Page 8 of 11

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: April 29th, 2017, 10:46 pm
16.2129 in 15G:
`x = 124, y = 229, rule = B3/S2316bo\$14bobo\$15b2o5bo\$21bo\$21b3o3\$21b2o\$20b2o99bobo\$22bo97bob2o\$120bo\$119b2o4\$14b3o\$16bo\$15bo84\$4bobo\$5b2o\$5bo5\$21bobo97bobo\$20bob2o96bob2o\$20bo99bo\$19b2o95bo2b2o\$115bobo\$116bo10\$4b3o\$6bo\$5bo20b2o\$26bobo\$26bo54\$7bo\$8bo\$6b3o4\$26bo\$26bobo\$26b2o2\$bo4bo25bo\$2bo4b2o23bobo\$3o3b2o24b2o2\$4bo\$5bo\$3b3o10\$119b2o\$21bobo95bobobo\$20bob2o96bob2o\$20bo97bobo\$16bo2b2o96bob2o\$15bobo99bo\$16bo99b2o12\$32b2o\$8bo22b2o\$8b2o23bo\$7bobo!`

Edit: 16.2781 in at most 15G by reducing 14.358 to at most 11G:
`x = 165, y = 68, rule = B3/S232bo\$obo\$b2o25\$45bo\$43bobo\$44b2o3\$47bo4bo\$48bob2o27b2o38b2o38b2o\$46b3o2b2o26bo3b2o34bo3b2o34bo3b2o\$81bo2bo27bobo6bo2bo36bo2bo\$80b3o30b2o5b3o37b3o\$79bo33bo5bo39bo\$78bobo9bo27bobo39bo\$79bo10bo28bo37b3o\$90bo66bo\$33b3o\$91b3o19bo\$38bo52bo22bo2bo\$37bobo52bo19b3o2b2o\$38b2o76bobo2\$114bo\$114b2o\$113bobo7\$60bo\$59b2o\$59bobo7\$27b2o\$28b2o\$27bo!`
14.358 might be doable in 10G if the starting constellation can be constructed in 3.

Edit 2: 16.2124 in 14G by reducing 14.215 to 10G:
`x = 205, y = 30, rule = B3/S2382bo\$83b2o\$82b2o3\$78bo\$76bobo2bo\$77b2o2bobo\$81b2o4\$70bo\$71b2o\$70b2o\$120b2o38b2o38b2o\$120bobo37bobo37bobo\$3bo38bo39bo38bobo37bobo37bobo\$2bo38bobo37bobo35bobo2bo34bobo2bo34bobo2bo\$2b3o35bo2bo36bo2bo34bobo2b2o33bobo2b2o33bobo2b2o\$41b2o22b3o13b2o36bo32b2o5bo38bo\$b2o64bo85b2o42b2o\$obo63bo85bo\$2bo68b2o17bo57b2o\$72b2o15b2o58b2o2b2o6b2o\$71bo17bobo56bo4bobo4b2o\$153bo8bo\$79b2o\$78b2o\$80bo!`

Edit 3: 16.1959 in 15G (and 13.124 in 6G):
`x = 299, y = 37, rule = B3/S23o\$b2o\$2o8\$40bo\$40bobo\$40b2o3\$26bo28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o\$26bobo24b3obo25b3obo25b3obo25b3obo25b3obo25b3obo25b3obo25b3obo25b3obo\$26b2o2b3o19bo4bo24bo4bo24bo4bo24bo4bo24bo4bo24bo4bo24bo4bo24bo4bo24bo4bo\$30bo20bobo3b2o22bobo3b2o22bobo3b2o22bobo3b2o22bobo3b2o22bobo3b2o24bo3b2o24bo3b2o24bo3b2o\$31bo20bo29bo29bobo27bobo27bobo27bobo23b2o4bo23b2o4bo29bo\$113bo29bo29bobo22bo4bobo21bo2bo4bo17b3obo2bo4bo29bo\$84b2o88bobo22bo4bobo21b2o6bo18bo2b2o6bo29bo\$84bobo88b2o20b3o5b2o28b2o17bo10b2o28b2o\$84bo\$80b3o115bo\$26b2o54bo115b2o\$27b2o52bo59b3o5b2o46bobo\$26bo116bo4b2o\$142bo7bo2\$143b2o\$142b2o11b2o\$144bo9b2o\$156bo\$3b2o\$2bobo\$4bo!`

Edit 4: 16.1796 and 16.2214 in 14G via 14.344 in 9G:
`x = 249, y = 58, rule = B3/S23212bo\$210bobo\$211b2o\$220bobo\$48bo164bo6b2o\$46b2o10bo154bobo5bo\$47b2o9bobo152b2o\$39bo18b2o23b2o38b2o38b2o38b2o38b2o\$39bobo41bo2b2o35bo2b2o35bo2b2o35bo2b2o35bo2b2o\$39b2o43bob2o36bob2o36bob2o36bob2o36bobo\$44b2o37b2o38b2o38b2o38b2o38b2o3bo\$43b2o39bo39bo39bo39bo39bo2b2o\$2bo42bo36bo39bo39bo39bo39bo\$2o80b2o38b2o38b2o38b2o38b2o\$b2o\$32b3o\$2bo31bo\$b2o30bo181b2o\$bobo36b3o172bobo\$73b2o38b2o100bo8b3o\$72bo2bo36bo2bob3o104bo\$73b2o38b2o2bo107bo\$118bo7\$57b2o\$56b2o\$58bo5\$225bo\$224bo\$215bo8b3o\$215bobo\$215b2o6\$247b2o\$203b2o38b2o3bo\$203bo2b2o35bo2bo\$204bob2o36bob2o\$203b2o38b2o\$204bo8b2o29bo\$202bo10bobo5bo20bo\$202b2o9bo6b2o20b2o\$220bobo\$211b2o\$210bobo\$212bo!`
The 9G synthesis of 14.344 should improve a few others that use it as a base.

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: April 30th, 2017, 5:55 am
Sokwe wrote:16.2129 in 15G:...
...Edit: 16.2781 in at most 15G by reducing 14.358 to at most 11G:
`rle`

14.358 might be doable in 10G if the starting constellation can be constructed in 3.
...Edit 2: 16.2124 in 14G by reducing 14.215 to 10G:...
...Edit 3: 16.1959 in 15G (and 13.124 in 6G):...

Nice work. 14.358 can be done in 10G without synthesising a blinker-boat constellation, as the blinker can be replaced by a glider:

`x = 165, y = 74, rule = B3/S232bo\$obo\$b2o25\$45bo\$43bobo\$44b2o3\$47bo4bo\$48bob2o27b2o38b2o38b2o\$46b3o2b2o26bo3b2o34bo3b2o34bo3b2o\$81bo2bo27bobo6bo2bo36bo2bo\$80b3o30b2o5b3o37b3o\$79bo33bo5bo39bo\$78bobo9bo27bobo39bo\$79bo10bo28bo37b3o\$90bo66bo2\$36bobo52b3o19bo\$37b2o52bo22bo2bo\$37bo54bo19b3o2b2o\$116bobo\$37b3o\$37bo76bo\$38bo75b2o\$113bobo7\$60bo\$59b2o\$59bobo7\$27b2o\$28b2o\$27bo4\$2bo\$2b2o\$bobo!`

Catagolue (only just noticed it's not "catalogue") has been down, but it now working again, so I can find more syntheses.

16.159 in 8 gliders:

`x = 40, y = 42, rule = B3/S2322bo\$21bo\$21b3o2\$10bobo\$11b2o\$11bo12bo\$24bobo\$24b2o2\$23bo\$21bobo\$22b2o3\$37b2o\$37bobo\$37bo5\$31b3o\$33bo\$32bo\$34b3o\$34bo\$35bo12\$b2o\$obo\$2bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: April 30th, 2017, 5:59 pm
16.774 in 12G:
`x = 92, y = 25, rule = B3/S2326bo\$24b2o\$25b2o\$13bo\$14b2o\$8bo4b2o\$2bo6b2o16bo\$3bo4b2o15b2o\$b3o22b2o3\$13bo\$14b2o\$o2bo9b2o35b2o38b2o\$4bo46bo39bo\$o3bo44bo39bo\$b4o42b4o36b4o\$46bo4bo34bo4bo\$36bo10b3obo24bo10b3obo\$35bobo11b2o24bobo11b2o\$36b2o38b2o\$25b3o44b3o\$7b3o15bo48bo\$9bo16bo46bo\$8bo!`

Alternate method I thought would be better but wasn't:
`x = 84, y = 33, rule = B3/S2321bo\$20bo\$20b3o\$8bo\$9bo\$7b3o\$22bo\$21bo\$21b3o6\$45b2o28b2o\$46bo29bo\$44bo29bo\$42b4o26b4o\$41bo4bo24bo4bo\$27b4o11b3obo25b3obo\$bo25bo3bo12b2o3b2o23b2o3b2o\$b2o24bo21b2o28b2o\$obo11b2o12bo2bo\$13b2o4b3o59b3o\$15bo3bo61bo\$20bo61bo3\$3b2o\$4b2o\$3bo13b2o\$16b2o\$18bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: April 30th, 2017, 6:28 pm
16.15 in nine gliders (likely reducible to eight with a better synthesis of the lower-left spark):
`x = 30, y = 24, rule = B3/S239bo\$10b2o\$9b2o16bobo\$20bo6b2o\$18b2o8bo\$19b2o3\$28bo\$27bo\$bo25b3o\$2bo\$3o21bo\$10b2o11b2o\$6b2o2bobo10bobo\$5bobo2bo\$7bo5\$3b2o\$2bobo\$4bo!`

EDIT:
`RLE`

Reduced to nine:
`x = 23, y = 25, rule = B3/S2319bobo\$19b2o\$20bo\$12bobo\$13b2o\$13bo\$20bobo\$20b2o\$21bo2\$8bo\$3bo2bobo3bobo\$3b2o2b2o4b2o\$2bobo8bo2\$20b2o\$20bobo\$7bo12bo\$7b2o\$6bobo3\$b2o\$obo\$2bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: April 30th, 2017, 6:40 pm
Extrementhusiast wrote:16.15 in nine gliders (likely reducible to eight with a better synthesis of the lower-left spark):
`9G synth`
...

