific limitations, like no variables, symmetry=none only, and maximum of a thousand rule lines, then it's ... well, still extraordinarily impractical, since every cell would have to include its own rule-table processing circuitry, but ultimately just another kind of specialized Life computer.
User avatar
dvgrn
Moderator
 
Posts: 4845
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

PreviousNext

Return to General Discussion

Who is online

Users browsing this forum: No registered users and 4 guests