Page 9 of 11

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 8th, 2017, 10:11 am
16.801 in 8 gliders:
`x = 98, y = 38, rule = B3/S2345bobo\$45b2o\$46bo8\$41bobo\$41b2o4b2o\$42bo4bobo\$47bo\$40b2o\$40bobo\$bo38bo24bobo27bobo\$o29bo33bob2o26bob2o\$3o26bobo32bo29bo\$29bobo31b2ob2o25b2ob2o\$3b3o24bo34bobo27bobo\$3bo54b2o2bobo27bobo\$4bo53b2o2b2o28b2o2\$55b3o\$57bo\$56bo9\$9b2o\$8bobo\$10bo!`

Goldtiger997 wrote:16.228 in 9 gliders:

`x = 41, y = 24, rule = B3/S236\$13bo\$7bobob2o16bo\$8b2o2b2o4bo9bo\$8bo9bobo7b3o\$18b2o2\$17bo3b2o\$17b2o2bobo\$12bo3bobo2bo\$13bo11b3o\$11b3o11bo\$15b2o9bo\$14bobo\$16bo!`

The NE-most glider is unnecessary:
`x = 21, y = 14, rule = B3/S236bo\$obob2o\$b2o2b2o4bo\$bo9bobo\$11b2o2\$10bo3b2o\$10b2o2bobo\$5bo3bobo2bo\$6bo11b3o\$4b3o11bo\$8b2o9bo\$7bobo\$9bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 8th, 2017, 10:56 am
Goldtiger997 wrote:Yes, I would be very grateful if you could post the code. It would help with many syntheses like the one you reduced to 8G in your last post.

OK, let's start off with the attached program. On Linux it compiles with g++ -O3 popseq.c -o popseq. Then run with ./popseq and paste in some RLE. The program searches through certain 4G collisions and outputs them if they contain a population subsequence that is identical to the population sequence of the pasted RLE in the first 16 generations.

The code is supplied with a very old version of LifeAPI.h. I guess it should work with newer versions although I have not tested. Are you able to compile for your platform? (Note that compilation on Windows is not something that I have attempted in quite some time.)

Back to glider syntheses... Here are 16.2200 and 16.2307 in 15G via 16.1899 in 10G and a 5G ship-to-ac converter:

`x = 72, y = 122, rule = Life7bo\$5bobo\$6b2o5\$28bo\$28bobo\$28b2o6\$16bo48b2o2b2o\$15bobo47bo2bobo\$16b2o48bob2o\$67bo\$65bobo\$30b3o31bobo\$30bo34bo\$2b2o27bo\$3b2o\$2bo6\$26b2o\$6b3o16b2o\$8bo18bo\$bo5bo\$b2o\$obo\$27b3o\$27bo\$28bo15\$14bo\$15b2o\$14b2o11bo\$25b2o\$20bo5b2o\$21bo\$19b3o\$32b3o\$32bo\$33bo2\$69b2o\$15b2o2b2o44b2o3bo\$15bo2bobo44bo2bo\$16bob2o46bob2o\$17bo49bo\$15bobo47bobo\$14bobo47bobo\$15bo12b3o34bo\$28bo\$29bo28\$25bo\$23bobo\$24b2o2\$14bo\$12bobo\$13b2o\$28bobo\$28b2o\$29bo4\$26b2o\$15b2o2b2o5bobo36b2o3b2o\$15bo2bobo5bo38bo2bo2bo\$16bob2o46bob2o\$17bo49bo\$15bobo13bo33bobo\$14bobo13b2o32bobo\$15bo14bobo32bo!`

EDIT: I also found a 6G ship-to-snake converter in Extrementhsiast's collection. It was trivial to make one of the sparks with one glider less so 16.2050 is also done in 15G:

`x = 15, y = 13, rule = B3/S234bo4bo\$3bobob2o\$3bobo2b2o\$4bo3\$8b2o2b2o\$8bobo2bo\$9b2obo\$5b2o4bo\$bo2b2o5bobo\$2bo3bo5bobo\$3o10bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 9th, 2017, 6:52 am
chris_c wrote:
Goldtiger997 wrote:Yes, I would be very grateful if you could post the code. It would help with many syntheses like the one you reduced to 8G in your last post.

OK, let's start off with the attached program. On Linux it compiles with g++ -O3 popseq.c -o popseq. Then run with ./popseq and paste in some RLE. The program searches through certain 4G collisions and outputs them if they contain a population subsequence that is identical to the population sequence of the pasted RLE in the first 16 generations.

The code is supplied with a very old version of LifeAPI.h. I guess it should work with newer versions although I have not tested. Are you able to compile for your platform? (Note that compilation on Windows is not something that I have attempted in quite some time.)

Thanks, this is great! It compiles fine on Cygwin, with a few warnings.

16.1694 in 12 gliders:

`x = 168, y = 19, rule = B3/S23137bo\$138b2obo\$137b2o2bobo\$141b2o3\$60bo\$59bo\$59b3o76b2o\$104bo32bobo\$4bo53bo45bobo32bo\$2bobo54bo44b2o2b2o\$3b2o52b3o47b2o56bo\$109bo15bo20bo17bobo\$25bo19bo9bo9bo13b2o4bo13b2o4bo13b2o3bobo13b2o3bobo17bobo\$b2o17b2o2bobo13b2o2bobo8b2o3b2o2bobo12bobo2bobo12bobo2bobo12bobobo2bo13bobobo2bo14b3o2bo\$obo2bo4b2o8bo3b2o14bo3b2o8bobo3bo3b2o14bo3b2o14bo3b2o14bo3b2o15bo3b2o14bo3b2o\$2bo2bobo2bobo8b3o17b3o17b3o17b3o17b3o17b3o18b3o17b3o\$5b2o3bo12bo19bo19bo19bo19bo19bo20bo19bo!`

The above synthesis features what I think is a new component. It very conveniently appeared in a very easy form in the soup (gen 1937 top left):

`x = 16, y = 16, rule = B3/S232obob2o2bo2bob2o\$bo5bo2b2o2b2o\$bob5ob2obo2bo\$3b2obobob2o3bo\$3b2o6b2obo\$4bob2ob4o2bo\$b2o3b3o3bob2o\$3o2b4ob3ob2o\$o4bo3b2o4bo\$3bob6ob2obo\$obobobob2o\$3ob2obo3b5o\$o2b2o2bobo\$3b4o2bobob3o\$b2o2bob2ob2ob2o\$b2ob3o2b2o2b3o!`

EDIT:

Used the script to make a synthesis of 16.1912 in 14 gliders:

`x = 174, y = 29, rule = B3/S2311bo\$12bo\$bo8b3o\$2bo35bo\$3o34bo\$26bo10b3o\$25bo\$25b3o2\$54bo\$52b2o\$53b2o2\$105bo62b2o\$68b2o36b2o10b2o48bo\$68bo36b2o11bo50bo\$18bobo48bo49bo48b2o\$18b2o48b2o41bo6b2o47bo\$19bo92bo54bob3obo\$67bob3obo36b3o4bob3obo44bobob2o\$67b2obob2o32bo10b2obob2o\$4bo99bobo\$5bo2bo3bo92b2o2b2o\$3b3o3b2obobo93bobo\$8b2o2b2o96bo2\$35bo\$34b2o\$34bobo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 9th, 2017, 11:22 am
Goldtiger997 wrote:It compiles fine on Cygwin, with a few warnings...

Used the script to make a synthesis of 16.1912 in 14 gliders

Great!