Yes, 16.15 in 8 gliders:

`x = 33, y = 27, rule = B3/S23o\$b2o\$2o28bobo\$23bo6b2o\$21b2o8bo\$22b2o3\$10bo20bo\$11bo18bo\$9b3o18b3o6\$10bo\$11b2o\$10b2o2\$8b2o\$7bobo\$9bo2\$27bo\$26b2o\$26bobo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: April 30th, 2017, 10:55 pm
16.1373 in 12G using known components:
`x = 162, y = 31, rule = B3/S23125bo\$126b2o\$125b2o2\$3bo\$4b2o\$3b2o132bo\$135b2o\$136b2o2\$16bo19bo29bo29bo29bo12bo16bo\$15bo20b3o27b3o27b3o27b3o9b2o16b3o\$15b3o21bo29bo29bo19bo9bo8bobo18bo\$11b3o24bobo27bobo27bobo19b2o6bobo27bo2bo\$11bo26bobo27bobo27bobo18b2o7bobo27bob2o\$12bo26bo29bo29bo29bo29bo\$bo155bobo\$b2o153bobo\$obo95b3o27b3o26bo3\$65bobo\$66b2o2b2o\$66bo2b2o\$71bo2\$136bo\$135b2o\$118b3o14bobo\$120bo\$119bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 1st, 2017, 7:44 am
Goldtiger997 wrote:14.358 can be done in 10G without synthesising a blinker-boat constellation, as the blinker can be replaced by a glider

This improvement allows 16.1085 in 15G:

`x = 35, y = 45, rule = B3/S232bo\$obo\$b2o30bo\$32bo\$32b3o5\$32bo\$32bobo\$32b2o3\$30bo\$29bo\$29b3o3\$16bo\$11b2o2bobo\$11bo2bobo\$13b2o\$14bo\$12bo\$12b2o17\$3b3o\$5bo\$4bo!`

Altogether Sokwe's syntheses give rise to the following reductions:

`+16.1084    xs16_31ke12kozw11        20+16.2162    xs16_0at16426z32         17+16.2316    xs16_0at16413z32         17+16.1085    xs16_3h4e12koz011        15+16.1959    xs16_4ai31e8zx56         15+16.2129    xs16_0g8jt246z23         15+16.1796    xs16_0bt06ioz32          14+16.2124    xs16_0g8jd2koz23         14+16.2214    xs16_0mq0c93z641         14+16.2781    xs16_wj9c826z6221        14+16.2161    xs16_0bt06246z32         13+16.2163    xs16_0bdz3213146         13+16.2164    xs16_0bt0628cz32         13+16.2306    xs16_0bt06413z32         13+15.910     xs15_0j9c826z321         12+16.1373    xs16_32q4goz4a43         12+16.1898    xs16_0bt0653z32          12+16.1999    xs16_oka9jzx1252         12+16.2043    xs16_0j9c826z1252        12+16.2074    xs16_0j9c826z343         12+16.2762    xs16_wj9c826z2521        12+14.215     xs14_0j9akoz121          10+14.358     xs14_0j9c826z121         10+14.344     xs14_0bt066z32           9+16.421     xs16_032qczmp21          9+16.850     xs16_gs25acz1226         9+15.521     xs15_8kai31e8zw1         8+13.124     xs13_25a8oge2            6`

Now there are 132 SLs above 15G in my list:

`16.1682    xs16_8k9bkk8zw23         2116.1693    xs16_8k8aliczw23         2116.1753    xs16_695q4gozw23         2116.2096    xs16_wck5b8oz311         2116.228     xs16_178bp2sg            2016.712     xs16_3pc0qmzw23          2016.872     xs16_2lla8oz065          2016.1084    xs16_31ke12kozw11        2016.1127    xs16_giligoz104a4        2016.1739    xs16_g88r2qkz121         2016.1791    xs16_03lkaa4z3201        2016.1962    xs16_4a9eg8ozw65         2016.2058    xs16_69akg4czx146        2016.131     xs16_660uhar             1916.230     xs16_178jd2ko            1916.801     xs16_08eharz321          1916.1684    xs16_4aab9k8zx32         1916.1694    xs16_4a5p6o8zx121        1916.1912    xs16_at16426z32          1916.1979    xs16_4ap30ga6zw121       1916.2050    xs16_6ik8a52z065         1916.2200    xs16_06agc93z2521        1916.2307    xs16_6ik8a52z641         1916.155     xs16_3pabp46             1816.600     xs16_6421344og84c        1816.665     xs16_699mkiczx1          1816.848     xs16_ca9b8oz0252         1816.914     xs16_8kkja952zx1         1816.926     xs16_3iajc4gozw1         1816.1107    xs16_02egdbz2521         1816.1130    xs16_oe12koz01ac         1816.1558    xs16_3loz1226io          1816.1711    xs16_c8idik8z023         1816.1757    xs16_g8idik8z123         1816.1790    xs16_178cia4z0321        1816.1911    xs16_69q3213z32          1816.1990    xs16_8e1tazx1252         1816.1995    xs16_cik8a52z065         1816.2201    xs16_0ggml96z641         1816.2447    xs16_0g8it248cz23        1816.2480    xs16_3iaczw1139c         1816.227     xs16_5b8r5426            1716.265     xs16_259m861ac           1716.380     xs16_4a40vh248c          1716.616     xs16_i5pajoz11           1716.640     xs16_c9bkkozw32          1716.668     xs16_gbq1daz121          1716.716     xs16_3pmk46zx23          1716.748     xs16_39ege2z321          1716.799     xs16_c8al56z311          1716.803     xs16_c9bk46z311          1716.843     xs16_4a9liczx56          1716.875     xs16_4a5pa4z2521         1716.1064    xs16_39m88cz6221         1716.1073    xs16_3lkaa4z641          1716.1097    xs16_ck0ol3z643          1716.1276    xs16_3iakgozw1ac         1716.1398    xs16_g88c93zc952         1716.1685    xs16_c48n98czx23         1716.1715    xs16_64p784czw23         1716.1722    xs16_4aq32acz032         1716.1758    xs16_4a4o796zw121        1716.1847    xs16_39c8a52z033         1716.1867    xs16_069q453z311         1716.1871    xs16_5bo8ge2z32          1716.1882    xs16_259m453zx23         1716.1905    xs16_8u16853z32          1716.1991    xs16_8e1qbzx1252         1716.2014    xs16_25a8kk8z0253        1716.2045    xs16_25ao8ge2z032        1716.2132    xs16_0g8it2sgz23         1716.2162    xs16_0at16426z32         1716.2316    xs16_0at16413z32         1716.2356    xs16_25icggozx1ac        1716.2467    xs16_0kc3213z34a4        1716.2555    xs16_4a9jzxpia4          1716.3163    xs16_wo443123zbd         1716.3164    xs16_wo443146zbd         1716.104     xs16_0j5ozj4pz11         1616.115     xs16_0ol3z0mdz32         1616.243     xs16_2egu16426           1616.300     xs16_9fg4czbd            1616.302     xs16_5b8o642ac           1616.350     xs16_312461tic           1616.360     xs16_2egu16413           1616.593     xs16_3123c48gka4         1616.724     xs16_j5o64koz11          1616.762     xs16_jhke1e8z1           1616.771     xs16_69qb8oz32           1616.772     xs16_3h4e1daz011         1616.810     xs16_ca9la4z311          1616.822     xs16_8ehikozw56          1616.836     xs16_4aajkczx56          1616.838     xs16_ci9b8ozw56          1616.840     xs16_c8idiczw56          1616.856     xs16_kc32acz1252         1616.953     xs16_0cil56z6221         1616.995     xs16_0raik8z643          1616.1068    xs16_3lo0kcz6421         1616.1080    xs16_3lo0kcz3421         1616.1304    xs16_0okih3zc8421        1616.1391    xs16_ca168ozc8421        1616.1581    xs16_8o6413zrm           1616.1583    xs16_4a9jzxha6zx11       1616.1675    xs16_xj96z0mdz32         1616.1710    xs16_4a9bk46zx32         1616.1717    xs16_4aajk46zx121        1616.1720    xs16_4a4o79ozx121        1616.1766    xs16_kc321e8z123         1616.1787    xs16_069m4koz311         1616.1856    xs16_39u06a4z32          1616.1857    xs16_39u0652z32          1616.1864    xs16_31ke1e8z032         1616.1929    xs16_0g5r8b5z121         1616.1994    xs16_0g9fgka4z121        1616.2018    xs16_25a8c826zw33        1616.2025    xs16_069q48cz2521        1616.2028    xs16_25ao48cz2521        1616.2029    xs16_25ao4a4z2521        1616.2030    xs16_0i5q8a52z121        1616.2060    xs16_69akg4czx56         1616.2190    xs16_032q4goz6413        1616.2204    xs16_0gilla4z641         1616.2219    xs16_0oe12koz643         1616.2305    xs16_6413ia4z6421        1616.2317    xs16_cik8a52z641         1616.2322    xs16_raak8zx1252         1616.2323    xs16_ra248goz056         1616.2445    xs16_ciligzx254c         1616.2549    xs16_g4c3213zdb          1616.2630    xs16_31e8gzxo9a6         1616.3032    xs16_1784ozx342sg        16`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 1st, 2017, 11:11 am
Reaction for 16.1753:
`x = 28, y = 52, rule = B3/S23o\$b2o\$2o24\$20b2o\$19bo2bo\$20bobo\$21bo\$17b3o\$15bo3bo\$15b2ob2o\$16b2o4\$26b2o\$26b2o3\$13bo\$13b2o\$12bobo2\$21b3o\$21bo\$22bo2\$13b3o\$15bo\$14bo!`

