Page 11 of 11

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 23rd, 2017, 1:26 am
16.995 in 8G:
`x = 50, y = 35, rule = B3/S2318bo\$19bo\$17b3o5\$29bo\$27b2o\$28b2o\$19bo\$19b2o\$18bobo\$36bobo\$36b2o\$37bo4\$b2o\$obo\$2bo\$34b2o\$33b2o\$35bo\$29b2o\$30b2o\$29bo5\$47b3o\$47bo\$48bo!`

EDIT:
Jormungant wrote:I found an approach that may work for 16.1787 (aka xs16_069m4koz311); however, I don't know if there is a 3 or 4 glider construction for a transient group that has 7 cells at some point (found on the upper right).

`x = 21, y = 23, rule = B3/S2313bo\$11b2o\$12b2o\$7bo\$7b2o9b3o\$bo4bobo8bo\$2b2o13bo2bo\$b2o14bo2\$10bo\$9b2o\$9bobo\$5b2o\$4bobo\$6bo4\$b2o\$obo\$2bo11bo\$14b2o\$13bobo!`

In 11G:
`x = 46, y = 43, rule = B3/S2331bo\$30bo\$30b3o3\$bo\$2bo\$3o30bobo\$33b2o\$34bo5\$33bobo\$33b2o\$29b2o3bo\$28b2o\$30bo5\$6b2o\$5bobo\$7bo\$44b2o\$43b2o\$45bo\$28b2o\$28bobo\$28bo\$4b2o\$5b2o\$4bo4\$2o\$b2o\$o12b2o\$12bobo\$14bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 23rd, 2017, 4:41 am
Jormungant wrote:I found an approach that may work for 16.1787...

16.1787 in 10 gliders:

`x = 26, y = 30, rule = B3/S2318bo\$18bobo\$18b2o3\$2bo\$obo\$b2o2\$24bo\$6b3o14b2o\$8bo10bo3bobo\$7bo12b2o\$19b2o2\$23b3o\$15b3o5bo\$15bo8bo\$5bo10bo\$5b2o\$4bobo4\$bo\$b2o\$obo\$13b3o\$15bo\$14bo!`

EDIT: missed yootaa's post, but this is cheaper anyway.

EDIT2:

16.810 in 10 gliders:

`x = 37, y = 36, rule = B3/S2322bobo10bo\$23b2o8b2o\$23bo10b2o3\$24bobo\$24b2o\$14bobo8bo\$14b2o\$15bo\$8bobo\$8b2o\$9bo5b3o\$15bo\$o3bo11bo\$b2obobo\$2o2b2o\$17b2o\$17bobo\$17bo14\$35b2o\$34b2o\$36bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 23rd, 2017, 9:26 am
16.1929 (aka xs16_0g5r8b5z121) in 10 gliders.

`x = 62, y = 58, rule = B3/S23o\$b2o\$2o\$54bo\$54bobo\$54b2o\$21bobo\$22b2o\$22bo26bo\$48bo\$48b3o11\$28bo\$27bo\$27b3o\$24bo\$25bo\$23b3o5\$31bobo\$32b2o\$32bo2\$33b2o\$33bobo\$33bo2\$28b2o\$29b2o\$28bo14\$60b2o\$59b2o\$61bo!`

16.1717 (aka xs16_4aajk46zx121) in 11 gliders.

`x = 47, y = 30, rule = B3/S2325bo\$23b2o\$24b2o4\$29bo\$28bo\$28b3o4\$23b2o\$23bobo\$13bo9bo\$11bobo\$12b2o\$25b3o\$25bo\$26bo\$13b2o\$14b2o\$13bo4b2o24b3o\$2o15bobo24bo\$b2o16bo25bo\$o21b2o\$23b2o\$22bo7b2o\$30bobo\$30bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 24th, 2017, 7:17 am
So just 16.836 to go, is that correct? It can be done by making a 1G optimisation to the existing 16G synthesis. There is a B and a loaf that is made in 5G. Instead it can be made in 4G by colliding a block with a 2G loaf+blinker. Frustratingly my phone line is down so I can't post the exact details or make a push to my github repo...

