x = 42, y = 37, rule = B3/S23
bo$2bo$3o4$10bo$11bo25bo$9b3o23b2o$36b2o2$22bo$23b2o$22b2o$40bo$12bobo
23b2o$13b2o24b2o$13bo$20bo$21bo$19b3o7$14b3o$16bo$15bo$28bo$29b2o4b2o
2b3o$28b2o6b2obo$35bo4bo$16bo$16b2o$15bobo!
BlinkerSpawn wrote:Some viable reactions:
x = 79, y = 68, rule = Life
47bo$45b2o$46b2o11bo$57b2o$58b2o27$10b2o$9bo2bo$10b2o2$19bo$17b2o$18b
2o2$53bo$54b2o6bo$53b2o7bobo3bo$62b2o4bobo$68b2o3$56bo$57bo$15bo39b3o$
12bo2bobo$10bobo2b2o$11b2o58bobo3bo$71b2o3bo$72bo3b3o$59b3o$61bo10b2o$
60bo10b2o$73bo4$bo$b2o$obo2$27bo$26b2o$26bobo!
x = 50, y = 37, rule = B3/S23
48bo$39b2o6bo$40bo6b3o$2b2o35bo$bo2bo34b2o4b2o$bo2bo30bob2o2bo3b2o$2b
3o30b2obobo$39bo2$43b3o$7b2o$7bo2bo$8b3o3$46bo$3b2o8bo23b3o5bobo$3b2o
8bo19b3o10bo$13bo2$3o$38b2o$37bobo$39bo11$20b2o$21b2o$20bo!
x = 6, y = 8, rule = B3/S23
3bo$3o2$3bo$2bobo$b2ob2o$bo3bo$b2ob2o!
BlinkerSpawn wrote:Partial for 15.845, probably 15G:Code: Select allx = 50, y = 37, rule = B3/S23
48bo$39b2o6bo$40bo6b3o$2b2o35bo$bo2bo34b2o4b2o$bo2bo30bob2o2bo3b2o$2b
3o30b2obobo$39bo2$43b3o$7b2o$7bo2bo$8b3o3$46bo$3b2o8bo23b3o5bobo$3b2o
8bo19b3o10bo$13bo2$3o$38b2o$37bobo$39bo11$20b2o$21b2o$20bo!
x = 57, y = 64, rule = B3/S23
55bo$54bo$54b3o9$27bobo$28b2o$28bo$35bo$33bobo5bo$26b2o6b2o5bobo$25bob
o13b2o$27bo8bo$36bobo$36b2o5$42bo$41bo$41b3o3$37bo$30b2o4b2o$29b2o5bob
o$31bo$26b3o12b2o$28bo12bobo$27bo13bo12$18b2o$19b2o$18bo11$3o$2bo$bo!
x = 72, y = 82, rule = B3/S23
bo$2bo$3o8$45bo$45bobo$45b2o16$15bo$13bobo$14b2o$17bo$17bobo13bo$17b2o
13bo$32b3o2$46bo$44b2o$45b2o$28bobo$24bo3b2o$25b2o2bo$24b2o5$20b2o$19b
obo$21bo$29b2o$29bobo$29bo9$47b3o$47bo$48bo9$59b2o$59bobo$59bo5$69b2o$
69bobo$69bo!
BlinkerSpawn wrote:15.368 in 11, which may put some other SLs off the list: ...