16.2096:
`x = 17, y = 22, rule = B3/S23obo\$b2o\$bo6\$9b3o2\$7bo\$7bo6bo\$7bo5b3o\$12bo3bo\$13b2obo\$14b3o2\$10b2o\$10bobo\$3b3o5bo\$5bo\$4bo!`

EDIT: 16.228:
`x = 14, y = 8, rule = B3/S2313bo\$13bo\$bo11bo\$b2o3b3o\$2bo6bo\$bo5b2o\$6b2o\$2o!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 1st, 2017, 1:14 pm

I looked at that one recently but couldn't synthesis the piece of junk after a brief search. Probably do-able though. (EDIT: see below)

In 11G:

`x = 96, y = 32, rule = B3/S238bo\$9b2o\$8b2o2\$24bo\$24bobo\$24b2o2\$17bo10bobo\$15bobo10b2o56bo\$16b2o11bo54b3o\$79bo3bo\$79b3o2bo\$82b3o\$81bo6bo\$2o79b2o5bo\$b2o85bo\$o4b3o\$7bo\$6bo2\$93b2o\$93bobo\$93bo\$23bo\$22b2o\$22bobo\$4b3o\$6bo\$5bo7b2o8bo\$12bobo7b2o\$14bo7bobo!`

EDIT: 16.1753 in 12G:

`x = 57, y = 76, rule = B3/S2314bo\$15bo\$13b3o2\$46bo\$45bo\$45b3o2\$12bobo\$13b2o\$13bo40bo\$54bobo\$54b2o\$21bo\$22b2o\$21b2o6\$23bobo\$24b2o\$24bo3\$44bo\$43bo\$43b3o3\$23b3o\$25bo\$24bo4\$51b2o\$51bobo\$23bo27bo\$23b2o\$22bobo3\$24b2o\$23bobo\$25bo27\$2o\$b2o\$o!`

Also I reduced a few SLs of lower bit count so that now everything is at most 20G:

`+15.381     xs15_c8idioz023          9+15.389     xs15_cahegoz023          8+12.121     xs12_4alla4              7   (this one is the super-beehive)`

There are now 127 SLs above 15G:

`16.228     xs16_178bp2sg            2016.712     xs16_3pc0qmzw23          2016.872     xs16_2lla8oz065          2016.1084    xs16_31ke12kozw11        2016.1127    xs16_giligoz104a4        2016.1693    xs16_8k8aliczw23         2016.1739    xs16_g88r2qkz121         2016.1791    xs16_03lkaa4z3201        2016.1962    xs16_4a9eg8ozw65         2016.2058    xs16_69akg4czx146        2016.131     xs16_660uhar             1916.230     xs16_178jd2ko            1916.801     xs16_08eharz321          1916.1684    xs16_4aab9k8zx32         1916.1694    xs16_4a5p6o8zx121        1916.1912    xs16_at16426z32          1916.1979    xs16_4ap30ga6zw121       1916.2050    xs16_6ik8a52z065         1916.2200    xs16_06agc93z2521        1916.2307    xs16_6ik8a52z641         1916.155     xs16_3pabp46             1816.600     xs16_6421344og84c        1816.665     xs16_699mkiczx1          1816.848     xs16_ca9b8oz0252         1816.914     xs16_8kkja952zx1         1816.926     xs16_3iajc4gozw1         1816.1107    xs16_02egdbz2521         1816.1130    xs16_oe12koz01ac         1816.1558    xs16_3loz1226io          1816.1757    xs16_g8idik8z123         1816.1790    xs16_178cia4z0321        1816.1911    xs16_69q3213z32          1816.1990    xs16_8e1tazx1252         1816.1995    xs16_cik8a52z065         1816.2201    xs16_0ggml96z641         1816.2447    xs16_0g8it248cz23        1816.2480    xs16_3iaczw1139c         1816.227     xs16_5b8r5426            1716.265     xs16_259m861ac           1716.380     xs16_4a40vh248c          1716.616     xs16_i5pajoz11           1716.640     xs16_c9bkkozw32          1716.668     xs16_gbq1daz121          1716.716     xs16_3pmk46zx23          1716.748     xs16_39ege2z321          1716.799     xs16_c8al56z311          1716.803     xs16_c9bk46z311          1716.843     xs16_4a9liczx56          1716.875     xs16_4a5pa4z2521         1716.1064    xs16_39m88cz6221         1716.1073    xs16_3lkaa4z641          1716.1097    xs16_ck0ol3z643          1716.1276    xs16_3iakgozw1ac         1716.1398    xs16_g88c93zc952         1716.1682    xs16_8k9bkk8zw23         1716.1685    xs16_c48n98czx23         1716.1711    xs16_c8idik8z023         1716.1715    xs16_64p784czw23         1716.1722    xs16_4aq32acz032         1716.1758    xs16_4a4o796zw121        1716.1847    xs16_39c8a52z033         1716.1867    xs16_069q453z311         1716.1871    xs16_5bo8ge2z32          1716.1882    xs16_259m453zx23         1716.1905    xs16_8u16853z32          1716.1991    xs16_8e1qbzx1252         1716.2014    xs16_25a8kk8z0253        1716.2045    xs16_25ao8ge2z032        1716.2132    xs16_0g8it2sgz23         1716.2162    xs16_0at16426z32         1716.2316    xs16_0at16413z32         1716.2356    xs16_25icggozx1ac        1716.2467    xs16_0kc3213z34a4        1716.2555    xs16_4a9jzxpia4          1716.3163    xs16_wo443123zbd         1716.3164    xs16_wo443146zbd         1716.104     xs16_0j5ozj4pz11         1616.115     xs16_0ol3z0mdz32         1616.243     xs16_2egu16426           1616.300     xs16_9fg4czbd            1616.302     xs16_5b8o642ac           1616.350     xs16_312461tic           1616.360     xs16_2egu16413           1616.593     xs16_3123c48gka4         1616.724     xs16_j5o64koz11          1616.762     xs16_jhke1e8z1           1616.771     xs16_69qb8oz32           1616.772     xs16_3h4e1daz011         1616.810     xs16_ca9la4z311          1616.822     xs16_8ehikozw56          1616.836     xs16_4aajkczx56          1616.838     xs16_ci9b8ozw56          1616.856     xs16_kc32acz1252         1616.953     xs16_0cil56z6221         1616.995     xs16_0raik8z643          1616.1068    xs16_3lo0kcz6421         1616.1080    xs16_3lo0kcz3421         1616.1304    xs16_0okih3zc8421        1616.1391    xs16_ca168ozc8421        1616.1581    xs16_8o6413zrm           1616.1583    xs16_4a9jzxha6zx11       1616.1675    xs16_xj96z0mdz32         1616.1717    xs16_4aajk46zx121        1616.1766    xs16_kc321e8z123         1616.1787    xs16_069m4koz311         1616.1856    xs16_39u06a4z32          1616.1857    xs16_39u0652z32          1616.1864    xs16_31ke1e8z032         1616.1929    xs16_0g5r8b5z121         1616.1994    xs16_0g9fgka4z121        1616.2018    xs16_25a8c826zw33        1616.2025    xs16_069q48cz2521        1616.2028    xs16_25ao48cz2521        1616.2029    xs16_25ao4a4z2521        1616.2030    xs16_0i5q8a52z121        1616.2060    xs16_69akg4czx56         1616.2190    xs16_032q4goz6413        1616.2204    xs16_0gilla4z641         1616.2219    xs16_0oe12koz643         1616.2305    xs16_6413ia4z6421        1616.2317    xs16_cik8a52z641         1616.2322    xs16_raak8zx1252         1616.2323    xs16_ra248goz056         1616.2445    xs16_ciligzx254c         1616.2549    xs16_g4c3213zdb          1616.2630    xs16_31e8gzxo9a6         1616.3032    xs16_1784ozx342sg        16`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 2nd, 2017, 8:22 am
chris_c wrote:
I looked at that one recently but couldn't synthesis the piece of junk after a brief search. Probably do-able though