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 24th, 2017, 9:07 am
chris_c wrote:So just 16.836 to go... Frustratingly my phone line is down so I can't post the exact details or make a push to my github repo...

Bad lack about the phone line. I tried 32 soups, and the best I found is only slightly better.

16.836 in 13 gliders:

`x = 89, y = 66, rule = B3/S2374bo\$74bobo\$74b2o6\$7bo\$5bobo\$6b2o11\$26bo\$24bobo\$25b2o5\$35bo\$36bo\$34b3o3\$44bo\$42b2o\$43b2o2\$40bo\$31b3o5bo\$33bo5b3o\$32bo\$47b2o\$46bobo\$48bo\$50b2o\$50bobo\$36b2o12bo\$35b2o\$37bo6\$48b3o\$48bo\$49bo2\$2o\$b2o\$o3\$86b2o\$86bobo\$86bo!`

Now all 16-bit still-lifes can be synthesised in less than 16 gliders!!!

Thanks to chris_c, BlinkerSpawn, AbptzTa, Extrementhusiast, Sokwe, BobShemyakin, yootaa, Jormagant, dvgrn, and Bullet51 for your contributions (sorry if I missed anyone)!

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 24th, 2017, 9:24 am
Goldtiger997 wrote:16.836 in 13 gliders

Yes, last one down! I'm back online and pushed what will the last commit for a while. All 16-bit still lifes are synthesisable in at most 15G with an average of at most 10.47G!

Thanks to everyone!

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 24th, 2017, 12:56 pm
Great work! Thanks to everyone!

Bob Shemyakin

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 25th, 2017, 6:59 am
Congratulations!

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 27th, 2017, 3:01 pm
Something I thought of recently: sometime prior to tackling the Still Lifes With A Prime Number of Bits That Must Not Be Named, wouldn’t it make sense to put together a helper utility script for finding likely 3G/4G/5G spark-making reactions?

That script of chris_c's for finding sparkish stuff by population has been very handy, but on multiple runs it ends up painfully re-generating the same population sequences. Why not just write out text files recording the population sequences for each pattern in each gencols output file, and then do a simple text search for the particular sequence that’s wanted?

Seems as if that wouldn’t take much more storage space than the original gencols output, and searches would be thousands of times faster. One byte per population value would be good enough -- no need to record population counts for the big messes that end up over 200 cells or so...?

Maybe it’s worth checking in to Github collision files that are as non-redundant as possible, and also as complete as possible, so that nothing else along the lines of the three-glider switch engine gets missed.

I don’t think it will be that hard to avoid redundancy altogether, with some careful work. Ultimately I’d like to combine this idea with the Enumerating Three-Glider Collisions project, so that for 3G collisions there are maybe 72 collision files checked in -- one for each of the 71 glider collisions with a third glider hitting the reaction at T>=1, and one for all the simultaneous 3G collisions.

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 30th, 2017, 1:22 pm
GitHub's list is not included this edit.

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 30th, 2017, 1:50 pm
AbhpzTa wrote:GitHub's list is not included this edit.

OK, done. I also found this minor improvement to 16.712:

`x = 41, y = 38, rule = B3/S2334bo\$34bobo\$34b2o5\$9bo\$8bo\$8b3o3\$7b3o\$7bo\$8bo\$22bo\$22bo\$22bo5\$35b3o\$35bo\$bo34bo\$b2o\$obo3\$8b2o4b2o\$9b2o4b2o21b2o\$8bo5bo23bobo\$38bo\$11b2o\$10bobo\$12bo20b3o\$33bo\$34bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: July 11th, 2017, 7:23 pm
Where's the 17 in 17 synthesis project?

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: July 11th, 2017, 8:36 pm
wwei23 wrote:Where's the 17 in 17 synthesis project?

