On the other thread calcyman wrote:Can anyone find a way to slow-salvo construct the following constellation (in such a way that it doesn't interfere with the eater)?Code: Select all`x = 12, y = 7, rule = B3/S23`

7bo$6bobo$6bobo$5b2ob3o$11bo$2o3b2ob3o$2o3b2obo!

The block can be made in two gliders from a beehive but I don't know if it will be easy to teach slmake about this kind of thing:

`x = 39, y = 40, rule = B3/S23`

o14bo$3o11bobo$3bo10bobo$2b2o9b2ob3o$19bo$13b2ob3o$13b2obo3$bo$obo$obo

$bo2$5b3o$5bo$6bo21$36b3o$36bo$37bo!

Anyway, by flipping the G->MWSS vertically I came up with a cheaper 1-Snark Orthogonoid that has 367 cells and is HashLife friendly. Among similar 1-Snark Orhogonoids it should be difficult to beat but maybe the 2-Snark version is still better:

`x = 346, y = 297, rule = B3/S23`

97b2o$97bobo$99bo4b2o$95b4ob2o2bo2bo$95bo2bobobobob2o$98bobobobo$99b2o

bobo$103bo2$89b2o$90bo7b2o$90bobo5b2o$91b2o2$74bo$72b3o$71bo$61b2o8b2o

47bo$62bo55b3o$62bobo36b2o14bo$63b2o36bo15b2o$77b2o23b3o$49b2o26b2o25b

o$50bo$19bo30bobo$18bobo7bo22b2o$19bo6b3o48b2o35b2o$25bo51b2o34bo2bo$

25b2o77bo9b2o$103bobo$103b2o2$53b2o$53b2o$5b2o25b2o$6bo25b2o$6bobo$7b

2o3$20b2o$20bobo6b2o$22bo6bo$22b2o6b3o$32bo$114b2o$59b2o53b2o$60bo$60b

obo$18b2o41b2o31bo$18bobo73b3o$20bo76bo$20b2o74b2o$61b2o$61b2o3$2b2o$b

obo$bo84b2o$2o84b2o$66b2o$60b2o3bo2bo$60b2o4b2o$123b2o$123b2o$83b2o32b

2o$10b2o71bo33b2o$10b2o7b2o63b3o$19bo41bo24bo$17bobo39b3o57b2o$17b2o4b

2o33bo53b2o5b2o$b2o20bo15bo18b2o7b2o3b2o38b2o$2bo18bobo15b3o25b2o3b2o$

2bobo16b2o19bo$3b2o36b2o$79b2o$79bo$77bobo$77b2o2$38b2o$38b2o4$9b2o63b

2o$5b2o2b2o63bo$4bobo38b2o28b3o$4bo40bo31bo$3b2o41b3o$48bo5$61b2o$61b

2o$69b2o$69bo$70b3o$72bo2$71bo$70bobo$70bobo$69b2ob3o$75bo$69b2ob3o$

69b2obo2$51b2o8b2o$51bobo7b2o$53bo$53bobo$54b2o4$74b2o$74b2o5$59bo$58b

obo$58bobo$59bo187b2o$56b3o187bobo$56bo183b2o4bo$238bo2bo2b2ob4o$238b

2obobobobo2bo$241bobobobo$241bobob2o$242bo2$255b2o$246b2o7bo$246b2o5bo

bo$253b2o2$271bo$271b3o$274bo$225bo47b2o8b2o$225b3o55bo$228bo14b2o36bo

bo$227b2o15bo36b2o$241b3o23b2o$241bo25b2o26b2o$295bo$293bobo30bo$293b

2o22bo7bobo$230b2o35b2o48b3o6bo$229bo2bo34b2o51bo$230b2o9bo77b2o$240bo

bo$241b2o2$12b2o277b2o$12b2o277b2o$312b2o25b2o$312b2o25bo$15b2o320bobo

$14bobo320b2o$12b3obobo$11bo5b2o$11b2o311b2o$315b2o6bobo$316bo6bo$313b

3o6b2o$313bo$230b2o$230b2o53b2o$285bo$283bobo$251bo31b2o41b2o$249b3o

73bobo$248bo76bo$248b2o74b2o$283b2o$283b2o3$342b2o$342bobo$258b2o84bo$

258b2o84b2o$278b2o$277bo2bo3b2o$278b2o4b2o$221b2o$221b2o$227b2o32b2o$

227b2o33bo71b2o$259b3o63b2o7b2o$259bo24bo41bo$225b2o57b3o39bobo$225b2o

5b2o53bo33b2o4b2o$232b2o38b2o3b2o7b2o18bo15bo20b2o$272b2o3b2o25b3o15bo

bo18bo$303bo19b2o16bobo$303b2o36b2o$265b2o$266bo$266bobo$267b2o2$306b

2o$306b2o4$270b2o63b2o$271bo63b2o2b2o$268b3o28b2o38bobo$268bo31bo40bo$

297b3o41b2o$297bo5$283b2o$283b2o$275b2o$276bo$273b3o$273bo2$274bo$273b

obo$273bobo$271b3ob2o$270bo$271b3ob2o$273bob2o2$283b2o8b2o$283b2o7bobo

$292bo$290bobo$290b2o4$270b2o$270b2o5$286bo$285bobo$285bobo$286bo$287b

3o$289bo28$315bo$316bo$311bo4bo15b2o$312b5o15b2o3$329b2o$329bobo$327bo

bob3o$327b2o5bo$333b2o!