It is do-able, but it took me 6 gliders (bookend + domino). Definitely reducible. So 16.1753 in 14 gliders:

`x = 56, y = 77, rule = B3/S23bo\$2bo\$3o25\$12bo\$13b2o\$12b2o2\$28bo\$29b2o\$28b2o5\$51bo\$50bo\$50b3o4\$40bo\$39b2o\$39bobo\$34bo\$33bo\$10b3o20b3o\$12bo\$11bo2\$13b2o20bo\$14b2o18bo\$13bo16b2o2b3o\$30bobo\$30bo6\$53b3o\$53bo\$54bo2\$13b2o\$12bobo\$14bo\$48bo\$47b2o\$47bobo2\$14bo\$14b2o\$13bobo!`

`x = 14, y = 8, rule = B3/S2313bo\$13bo\$bo11bo\$b2o3b3o\$2bo6bo\$bo5b2o\$6b2o\$2o!`

I found a 4G synth for the RHS (junk and blinker), but I couldn't find any way of making the spark without it interfering with the RHS:

`x = 60, y = 20, rule = B3/S2358bo\$56b2o\$57b2o3\$o\$b2o49bobo3bo\$2o50b2o3b2o\$53bo3bobo\$10bo\$11bo\$9b3o2b2o\$13bobo\$15bo\$54b3o\$54bo\$42b2o11bo\$12bo30b2o\$12b2o28bo\$11bobo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 2nd, 2017, 8:33 am
Goldtiger997 wrote:
chris_c wrote:
I looked at that one recently but couldn't synthesis the piece of junk after a brief search. Probably do-able though

It is do-able, but it took me 6 gliders (bookend + domino). Definitely reducible. So 16.1753 in 14 gliders:

Ah yes. I ended up doing a brute force search with 4G which was successful (see the recent edit above).

Goldtiger997 wrote:
`x = 14, y = 8, rule = B3/S2313bo\$13bo\$bo11bo\$b2o3b3o\$2bo6bo\$bo5b2o\$6b2o\$2o!`

I found a 4G synth for the RHS (junk and blinker), but I couldn't find any way of making the spark without it interfering with the RHS:

16.228 has over 1000 occurrences on Catagolue so I wouldn't be inclined to spend too long on any particular soup.

EDIT: I spent some time making reductions to certain strategically chosen still lifes. It brought about a dozen more below 16G. Also here is 16.1682 in 15G:

`x = 141, y = 162, rule = B3/S2341bo\$40bo\$40b3o4\$35bo9bobo\$34bo10b2o\$34b3o9bo8\$42bo\$40b2o\$31bo9b2o\$32bo\$30b3o4\$128b2o9b2o\$127bo2bo8b2o\$19b2o105bob2obo\$18bobo106bo2bo\$20bo107b2o63\$6bo\$4bobo\$5b2o2\$bo\$2bo41bo\$3o40bo\$43b3o5\$61bo\$61bobo\$61b2o18\$128b2o\$28b2o9b2o88bo\$27bo2bo8b2o86bo2b2o\$26bob2obo94bob2o2bo\$27bo2bo96bo2b2o\$28b2o99bo\$128b2o16\$22b2o\$21bobo\$23bo7\$44b2o\$2o41b2o18bo\$b2o42bo16b2o\$o61bobo2\$5bo\$5b2o\$4bobo!`

Now 115 SLs remain:

`16.228     xs16_178bp2sg            2016.712     xs16_3pc0qmzw23          2016.872     xs16_2lla8oz065          2016.1084    xs16_31ke12kozw11        2016.1127    xs16_giligoz104a4        2016.1693    xs16_8k8aliczw23         2016.1962    xs16_4a9eg8ozw65         2016.2058    xs16_69akg4czx146        2016.131     xs16_660uhar             1916.230     xs16_178jd2ko            1916.801     xs16_08eharz321          1916.1684    xs16_4aab9k8zx32         1916.1694    xs16_4a5p6o8zx121        1916.1912    xs16_at16426z32          1916.1979    xs16_4ap30ga6zw121       1916.2050    xs16_6ik8a52z065         1916.2200    xs16_06agc93z2521        1916.2307    xs16_6ik8a52z641         1916.155     xs16_3pabp46             1816.600     xs16_6421344og84c        1816.665     xs16_699mkiczx1          1816.848     xs16_ca9b8oz0252         1816.914     xs16_8kkja952zx1         1816.926     xs16_3iajc4gozw1         1816.1107    xs16_02egdbz2521         1816.1130    xs16_oe12koz01ac         1816.1558    xs16_3loz1226io          1816.1757    xs16_g8idik8z123         1816.1790    xs16_178cia4z0321        1816.1911    xs16_69q3213z32          1816.1990    xs16_8e1tazx1252         1816.2201    xs16_0ggml96z641         1816.2447    xs16_0g8it248cz23        1816.2480    xs16_3iaczw1139c         1816.227     xs16_5b8r5426            1716.265     xs16_259m861ac           1716.380     xs16_4a40vh248c          1716.616     xs16_i5pajoz11           1716.640     xs16_c9bkkozw32          1716.716     xs16_3pmk46zx23          1716.748     xs16_39ege2z321          1716.799     xs16_c8al56z311          1716.803     xs16_c9bk46z311          1716.875     xs16_4a5pa4z2521         1716.1064    xs16_39m88cz6221         1716.1097    xs16_ck0ol3z643          1716.1276    xs16_3iakgozw1ac         1716.1398    xs16_g88c93zc952         1716.1685    xs16_c48n98czx23         1716.1711    xs16_c8idik8z023         1716.1715    xs16_64p784czw23         1716.1722    xs16_4aq32acz032         1716.1758    xs16_4a4o796zw121        1716.1847    xs16_39c8a52z033         1716.1871    xs16_5bo8ge2z32          1716.1882    xs16_259m453zx23         1716.1905    xs16_8u16853z32          1716.2045    xs16_25ao8ge2z032        1716.2132    xs16_0g8it2sgz23         1716.2162    xs16_0at16426z32         1716.2316    xs16_0at16413z32         1716.2356    xs16_25icggozx1ac        1716.2467    xs16_0kc3213z34a4        1716.2555    xs16_4a9jzxpia4          1716.3163    xs16_wo443123zbd         1716.3164    xs16_wo443146zbd         1716.104     xs16_0j5ozj4pz11         1616.115     xs16_0ol3z0mdz32         1616.243     xs16_2egu16426           1616.300     xs16_9fg4czbd            1616.302     xs16_5b8o642ac           1616.350     xs16_312461tic           1616.360     xs16_2egu16413           1616.593     xs16_3123c48gka4         1616.724     xs16_j5o64koz11          1616.762     xs16_jhke1e8z1           1616.771     xs16_69qb8oz32           1616.772     xs16_3h4e1daz011         1616.810     xs16_ca9la4z311          1616.822     xs16_8ehikozw56          1616.836     xs16_4aajkczx56          1616.838     xs16_ci9b8ozw56          1616.856     xs16_kc32acz1252         1616.953     xs16_0cil56z6221         1616.995     xs16_0raik8z643          1616.1068    xs16_3lo0kcz6421         1616.1080    xs16_3lo0kcz3421         1616.1304    xs16_0okih3zc8421        1616.1391    xs16_ca168ozc8421        1616.1581    xs16_8o6413zrm           1616.1583    xs16_4a9jzxha6zx11       1616.1675    xs16_xj96z0mdz32         1616.1717    xs16_4aajk46zx121        1616.1739    xs16_g88r2qkz121         1616.1766    xs16_kc321e8z123         1616.1787    xs16_069m4koz311         1616.1864    xs16_31ke1e8z032         1616.1929    xs16_0g5r8b5z121         1616.1994    xs16_0g9fgka4z121        1616.2025    xs16_069q48cz2521        1616.2028    xs16_25ao48cz2521        1616.2029    xs16_25ao4a4z2521        1616.2030    xs16_0i5q8a52z121        1616.2060    xs16_69akg4czx56         1616.2190    xs16_032q4goz6413        1616.2204    xs16_0gilla4z641         1616.2219    xs16_0oe12koz643         1616.2305    xs16_6413ia4z6421        1616.2317    xs16_cik8a52z641         1616.2322    xs16_raak8zx1252         1616.2323    xs16_ra248goz056         1616.2445    xs16_ciligzx254c         1616.2549    xs16_g4c3213zdb          1616.2630    xs16_31e8gzxo9a6         1616.3032    xs16_1784ozx342sg        16`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 3rd, 2017, 7:52 pm
16.228 in 9 gliders:

`x = 41, y = 24, rule = B3/S236\$13bo\$7bobob2o16bo\$8b2o2b2o4bo9bo\$8bo9bobo7b3o\$18b2o2\$17bo3b2o\$17b2o2bobo\$12bo3bobo2bo\$13bo11b3o\$11b3o11bo\$15b2o9bo\$14bobo\$16bo!`

chris_c wrote:EDIT: I spent some time making reductions to certain strategically chosen still lifes. It brought about a dozen more below 16G. Also here is 16.1682 in 15G:...