As was said in another post somewhere, the current focus is getting a more functional, lower-maintenance system in place for depositing, archiving, and locating syntheses.
Once that's done, 17-bit syntheses will be easy to work with.
Using the infrastructure currently in place, though, it's a pretty tall order.

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: July 13th, 2017, 11:53 am
Cross-posting from the construction practice thread, because I'm pretty sure this is an improvement (16.785):

`x = 46, y = 51, rule = B3/S234bo\$5b2o\$4b2o5\$26bo\$11bo12bobo\$9bobo13b2o\$10b2o\$43bo\$43bobo\$38bo4b2o\$38bobo\$38b2o2\$36bo\$37bo\$35b3o23\$b2o\$2b2o\$bo2\$43bo\$42b2o\$4b2o36bobo\$3bobo\$5bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: July 15th, 2017, 8:53 am
AbhpzTa wrote:16.1391 in 7 gliders:
`x = 23, y = 23, rule = B3/S239bo\$9bobo\$9b2o2\$5bobo\$6b2o\$6bo2\$21bo\$20bo\$8bobo9b3o\$9b2o5b3o\$9bo6bo\$17bo\$9b2o\$8b2o\$10bo4\$bo\$b2o\$obo!`

I was trawling through the last pages of this thread, when I found a small reduction to the above synthesis.

16.1391 in 6 gliders:

`x = 31, y = 23, rule = B3/S2329bo\$28bo\$28b3o3\$13bobo\$14b2o\$7b3o4bo\$9bo6bo\$8bo7b2o\$15bobo\$24b3o\$24bo\$25bo7\$bo\$b2o\$obo!`

chris_c wrote:A preliminary step in this project was creating a translation between Niemiec's still life numbering and apgcodes. The fact that a similar list does not exist for oscillators is the only reason that I didn't reply to Goldtiger's query here.

After seeing Apple Bottom's great work in the wiki, with most small patterns having an auto-generated synthesis, but oscillators showing an invalid pattern message, I was reminded of the above quote. Couldn't a simple numbering system for oscillators be created by using apgcodes and ordering them alphabetically?

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: July 15th, 2017, 2:24 pm
I've been filing away glider+object collisions, does anyone want to see?
Also, if a still life is symmetric along the red, then these two collisions are the same:
`x = 35, y = 16, rule = LifeHistory33.A\$13.A18.A\$12.A19.3A\$12.3A3\$9.D19.D\$8.D19.D\$7.D19.D\$6.D19.D\$5.D19.D\$4.D19.D\$3.D19.D\$2.D19.D\$.D19.D\$D19.D!`

Because the second one in two generations looks like this:
`x = 15, y = 15, rule = LifeHistory12.A\$12.A.A\$12.2A3\$9.D\$8.D\$7.D\$6.D\$5.D\$4.D\$3.D\$2.D\$.D\$D!`

Which reflected along the red looks like this:
`x = 15, y = 15, rule = LifeHistory13.A\$12.A\$12.3A3\$9.D\$8.D\$7.D\$6.D\$5.D\$4.D\$3.D\$2.D\$.D\$D!`

Which is the same as the first collision.

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: August 1st, 2017, 5:52 am
16.30 15G->9G
`x = 33, y = 34, rule = B3/S2330bobo\$30b2o\$31bo\$2bo\$obo\$b2o6\$16b2o\$12b2o2bobo\$13b2obo\$12bo2\$2b3o\$4bo\$3bo4\$10b3o\$12bo16b2o\$11bo17bobo\$29bo3\$22bo\$21b2o\$21bobo\$9b2o\$10b2o\$9bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: August 9th, 2017, 7:48 am
Is there a known component for this?
`x = 20, y = 16, rule = Life18b2o\$7bo11bo\$5bo2bo7b3o\$7b4o5bo\$5bobo3bo2\$4bo2bo\$3bobobo2bo2\$3bo5bo\$4bo3bo\$5b3o2\$bo\$obo\$bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: August 13th, 2017, 4:22 am
16.57 15G->13G
`x = 79, y = 73, rule = B3/S2376bo\$76bobo\$76b2o5\$73bo\$73bobo\$73b2o2\$77bo\$76bo\$76b3o\$43bo\$41b2o\$42b2o4\$31bobo\$32b2o\$32bo4\$30bo\$31bo\$29b3o4\$46bo\$45bo\$45b3o13\$41b2o\$40b2o\$42bo\$60b2o\$59b2o\$61bo4\$20b2o\$19bobo\$21bo7\$3o\$2bo\$bo56bo\$57b2o\$57bobo\$73b2o\$73bobo\$73bo!`