x = 166, y = 69, rule = B3/S23
85bo$83bobo$47bo36boo$6bo41bo38bo$7bo38b3o38bobo3bo$5b3obbo28bo13bo33b
oo3bo$9bo30bo11bo39b3o$9b3o26b3o11b3o31bo$6bo38bobo34bo4boo$7bo33b3obb
oo32bobo3boo$5b3o35bobbo34boo$obo39bo67boo$boo7boobboo18boo14boobboo
13boo3boo14boobboo14bo3boo$bo8bobobbo13boobobbo14bobobbo13bobbobbo14bo
bobbo16bobbo$5bo5boobo14boboobo8boo6boobo16boobo9boo5boobo16boobo$5boo
6bo19bo8bobo8bo19bo9bobo7bo19bo$4bobo6bobo17bobo8bo8bobo17bobo9bo7bobo
17bobo$14boo18boo18boo18boo18boo18boo10$18bo$16bobo29bo$17boo29bobo$
48boo96bo$145bo$145b3o$$133bo$134boo$47bo34bobo48boo$45boo36boo56bo$
21bobo22boo35bo42bo12bobo$22boo10bobo54bo35boo11boo$22bo12boo51bobbobo
32boo24bo$19bo15bo50bobobboo52bo4boo$17bobo5bo12bo48boo56bobo3boo$18b
oo6boo9bo107boo$25boo10b3o$107bo29bo$106bobo27bobo$106bobbo26bobbo$
107boo28boo$123boo32boo$68boo52bobo32bobo$68bobo53bo3bobo$39boo3boo28b
oo13boo3boo13boo3boo13boo8boo3boo13bobobboo$39bobbobbo9boo13bobobbo13b
obbobbo13bobbobbo13bo9bobbobbo16bobbo$41boobo9boo15boobo16boobo16boobo
26boobo16boobo$43bo12bo16bo19bo19bo17boo10bo19bo$43bobo27bobo17bobo17b
obo16boo9bobo17bobo$44boo28boo18boo18boo15bo12boo18boo4$21boo$20bobo$
22bo3$24bo$24boo$23bobo!
BlinkerSpawn wrote:Partial for 15.845, probably 15G: ...
Goldtiger997 wrote:Well here's 13 gliders: ...
x = 82, y = 25, rule = B3/S23
3bo$4boo$3boo$10bo$8boo6bo$9boo4bo$15b3o$4bo49bo$5boo46bo$4boo47b3o$b
oo12bo27bobo$obo11boo28boo4bobo$bbo6boo3bobo13boo12bo6boo7boo18boo$10b
o20bo19bo9bo19bo$9bo19bo29bo19bo$9boo18boo16bo11boo18boo$5boboobbo13bo
boobbo15boo6boboobbo15boobbo$5boobobo14boobobo15bobo6boobobo14bobbobo$
9bo19bo29bo15boobbo3$54boo$48boo3boo$47bobo5bo$49bo!
mniemiec wrote:BlinkerSpawn wrote:Partial for 15.845, probably 15G: ...Goldtiger997 wrote:Well here's 13 gliders: ...
This also improves (but not sufficiently): 15.919 in 19, 15.918 in 25, plus 3 related 21-bit jams (1 < 1 glider/bit) and 5 related 20+21-bit molds (1 = 1 glider/bit) (the extra two add 4 gliders to replace the snake by a python).
obsolete
x = 49, y = 89, rule = B3/S23
47bo$46bo$46b3o14$25bobo$25b2o$26bo26$2o$2o30bo$30b2o$8bo22b2o$8bo$8bo
2$18bo4bo$19b2obo$18b2o2b3o7$13b3o4$12bo$12bo$12bo20$31b3o$31bo$32bo!
x = 15, y = 19, rule = B3/S23
7b2o$6bo2bo$6bobo$7bo$o$b2o$2o10bo$11bobo$11bobo$12bo2$13b2o$12bobo$
14bo3$2bo$2b2o$bobo!
BlinkerSpawn wrote:mniemiec wrote:BlinkerSpawn wrote:Partial for 15.845, probably 15G: ...Goldtiger997 wrote:Well here's 13 gliders: ...
This also improves (but not sufficiently): 15.919 in 19, 15.918 in 25, plus 3 related 21-bit jams (1 < 1 glider/bit) and 5 related 20+21-bit molds (1 = 1 glider/bit) (the extra two add 4 gliders to replace the snake by a python).
Then why do I have 15.919 in the = 1 glider per bit list?