Nice work on 16.1682! I had spent a while on it without success.

EDIT:

16.1057 in 9 gliders:

`x = 33, y = 51, rule = B3/S2332bo\$30b2o\$31b2o3\$18bobo\$18b2o\$19bo22\$11bo\$12b2o\$11b2o2bobo\$15b2o\$16bo2\$4b3o\$2o2bo\$b2o2bo\$o2\$6b3o\$6bo\$7bo2\$13bo\$12bo\$12b3o2\$15b3o\$15bo\$16bo!`

This should give 16.872 in 13 or 14 gliders.

EDIT2:

Reduced 16.1084 in 18 gliders, using a similar method for what Sokwe used for 16.1979:

`x = 224, y = 39, rule = B3/S23170bobo\$171b2o\$171bo4\$25bobo\$25b2o\$26bo2\$182bo\$183b2o\$2bo10b2o167b2o\$obo6b2o2bobo\$b2o5bobo2bo167bo\$10bo17bobo150b2o\$28b2o150bobo\$29bo32bo95bo29bo\$38bo21bobo5bo29bo22bo6bo28bobo2b2o23bobo2b2o25bo2b2o\$37bobo2b2o17b2o4bobo2b2o23bobo2b2o15bobo5bobo2b2o22bobobo2bo22bobobo2bo24bobo2bo\$38bobo2bo24bobo2bo22bobobo2bo16b2o4bobobo2bo21bobo2b2o23bobo2b2o25bo2b2o\$40b2o21b3o4b2o25bo2b2o25bo2b2o24bo3bo25bo3bo25bo3bo\$40bo24bo4bo29bo21b3o5bo30bo29bo24b2o3bo\$41bo22bo6bo29bo22bo6bo28b2o28b2o28b2o\$40b2o28b2o28b2o21bo6b2o2\$188bo\$10b3o174b2o\$12bo168bo5bobo\$11bo169b2o\$180bobo4\$3o184b3o\$2bo184bo\$bo19bo166bo\$20b2o\$20bobo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 5th, 2017, 11:10 pm
Predecessor for 16.1127:

`x = 27, y = 8, rule = B3/S238b2o\$7bo2bo\$10bo15bo\$2o5b3o10bo3b2o\$b2o3bo10b3o5b2o\$o15bo\$16bo2bo\$17b2o!`

I spent a long time on it without success, can anyone else use it?...

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 6th, 2017, 4:45 am
I tried to reduce 16.1693 via the honeycomb, but I was only able to get it down to 18:
`x = 25, y = 26, rule = B3/S2310bo\$9bo9bo\$9b3o5b2o\$18b2o6\$9b2o4bo\$b3o4bo2bo2bobo\$3bo3bob2obo2bo\$2bo5bo2bo\$9b2o\$22b3o\$22bo\$23bo\$18b2o\$18bobo\$9b2o7bo\$9bobo\$b2o6bo\$obo\$2bo10b2o\$13bobo\$13bo!`

I tried to find a 3G replacement for the tub+3G part on the right, but I was unsuccessful.

Edit: The last step of 16.1682 can be reduced by 1:
`x = 30, y = 32, rule = B3/S2314bobo\$14b2o\$15bo6\$26bobo\$26b2o\$27bo\$11b2o9b2o\$10bo2bo8b2o\$9bob2obo\$bo8bo2bo9bo\$b2o8b2o10b2o\$obo19bobo7\$9b2o\$b2o6bobo\$obo6bo17b3o\$2bo24bo\$28bo2\$5b3o\$7bo\$6bo!`

Edit 2: The last step of 16.1373 can also be reduced by 1:
`x = 15, y = 18, rule = B3/S238bobo\$9b2o\$4bo4bo3bo\$4b3o5b2o\$7bo4bobo\$6bobo\$6bobo\$7bo2\$bobo\$2b2o2b3o\$2bo3\$9b2o\$b2o5b2o\$obo7bo\$2bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 6th, 2017, 5:11 am
Goldtiger997 wrote:...
16.1057 in 9 gliders:

`x = 33, y = 51, rule = B3/S2332bo\$30b2o\$31b2o3\$18bobo\$18b2o\$19bo22\$11bo\$12b2o\$11b2o2bobo\$15b2o\$16bo2\$4b3o\$2o2bo\$b2o2bo\$o2\$6b3o\$6bo\$7bo2\$13bo\$12bo\$12b3o2\$15b3o\$15bo\$16bo!`

This should give 16.872 in 13 or 14 gliders.

...

This give 16.872 in 13 gliders.
`x = 88, y = 51, rule = B3/S2332bo\$30b2o\$31b2o3\$18bobo\$18b2o\$19bo13\$67bo\$66bo\$66b3o4\$66bo\$64b2o8bo\$61bo3b2o6bo\$11bo50bo10b3o\$12b2o46b3o\$11b2o2bobo\$15b2o\$16bo2\$4b3o\$2o2bo41b2o18b2o17b2o\$b2o2bo41bo19bo18bo\$o44bo19bo19bo\$42bo2b2o15bo2b2o15bo2b2o\$6b3o33b3o17b3o17b3o\$6bo38b2o18b2o18b2o\$7bo36bo2bo16bo2bo16bo2bo\$45b2o18b2o18b2o\$13bo\$12bo\$12b3o2\$15b3o\$15bo\$16bo!`

Bob Shemyakin

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 6th, 2017, 1:25 pm
I found a way to get 16.1084 in 16G and 16.1979 in 17G:

`x = 80, y = 39, rule = B3/S233bo\$4b2o53bo\$3b2o12bo39bobo\$17bobo38b2o\$17b2o43bo\$60b2o\$61b2o4\$5bo48bo\$2o2bobo46bobo\$o2bobobo44bobobo\$2b2o2bo45bo2bobo\$3bo47b2o3bo\$2bo47bo\$2b2o47bobo\$52b2o3\$9b2o4b3o\$8b2o5bo43b2o4b3o\$3b2o5bo5bo41b2o5bo\$2bobo48b2o5bo5bo\$4bo47bobo\$54bo10\$27b3o\$27bo49b3o\$28bo48bo\$78bo!`

Goldtiger997 wrote:Predecessor for 16.1127:

`x = 27, y = 8, rule = B3/S238b2o\$7bo2bo\$10bo15bo\$2o5b3o10bo3b2o\$b2o3bo10b3o5b2o\$o15bo\$16bo2bo\$17b2o!`

I spent a long time on it without success, can anyone else use it?...

I found plenty of 4G syntheses for that junk so here is a 10G synthesis:

`x = 134, y = 156, rule = B3/S234bo\$5bo\$3b3o8\$115bo\$114bobo\$22bo91bo2bo\$20bobo92b2o\$21b2o10\$25b2o\$25bobo103b2o\$25bo104bo2bo\$131bobo\$132bo8\$42b3o\$42bo\$43bo45\$o\$b2o\$2o13\$40bobo\$40b2o\$41bo5\$43bo\$42bo\$42b3o3\$15bo\$14bobo\$14bo2bo\$15b2o2\$123bo\$122bobo\$123bo\$126bo\$121b6o\$121bo\$124bo\$123bobo\$124bo2\$31b2o\$30bo2bo\$31bobo\$32bo3\$3b3o\$5bo\$4bo5\$6bo\$6b2o\$5bobo13\$46b2o\$45b2o\$47bo!`

Were there any 3G syntheses for the junk? I didn't check. If so I guess there will be a 4G version that is compatible with it.

Sokwe wrote:I tried to reduce 16.1693 via the honeycomb, but I was only able to get it down to 18:
`x = 25, y = 26, rule = B3/S2310bo\$9bo9bo\$9b3o5b2o\$18b2o6\$9b2o4bo\$b3o4bo2bo2bobo\$3bo3bob2obo2bo\$2bo5bo2bo\$9b2o\$22b3o\$22bo\$23bo\$18b2o\$18bobo\$9b2o7bo\$9bobo\$b2o6bo\$obo\$2bo10b2o\$13bobo\$13bo!`

I tried to find a 3G replacement for the tub+3G part on the right, but I was unsuccessful.