16.68 15G->10G
`x = 126, y = 39, rule = B3/S2324bo\$25bo\$23b3o4\$74b2o\$73bo2bo\$5bo20b2o45bo2bo\$3bobo13bobo3b2o28b2o17b2o\$4b2o14b2o5bo27b2o3bo10bo44b2o\$b2o17bo39b2o8bobo42bo2bob2o2b2o\$obo56bobo9b2o42b2o2b2obo2bo\$2bo17b3o40b3o57b2o\$20bo42bo\$21bo42bo5\$33b3o\$35bo\$34bo14\$121bo\$120b2o\$120bobo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: August 17th, 2017, 6:12 pm
Rhombic wrote:Is there a known component for this?
`x = 20, y = 16, rule = Life18b2o\$7bo11bo\$5bo2bo7b3o\$7b4o5bo\$5bobo3bo2\$4bo2bo\$3bobobo2bo2\$3bo5bo\$4bo3bo\$5b3o2\$bo\$obo\$bo!`

Not that functions like that, as far as I know. Do you have the source soup for this?

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: August 23rd, 2017, 11:17 am
chris_c wrote:
Goldtiger997 wrote:16.836 in 13 gliders

Yes, last one down! I'm back online and pushed what will the last commit for a while. All 16-bit still lifes are synthesisable in at most 15G with an average of at most 10.47G!

Thanks to everyone!

Chris led the list with full list of synthesis of 16-bit still lifes.
Based on the results of this thread with the latest achievements of the glider I synthesis (semi-automatic way) made its database for synthesis of 16-bit still lifes:
16bit-1.rar
16-bit SL part 1