15.516 in 8G gives 16.1130 in 12G:

`x = 128, y = 138, rule = B3/S2331bo\$29b2o\$30b2o\$22bo\$22bobo\$7bo14b2o\$8bo115bo\$6b3o114bobo\$123bo2bo\$obo119b2o3bo\$b2o119bo3b2o\$bo121bo\$124bo\$22b2o99b2o\$21b2o\$23bo4\$13b3o\$15bo\$14bo\$25b3o\$25bo\$26bo2\$41b2o\$40b2o\$42bo73\$44bo\$43bo\$43b3o3\$24bo99bo\$23bobo97bobo\$23bo2bo96bo2bo\$22b2o3bo94b2o3bo\$22bo3b2o94bo3b2o\$23bo99bo\$24bo99bo\$23b2o100bo\$124b2o18\$3b2o40bo\$4b2o38b2o\$3bo40bobo\$13b3o\$15bo\$14bo!`

Recent contributions mean that 16.712 is looking slightly alone at the top of the leaderboard. Now 85 SLs remain:

`16.712     xs16_3pc0qmzw23          2016.600     xs16_6421344og84c        1816.665     xs16_699mkiczx1          1816.848     xs16_ca9b8oz0252         1816.914     xs16_8kkja952zx1         1816.926     xs16_3iajc4gozw1         1816.1107    xs16_02egdbz2521         1816.1558    xs16_3loz1226io          1816.1757    xs16_g8idik8z123         1816.1790    xs16_178cia4z0321        1816.1911    xs16_69q3213z32          1816.1990    xs16_8e1tazx1252         1816.2201    xs16_0ggml96z641         1816.2447    xs16_0g8it248cz23        1816.2480    xs16_3iaczw1139c         1816.227     xs16_5b8r5426            1716.265     xs16_259m861ac           1716.380     xs16_4a40vh248c          1716.616     xs16_i5pajoz11           1716.640     xs16_c9bkkozw32          1716.716     xs16_3pmk46zx23          1716.748     xs16_39ege2z321          1716.799     xs16_c8al56z311          1716.875     xs16_4a5pa4z2521         1716.1064    xs16_39m88cz6221         1716.1097    xs16_ck0ol3z643          1716.1276    xs16_3iakgozw1ac         1716.1398    xs16_g88c93zc952         1716.1722    xs16_4aq32acz032         1716.1758    xs16_4a4o796zw121        1716.1847    xs16_39c8a52z033         1716.1871    xs16_5bo8ge2z32          1716.1882    xs16_259m453zx23         1716.1905    xs16_8u16853z32          1716.2045    xs16_25ao8ge2z032        1716.2132    xs16_0g8it2sgz23         1716.2162    xs16_0at16426z32         1716.2316    xs16_0at16413z32         1716.2356    xs16_25icggozx1ac        1716.2467    xs16_0kc3213z34a4        1716.2555    xs16_4a9jzxpia4          1716.3163    xs16_wo443123zbd         1716.3164    xs16_wo443146zbd         1716.104     xs16_0j5ozj4pz11         1616.115     xs16_0ol3z0mdz32         1616.243     xs16_2egu16426           1616.300     xs16_9fg4czbd            1616.302     xs16_5b8o642ac           1616.360     xs16_2egu16413           1616.593     xs16_3123c48gka4         1616.771     xs16_69qb8oz32           1616.772     xs16_3h4e1daz011         1616.810     xs16_ca9la4z311          1616.822     xs16_8ehikozw56          1616.836     xs16_4aajkczx56          1616.838     xs16_ci9b8ozw56          1616.856     xs16_kc32acz1252         1616.995     xs16_0raik8z643          1616.1068    xs16_3lo0kcz6421         1616.1080    xs16_3lo0kcz3421         1616.1304    xs16_0okih3zc8421        1616.1391    xs16_ca168ozc8421        1616.1583    xs16_4a9jzxha6zx11       1616.1675    xs16_xj96z0mdz32         1616.1693    xs16_8k8aliczw23         1616.1717    xs16_4aajk46zx121        1616.1739    xs16_g88r2qkz121         1616.1766    xs16_kc321e8z123         1616.1787    xs16_069m4koz311         1616.1929    xs16_0g5r8b5z121         1616.1994    xs16_0g9fgka4z121        1616.2025    xs16_069q48cz2521        1616.2028    xs16_25ao48cz2521        1616.2029    xs16_25ao4a4z2521        1616.2030    xs16_0i5q8a52z121        1616.2190    xs16_032q4goz6413        1616.2204    xs16_0gilla4z641         1616.2219    xs16_0oe12koz643         1616.2305    xs16_6413ia4z6421        1616.2317    xs16_cik8a52z641         1616.2322    xs16_raak8zx1252         1616.2323    xs16_ra248goz056         1616.2445    xs16_ciligzx254c         1616.2630    xs16_31e8gzxo9a6         1616.3032    xs16_1784ozx342sg        16`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 10th, 2017, 5:17 am
16.2447 in 11G:
`x = 95, y = 35, rule = B3/S2351bo\$50bo\$50b3o\$87bo\$46bo38bobo\$47bo38b2o\$22bo22b3o\$21bo\$21b3o60b2o3b2o\$83bo2bobo2bo\$16bo37bo28bobo3bobo\$16bobo34bo30bo5bo\$16b2o35b3o3\$86b2o\$4bo49b2o30b2o\$5bo42b3o3b2o34bo\$3b3o83bobo\$46bo39bobobo\$46bo39b2o2bobo\$46bo43b2obo\$55bo37bo\$48b3o4bo37b2o\$bo53bo\$b2o\$obo\$24b3o\$24bo\$19b2o4bo\$19bobo\$19bo\$9b3o\$11bo\$10bo!`

EDIT: 16.2201 in 11G:
`x = 96, y = 63, rule = B3/S232bo\$obo\$b2o22\$19bo\$20b2o\$19b2o3\$38bo\$37bo4bobo\$37b3o2b2o47bobo\$43bo47b2o\$31bobo58bo\$32b2o\$32bo3\$86b3o\$94b2o\$26bo65bo2bo\$27bo64b2o\$25b3o61b2obo\$78bo9bobobo\$77bobo8bo2bo\$77b2o10b2o2\$22b3o\$24bo\$23bo59b2o\$83bobo\$83bo6\$59b2o\$59bobo\$59bo\$21b2o\$22b2o\$21bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 10th, 2017, 11:22 am
yootaa wrote:16.2447 in 11G, 16.2201 in 11G

I reduced both of these to 10G. The first via constellations, the second via improved cleanup:

`x = 87, y = 85, rule = Life64bo\$62b2o\$63b2o\$54bo\$55bo\$53b3o\$39bobo\$39b2o\$40bo23bo10bo\$17bo45bo12bo\$16bo15bo30b3o8b3o\$16b3o11bobo\$31b2o\$78b2o\$64b2o12b2o\$28b3o27b3o3b2o16bo\$8bo72bobo\$6bobo17bo29bo21bobobo\$7b2o17bo29bo21b2o2bobo\$26bo29bo25b2obo\$65bo19bo\$4b2o22b3o27b3o4bo19b2o\$5b2o58bo\$4bo4\$30b3o\$32bo\$31bo17\$o\$b2o\$2o3\$19bo\$18bo4bobo32b3o\$18b3o2b2o\$24bo31bo5bo\$12bobo41bo5bo\$13b2o41bo5bo\$13bo53bobo\$58b3o6b2o\$68bo4bo\$73bo\$73bo6b2o\$7bo70bo2bo\$8bo69b2o\$6b3o66b2obo\$64bo9bobobo\$63bobo8bo2bo\$63b2o10b2o2\$3b3o\$5bo\$4bo\$62b2o\$61bobo\$63bo5\$40b2o\$40bobo\$40bo\$2b2o\$3b2o\$2bo!`

Note that these syntheses also reduce 16.2132 and 16.2480 to below 16G.