x = 160, y = 95, rule = B3/S23
131bo$132b2o$131b2o$138bo$92bo43b2o$93bo43b2o3bo$91b3o47bo$132bo8b3o$
133b2o$107bo24b2o$87bo18bo22b2o12b2o$85bobo18b3o19bobo12bobo$86b2o6bob
o20b2o11bo6b2o4bo14b2o$95b2o21bo19bo20bo$95bo4b2o15bo19bo19bo$99b2o16b
2o18b2o18b2o$101bo11bob2o2bo13bob2o2bo13bob2o2bo$95b2o10bo5b2obobo14b
2obobo14b2obobo$96b2o8b2o9bo19bo19bo$95bo10bobo6$91b2o6b2o$90bobo5b2o$
92bo7bo5$134bo$133bo$129bo3b3o$130b2o7bo$129b2o6b2o$43bobo92b2o$44b2o
52bo$44bo53bobo$51bobo44b2o2b2o$o50b2o48b2o$b2o49bo50bo15bo19bo17b2o$
2o58bo17bo19bo19bobo17bobo17bo$5bo53bo17bobo17bobo17bobo17bobo17bo$3b
2o3b3o48b3o15b2o18b2o18b2o18b2o18b2o$4b2o2bo14bob2o16bob2o10bo15bob2o
16bob2o16bob2o16bob2o16bob2o$9bo13b2obo16b2obo9b2o15b2obo16b2obo16b2ob
o16b2obo16b2obo$7bo48bobo86b2o$7b2o43b2o10bo80bobo$6bobo43bobo8b2o80bo
$52bo10bobo2$44b2o$45b2o$44bo8$140bo$139bo$129bo9b3o$130bo$128b3o2$
137bobo$137b2o$80bo57bo$67b2o11bobo14b2o15bobo10b2o28b2o$68bo11b2o16bo
16b2o11bo29bo$67bo29bo17bo11bo29bo$67b2o28b2o28b2o28b2o$63bob2o26bob2o
26bob2o15b3o8bob2o2bo$63b2obo26b2obo4bo21b2obo4bo10bo10b2obobo$100bobo
10b2o15bobo10bo13bo$100b2o10bobo15b2o$79bo18b2o14bo13b2o$78bo18bobo27b
obo$78b3o17bo17bo11bo$74b3o39b2o$74bo40bobo$75bo$130bo$119b2o7b2o$79bo
40b2o7b2o$78b2o39bo$78bobo2$126bo$125b2o$125bobo!
Goldtiger997 wrote:BlinkerSpawn wrote:Then why do I have 15.919 in the = 1 glider per bit list?
Weirdly, BobShemyakin's database has this 15 glider synthesis:Code: Select allrle
BlinkerSpawn wrote:Three possibilities for 15.445: ...
x = 104, y = 30, rule = B3/S23
34bo$33bo$33b3o$31bo$29bobo$30boo3$38bo$37bo$37b3o$58boo18boo18boo$58b
obo17bobo17bobo$28boo30bo19bo19bo$5bo16bo6boo11bo16boboo16boboo16boboo
$4bo16bobo4bo12bobo15bobobo15bobobo15bobobo$boob3o13bobbo16bobbo16bobb
o16bobbo16bobbo$obo18boo10b3o5boo9bo8boo9bo8boo18boo$bbo30bo17bobo17bo
bo$34bo16bobbo16bobbo$52boo18boo$75boo$75bobo$75bo4$42boo$41boo$43bo!
BlinkerSpawn wrote:Then why do I have 15.919 in the =1 glider per bit list?
Goldtiger997 wrote:Weirdly, BobShemyakin's database has this 15 glider synthesis: ...
mniemiec wrote:BlinkerSpawn wrote:Three possibilities for 15.445: ...
One of which leads to this 9-glider synthesis:Code: Select allx = 104, y = 30, rule = B3/S23
34bo$33bo$33b3o$31bo$29bobo$30boo3$38bo$37bo$37b3o$58boo18boo18boo$58b
obo17bobo17bobo$28boo30bo19bo19bo$5bo16bo6boo11bo16boboo16boboo16boboo
$4bo16bobo4bo12bobo15bobobo15bobobo15bobobo$boob3o13bobbo16bobbo16bobb
o16bobbo16bobbo$obo18boo10b3o5boo9bo8boo9bo8boo18boo$bbo30bo17bobo17bo
bo$34bo16bobbo16bobbo$52boo18boo$75boo$75bobo$75bo4$42boo$41boo$43bo!
BlinkerSpawn wrote:15.402 in 7G: ...
x = 70, y = 19, rule = B3/S23
37bobo$38boo$38bo3$50bo$48bobo$49boo$$28bo19bo16boo$6bo20bobo17bobo14b
obbo$4boo21bobo17bobo14bobbo$bbobboo21bo7boo10bo16booboo$obo34boo27bo
bbo$boo33bo29bobo$13bo9bo19bo23bo$13bobo6bobo17bobo$13boo7bobbo16bobbo
$23boo18boo!