16bit-2.RAR
16-bit SL part 2

But it turned out to be incomplete. List of 108 still lifes, what I not found from the list Chris:
`16.141  xs16_1no3qic       6            16.148  xs16_32qbap3      15            16.169  xs16_259aria4     10            16.170  xs16_259araa4     15            16.176  xs16_259ar9a4     14            16.182  xs16_2ego2tic     11            16.185  xs16_32qk5b8o     12            16.221  xs16_2eg8objo     11            16.223  xs16_178jd4ko     15            16.226  xs16_178jt066      9            16.236  xs16_178jd453     15            16.259  xs16_0drz25aa6    14            16.266  xs16_4ap56z69c    15            16.273  xs16_642138n96    12            16.350  xs16_312461tic    12            16.369  xs16_c9b8ozdb     13            16.380  xs16_4a40vh248c   12            16.405  xs16_0c9jzcic32   12            16.442  xs16_0cai3z4aip   11            16.474  xs16_1784cgc45 3  11            16.591  xs16_1784cggc4go  11            16.622  xs16_cidharzw1    11            16.633  xs16_4s0v1e8zw11   8            16.635  xs16_ca1v0kczx11   9            16.640  xs16_c9bkkozw32    8            16.655  xs16_gbhe0mqz01   14            16.656  xs16_8o6p96z1221   9            16.664  xs16_699m4iczx11  15            16.674  xs16_gbap56z121   10            16.695  xs16_5b8bl8zx32   14            16.707  xs16_g39s0qmz11   14            16.743  xs16_39s0qmz32     9            16.744  xs16_39c826z3213  14            16.772  xs16_3h4e1daz011  13            16.783  xs16_gbhe0dbz01   14            16.801  xs16_08eharz321    8            16.802  xs16_g8eharz121   12            16.803  xs16_c9bk46z311   15            16.825  xs16_4alhe8zw65   15            16.838  xs16_ci9b8ozw56   15            16.840  xs16_c8idiczw56   15            16.842  xs16_cila8oz065   10            16.843  xs16_4a9liczx56   13            16.845  xs16_ghn84cz1246  15            16.856  xs16_kc32acz1252  10            16.877  xs16_2lm88cz1243  13            16.897  xs16_69bkk8zx56   14            16.913  xs16_2lm88cz3421  13            16.927  xs16_4akgf9zw65   15            16.946  xs16_ciarzw6226    8            16.953  xs16_0cil56z6221  12            16.956  xs16_0j9cz343146  11            16.985  xs16_31km93zw56   14            16.990  xs16_0j9cz643146  14            16.996  xs16_2lm853z056   15            16.998  xs16_0c9jz253056  11            16.1041 xs16_g0t3oge2z11   8            16.1073 xs16_3lkaa4z641   13            16.1086 xs16_8kkb96z641   13            16.1087 xs16_8kihe853zx1  15            16.1094 xs16_cila8oz641   15            16.1097 xs16_ck0ol3z643   11            16.1142 xs16_0gilicz34a4  14            16.1211 xs16_kq23z1248a6  15            16.1247 xs16_0o5b8ozbd    13            16.1273 xs16_32q4goz0db   13            16.1276 xs16_3iakgozw1ac  14            16.1301 xs16_069ak8zc871  13            16.1381 xs16_32q4gozc93   13            16.1698 xs16_4ai3s4ozx121 12            16.1710 xs16_4a9bk46zx32  11            16.1715 xs16_64p784czw23  15            16.1720 xs16_4a4o79ozx121 11            16.1753 xs16_695q4gozw23  12            16.1767 xs16_kc32ak8z123  15            16.1785 xs16_2eg88bdzx23  13            16.1791 xs16_03lkaa4z3201 13            16.1856 xs16_39u06a4z32   10            16.1864 xs16_31ke1e8z032  15            16.1867 xs16_069q453z311  13            16.1877 xs16_69p6413z32   15            16.1905 xs16_8u16853z32   13            16.1911 xs16_69q3213z32   11            16.1913 xs16_bdz3113213   13            16.1951 xs16_dbz3113213   13            16.1963 xs16_4a512kozx643 11            16.1994 xs16_0g9fgka4z121 10            16.1995 xs16_cik8a52z065  14            16.1998 xs16_0g6p64koz121 13            16.2005 xs16_cip6gzx3452  10            16.2014 xs16_25a8kk8z0253 15            16.2018 xs16_25a8c826zw33 12            16.2092 xs16_ciljgzx1074  15            16.2128 xs16_0g8jt066z23  11            16.2188 xs16_wmp2sgz643   10            16.2190 xs16_032q4goz6413 14            16.2204 xs16_0gilla4z641  15            16.2215 xs16_04s0cp3z6221 12            16.2219 xs16_0oe12koz643  14            16.2316 xs16_0at16413z32  15            16.2322 xs16_raak8zx1252  13            16.2347 xs16_g8861acz0db   9            16.2356 xs16_25icggozx1ac 14            16.2408 xs16_g842156z178c 11            16.2480 xs16_3iaczw1139c  13            16.2555 xs16_4a9jzxpia4   13            16.2630 xs16_31e8gzxo9a6  13            16.2751 xs16_w8p78k8z2521 15  `