Similarly by making 14.344 in 7G, 15.439 in 8G and 15.475 in 12G I knocked 16.1871, 16.2045, 16.1990, 16.2162 and 16.2316 off the list:

`x = 122, y = 47, rule = Life40bo13bo\$41bo12bobo\$39b3o12b2o2\$o\$b2o52bo\$2o51b2o\$13bo40b2o\$13bobo\$13b2o\$19bo\$18bo85bo\$18b3o35bobo46bo\$56b2o45b3o\$5bobo49bo51bo\$6b2o100bobo\$6bo37b2o51bo10bobo\$43bobo50bobo10bo\$10bo34bo50b2o\$10bobo\$10b2o87b2o\$60b2o36bo2bo\$14b2o44bobo36b2o\$3bo10bobo43bo59b2o\$3b2o9bo104b2o\$2bobo116bo\$115bo\$91bo22b2o\$92bo21bobo\$90b3o5b2o\$98bobo\$98bo13\$31bo\$31b2o\$30bobo!`

Now 75 SLs remain:

`16.712     xs16_3pc0qmzw23          2016.600     xs16_6421344og84c        1816.665     xs16_699mkiczx1          1816.848     xs16_ca9b8oz0252         1816.914     xs16_8kkja952zx1         1816.926     xs16_3iajc4gozw1         1816.1107    xs16_02egdbz2521         1816.1757    xs16_g8idik8z123         1816.1790    xs16_178cia4z0321        1816.1911    xs16_69q3213z32          1816.227     xs16_5b8r5426            1716.265     xs16_259m861ac           1716.380     xs16_4a40vh248c          1716.616     xs16_i5pajoz11           1716.640     xs16_c9bkkozw32          1716.716     xs16_3pmk46zx23          1716.748     xs16_39ege2z321          1716.799     xs16_c8al56z311          1716.875     xs16_4a5pa4z2521         1716.1064    xs16_39m88cz6221         1716.1097    xs16_ck0ol3z643          1716.1276    xs16_3iakgozw1ac         1716.1398    xs16_g88c93zc952         1716.1722    xs16_4aq32acz032         1716.1758    xs16_4a4o796zw121        1716.1847    xs16_39c8a52z033         1716.1882    xs16_259m453zx23         1716.1905    xs16_8u16853z32          1716.2356    xs16_25icggozx1ac        1716.2467    xs16_0kc3213z34a4        1716.2555    xs16_4a9jzxpia4          1716.3163    xs16_wo443123zbd         1716.3164    xs16_wo443146zbd         1716.104     xs16_0j5ozj4pz11         1616.115     xs16_0ol3z0mdz32         1616.243     xs16_2egu16426           1616.300     xs16_9fg4czbd            1616.302     xs16_5b8o642ac           1616.360     xs16_2egu16413           1616.593     xs16_3123c48gka4         1616.771     xs16_69qb8oz32           1616.772     xs16_3h4e1daz011         1616.810     xs16_ca9la4z311          1616.822     xs16_8ehikozw56          1616.836     xs16_4aajkczx56          1616.838     xs16_ci9b8ozw56          1616.856     xs16_kc32acz1252         1616.995     xs16_0raik8z643          1616.1068    xs16_3lo0kcz6421         1616.1080    xs16_3lo0kcz3421         1616.1304    xs16_0okih3zc8421        1616.1391    xs16_ca168ozc8421        1616.1583    xs16_4a9jzxha6zx11       1616.1675    xs16_xj96z0mdz32         1616.1693    xs16_8k8aliczw23         1616.1717    xs16_4aajk46zx121        1616.1739    xs16_g88r2qkz121         1616.1766    xs16_kc321e8z123         1616.1787    xs16_069m4koz311         1616.1929    xs16_0g5r8b5z121         1616.1994    xs16_0g9fgka4z121        1616.2025    xs16_069q48cz2521        1616.2028    xs16_25ao48cz2521        1616.2029    xs16_25ao4a4z2521        1616.2030    xs16_0i5q8a52z121        1616.2190    xs16_032q4goz6413        1616.2204    xs16_0gilla4z641         1616.2219    xs16_0oe12koz643         1616.2305    xs16_6413ia4z6421        1616.2317    xs16_cik8a52z641         1616.2322    xs16_raak8zx1252         1616.2323    xs16_ra248goz056         1616.2445    xs16_ciligzx254c         1616.2630    xs16_31e8gzxo9a6         1616.3032    xs16_1784ozx342sg        16`

EDIT: 16.1558 via a 5G block to python converter:

`x = 125, y = 421, rule = B3/S2321bobo\$21b2o\$22bo\$117b3o2\$11bo\$12bo\$10b3o\$116b2o\$115bo2bo\$21b2o93b2o\$20b2o\$22bo61\$51bo\$50bo\$50b3o11\$9bo\$10b2o\$9b2o14\$18bo\$18bo101b2o\$18bo101b2o2\$120b4o\$119bo2bo\$16b2o101b2o3bo\$15bo2bo96b2o6b2o\$16b2o97bobo\$116bo3\$43b2o\$43bobo\$43bo4\$11bo\$11b2o\$10bobo81\$20b2o98b2o\$20b2o98b2o2\$20b4o96b4o\$19bo2bo96bo2bo\$19b2o3bo94b2o3bo\$15b2o6b2o98b2o\$15bobo\$16bo9\$27b2o\$27bobo\$27bo59\$9bo28bo\$10b2o24b2o\$9b2o26b2o2\$6bo\$4bobo24bo\$5b2o24bobo\$31b2o12\$119b2o\$119bo\$120bo\$20b2o99bo\$20b2o98b2o2\$20b4o96b4o\$19bo2bo96bo2bo\$19b2o3bo94b2o3bo\$23b2o98b2o3\$3o\$2bo\$bo81\$6bo\$7bo\$5b3o3\$19b2o98b2o\$19bo99bo\$20bo99bo\$21bo99bo\$20b2o98b2o\$119bo\$20b4o96b4o\$19bo2bo99bo\$19b2o3bo99bo\$23b2o98b2o9\$3bo\$3b2o\$2bobo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 11th, 2017, 6:04 am
16.665 in 8 gliders:

`x = 33, y = 28, rule = B3/S2316bo\$14bobo\$15b2o5\$10b2o8b3o\$9bobo8bo\$11bo9bo\$13b2o\$13bobo\$13bo\$b2o\$obo2b2o\$2bo2bobo\$5bo6\$4b2o\$3b2o\$5bo\$31bo\$30b2o\$30bobo!`

I wasn't able to find a synthesis for 16.600. The best predecessor I found is below. I was able to find syntheses for the junk on the outside, but not the reacting beehives (i.e. No good 1-sided 4G synths).

`x = 57, y = 29, rule = B3/S2341b3o\$5bob2o34bo\$4b2ob3o32bo\$5bo2b3o37b3o\$5b2o3b2o36bo4b3o\$5b3o29bo11bo3bo\$6b2o29b2o15bo\$6b2o28bobo\$8bob2o\$10bo\$10b2o\$12bo\$4b2o6bo\$3bo2bo\$4b2o\$7b2o27b2o\$6bo2bo25bobo2b2o\$o6b2o28bob2o\$o40bo\$b2o\$2bo\$b2obo\$5b2o\$5b2o\$5b3o\$b2o3b2o47bo\$2b3o2bo46b2o\$3b3ob2o45bobo\$4b2obo!`

chris_c wrote:...a 5G block to python converter:...

Nice! I think this means all pseudo still-lifes up to 15-bits cost < 1G/bit.

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 11th, 2017, 7:29 am
Goldtiger997 wrote:I wasn't able to find a synthesis for 16.600. The best predecessor I found is below.

Aha! I completely forgot about the possibility of using C2 soups.

Goldtiger997 wrote:I was able to find syntheses for the junk on the outside, but not the reacting beehives (i.e. No good 1-sided 4G synths).