By keeping your glider in the lower right and finding a 3G collision that worked for the rest, I reduced this by two. Sadly that still means 16G if the honeycomb costs 7G:

`x = 24, y = 26, rule = B3/S2310bo12bo\$9bo11b2o\$9b3o3bo6b2o\$15bobo\$15b2o3\$15b2o\$15bobo\$9b2o4bo\$b3o4bo2bo\$3bo3bob2obo\$2bo5bo2bo\$9b2o4\$18b2o\$18bobo\$9b2o7bo\$9bobo\$b2o6bo\$obo\$2bo10b2o\$13bobo\$13bo!`

The new list contains 106 entries:

`16.712     xs16_3pc0qmzw23          2016.1962    xs16_4a9eg8ozw65         2016.2058    xs16_69akg4czx146        2016.131     xs16_660uhar             1916.230     xs16_178jd2ko            1916.801     xs16_08eharz321          1916.1684    xs16_4aab9k8zx32         1916.1694    xs16_4a5p6o8zx121        1916.1912    xs16_at16426z32          1916.2050    xs16_6ik8a52z065         1916.2200    xs16_06agc93z2521        1916.2307    xs16_6ik8a52z641         1916.155     xs16_3pabp46             1816.600     xs16_6421344og84c        1816.665     xs16_699mkiczx1          1816.848     xs16_ca9b8oz0252         1816.914     xs16_8kkja952zx1         1816.926     xs16_3iajc4gozw1         1816.1107    xs16_02egdbz2521         1816.1130    xs16_oe12koz01ac         1816.1558    xs16_3loz1226io          1816.1757    xs16_g8idik8z123         1816.1790    xs16_178cia4z0321        1816.1911    xs16_69q3213z32          1816.1990    xs16_8e1tazx1252         1816.2201    xs16_0ggml96z641         1816.2447    xs16_0g8it248cz23        1816.2480    xs16_3iaczw1139c         1816.227     xs16_5b8r5426            1716.265     xs16_259m861ac           1716.380     xs16_4a40vh248c          1716.616     xs16_i5pajoz11           1716.640     xs16_c9bkkozw32          1716.716     xs16_3pmk46zx23          1716.748     xs16_39ege2z321          1716.799     xs16_c8al56z311          1716.875     xs16_4a5pa4z2521         1716.1064    xs16_39m88cz6221         1716.1097    xs16_ck0ol3z643          1716.1276    xs16_3iakgozw1ac         1716.1398    xs16_g88c93zc952         1716.1685    xs16_c48n98czx23         1716.1711    xs16_c8idik8z023         1716.1722    xs16_4aq32acz032         1716.1758    xs16_4a4o796zw121        1716.1847    xs16_39c8a52z033         1716.1871    xs16_5bo8ge2z32          1716.1882    xs16_259m453zx23         1716.1905    xs16_8u16853z32          1716.1979    xs16_4ap30ga6zw121       1716.2045    xs16_25ao8ge2z032        1716.2132    xs16_0g8it2sgz23         1716.2162    xs16_0at16426z32         1716.2316    xs16_0at16413z32         1716.2356    xs16_25icggozx1ac        1716.2467    xs16_0kc3213z34a4        1716.2555    xs16_4a9jzxpia4          1716.3163    xs16_wo443123zbd         1716.3164    xs16_wo443146zbd         1716.104     xs16_0j5ozj4pz11         1616.115     xs16_0ol3z0mdz32         1616.243     xs16_2egu16426           1616.300     xs16_9fg4czbd            1616.302     xs16_5b8o642ac           1616.360     xs16_2egu16413           1616.593     xs16_3123c48gka4         1616.724     xs16_j5o64koz11          1616.762     xs16_jhke1e8z1           1616.771     xs16_69qb8oz32           1616.772     xs16_3h4e1daz011         1616.810     xs16_ca9la4z311          1616.822     xs16_8ehikozw56          1616.836     xs16_4aajkczx56          1616.838     xs16_ci9b8ozw56          1616.856     xs16_kc32acz1252         1616.995     xs16_0raik8z643          1616.1068    xs16_3lo0kcz6421         1616.1080    xs16_3lo0kcz3421         1616.1084    xs16_31ke12kozw11        1616.1304    xs16_0okih3zc8421        1616.1391    xs16_ca168ozc8421        1616.1583    xs16_4a9jzxha6zx11       1616.1675    xs16_xj96z0mdz32         1616.1693    xs16_8k8aliczw23         1616.1717    xs16_4aajk46zx121        1616.1739    xs16_g88r2qkz121         1616.1766    xs16_kc321e8z123         1616.1787    xs16_069m4koz311         1616.1864    xs16_31ke1e8z032         1616.1929    xs16_0g5r8b5z121         1616.1994    xs16_0g9fgka4z121        1616.2025    xs16_069q48cz2521        1616.2028    xs16_25ao48cz2521        1616.2029    xs16_25ao4a4z2521        1616.2030    xs16_0i5q8a52z121        1616.2060    xs16_69akg4czx56         1616.2190    xs16_032q4goz6413        1616.2204    xs16_0gilla4z641         1616.2219    xs16_0oe12koz643         1616.2305    xs16_6413ia4z6421        1616.2317    xs16_cik8a52z641         1616.2322    xs16_raak8zx1252         1616.2323    xs16_ra248goz056         1616.2445    xs16_ciligzx254c         1616.2630    xs16_31e8gzxo9a6         1616.3032    xs16_1784ozx342sg        16`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 6th, 2017, 2:19 pm
Picking from the boring 16Gs farther down the list, so's I don't get in the way of people who actually know what they're doing --

`#C 16.724 / xs16_j5o64koz11 in 11 glidersx = 43, y = 43, rule = B3/S2313bobo\$14b2o\$14bo25bobo\$20bo19b2o\$21b2o18bo\$20b2o6\$2bo33bo\$obo32bo\$b2o32b3o2\$41b2o\$15bo24b2o\$16bo25bo\$14b3o2\$20b2o\$21b2o\$20bo6\$39b3o\$39bo\$40bo6\$36b3o\$36bo\$37bo2\$18b2o\$17bobo\$19bo!`

I looked at all the likely Catagolue soups for this one, I think. The only other one that might be cheaper was the one on the far left below, but I didn't find a 3G recipe for the spark at the lower right, and didn't feel like venturing into 4G territory to end up with a relatively messy synthesis. The reaction I used is at the far right, from this soup:

`x = 495, y = 22, rule = B3/S23283bo196b3obo2bo4b2o\$283bo195b7obo2bob2o\$bobo279bo197bo2bobobo2b2obo\$o2bo476b8obob2o\$o2bo176b2o91b3o208b5o2b2o\$b2o68b2o4b2o88b2o3b2o7bo91b3o206bo2bobobo\$5b3o63b2o3bo2bo5bo81b2o3b2o5b2o93bo205bobo2b3o2bobobo\$6bo70b2o2b3obo92b3o299bob2ob3obo\$81b3o2bo91bo302b3o2b3o2bobo\$13bo57b2o200b3o203b2o4bob3obob2o\$13b3o55b2o200bo205bo4bob3obob3o\$10bobob2o257b3o205bo2bo3bob3obo\$11bobo466bo2b2obob3o2bo\$11bo70b3o396b4obob3o2bo\$82bo2bo394bobo4bobob2obo\$82bo2bo393b2ob4ob3ob4o\$83b3o186b2o\$173b2o96bo2bo\$172bo2bo6bo89bobo\$173b2o7bo90bo2bo\$169b2o11bo94bo\$169b2o103bobo!`

Only 105 16-bitters left -- y'all will be in two-digit territory soon! (This was probably my last token contribution for this round, since I'm supposed to be working on finishing up the Life Lexicon for the next week.)

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 6th, 2017, 4:38 pm
dvgrn wrote:Picking from the boring 16Gs farther down the list, so's I don't get in the way of people who actually know what they're doing --

Don't worry about that! The following still lifes are at 16G and above in my list and have at least 100 appearances on Catagolue. If anyone wants to give them a crack I know that I will be happy.

`16.131     xs16_660uhar                             19  375916.1739    xs16_g88r2qkz121                         16  225616.665     xs16_699mkiczx1                          18  189616.748     xs16_39ege2z321                          17  139016.799     xs16_c8al56z311                          17  120016.810     xs16_ca9la4z311                          16  47616.360     xs16_2egu16413                           16  36616.848     xs16_ca9b8oz0252                         18  36316.1717    xs16_4aajk46zx121                        16  33616.995     xs16_0raik8z643                          16  32516.1722    xs16_4aq32acz032                         17  31916.265     xs16_259m861ac                           17  27716.716     xs16_3pmk46zx23                          17  27516.1757    xs16_g8idik8z123                         18  27116.2060    xs16_69akg4czx56                         16  26816.1684    xs16_4aab9k8zx32                         19  17016.1990    xs16_8e1tazx1252                         18  14616.243     xs16_2egu16426                           16  13816.822     xs16_8ehikozw56                          16  11416.2445    xs16_ciligzx254c                         16  10616.1787    xs16_069m4koz311                         16  105`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 6th, 2017, 8:08 pm
16.1962 in 12 gliders (EDIT: error pointed out below by BobShemyakin):

`x = 56, y = 63, rule = B3/S232bo\$obo\$b2o12\$14bo\$15bo16bo3bo\$13b3o17bo2bobo\$31b3o2b2o4\$39bo\$38bo\$38b3o2\$38bo\$38b2o\$37bobo9\$32bo\$30b2o\$31b2o\$34b3o\$34bo5b3o\$35bo4bo\$41bo4\$11bo\$11b2o40b2o\$10bobo40bobo\$53bo11\$6b2o\$5bobo\$7bo!`

chris_c wrote:Were there any 3G syntheses for the junk? I didn't check. If so I guess there will be a 4G version that is compatible with it.

None found with gencols and your golly script anyway. I know that method misses at least a few collisions (e.g no bipond).