And their patterns:
`x = 152, y = 166, rule = B3/S2330bo13bo13bo14bo13b2o12bo13b2o10b2o\$2b2o10b2o13bobo11bobo11bobo11b3o13bo11b3o12bobo10b2o\$bo2bo10bo13bo2bo10bobo10bo2bo10bo13b2obo10bo15bo\$bob2o10bob2o9b2ob2o9b2ob2o9b2ob2o9b2o12bobo12bo12bob2o10bob3o\$2o12b2obo11bobo11bobo11bobo13bo12bobo9b2o12b2o2bo9b2o2bo\$3b2o10bobo10bo2bo10bo2bo10bo2bo10b3obo10bob2o10bob2o12bo13bo\$3obo9bo2b2o9bobo11bobo11bobo11bo2bo11bo12bo2b2o9b3o11b3o\$o13b2o13bo13bo13bo13b2o11b2o12b2o12bo13bo7\$87bo13b2o11b2o11bo\$17b2o12b2o11b2o13b2o11b2o12bobo13bo11bobo10b3o\$bo15bo12bo2bo11bo12bo2bo11bo13bo12bo16bo12bo\$b3o14bo10bo2b2o10bo12bob3o9bo28b2o13b2o12bo\$4bo12b2o11b2o11bo13bo13b5o9b5o12bo11bo14b2o\$b2o2bo11bo13bo11b2o13b2o15bo9bo3bo12bo11bo16bo\$bob2o13bo11bo15bo12bo11b2o15bo11bob2o11b2o12b2o\$3bo11b3obo9bo13b3obo10bo13bo14bo11bobo14bo12bo\$bobo11bo2bo10bobo11bo2bo10bo13bo14bo12bobo11b3o11bobo\$b2o13b2o12b2o12b2o11b2o12b2o13b2o12bo12bo13b2o8\$4bo\$2b3o\$bo\$2bo\$b2o28bo14b2o13b2o12bob2o13b2o12b2o15bo13b2o\$o16bo13b3o12bobo12bo13b2obo12bo2bo10bo2bo13bobo12bo\$o13bobobo15bo14bo12b3o26bobo12bo2bo11bo2bo13bo\$b2o11b2obobo9b6o9b6o9b3o2bo10b3o12b2ob2o10b2ob2o11b3o11b3obo\$2bo14bobo9bo14bo14bo2b2o10bo3bo10bo2bo11bo2bo11b2o13bo3bo\$o13b2o2bo11b3o12bobo13bo12b2obobo9bo2bo11bo2bo11bo2b2o11bobo\$2o12bob2o14bo13b2o12b2o16bo11b2o13b2o13b2obo10b2ob2o9\$122b2o13b2o\$bob2o10b2o13b2o14bobo15bo14b2o13bo11b2o14bo15bo\$b2obo10bo14bo3b2o9bob2o11b2obobo12bobo12bobo11bo2bo12bo13bo\$17bob2o11bo2bo9bo14bo3bo10bobo12bobo2bo9bo2b3o11b2o12bo3bo\$b3o12b2obo11b3o12b3o12b3o11b2ob2o10b2ob2o10b3o13bo2b2o9bob4o\$2bo2bo11bo2bo26bo2bo27bo14bo14bo11bobobo10bo\$o3b2o9bo3b2o9bob2o11bo3b2o9bob2o11b2obo11b2obo11b3o13bo2bo11bobo\$2o13b2o13b2obo11b2o13b2obo11bobo12bobo12bo16b2o13b2o9\$2b2o12b2o13b2o13b2o14bo14bo15b2o11bo15b2o13bo\$2bo13bo14bo15bo14b3o11bobo15bo10bobo15bo13b3o\$3bo13bo14bo14bob2o9b2o3bo9bo2bo14bo12b2o2bo11bo17bo\$bobo12b2o2bo10b2o15bobo10bo2b2o10b2o15b2o13b3o11b2o13b2obo\$obob2o9bo2b3o9bo2b2o10b3o12bo17b3o10b2o2bo10b2o12b2o2bo12bobo\$obo2bo9bobo12bobo2bo9bo14bobo13b2o2bo9bo2b2o10bo2bo12bobobo\$bobo12bobo12bo2bo11bobo12bobo11bobo12bobo12bobo13bo2bo10b4o\$2bo14bo14b2o13b2o13bo13bo14b2o13bo13b2o13bo2bo8\$3b2o13b2o12b2o12b2o15b2o12b2o15bo10b2o16b2o13bo\$2bo2bo13bo12bo13bo16bo13bo14b3o10bo17bobo11bobo\$bob3o11bo15bo14bo15bo14bo11bo15bo13b2o2bo10bo2bo\$bo15b2o13b2o13b2o14b2o13b2o11b2o13b