I already had some code for searching 180 degree symmetric glider syntheses from when I was trying to synthesise a clock in the "Splitters from common SL" thread. A bit of hacking yielded a 14G solution:

`x = 41, y = 34, rule = B3/S2333bobo\$15bo17b2o\$16bo17bo\$14b3o\$32bo\$30b2o\$31b2o3\$15bo\$13bobo\$14b2o\$o\$b2o\$2o3bo7bo\$6b2o6bo\$5b2o5b3o\$26b3o5b2o\$26bo6b2o\$27bo7bo3b2o\$38b2o\$40bo\$25b2o\$25bobo\$25bo3\$8b2o\$9b2o\$8bo\$24b3o\$6bo17bo\$6b2o17bo\$5bobo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 12th, 2017, 3:59 am
16.914 in 11G:
`x = 56, y = 33, rule = B3/S2337bo\$35bobo\$36b2o6bobo\$44b2o\$38bo6bo\$38bobo\$bo36b2o\$o\$3o22b2o\$24bo2bo\$24bo2bo\$25b2o15bobo\$42b2o\$43bo2\$2bo\$b2o30bo\$bobo28b2o13bo\$28bo3bobo11b2o\$27b2o17bobo\$20b2o5bobo\$21b2o\$20bo8\$53b2o\$53bobo\$53bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 12th, 2017, 5:16 am
yootaa wrote:16.914 in 11G:
`x = 56, y = 33, rule = B3/S2337bo\$35bobo\$36b2o6bobo\$44b2o\$38bo6bo\$38bobo\$bo36b2o\$o\$3o22b2o\$24bo2bo\$24bo2bo\$25b2o15bobo\$42b2o\$43bo2\$2bo\$b2o30bo\$bobo28b2o13bo\$28bo3bobo11b2o\$27b2o17bobo\$20b2o5bobo\$21b2o\$20bo8\$53b2o\$53bobo\$53bo!`

Wow, I had created a synthesis of 16.914 earlier today, and was yet to post it. yootaa's synthesis is almost identical to the one I created!:

`x = 41, y = 28, rule = B3/S2340bo\$38b2o\$39b2o3\$17bo\$15bobo7bo\$16b2o5b2o\$24b2o\$5bo12bo\$3bobo12bobo\$4b2o12b2o2\$5bo\$5b2o\$4bobo\$24bo\$22b2o\$23b2o3\$13bo\$12b2o\$8bo3bobo\$7b2o\$2o5bobo15b3o\$b2o22bo\$o25bo!`

16.848 in 8 gliders:

`x = 30, y = 44, rule = B3/S232bo2bobo\$obo3b2o\$b2o3bo2\$6b3o\$8bo\$7bo3\$2b2o\$bobo\$3bo5\$14bo\$7bo6bobo\$7b2o5b2o\$6bobo2b2o\$10b2o\$12bo20\$27b2o\$27bobo\$27bo!`

EDIT:

16.926 in 15 gliders:

`x = 72, y = 22, rule = B3/S2319bo24bo\$17b2o26b2o4bo\$18b2o24b2o6bo\$7bobo40b3o\$8b2o34bo\$8bo4bo30b2o\$12bo30bobo6bobo\$12b3o37b2o\$3bo49bo\$3bobo20b2o18b2o18b2o\$3b2o2b3o17bo13b2o4bo19bo2bo\$7bo19bob2o11b2o3bob2o4b2o10bobobo\$b2o5bo17b2o2bo10bo4b2o2bo4bobo8b2o2bo\$obo25b2o18b2o5bo12b2o\$2bo12bo12bo19bo19bo\$14bo15bo19bo19bo\$14b3o12b2o18b2o18b2o2\$12bo\$5bo5b2o\$5b2o4bobo\$4bobo!`

EDIT2:

16.1107 in 13 gliders:

`x = 71, y = 72, rule = B3/S2368bo\$68bobo\$68b2o8\$2bo\$obo\$b2o11\$9bobo\$10b2o\$10bo31bo\$40b2o\$41b2o3\$12bo\$13b2o\$12b2o4\$45bo\$43b2o\$44b2o\$17bo\$15bobo\$16b2o7\$25bo\$25bobo\$18b2o5b2o\$17b2o\$14b2o3bo\$15b2o\$14bo11\$22b2o\$15b2o4b2o\$14b2o7bo\$16bo\$12b2o\$11bobo\$13bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 12th, 2017, 8:56 pm
I think I've added everything except 16.1107 in Goldtiger's second edit above. I made some new synths of my own as well. The new list contains 62 SLs:

`16.712     xs16_3pc0qmzw23          2016.1757    xs16_g8idik8z123         1816.1790    xs16_178cia4z0321        1816.227     xs16_5b8r5426            1716.265     xs16_259m861ac           1716.380     xs16_4a40vh248c          1716.616     xs16_i5pajoz11           1716.640     xs16_c9bkkozw32          1716.716     xs16_3pmk46zx23          1716.748     xs16_39ege2z321          1716.799     xs16_c8al56z311          1716.875     xs16_4a5pa4z2521         1716.1064    xs16_39m88cz6221         1716.1097    xs16_ck0ol3z643          1716.1398    xs16_g88c93zc952         1716.1722    xs16_4aq32acz032         1716.1758    xs16_4a4o796zw121        1716.1847    xs16_39c8a52z033         1716.1882    xs16_259m453zx23         1716.2467    xs16_0kc3213z34a4        1716.3163    xs16_wo443123zbd         1716.3164    xs16_wo443146zbd         1716.104     xs16_0j5ozj4pz11         1616.243     xs16_2egu16426           1616.300     xs16_9fg4czbd            1616.302     xs16_5b8o642ac           1616.360     xs16_2egu16413           1616.593     xs16_3123c48gka4         1616.771     xs16_69qb8oz32           1616.772     xs16_3h4e1daz011         1616.810     xs16_ca9la4z311          1616.822     xs16_8ehikozw56          1616.836     xs16_4aajkczx56          1616.838     xs16_ci9b8ozw56          1616.856     xs16_kc32acz1252         1616.995     xs16_0raik8z643          1616.1068    xs16_3lo0kcz6421         1616.1080    xs16_3lo0kcz3421         1616.1304    xs16_0okih3zc8421        1616.1391    xs16_ca168ozc8421        1616.1583    xs16_4a9jzxha6zx11       1616.1675    xs16_xj96z0mdz32         1616.1693    xs16_8k8aliczw23         1616.1717    xs16_4aajk46zx121        1616.1739    xs16_g88r2qkz121         1616.1766    xs16_kc321e8z123         1616.1787    xs16_069m4koz311         1616.1929    xs16_0g5r8b5z121         1616.1994    xs16_0g9fgka4z121        1616.2025    xs16_069q48cz2521        1616.2028    xs16_25ao48cz2521        1616.2029    xs16_25ao4a4z2521        1616.2030    xs16_0i5q8a52z121        1616.2204    xs16_0gilla4z641         1616.2219    xs16_0oe12koz643         1616.2305    xs16_6413ia4z6421        1616.2317    xs16_cik8a52z641         1616.2322    xs16_raak8zx1252         1616.2323    xs16_ra248goz056         1616.2445    xs16_ciligzx254c         1616.2630    xs16_31e8gzxo9a6         1616.3032    xs16_1784ozx342sg        16`

These are the SLs with new costs since last time:

`+16.926     xs16_3iajc4gozw1         15+16.600     xs16_6421344og84c        14+16.1107    xs16_02egdbz2521         14+16.1276    xs16_3iakgozw1ac         14+16.2190    xs16_032q4goz6413        14+16.2356    xs16_25icggozx1ac        14+16.1273    xs16_32q4goz0db          13+16.1381    xs16_32q4gozc93          13+16.1785    xs16_2eg88bdzx23         13+16.1905    xs16_8u16853z32          13+16.2555    xs16_4a9jzxpia4          13+15.1205    xs15_0g8gka23z343        12+16.115     xs16_0ol3z0mdz32         12+16.948     xs16_04s0fpz6221         12+16.2215    xs16_04s0cp3z6221        12+16.2216    xs16_0g8ie0dbz23         12+15.552     xs15_69m88czx56          11+16.1911    xs16_69q3213z32          11+15.598     xs15_3iakgozw56          10+16.914     xs16_8kkja952zx1         10+15.97      xs15_354qajo             9+15.179     xs15_3146pb8o            9+15.620     xs15_39m88czx56          9+16.3066    xs16_4a9jzx12ego         9+15.6       xs15_ol3zmdz11           8+16.665     xs16_699mkiczx1          8+16.848     xs16_ca9b8oz0252         8+16.1904    xs16_8u164koz32          8+16.3227    xs16_31e8gzy012ego       8`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 13th, 2017, 4:33 am
chris_c wrote:
Sokwe wrote:I tried to reduce 16.1693 via the honeycomb, but I was only able to get it down to 18