BlinkerSpawn wrote:I noticed that method and edited it in right before seeing this post.
mniemiec wrote:That method is basically just the previous one advanced 16 generations.
mniemiec wrote:The still-lifes can be made together, making this 6:
mniemiec wrote:This also improves (but not sufficiently): 15.919 in 19, 15.918 in 25, plus 3 related 21-bit jams (1 < 1 glider/bit) and 5 related 20+21-bit molds (1 = 1 glider/bit) (the extra two add 4 gliders to replace the snake by a python).
x = 30, y = 21, rule = B3/S23
5bo$4bobo$4bobo3b2o$5bo3bobo$9b2o2$2o$2o$15bobo$15b2o$16bo2$13b3o$13bo
$14bo4b3o$19bo$20bo2$28b2o$27b2o$29bo!
BlinkerSpawn wrote:If you tire of assimilating 15-bit SL syntheses I'd like to see an expansion of the easily-constructible constellations list for things like this.
x = 34, y = 37, rule = B3/S23
3bobo$4b2o$4bo2$24bobo$24b2o7bo$25bo5b2o$32b2o3$19bo$18bo$obo15b3o$b2o
$bo20bo$22bobo$22b2o4$15b3o$15bo$16bo12$24bo$23b2o$23bobo!
Kazyan wrote:EDIT: 15.438 in 8G; 7G very likely if that block predecessor can be made in 3 instead of 4.Code: Select allx = 34, y = 37, rule = B3/S23
3bobo$4b2o$4bo2$24bobo$24b2o7bo$25bo5b2o$32b2o3$19bo$18bo$obo15b3o$b2o
$bo20bo$22bobo$22b2o4$15b3o$15bo$16bo12$24bo$23b2o$23bobo!
x = 19, y = 21, rule = B3/S23
7bo$7bobo$7b2o$2bo$obo$b2o15bo$8bo7b2o$8bobo6b2o$8b2o4$bobo$2b2o$2bo4b
o$7bobo$7b2o2$9bo$8b2o$8bobo!
x = 38, y = 39, rule = B3/S23
35bo$35bobo$35b2o20$b2o$o2bo$b2o5$4o$o$b3o3$9b2o$7b2o2bo$3b2o2b2ob2o$
3bobob2ob2o$4bo4bo!
x = 120, y = 50, rule = B3/S23
24bo$23bo$23b3o$15bo$13bobo66bo$14b2o64bobo$81b2o$84b2o$84b2o3$bo$2bo$
3o$39bo$38bo$38b3o2$15bo$14bo$14b3o2$9b2o$9bobo$9bo31b2o$41bobo$41bo
76bo$13bo103bo$12b2o103b3o$12bobo99b2o$113bo2bo$114b2o$96bo$95bobo$94b
obo$94bo2b3o$95b2o2bo$97bo$97b2o$109b2o$22b2o84bo2bo$22bobo84bobo$22bo
87bo$12b3o$14bo$13bo2$116b2o$115b2o$117bo!
x = 15, y = 19, rule = B3/S23
7bo$2bo2bobo$obo3b2o$b2o6bo$9bobo$9b2o$14bo$12b3o$11bo$4b2o6b3o$5b2o7b
o$4bo2$7b2o$7bobo$7bo$2b2o$bobo$3bo!
x = 54, y = 27, rule = B3/S23
2bo$obo20bo$b2o12bobo4bo$15b2o5b3o$5bo10bo$6b2o$5b2o3bobo$11b2o$11bo2$
21bo$22bo$20b3o$48bobo$6b3o4bobo4bo13bo12bob2o$8bo5b2o4b2o10b2o13bo3b
2o$7bo6bo4bobo11b2o13b2o3bo$50b3o$50bo6$16b2o11b2o$17b2o10bobo$16bo12b
o!
x = 120, y = 25, rule = B3/S23
obo$b2o$bo4$102bo$100b2o$101b2o$36b2ob2o21b2ob2o20b2ob2o21b2ob2o$37bob
2o22bob2o3bobo15bobo2bo3b2o15bobo$10bo8bobo15bo25bo6b2o2b3o11bo3b2o3bo
bo14bo3bo$9bo9b2o17b3o23b3o4bo2bo14b3o5bo17b3obo$9b3o8bo19bo25bo8bo15b
o25bobo$70b2o46bo$11bo32bobo22bo2bo$10b2o32b2o23bo2bo21b2o2b3o$10bobo
32bo24b2o21b2o3bo$95bo3bo$45b2o$45bobo45b2o$45bo46bobo$94bo3b2o$98bobo
$98bo!