2o12bo2b2o10bo3b2o\$2b2o15bo11bo14bo15bo14bo16b2o12b2o11b2o13b3o\$3bo13b2obo11b2o13b2o12bob2o11bob2o11b3obo10b2o2bo11bo15bo\$3o12bo2bobo9bobo2bo9bobo2bo9bo2bobo9bo2bobo9bo14bo2b2o10bo14bobo\$o14b2o2bo10b2o2b2o9b2o2b2o9b2o2bo10b2o2bo10b2o13b2o13b2o13b2o7\$33bo13bo14b2o12b2o15b2o12bo12bo\$2bo16b2o11bobo12b3o13bo12bo17bo11bobo11b3o\$bobo16bo12bobo14bo11bo14bo15bo12bo2bo13bo14bo\$obo12b2o2bo15bo13bo11bob3o10b2o14bo14b2obo11bo2bo12b3o\$o2b3o9bo2bo12b4o14b2o10bo3bo11bob2o10bob3o13bo12bob2o10b2o3bo\$b2o2bo10bob2o10bo19bo9b2o15bo2bo11bo2bo11b2o12b2o12bobo2bo\$2bo14bo12bobo12b2o2bo10bo17bo14bo13bo14bo12bobobo\$o14bobo13bobo11bo2bo12bo13b3o12b3o12bobo12bo15bobo\$2o13b2o15bo13b2o12b2o13bo14bo14b2o13b2o15bo9\$3b2o14b2o14bo16b2o13bo14bo18bo11b2o17bo17b2o\$4bo15bo13bobo16bo13b3o12b3o15bobo10bo16b3o13b2o2bo\$3bo15bo15bo15bo13b2o3bo14bo14bobo12bo13bo15bo2bobo\$4b3o12bobobo12b3o11bob4o10bo2bobo12bo2bo10b2obo12b2o2bo11b3o13bob2o\$b3o3bo9b2obob2o9b3o3bo9bobo3bo9bo4bo13bob2o11bobobo11bobobo11bobobo11bo\$bo2bobo10bo2bo12bo2bobo10bo2bo12bobo13b2obo12bo4b2o9bobob2o10bo4b2o9bobo\$4b2o13b2o15b2o12b2o14b2o13bob2o12b2o14b2o14b2o14b2o8\$83b2o15bo15b2o12b2o16bo\$b2o2b2o11bo2b2o10b2o2b2o9bo2b2obo9b2o17bobo13bobo15bo12bobo14bobo\$o2bo2bo10bobo2bo9bo2bo2bo9b4ob2o10bo19bo12bobo15bo15bo14bo2bo\$o2b2o12bobobo11bob2o27bo20b2o11bo17b2o14b2o14bobo\$b2o13b2o2bo11b2o14b2o14b2o15bo4bo12b4o11b2o2bo11b2o2bo11bob2o\$2bo14bo15bo15bo30bobo2bo11bobo2bo10bo2bobo10bo2b2o11bobo\$o15bo15bo15bo15b4ob2o10bo2bo11bobo13bobo2bo10bobo13bo2bo\$2o14b2o14b2o14b2o14bo2b2obo11b2o13bo15bo15bo15b2o9\$2bo14b2o16b2o15b2o13bo13bo17b2o17bo12bo17b2o\$bobo13bo17bobo14b2o12bobo12b3o14bo2bo14b3o11bobo12bobo2bo\$2b2o15bo16bobo27bo2bo14bo14b2obo12bo14bo2bo10bob3o\$4b2o12b2o18bo11b3obo12bobo13bo2bo14bo11bo2bo12b2o3bo9bo\$2b2o2bo12bob2o11b4o12bo2b2o11b2ob2o12bob2o10b4o12b2obo12bo3b2o10b2o\$bo2b2o11bobob2o10bobo15bo14bo15b2o14bo15bob2o12bo15bo\$obo13bobo14bo14b3o13bobo13bo2bo12bo15bo15bobo13bo\$bo15bo14b2o14bo15b2o14b2o14b2o14b2o14b2o14b2o7\$83b2o14bo\$20b2o14b2o13b2o17bo12bobo13b3o\$5bo15bo15bo13bobo14b3o15bo15bo13bo\$4bobo13bo15bo16bo13bo16b2o15b2o12bobo\$3bobo14b2o13bo17b2o12b2o14bo16bo15bo\$o2bo18bo11bob3o15bo14bo13bo16bo16b3o\$3obo11b2o2b2o13bo2bo14bo11b4o12b2o15b2o14b3o2bo\$3bo12bo2bo13bobo12b2o2bo13bo13bo17bo14bo2bo\$3o14bobo12bobo13bo2bo12bo16bobo12bobo13bobo\$o17bo14bo15b2o13b2o16b2o12b2o15bo!`