By keeping your glider in the lower right and finding a 3G collision that worked for the rest, I reduced this by two. Sadly that still means 16G if the honeycomb costs 7G:
`x = 24, y = 26, rule = B3/S2310bo12bo\$9bo11b2o\$9b3o3bo6b2o\$15bobo\$15b2o3\$15b2o\$15bobo\$9b2o4bo\$b3o4bo2bo\$3bo3bob2obo\$2bo5bo2bo\$9b2o4\$18b2o\$18bobo\$9b2o7bo\$9bobo\$b2o6bo\$obo\$2bo10b2o\$13bobo\$13bo!`

I've spent some time looking for a 6G honeycomb synthesis, but I haven't been unsuccessful so far. Maybe someone else can get it from one of these "good looking" predecessors:
`x = 206, y = 28, rule = B3/S23142bo\$140bobo\$141b2o5\$117b2o\$28bo57bo29bo2bo\$2bo3bobo18bobo30bo26b2o28bobo43b2o\$3bo3bo20b2o31bo27bo30bo42b2o37b2o\$2obob3o52bobo23b3obo28b2o77bo2b2o\$o2bo2bo55bobo24b3o107bo2bo\$3bo28b2obo22bo4b3o16bo7bobo106b3o\$4bobo24bo4bo20bobo4bo18bo8b2o67bo\$5bo22b2o27bobo21b3o7b3o65bobo43bo\$27bo30bo23bo8b2o67b2o31b2o10bo\$27b2o2bo3bo19bo27b2o33b2o73b2o10bo\$27b2ob2o3bo19b2o25bobo34b2o\$10bo19b3obo19bobo27bo32b2o2bo41b3o\$8b2o18bo4b2o81bob4o41bo\$9b2o18b3obo81bo3bo44bo\$30b3o79bo2bo2bo\$31bo80bo4bo\$113b3o45bobo\$162b2o2b2o\$162bo2b2o\$167bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 13th, 2017, 8:38 am
16.3163 in 7G. It can be continued to 16.3164 synthesis (12G).
`x = 69, y = 32, rule = B3/S23obo\$b2o\$bo2\$65bobo\$65b2o\$66bo3\$2bo\$3b2o\$2b2o62b3o\$29bo36bo\$29bobo35bo\$29b2o\$55b2obo\$55bob2o7b2o\$53b2o10b2o\$52bo14bo\$2b3o19bo27bo\$4bo19bobo23b2o\$3bo20b2o24bo\$51bo\$50b2o15b2o\$25b2o28bo10b2o\$25bobo27b2o11bo\$25bo28bobo3\$28b2o\$28bobo\$28bo!`

EDIT: 16.1757 in 8G:
`x = 40, y = 42, rule = B3/S239bobo\$9b2o\$o9bo\$b2o\$2o\$21bo\$20bo\$20b3o13\$24b3o\$24bo\$5bobo17bo\$b2o3b2o\$2b2o2bo\$bo3\$5b3o\$7bo\$6bo9\$37b2o\$37bobo\$37bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 14th, 2017, 5:50 am
16.1790 in 9 gliders:

`x = 24, y = 29, rule = B3/S235bo\$3b2o16bo\$4b2o15bobo\$21b2o\$o\$b2o\$2o2\$11bo\$9b2o\$10b2o2\$bo3b2o\$b2ob2o\$obo3bo6\$11b2o\$10b2o\$12bo\$6b2o\$5bobo\$7bo\$13b2o\$13bobo\$13bo!`

Now all but one 16-bit still-lifes cost less than 18 gliders.

Sokwe wrote:I've spent some time looking for a 6G honeycomb synthesis, but I haven't been unsuccessful so far. Maybe someone else can get it from one of these "good looking" predecessors:
`x = 206, y = 28, rule = B3/S23142bo\$140bobo\$141b2o5\$117b2o\$28bo57bo29bo2bo\$2bo3bobo18bobo30bo26b2o28bobo43b2o\$3bo3bo20b2o31bo27bo30bo42b2o37b2o\$2obob3o52bobo23b3obo28b2o77bo2b2o\$o2bo2bo55bobo24b3o107bo2bo\$3bo28b2obo22bo4b3o16bo7bobo106b3o\$4bobo24bo4bo20bobo4bo18bo8b2o67bo\$5bo22b2o27bobo21b3o7b3o65bobo43bo\$27bo30bo23bo8b2o67b2o31b2o10bo\$27b2o2bo3bo19bo27b2o33b2o73b2o10bo\$27b2ob2o3bo19b2o25bobo34b2o\$10bo19b3obo19bobo27bo32b2o2bo41b3o\$8b2o18bo4b2o81bob4o41bo\$9b2o18b3obo81bo3bo44bo\$30b3o79bo2bo2bo\$31bo80bo4bo\$113b3o45bobo\$162b2o2b2o\$162bo2b2o\$167bo!`

Hmm...The first one looks particularly promising. I've had a quick go at a few, with no success so far.

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 14th, 2017, 12:29 pm
yootaa wrote:16.3163 in 7G. It can be continued to 16.3164 synthesis (12G).
`x = 69, y = 32, rule = B3/S23obo\$b2o\$bo2\$65bobo\$65b2o\$66bo3\$2bo\$3b2o\$2b2o62b3o\$29bo36bo\$29bobo35bo\$29b2o\$55b2obo\$55bob2o7b2o\$53b2o10b2o\$52bo14bo\$2b3o19bo27bo\$4bo19bobo23b2o\$3bo20b2o24bo\$51bo\$50b2o15b2o\$25b2o28bo10b2o\$25bobo27b2o11bo\$25bo28bobo3\$28b2o\$28bobo\$28bo!`

Reduced by 1:
`x = 43, y = 35, rule = B3/S23bo\$2bo\$3o8\$3bo\$bobo\$2b2o6\$41bo\$40bo\$40b3o8\$2b2o\$3b2o22b2o\$2bo23b2o\$28bo\$24b2o\$23bobo\$25bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 14th, 2017, 2:25 pm
Sokwe wrote:I've spent some time looking for a 6G honeycomb synthesis, but I haven't been unsuccessful so far. Maybe someone else can get it from one of these "good looking" predecessors:

Eventually I did find a 6G honeycomb synthesis:

`x = 42, y = 43, rule = B3/S234bobo\$5b2o\$5bo4\$9bo\$7bobo\$8b2o3\$11bo\$9bobo\$10b2o5\$o13bo\$b2o11bobo\$2o12b2o20\$39b3o\$39bo\$40bo!`

It is much like the first of your predecessors in that the main piece of the junk would evolve into this without any further interaction:

`x = 5, y = 5, rule = LifeHistory2.D\$.D.D\$D.D.D\$D.D.D\$4D!`

Here is 16.1097 in 11G by improving 15.477:

`x = 45, y = 56, rule = B3/S2321bobo2bobo\$21b2o3b2o\$22bo4bo5\$15bobo\$15b2o\$16bo\$38b2o3b2o\$38bo2bo2bo\$39bob2o\$40bo\$4b3o31bobo\$4bo33b2o\$2o3bo\$b2o\$o20b2o5bo\$21bobo3b2o\$21bo5bobo5\$13bo\$12b2o\$12bobo15\$10bo\$11bo\$9b3o4bobo\$16b2o\$17bo2\$42b2o\$43bo\$8b2o3b2o23b2o2bo\$8bo2bo2bo5b2o16bo2bo\$9bob2o7bobo16bob2o\$10bo9bo19bo\$8bobo27bobo\$8b2o28b2o!`