EDIT:

16.2060 in 8 gliders, and 16.2058 in 13 gliders:

`x = 119, y = 38, rule = B3/S2325bo\$24bo\$24b3o\$20bo\$21bo\$19b3o72bo\$94bobo\$94b2o2\$96bo\$21b2o2b2o68b2o\$20bobo2bobo67bobo\$22bo2bo26b2o28b2o28b2o\$51bo2bo26bo2bo26bo2bo\$52bobo27bobo27bobo\$22b2o29bob2obo24bob2obo5b3o16bob2o\$21b2o32bob2o26bob2o5bo20bo2bo\$23bo29bo29bo11bo17bo3b2o\$53b2o28b2o28b2o2\$21bo\$20b2o\$20bobo72b3o\$16b2o68b2o7bo\$15bobo67bobo8bo\$17bo69bo10\$b2o\$obo\$2bo!`

Now there is only one still-life costing 20G or more; 16.712.

Looking at the current synthesis, it takes 6 gliders to make a smallish piece of junk by colliding a pi, a beehive, and a beacon. Is there a way to make it in 4 gliders?...

`x = 131, y = 123, rule = B3/S2373bo\$72bo\$72b3o49b2o\$124bo3b2o\$126bo2bo\$125b2obo\$125bo2b2o\$23b3o101bo\$126b2o4\$28b2o98b2o\$28b2o73b2o23b2o\$19bo18b3o62b2o\$19bo90b2o\$19bo16bo5bo67b2o\$6bo29bo5bo\$6bo29bo5bo\$6bo\$38b3o69b2o\$110b2o8\$119b2o\$118bo2bo\$118bo2bo\$101b2o16b2o\$101b2o5\$113b2o\$112bo2bo\$113b2o13\$57b3o\$57bo6b3o\$58bo5bo\$65bo\$b2o\$obo\$2bo2\$76b3o\$68b2o6bo\$68bobo6bo\$68bo43\$129b2o\$128b2o\$130bo11\$124b2o\$123b2o\$125bo!`

EDIT2:

Spend a while trying to make this predecessor for 16.313 work without success:

`x = 19, y = 21, rule = B3/S23o\$b2o\$2o8\$12bo\$9bobo\$10bo4b3o\$8bo5bo3bo\$7bobo4bo3bo\$8b2o4bo3bo\$15b3o3\$16b2o\$16b2o!`

Can anyone else...

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 6th, 2017, 9:32 pm
16.1685 in eight:
`x = 34, y = 60, rule = B3/S23o\$b2o\$2o17\$2bo\$obo\$b2o5\$7bo\$8bo\$6b3o3\$bobo\$2b2o\$2bo2\$26bobo\$26b2o\$27bo2\$25b3o\$25bo5bobo\$26bo4b2o\$32bo15\$10b2o\$11b2o\$10bo!`

16.1711 in eleven:
`x = 38, y = 35, rule = B3/S232bo\$obo\$b2o3\$25bobo\$13bo11b2o\$14bo11bo\$12b3o3\$18bo\$16bobo7bo\$17b2o6bo\$25b3o4bobo\$32b2o\$33bo\$16bobo\$17b2o\$17bo9\$32b2o\$32bobo\$14b2o16bo\$13bobo6bo\$15bo6b2o11b2o\$21bobo11bobo\$35bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 7th, 2017, 5:31 am
Goldtiger997 wrote:16.1962 in 12 gliders:

`x = 56, y = 63, rule = B3/S232bo\$obo\$b2o12\$14bo\$15bo16bo3bo\$13b3o17bo2bobo\$31b3o2b2o4\$39bo\$38bo\$38b3o2\$38bo\$38b2o\$37bobo9\$32bo\$30b2o\$31b2o\$34b3o\$34bo5b3o\$35bo4bo\$41bo4\$11bo\$11b2o40b2o\$10bobo40bobo\$53bo11\$6b2o\$5bobo\$7bo!`
...

This is a mistake. 2 gliders (marked on the left side of the chart) interact before. To fix it will replace 2 gliders, forming PI (marked on the right side of the chart):
`x = 138, y = 63, rule = LifeHistory2.A69.A\$A.A67.A.A\$.2A68.2A12\$14.A69.A\$15.A16.A3.A48.A16.A3.A\$13.3A17.A2.A.A44.3A17.A2.A.A\$31.3A2.2A63.3A2.2A4\$39.A69.A\$38.A69.A\$38.3A67.3A2\$38.E69.A\$38.2E68.2A23.A\$37.E.E67.A.A22.A.A\$131.A2.A\$132.3A.2A\$135.A.A\$134.A\$133.A\$133.2A3\$32.E64.E\$30.2E66.2E3.E\$31.2E64.2E3.2E\$34.3A65.E.E\$34.A5.3A67.3A\$35.A4.A69.A\$41.A69.A4\$11.A69.A\$11.2A40.2A26.2A40.2A\$10.A.A40.A.A24.A.A40.A.A\$53.A69.A11\$6.2A68.2A\$5.A.A67.A.A\$7.A69.A!`

Bob Shemyakin

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 7th, 2017, 7:42 pm
Goldtiger997 wrote:Now there is only one still-life costing 20G or more; 16.712.

Looking at the current synthesis, it takes 6 gliders to make a smallish piece of junk by colliding a pi, a beehive, and a beacon. Is there a way to make it in 4 gliders?...

I didn't find anything.... I searched for pairs of gliders colliding at 90 degrees where the first gliders in each pair are between 0 and 19 ticks out of step and the rearward gliders are in a 14x14 rectangle somewhere behind the first.

Goldtiger997 wrote:Spend a while trying to make this predecessor for 16.313 work without success:

`x = 19, y = 21, rule = B3/S23o\$b2o\$2o8\$12bo\$9bobo\$10bo4b3o\$8bo5bo3bo\$7bobo4bo3bo\$8b2o4bo3bo\$15b3o3\$16b2o\$16b2o!`

Can anyone else...

Got this one done in 8G. There were plenty of reactions that give that Pi + Block but it still took quite some time to find one compatible with the traffic light

`x = 33, y = 28, rule = Life30bo\$30bobo\$30b2o\$22bobo\$22b2o\$15bo7bo\$16b2o\$15b2o10\$19b3o\$15bo3bo\$15b2o3bo\$14bobo3\$26b2o\$9b3o14bobo\$2o9bo14bo\$b2o7bo\$o!`

Here is some stuff I worked on...

15.941 in 7G gives 16.1979 in 15G:

`x = 137, y = 255, rule = Lifeobo\$b2o\$bo5\$33bobo\$33b2o\$34bo3\$20bo25bobo\$21b2o23b2o\$20b2o25bo3\$33b3o\$33bo\$34bo7\$131b2o\$130bobo\$129bo\$130b2o\$131bo2bo\$131bobobo\$132bobo\$133bo4\$46b3o\$46bo\$47bo2\$54b2o\$54bobo\$54bo78\$44bo\$43bo\$43b3o3\$31b2o98b2o\$30bobo97bobo\$29bo99bo\$30b2o98b2o3bo\$31bo2bo96bo2bobo\$31bobobo95bobobo\$32bobo97bobo\$33bo99bo4\$46b2o\$46bobo\$46bo54\$69bo\$68bo\$68b3o11\$21bo\$19bobo\$20b2o29bo5bo\$49b2o5bo\$50b2o4b3o16\$31b2o98b2o\$30bobo97bobo2b2o\$29bo99bo6bo\$30b2o3bo94b2o3bo\$31bo2bobo94bo2bo\$31bobobo95bobo\$32bobo97bo\$33bo16\$52b2o\$51b2o\$53bo\$25b2o\$24bobo\$26bo!`

14.359 in 7G gives 16.1084 in 15G:

`x = 126, y = 348, rule = Lifeo\$b2o\$2o\$23bo\$23bobo\$23b2o2\$24bo\$23b2o\$23bobo2\$124b2o\$124b2o\$120bo\$29b3o83b2o2bobo\$29bo85bo2bobo\$30bo86b2o\$118bo\$117bo\$117b2o14\$3o\$2bo\$bo38b3o\$40bo\$41bo69\$29bo\$28bo\$28b3o3\$24b2o\$24b2o\$20bo99bo\$15b2o2bobo93b2o2bobo\$15bo2bobo94bo2bobo\$17b2o98b2o\$18bo99bo\$17bo99bo\$17b2o98b2o87\$32bo\$32bobo\$32b2o5\$20bo99bo\$15b2o2bobo93b2o2bobo\$15bo2bobo94bo2bobobo\$17b2o98b2o2bo\$18bo99bo\$17bo99bo\$17b2o98b2o3\$29b3o\$29bo\$30bo72\$12bo\$10bobo\$11b2o26bobo\$39b2o\$40bo13\$20bo\$15b2o2bobo93b2o2bo\$15bo2bobobo92bo2bobo\$17b2o2bo95b2o2bo\$18bo99bo3bo\$17bo99bo3b2o\$17b2o98b2o11\$31b2o5b2o\$31bobo3b2o\$11bo19bo7bo\$11b2o\$10bobo11\$50b2o\$49b2o\$51bo!`

In a related way 13.212 in 6G (this turned out to give 16.762 and 16.1864 in 15G together with quite a few other reductions):

`x = 21, y = 28, rule = Lifebo\$2bo\$3o3\$6bo\$7b2o\$6b2o3\$11bo\$10bo\$6bo3b3o\$7bo\$5b3o11\$5b2o12b2o\$4bobo11b2o\$6bo13bo!`

This is the list of improvements in the current batch. Shout if I missed anything.