I ask to help me fill my database.

Bob Shemyakin

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: August 23rd, 2017, 12:27 pm
BobShemyakin wrote:But it turned out to be incomplete. List of 108 still lifes, what I not found from the list Chris
...
I ask to help me fill my database.

I think that recipes for these are all available on chris_c's GitHub repository. Here's a package that should display a synthesis for any still life up to 16 bits (where chris_c's online version only goes up to 12 bits):

chris_c_display_synth_to_16_bits.zip
HTML to display glider syntheses up to 16 bits in LifeViewer

The included file bobshemyakinmissinglist.html should have working links to display your 108 missing syntheses. To use it for some other apgcode, open the glidersynth.html page and then append a "?" followed by the apgcode you want.

I checked the first dozen still lifes in your list, and they were all there, and it looked like the glider counts were right. It looks like most of them are conversions from other objects, sometimes in several stages.

... Is this what you're looking for, or no?

### Re: 16 in 16: Efficient 16-bit Synthesis Project- completed

Posted: August 23rd, 2017, 1:12 pm
dvgrn wrote:
BobShemyakin wrote:But it turned out to be incomplete. List of 108 still lifes, what I not found from the list Chris
...
I ask to help me fill my database.

... Is this what you're looking for, or no?

Of course, thank you

EDIT:
I checked the list. Found a bug only 16,825, however it is easily corrected. step 2 takes too much space and conflicts with 3-step. I reduced the size 2-th step:
`x = 158, y = 228, rule = B3/S23133b2o\$32b2o99b2o\$33b2o\$32bo4bo\$36b2o\$36bobo23\$o\$b2o\$2o61\$74bo\$75bo\$73b3o3\$46bo\$47b2o\$46b2o8bo17b2o75b2o\$54bobo17bobo73bo2bo\$33b2o20b2o17bo74bobobo\$33b2o14b2o99bo2b2o\$48bobo100b2o\$50bo4b3o94bo\$57bo2b2o88bo\$56bo3bobo87b2o\$60bo64\$119bo\$118b2o\$118bobo26\$51b2o\$50bo2bo\$49bobobo\$50bo2b2o99b2o\$51b2o100bo2bo\$52bo99bobobo\$50bo102bo2b2o\$50b2o102b2o\$155bo\$154bo\$154b2o9\$62b2o\$36b2o23b2o\$37b2o6b2o16bo\$36bo7bobo\$46bo4\$43b2o\$44b2o\$43bo!`

Now 16-bit database still ilfes the conditions of this thread:
16bit-1.rar
16-bit SL path 1