The latest list contains 56 SLs:

`16.712     xs16_3pc0qmzw23          2016.227     xs16_5b8r5426            1716.265     xs16_259m861ac           1716.380     xs16_4a40vh248c          1716.616     xs16_i5pajoz11           1716.640     xs16_c9bkkozw32          1716.716     xs16_3pmk46zx23          1716.748     xs16_39ege2z321          1716.799     xs16_c8al56z311          1716.875     xs16_4a5pa4z2521         1716.1064    xs16_39m88cz6221         1716.1398    xs16_g88c93zc952         1716.1722    xs16_4aq32acz032         1716.1758    xs16_4a4o796zw121        1716.1847    xs16_39c8a52z033         1716.1882    xs16_259m453zx23         1716.2467    xs16_0kc3213z34a4        1716.104     xs16_0j5ozj4pz11         1616.243     xs16_2egu16426           1616.300     xs16_9fg4czbd            1616.302     xs16_5b8o642ac           1616.360     xs16_2egu16413           1616.593     xs16_3123c48gka4         1616.771     xs16_69qb8oz32           1616.772     xs16_3h4e1daz011         1616.810     xs16_ca9la4z311          1616.822     xs16_8ehikozw56          1616.836     xs16_4aajkczx56          1616.838     xs16_ci9b8ozw56          1616.856     xs16_kc32acz1252         1616.995     xs16_0raik8z643          1616.1068    xs16_3lo0kcz6421         1616.1080    xs16_3lo0kcz3421         1616.1304    xs16_0okih3zc8421        1616.1391    xs16_ca168ozc8421        1616.1583    xs16_4a9jzxha6zx11       1616.1675    xs16_xj96z0mdz32         1616.1717    xs16_4aajk46zx121        1616.1739    xs16_g88r2qkz121         1616.1766    xs16_kc321e8z123         1616.1787    xs16_069m4koz311         1616.1929    xs16_0g5r8b5z121         1616.1994    xs16_0g9fgka4z121        1616.2025    xs16_069q48cz2521        1616.2028    xs16_25ao48cz2521        1616.2029    xs16_25ao4a4z2521        1616.2030    xs16_0i5q8a52z121        1616.2204    xs16_0gilla4z641         1616.2219    xs16_0oe12koz643         1616.2305    xs16_6413ia4z6421        1616.2317    xs16_cik8a52z641         1616.2322    xs16_raak8zx1252         1616.2323    xs16_ra248goz056         1616.2445    xs16_ciligzx254c         1616.2630    xs16_31e8gzxo9a6         1616.3032    xs16_1784ozx342sg        16`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 14th, 2017, 8:59 pm
16.265 in 10G:
`x = 65, y = 45, rule = B3/S232bo\$obo\$b2o5\$9bo\$9bobo\$9b2o2\$10bo\$9b2o\$9bobo4\$49bo\$47bobo\$48b2o2b2o\$52b2o3\$52b2o\$52b2o\$9bo4b2o43bo\$9b2o2b2o43bobo2b2o\$8bobo4bo41bobobo2bo\$56bo2bobobo\$57b2o3bo5\$10b3o\$12bo7b2o\$11bo8bobo\$20bo3\$6b2o\$5bobo\$7bo11bo\$18b2o\$18bobo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 15th, 2017, 9:05 am
On the reducing 16.712 front, here is a synthesis for a related 19-bit still-life in 10 gliders:

`x = 39, y = 38, rule = B3/S235bo\$6bo\$4b3o2\$15bo\$16bo\$14b3o2\$29bobo\$15b3o11b2o\$17bo12bo\$16bo19bo\$36bobo\$36b2o7\$2b2o\$bobo\$3bo3\$31b2o\$30b2o\$32bo\$b3o\$3bo\$2bo2\$23b2o\$22b2o\$24bo\$3o\$2bo\$bo!`

It can probably be reduced to 9 gliders. How expensive is it to convert into 16.712?

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 15th, 2017, 11:02 am
Goldtiger997 wrote:On the reducing 16.712 front, here is a synthesis for a related 19-bit still-life in 10 gliders:

`x = 39, y = 38, rule = B3/S235bo\$6bo\$4b3o2\$15bo\$16bo\$14b3o2\$29bobo\$15b3o11b2o\$17bo12bo\$16bo19bo\$36bobo\$36b2o7\$2b2o\$bobo\$3bo3\$31b2o\$30b2o\$32bo\$b3o\$3bo\$2bo2\$23b2o\$22b2o\$24bo\$3o\$2bo\$bo!`

It can probably be reduced to 9 gliders. How expensive is it to convert into 16.712?

I had a play around in JLS and modifying the top spark seems a lot more promising than modifying the still life after it has settled. Any luck in making something like this?

`x = 11, y = 12, rule = B3/S233bo\$2bo\$bo2bo\$3obo\$o2bob2o\$3b2o\$8b2o\$bo5bo\$b2o4bo\$obo4bo2bo\$9b2o\$2bo!`

EDIT: And the 19-bitter can be done in 9G:

`x = 32, y = 36, rule = B3/S234bo\$5bo\$3b3o2\$14bo\$15bo\$13b3o3\$14b3o\$16bo\$15bo9\$b2o\$obo\$2bo6\$3o3b3o\$2bo5bo21b2o\$bo5bo21b2o\$31bo\$3b2o\$4b2o20bo\$3bo21b2o\$25bobo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 15th, 2017, 12:21 pm
chris_c wrote:I had a play around in JLS and modifying the top spark seems a lot more promising than modifying the still life after it has settled. Any luck in making something like this?

`x = 11, y = 12, rule = B3/S233bo\$2bo\$bo2bo\$3obo\$o2bob2o\$3b2o\$8b2o\$bo5bo\$b2o4bo\$obo4bo2bo\$9b2o\$2bo!`

16.712 in 14 gliders:
`x = 58, y = 112, rule = B3/S236bo\$7b2o\$6b2o9\$12bo39bo\$6bo3b2o38bo2bo\$4bobo4b2o37bo2bo\$5b2o44bo37\$12bo39bo\$10bo2bo10bo25bo2bo\$10bo2bo8b2o26bo2bo2bo\$11bo11b2o26bo4bo\$56bo2\$21bo\$20b2o\$20bobo23\$bo\$2bo11bo\$3o9bobo12bo\$13b2o11bo\$26b3o5\$12bo\$10bo2bo38b2o\$10bo2bo2bo35bo3b2o\$11bo4bo37bo2bo\$16bo36b2obo\$53bo2b2o\$55bo\$54b2o3\$3o\$2bo\$bo4b2o4b2o\$7b2o4b2o13b2o\$6bo5bo15bobo\$28bo\$9b2o\$8bobo\$10bo12b3o\$23bo\$24bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 15th, 2017, 12:40 pm
AbhpzTa wrote:16.712 in 14 gliders:
`x = 58, y = 112, rule = B3/S236bo\$7b2o\$6b2o9\$12bo39bo\$6bo3b2o38bo2bo\$4bobo4b2o37bo2bo\$5b2o44bo37\$12bo39bo\$10bo2bo10bo25bo2bo\$10bo2bo8b2o26bo2bo2bo\$11bo11b2o26bo4bo\$56bo2\$21bo\$20b2o\$20bobo23\$bo\$2bo11bo\$3o9bobo12bo\$13b2o11bo\$26b3o5\$12bo\$10bo2bo38b2o\$10bo2bo2bo35bo3b2o\$11bo4bo37bo2bo\$16bo36b2obo\$53bo2b2o\$55bo\$54b2o3\$3o\$2bo\$bo4b2o4b2o\$7b2o4b2o13b2o\$6bo5bo15bobo\$28bo\$9b2o\$8bobo\$10bo12b3o\$23bo\$24bo!`

Nice!!