x = 111, y = 24, rule = B3/S23
71bo7bo$72b2o5bobo$71b2o6b2o$35bo17bo$35bobo15bobo22bo$35b2o16b2o21bob
o$77b2o$35bo16bo3b2o$34b2o14bobo2bo2bo46bo$13bo20bobo14b2o2bo2bo25bo
19bobo$13bobo40b2o3bo22b3o17bob3o$13b2o45bo26bo17bo3bo$5bo24b2o20b2o6b
3o21b2obo19bobo$6bo20bobobo17bobobo2b3o22bobobob2o17b2ob2o$4b3o20b2o
20b2o5bo24b2o$3o54bo$2bo24b2o20b2o30b2o$bo10b2o13b2o20b2o30b2o$12bobo$
12bo2$88bo$87b2o$87bobo!
x = 87, y = 25, rule = B3/S23
63bo$64b2o$63b2o2$24bo9bo34bo$22bobo8bo33b2o$23b2o8b3o28bo3b2o$65b2o$
64b2o3$84bo$65bo17bobo$20bo34bo8bobo16bobo$bo18b2o6bo27b2o5bobo15b2obo
$2bo16bobo5bobo10bo14b2o5bo2bobo12bobobobo$3ob2o21bo2bo8bo22b2o2b2o13b
o3b2o$4bobo21b2o9b3o$4bo30b2o$36b2o$35bo20b3o$38b3o17bo$18b2o18bo18bo$
17bobo19bo$19bo!
BlinkerSpawn wrote:If you tire of assimilating 15-bit SL syntheses I'd like to see an expansion of the easily-constructible constellations list for things like this.
Kayzan wrote:one of the early "wait, what?" mold variants in Catagolue involved a snake and python, so it's probably the one you mention. Looking over the soups, here's a way to make it in at most 9G; 8G or less is likely via constellations: ...
x = 112, y = 23, rule = B3/S23
3bo$4boo$3boo$10bo$8boo6bo$9boo4bo$15b3o$4bo$5boo$4boo$boo12bo$obo11b
oo$bbo6boo3bobo13boo17boo18boo19boo18boo$10bo20bo18bo19bo20bo19bo$9bo
19bo19bo19bo19bo19bo$9boo18boo18boo18boo18boo18boo$7boobbo15boobbo15b
oobbo15boobbo15boobbo15boobbo$4bobobobobbo10bobobobobbo10bobobobobbo
10bobobobo13bobobobobbo10bobobobo$4boo3bo14boo3bo14boo3bo14boo3bo14boo
3bo14boo3bo$10boobo16boobo16boobo36boobo$12bo19bo19bo3b3o33bo3b3o$56bo
39bo$57bo39bo!
BlinkerSpawn wrote:15.390: ...
mniemiec wrote:I count 11 (unless I missed something).
x = 45, y = 44, rule = B3/S23
43bo$42bo$42b3o$9bo$7bobo$8b2o$31bo$31bobo$31b2o3$14bobo$15b2o$15bo5$
27b3o$27bo$28bo$24b3o$26bo$25bo6$23b3o$23bo$24bo$14b3o$16bo$15bo21b2o$
36b2o$38bo5$3o$2bo$bo!
Kazyan wrote:Your count is correct. As penance for me counting wrong, 15.960 in...10G: ...
x = 37, y = 18, rule = B3/S23
$19bo$19bobo$11bo7boo$4bo4bobo$5bo4boo$3b3o3$oo$boo8bo$o11bo17bo$10b3o
16bobo$25boo3bobo$13boo10boo5bo$6boo5bobo15boboobo$6boo5bo17boboboo$
32bo!
mniemiec wrote:BlinkerSpawn wrote:15.390: ...