`+16.762     xs16_jhke1e8z1           15+16.1084    xs16_31ke12kozw11        15+16.1864    xs16_31ke1e8z032         15+16.1979    xs16_4ap30ga6zw121       15+16.1395    xs16_c48c9jzwca1         14+15.868     xs15_628q552z032         13+16.2058    xs16_69akg4czx146        13+16.2221    xs16_6iog853z56          13+16.1056    xs16_25icz643146         12+16.1962    xs16_4a9eg8ozw65         12+16.2298    xs16_31ke123z65          12+15.924     xs15_0j9c871z121         11+15.967     xs15_628s252z065         11+16.724     xs16_j5o64koz11          11+16.1711    xs16_c8idik8z023         11+16.2046    xs16_0j9c84koz121        11+16.2782    xs16_c4go4871zw65        11+16.2810    xs16_06iog853z252        11+15.655     xs15_c48c9jzx65          10+15.926     xs15_6iog853z32          10+16.972     xs16_j5c48ge2z11         10+16.2535    xs16_628s252zca1         10+14.355     xs14_5bo8goz32           9+15.652     xs15_31ke13z65           9+15.911     xs15_0j9c84cz321         9+16.1968    xs16_0j9c84cz1252        9+16.1978    xs16_0gs25acz1246        9+16.2075    xs16_0j9c84cz343         9+16.2754    xs16_c4go4a52zw65        9+15.871     xs15_0j9c84cz123         8+16.131     xs16_660uhar             8+16.1685    xs16_c48n98czx23         8+16.2060    xs16_69akg4czx56         8+16.2213    xs16_0j9c84cz643         8+14.359     xs14_0j9c84cz121         7+15.941     xs15_0gs25a4z1246        7+13.212     xs13_j5c48cz11           6`

This is the new list of outstanding SLs. There are 95:

`16.712     xs16_3pc0qmzw23          2016.230     xs16_178jd2ko            1916.801     xs16_08eharz321          1916.1684    xs16_4aab9k8zx32         1916.1694    xs16_4a5p6o8zx121        1916.1912    xs16_at16426z32          1916.2050    xs16_6ik8a52z065         1916.2200    xs16_06agc93z2521        1916.2307    xs16_6ik8a52z641         1916.155     xs16_3pabp46             1816.600     xs16_6421344og84c        1816.665     xs16_699mkiczx1          1816.848     xs16_ca9b8oz0252         1816.914     xs16_8kkja952zx1         1816.926     xs16_3iajc4gozw1         1816.1107    xs16_02egdbz2521         1816.1130    xs16_oe12koz01ac         1816.1558    xs16_3loz1226io          1816.1757    xs16_g8idik8z123         1816.1790    xs16_178cia4z0321        1816.1911    xs16_69q3213z32          1816.1990    xs16_8e1tazx1252         1816.2201    xs16_0ggml96z641         1816.2447    xs16_0g8it248cz23        1816.2480    xs16_3iaczw1139c         1816.227     xs16_5b8r5426            1716.265     xs16_259m861ac           1716.380     xs16_4a40vh248c          1716.616     xs16_i5pajoz11           1716.640     xs16_c9bkkozw32          1716.716     xs16_3pmk46zx23          1716.748     xs16_39ege2z321          1716.799     xs16_c8al56z311          1716.875     xs16_4a5pa4z2521         1716.1064    xs16_39m88cz6221         1716.1097    xs16_ck0ol3z643          1716.1276    xs16_3iakgozw1ac         1716.1398    xs16_g88c93zc952         1716.1722    xs16_4aq32acz032         1716.1758    xs16_4a4o796zw121        1716.1847    xs16_39c8a52z033         1716.1871    xs16_5bo8ge2z32          1716.1882    xs16_259m453zx23         1716.1905    xs16_8u16853z32          1716.2045    xs16_25ao8ge2z032        1716.2132    xs16_0g8it2sgz23         1716.2162    xs16_0at16426z32         1716.2316    xs16_0at16413z32         1716.2356    xs16_25icggozx1ac        1716.2467    xs16_0kc3213z34a4        1716.2555    xs16_4a9jzxpia4          1716.3163    xs16_wo443123zbd         1716.3164    xs16_wo443146zbd         1716.104     xs16_0j5ozj4pz11         1616.115     xs16_0ol3z0mdz32         1616.243     xs16_2egu16426           1616.300     xs16_9fg4czbd            1616.302     xs16_5b8o642ac           1616.360     xs16_2egu16413           1616.593     xs16_3123c48gka4         1616.771     xs16_69qb8oz32           1616.772     xs16_3h4e1daz011         1616.810     xs16_ca9la4z311          1616.822     xs16_8ehikozw56          1616.836     xs16_4aajkczx56          1616.838     xs16_ci9b8ozw56          1616.856     xs16_kc32acz1252         1616.995     xs16_0raik8z643          1616.1068    xs16_3lo0kcz6421         1616.1080    xs16_3lo0kcz3421         1616.1304    xs16_0okih3zc8421        1616.1391    xs16_ca168ozc8421        1616.1583    xs16_4a9jzxha6zx11       1616.1675    xs16_xj96z0mdz32         1616.1693    xs16_8k8aliczw23         1616.1717    xs16_4aajk46zx121        1616.1739    xs16_g88r2qkz121         1616.1766    xs16_kc321e8z123         1616.1787    xs16_069m4koz311         1616.1929    xs16_0g5r8b5z121         1616.1994    xs16_0g9fgka4z121        1616.2025    xs16_069q48cz2521        1616.2028    xs16_25ao48cz2521        1616.2029    xs16_25ao4a4z2521        1616.2030    xs16_0i5q8a52z121        1616.2190    xs16_032q4goz6413        1616.2204    xs16_0gilla4z641         1616.2219    xs16_0oe12koz643         1616.2305    xs16_6413ia4z6421        1616.2317    xs16_cik8a52z641         1616.2322    xs16_raak8zx1252         1616.2323    xs16_ra248goz056         1616.2445    xs16_ciligzx254c         1616.2630    xs16_31e8gzxo9a6         1616.3032    xs16_1784ozx342sg        16`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 7th, 2017, 11:41 pm
16.155 in nine gliders:
`x = 26, y = 26, rule = B3/S2316bobo\$16b2o\$17bo\$11bo\$9bobo\$10b2o4\$8bo6bobo\$8bobo4b2o6bo\$8b2o6bo6bobo\$23b2o\$5bobo\$6b2o\$6bo\$2o\$b2o8b2o\$o11b2o\$11bo4\$21b3o\$21bo\$22bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 8th, 2017, 6:24 am
16.230 in 8 gliders:
`x = 91, y = 24, rule = B3/S2374bo\$73bo\$73b3o2\$83b2ob2o\$84bobobo\$84bo2bobo\$85bobo2bo\$86bo2b2o5\$56bobo\$26bo29b2o\$26bobo28bo\$26b2o\$o55b2o21b3o\$b2ob2o18b3o5bo22bo2bo3bo16bo\$2o2bobo19bo4bobo21bobo3bobo16bo\$4bo20bo6b2o22bo5b2o\$72b3o\$72bo\$73bo!`

### Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 8th, 2017, 6:33 am
Looks like AbhpzTa got in just before me with a better synthesis of 16.230

This was mine:

`x = 91, y = 65, rule = B3/S2390bo\$88b2o\$89b2o17\$32bo\$30bobo\$31b2o18bo\$50bo\$50b3o2\$27bobo2b2o19b3o\$28b2o2bobo18bo\$28bo3bo21bo6\$41b2o\$40bobo\$42bo2\$43b2o\$43bobo\$43bo11\$2o\$b2o\$o10\$88bo\$87b2o\$87bobo!`

chris_c wrote:
Goldtiger997 wrote:Spend a while trying to make this predecessor for 16.313 work without success:

`x = 19, y = 21, rule = B3/S23o\$b2o\$2o8\$12bo\$9bobo\$10bo4b3o\$8bo5bo3bo\$7bobo4bo3bo\$8b2o4bo3bo\$15b3o3\$16b2o\$16b2o!`

Can anyone else...

Got this one done in 8G. There were plenty of reactions that give that Pi + Block but it still took quite some time to find one compatible with the traffic light...

chris_c wrote:...LifeAPI code. This took the longest time. I intended to post-process this with Golly but it was taking too long. Instead I wrote a LifeAPI program to analyse a series of reactions and output the RLE of the generation that is N generations before the final pattern appears. N was equal to 12 in my case. I post-processed this file in Golly looking for the desired spark. That was still quite slow.

I could post the actual code before too long if there is any interest. It would need a little tidying up first though.

Yes, I would be very grateful if you could post the code. It would help with many syntheses like the one you reduced to 8G in your last post.

EDIT:

16.1684 in 9 gliders:

`x = 34, y = 41, rule = B3/S2313bo\$11b2o\$12b2o3\$16bo\$16bobo\$16b2o9\$b2o\$obo\$2bo14bo\$16bo4bobo\$16b3o2b2o\$22bo2\$19b3o\$19bo\$20bo7\$3o\$2bo\$bo29b3o\$31bo\$32bo2\$23b2o\$23bobo\$23bo!`