With some contributions of my own we are down to 50 SLs. Still quite a way to go but hopefully the worst is behind us:

`16.227     xs16_5b8r5426            1716.380     xs16_4a40vh248c          1716.616     xs16_i5pajoz11           1716.640     xs16_c9bkkozw32          1716.716     xs16_3pmk46zx23          1716.748     xs16_39ege2z321          1716.799     xs16_c8al56z311          1716.875     xs16_4a5pa4z2521         1716.1398    xs16_g88c93zc952         1716.1722    xs16_4aq32acz032         1716.1758    xs16_4a4o796zw121        1716.1847    xs16_39c8a52z033         1716.1882    xs16_259m453zx23         1716.243     xs16_2egu16426           1616.300     xs16_9fg4czbd            1616.302     xs16_5b8o642ac           1616.360     xs16_2egu16413           1616.593     xs16_3123c48gka4         1616.771     xs16_69qb8oz32           1616.772     xs16_3h4e1daz011         1616.810     xs16_ca9la4z311          1616.822     xs16_8ehikozw56          1616.836     xs16_4aajkczx56          1616.838     xs16_ci9b8ozw56          1616.856     xs16_kc32acz1252         1616.995     xs16_0raik8z643          1616.1068    xs16_3lo0kcz6421         1616.1080    xs16_3lo0kcz3421         1616.1304    xs16_0okih3zc8421        1616.1391    xs16_ca168ozc8421        1616.1583    xs16_4a9jzxha6zx11       1616.1675    xs16_xj96z0mdz32         1616.1717    xs16_4aajk46zx121        1616.1739    xs16_g88r2qkz121         1616.1766    xs16_kc321e8z123         1616.1787    xs16_069m4koz311         1616.1929    xs16_0g5r8b5z121         1616.1994    xs16_0g9fgka4z121        1616.2028    xs16_25ao48cz2521        1616.2029    xs16_25ao4a4z2521        1616.2030    xs16_0i5q8a52z121        1616.2204    xs16_0gilla4z641         1616.2219    xs16_0oe12koz643         1616.2305    xs16_6413ia4z6421        1616.2317    xs16_cik8a52z641         1616.2322    xs16_raak8zx1252         1616.2323    xs16_ra248goz056         1616.2445    xs16_ciligzx254c         1616.2630    xs16_31e8gzxo9a6         1616.3032    xs16_1784ozx342sg        16`

16.1064:
`x = 62, y = 116, rule = B3/S2324bo\$22b2o\$23b2o\$obo\$b2o\$bo12\$59b3o\$54b2o\$54bobo\$56bo\$55bob2obo\$56bo2b2o\$bo18b3o34bo\$b2o17bo8b2o23b3o\$obo18bo6b2o24bo\$6b2o5b2o15bo\$7b2o3bobo\$6bo6bo9\$6bo\$6b2o\$5bobo12\$28bo\$26b2o\$27b2o3\$20bo\$20bo\$14b2o4bo33b2o\$14bobo37bobo\$16bo39bo\$15bob2obo34bob2obo\$16bo2b2o35bo2b2o\$17bo39bo\$14b3o37b3o\$14bo39bo23\$31bobo\$31b2o\$32bo8\$14b2o38b2o\$14bobo37bobo\$16bo39bo2bo\$15bob2obo34bob3o\$16bo2b2o35bo\$17bo39bo\$14b3o37b3o\$14bo39bo3\$34b3o\$34bo\$35bo3\$32b2o\$32bobo\$32bo!`

16.2467:
`x = 68, y = 106, rule = B3/S2320bo5bo\$18bobo5bobo\$19b2o5b2o\$61b2o\$60bo2bo\$61b2o\$65b3o\$22bo\$22b2o\$21bobo18\$9bo\$7bobo\$8b2o8\$25bo\$26bo\$24b3o3bo\$30bobo\$30b2o32bob2o\$64b2obo\$21b2o39b2o\$20bo2bo39bo\$21b2o39bo\$25b3o33bo\$61b2o4\$3b3o\$5bo\$4bo5\$22b2o\$23b2o\$2o20bo\$b2o\$o16\$7bo34bo\$5bobo33bo\$6b2o33b3o\$24bob2o36bob2o\$24b2obo6bobo27b2obo\$22b2o10b2o26b2o\$23bo11bo27bo\$22bo39bo\$21bo39bo\$21b2o38bobo\$62bobo\$63bo5\$26bo\$26bobo\$26b2o3\$28b2o\$28bobo\$28bo2\$7b3o\$9bo\$8bo!`

16.104:
`x = 76, y = 122, rule = B3/S2326bobo\$26b2o\$27bo2\$19b2o2b3o42b3o\$18bobo2bo49b3o\$20bo3bo16\$43bo\$41b2o\$42b2o14\$20bobo\$20b2o\$21bo4\$25b2o\$24b2o\$26bo4\$71b2o\$29b3o39bo\$29bo42bo\$30bo42bo\$18b3o50bobo\$23b3o44bobo\$13bo56bo\$14bo56bo\$12b3o57bo\$71b2o4\$17bo\$18b2o\$17b2o4\$22bo\$22b2o\$21bobo14\$2o\$b2o\$o13\$21b2o48b2o\$21bo49bo\$22bo49bo\$23bo49bo\$21bobo47bobo\$20bobo47bobo\$14bo5bo9bo39bo\$15bo5bo7bo41bo\$13b3o6bo6b3o40bo\$21b2o47bobo\$70b2o8\$28b2o\$21bo6bobo\$20b2o6bo\$20bobo!`

16.2025:
`x = 65, y = 100, rule = B3/S2331bobo\$26bo4b2o\$26bobo3bo\$26b2o3\$27b3o29b2o\$17b3o7bo31bobo\$28bo33bobo\$60b2ob2o\$59bobo\$58bo2bo\$59b2o\$29b3o\$15b2o12bo\$14bobo13bo\$16bo\$24b2o\$24bobo\$24bo27\$12bo6b2o38b2o\$13bo5bobo37bobo\$11b3o8bobo37bobo\$20b2ob2o35b2ob2o\$19bobo39bo\$18bo2bo37bobo\$19b2o37bobo\$59bo4\$27b2o\$19bo6b2o\$19b2o7bo\$18bobo15\$5bo\$6bo\$4b3o9\$19b2o39bo\$19bobo37bobo\$22bobo34bo2bobo\$20b2ob2o35b2ob2o\$21bo39bo\$3o16bobo37bobo\$2bo15bobo37bobo\$bo4b2o11bo39bo\$5bobo\$7bo2\$bo\$b2o\$obo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 16th, 2017, 8:16 am
AbhpzTa wrote:16.712 in 14 gliders:..

Great work!

The current hardest still life left might be 16.1398.

16.227 in 9 gliders:

`x = 45, y = 29, rule = B3/S2331bo\$31bobo\$31b2o3\$30bo\$28b2o\$11b3o15b2o\$13bo\$12bo2\$13b3o\$7b3o3bo\$9bo4bo\$8bo8\$3o32b2o\$2bo26b3o3bobo\$bo27bo5bo\$30bo\$42b2o\$42bobo\$42bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 16th, 2017, 9:56 am
Goldtiger997 wrote:The current hardest still life left might be 16.1398.

It was hard but I managed to reduce 16.1323 by 2G to get 16.1398 in 15G:

`x = 123, y = 158, rule = B3/S233bobo\$4b2o\$4bo39bo\$44bobo\$44b2o8\$44bo\$43bo\$43b3o17\$121b2o\$122bo\$120bo\$30bo87b4o\$29b2o86bo\$29bobo86b2o\$119bo\$119bobo\$25b2o93b2o\$26b2o\$25bo2\$4bo31b3o\$4b2o30bo\$3bobo9b2o20bo\$14bobo\$16bo34\$75b2o\$75bobo\$75bo18\$72b2o\$72bobo\$72bo22\$38bo\$3bo32b2o\$4bo32b2o\$2b3o3\$21b2o98b2o\$22bo99bo\$20bo99bo\$18b4o96b4o\$17bo99bo\$18b2o98b2o\$19bo100bo\$19bobo95bobo\$20b2o95b2o14\$40b3o\$35b2o3bo\$b2o32bobo3bo\$obo32bo\$2bo!`

I saved 2G in making the R + Boat + Blinker but then had to jump through some extra hoops to keep the loaf and the cleanup on that side at only 3G.