I've seen that thing next to the beehive before, but I can't remember what makes it. Do you remember?
x = 42, y = 34, rule = B3/S23
31bobo$32b2o$32bo6bo$37b2o$16bo21b2o$17bo8bo3bo$15b3o8bo3bo$26bo3bo2$
18b2o19b2o$12b2o3bobo19bobo$11bobo5bo19bo$13bo21bo$34bobo$19b2o13b2o$
20b2o$19bo2$22bo$21b2o$17b2o2bobo$18b2o$17bo9$3o$2bo$bo!
chris_c wrote:mniemiec wrote:BlinkerSpawn wrote:15.390: ...
I've seen that thing next to the beehive before, but I can't remember what makes it. Do you remember?
I remember finding quite a lot of ways of making that piece of junk...
x = 54, y = 93, rule = B3/S23
37bo$36bo$36b3o7$46bo$45bo$45b3o18$12bo$12bobo$12b2o$2bo$obo$b2o3$4bo$
5bo$3b3o3$10bo$9bo11bo$9b3o9bobo$7bo13b2o$5bobo$6b2o8bo$15bo$15b3o2$7b
o$5bobo2b2o$6b2ob2o4b3o$11bo3bo$16bo35$51b2o$51bobo$51bo!
BlinkerSpawn wrote:If you tire of assimilating 15-bit SL syntheses I'd like to see an expansion of the easily-constructible constellations list for things like this.
Goldtiger997 wrote:I found lots using gencols and used it to make a 13 glider synthesis of 13.390:
x = 241, y = 49, rule = B3/S23
120bo$119bo$119b3o15$bo3bo$bbobo$3ob3o5$134boo48boo$86bo46bobbo46bobbo
$86bobo44bobo47bobo$86boo46bo49bo$181boo$41booboo35booboo94bobo$41boob
oo35booboo96bo3$obo$boo17bo21bo39bo79boo48boo$bo17bo21bobo37bobo78boo
48boo$19b3o20boo12bo25boo12bo118b3o$b3o51bobo37bobo117bo$bo14b3o36bobo
27boo8bobo118bo$bbo13bo39bo29boo8bo$17bo67bo5bo$90boo$90bobo55boo48boo
38boo$148bo49bo39bo$84boo60boobbo45boobbo35boobbo$85boo58boboboo44bobo
boo34boboboo$84bo60bobbo46bobbo36bobbo$146bobo47bobo37bobo$147bo49bo
39bo!
Goldtiger997 wrote:Before mniemiec does this, I have a method I've been using to find 3-glider syntheses of constellations if you're interested...
mniemiec wrote:Goldtiger997 wrote:I found lots using gencols and used it to make a 13 glider synthesis of 13.390:
There is no 13.390. Did you mean 15.390? Actually, this is the same synthesis you posted Thursday for 15.389...
x = 81, y = 31, rule = B3/S23
19bo$17b2o$11bo6b2o$12bo$10b3o$6bo$7b2o$6b2o7bo$15bobo$15b2o$33b2o18b
2o18b2o$13b3o18bo19bo19bo$15bo18bob2o16bob2o16bob2o$14bo20bobo17bobo
17bobo$38b2o18b2o18b2o$39bo19bo20bo$18b2o19bobo17bobo15bobo$19b2o19b2o
18b2o15b2o$2o16bo3b2o$b2o19bobo29bo14b2o$o21bo29bobo13b2o$53b2o15bo3$
51b2o3b2o10b2o$50bobo2b2o10b2o$52bo4bo11bo2$64bo$63b2o$63bobo!
x = 105, y = 73, rule = B3/S23
31bo$29bobo$30b2o28bo$58b2o$59b2o11$48bo$48bobo$48b2o2$47bo$45bobo$46b
2o14$43b2o2b3o$42bobo2bo$44bo3bo16$90b2o$89b2o$91bo11$99b2o$98b2o$100b
o$103b2o$2o6b2o92b2o$b2o4bobo94bo$o8bo!
x = 36, y = 32, rule = B3/S23
obo$b2o$bo13$23b3o3$16b2o$18bo$16b3o$19b2o$18b3o$19bo4$24b2o$10b2o12b
2o$10b2o21b3o$33bo$34bo!
x = 19, y = 13, rule = B3/S23
8bo2$7b2o$8b2ob2o$9bobo$10bo$2o$2o2b2o$4b2o$3bo10b2ob2o$14bo3bo$15b3o$
16bo!
Users browsing this forum: No registered users and 3 guests