Next hardest could be 16.1583. I'm trying to make a relevant 15 bitter in 11G from this soup:

`x = 13, y = 27, rule = B3/S234bo\$4bo\$4bo2\$3o2\$4bo7bo\$4bo7bo\$4bo7bo11\$3b3o\$3bobo\$3bo4\$2o\$2o!`

The plan is 4G + 4G and 3G for cleanup but that's just hope rather than expecation at the moment.

EDIT: Done. The snake can be extend to a python in 4G giving 15G for 16.1583:

`x = 99, y = 90, rule = B3/S2364bo33bo\$62b2o32b2o\$63b2o32b2o\$9b3o37b3o2\$7bo5bo33bo5bo33b2o\$7bo5bo33bo5bo32bobo\$7bo5bo33bo5bo31bo5b2o\$86b2o3b2o\$9b3o37b3o36bo\$88bo\$59bo29b2o\$58bo31bo\$58b3o28bo\$89b2o4\$64b2o\$9bo54bobo\$10b2o52bo\$9b2o\$50b2o\$49bo2bo\$7b3o40b2o\$9bo\$8bo\$46b2o\$46b2o\$9b2o\$9bobo\$9bo37\$80b2o\$80bobo\$80bo17\$2o\$b2o\$o!`

EDIT2: 16.1068 in 11G:

`x = 62, y = 55, rule = B3/S232bo\$obo21bo\$b2o19b2o\$23b2o\$6bo6bo\$4bobo7b2o\$5b2o6b2o2\$3bo\$4bo50b2o3b2o\$2b3o50bo2bo2bo\$57b2obo\$59bo\$56bobo\$56b2o\$12bo\$12b2o\$11bobo2\$8b2o\$9b2o\$8bo\$17b3o\$17bo\$18bo18\$18bo\$12bo5bobo\$13b2o3b2o\$12b2o2\$56b2o\$56bo\$15b2o3b2o35bo2b2o\$8b3o4bo2bo2bo36bo2bo\$10bo6b2obo36b2obo\$9bo9bo39bo\$16bobo37bobo\$16b2o38b2o!`

Now all 17G SLs have at least two soups on Catagolue and all 16G SLs that have fewer than two soups have a 15-bit predecessor having at least 15 soups and currently costing at least 10G. The latest list contains 45 SLs:

`16.380     xs16_4a40vh248c          1716.616     xs16_i5pajoz11           1716.640     xs16_c9bkkozw32          1716.716     xs16_3pmk46zx23          1716.748     xs16_39ege2z321          1716.799     xs16_c8al56z311          1716.875     xs16_4a5pa4z2521         1716.1722    xs16_4aq32acz032         1716.1758    xs16_4a4o796zw121        1716.1847    xs16_39c8a52z033         1716.1882    xs16_259m453zx23         1716.243     xs16_2egu16426           1616.300     xs16_9fg4czbd            1616.302     xs16_5b8o642ac           1616.360     xs16_2egu16413           1616.593     xs16_3123c48gka4         1616.771     xs16_69qb8oz32           1616.772     xs16_3h4e1daz011         1616.810     xs16_ca9la4z311          1616.822     xs16_8ehikozw56          1616.836     xs16_4aajkczx56          1616.838     xs16_ci9b8ozw56          1616.856     xs16_kc32acz1252         1616.995     xs16_0raik8z643          1616.1304    xs16_0okih3zc8421        1616.1391    xs16_ca168ozc8421        1616.1675    xs16_xj96z0mdz32         1616.1717    xs16_4aajk46zx121        1616.1739    xs16_g88r2qkz121         1616.1766    xs16_kc321e8z123         1616.1787    xs16_069m4koz311         1616.1929    xs16_0g5r8b5z121         1616.1994    xs16_0g9fgka4z121        1616.2028    xs16_25ao48cz2521        1616.2029    xs16_25ao4a4z2521        1616.2030    xs16_0i5q8a52z121        1616.2204    xs16_0gilla4z641         1616.2219    xs16_0oe12koz643         1616.2305    xs16_6413ia4z6421        1616.2317    xs16_cik8a52z641         1616.2322    xs16_raak8zx1252         1616.2323    xs16_ra248goz056         1616.2445    xs16_ciligzx254c         1616.2630    xs16_31e8gzxo9a6         1616.3032    xs16_1784ozx342sg        16`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 16th, 2017, 3:15 pm
16.616 in 10 gliders:
`x = 100, y = 49, rule = B3/S23obo\$b2o\$bo5\$50bo\$50bobo\$50b2o14\$44bo\$43bo\$43b3o2\$35bo44bo\$36b2o9b3o29bo\$35b2o10bo31b3o\$48bo27b2o\$36bo38bo2bo\$35b2o39b2o\$35bobo\$65b2obo26b2obo\$64bo2b2o25bo2b2o\$65bo29bo\$66b2obo26b2obo\$64bobob2o24bobob2o\$64b2o28b2o3\$3b3o2b2o\$5bob2o23b2o3b2o\$4bo4bo21bo2bo2b2o\$32b2o\$4bo\$4b2o\$3bobo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 16th, 2017, 10:37 pm
Down toward the end of the current list, 16.2445 / xs16_ciligzx254c can be reduced to 14G, based on this soup.

That was the first soup I tried -- it's the black link between the red and purple links. Didn't even look at the dozens of other soups, and didn't try terribly hard to replace blocks with gliders either... so this could almost certainly be improved further, one way or another:

`x = 68, y = 72, rule = B3/S235bo\$3bobo\$4b2o2\$2bo\$obo\$b2o63bo\$65bo\$65b3o9\$39bobo\$40b2o\$40bo6\$53bo\$52bo\$52b3o\$8bo2bobo\$6bobo3b2o44b2o\$7b2o3bo44b2o\$59bo22\$56bo\$55b2o\$55bobo3\$58b3o\$58bo\$27b2o30bo\$26bobo\$28bo3\$9bo\$9b2o\$8bobo40b3o\$51bo\$18b2o32bo\$17bobo\$19bo!`

I also spent some time on the next 16-bitter on the list, 16.2630 / xs16_31e8gzxo9a6, and found what seems like a fairly promising predecessor, from one of the first couple of soups (I looked at all of them for this case):

`x = 26, y = 24, rule = B3/S236b2o\$6b2o2b2o\$10b2o\$2ob2o\$o3bo\$b3o\$2bo\$7b3o2\$13b2o4bo\$13b2o2bo2bo\$16bo3bo\$10b2o4bo\$10b2o7bo\$20bo\$15b2o\$14bob3o3bo\$13bo8b2o\$13bo\$13bo7bob2o\$14bo3b3o2b2o\$15bo6bo2bo\$22bobo\$22bo!`

But a very speculative 4G search hasn't turned up that modified phi spark yet. Don't think it's likely to, though the script is still running. Seems likely that someone can work out a recipe for it, since there's a fair amount of working room and nine gliders to spare if they're needed.

Another option is

`x = 20, y = 24, rule = B3/S2313bo\$12bobo\$12bo3b3o\$13bo5bo\$17bo2\$15b2o\$2bo14bo\$3o\$3o\$12b3o\$4bo5b2o2bo\$2b2ob2o3bo2b2o\$4bo5b3o5\$6bo\$6b3o\$6b3o\$5bo3bo\$5b4o\$5bob2o!`

but that seems a good bit more expensive, though at least the long boat can be removed with a single glider.

I'm a little worried about 16.3032 / xs16_1784ozx342sg, the last still life on the list, since it only shows up in symmetrical soups, and the only likely-looking soup out of the whole bunch seems as if it's going to end up taking eight pairs of gliders to reproduce the recipe... and I bet that's exactly where the current cost comes from!