x = 10, y = 13, rule = B3/S23
4b2o$3b4o2$2b6o$3b4o2$2b2o2b2o$2obo2bob2o$3bo2bo3$4b2o$4b2o!
x = 10, y = 13, rule = B3/S23
4b2o$3b4o2$2b6o$3b4o2$2b2o2b2o$2obo2bob2o$3bo2bo3$4b2o$4b2o!
HartmutHolzwart wrote:- Find small tagalongs
Kiran wrote:Wow, how did you find it? This is the second loafer!
Kiran wrote:Wow, how did you find it? This is the second loafer!
#A21C version -1.0
#Probably a CGOL one-liner:
f(&a){a=(ind(a),((-1:2)**2))`@int(x,y){return a[x],y``@int(z,w){\
return z+a[(x,w)`(+)]\:0}}`@bool(x,y){return y==3||(x&&y==4)}}
A for awesome wrote:I wonder how long until this shows up on Catagolue (probably in some symmetry)?
muzik wrote:Most likely a symmetry that's left/right (I have no idea what the codenames are).
x = 6, y = 40, rule = B3/S23
2b2o$bo2bo$bo2bo$o4bo$o4bo$b4o$2o2b2o$o4bo$o4bo3$b4o$2b2o22$b3o$bo2bo$
bo$bo3bo$bo$2bobo!
x = 526, y = 202, rule = B3/S23
458b2o$457b4o2$70b2o187b2o195b6o$69b4o185b4o195b4o2$68b6o183b6o193b2o
2b2o$69b4o185b4o192b2obo2bob2o$457bo2bo$68b2o2b2o183b2o2b2o$66b2obo2bo
b2o179b2obo2bob2o$69bo2bo185bo2bo196b2o$458b2o2$70b2o187b2o$70b2o187b
2o51$72b3o$72bo2bo$72bo$72bo$73bobo9$453b3o$257b3o193bo2bo$257bo2bo
192bo$257bo195bo$257bo196bobo$258bobo7$65b2o$66b2o$65bo4$48bo$48b3o21b
3o$51bo20bo2bo$32bo17b2o20bo$20bo11b3o37bo$18b3o14bo37bobo$2bo14bo16b
2o$2b3o12b2o42b2o383b2o$5bo55bo2bo185b2o195b2o$4b2o17bo4bo222b2o193bo$
21b2ob3o2bo3b2o17b3o6bo2bo185bo$22b2obo7bobo15bo2bo5bo2bo$5b2o16bob2ob
o6bo15b2obo5bobo$5b2o18b2o6b3o25bo367bo$13bo10bo87bo120bo195b3o21b3o$
12b3o12bo27bo5b2o47b3o11bo108b3o21b3o172bo20bo2bo$11b2o2bo8bo2bo27b3o
3b2o21b2o23bo14b3o109bo20bo2bo152bo17b2o20bo$15b2o9bo58bo23b2o16bo14bo
74bo17b2o20bo143bo11b3o37bo$12b3ob2o29bobo6b2o27bobo38b2o12b3o62bo11b
3o37bo141b3o14bo37bobo$13bo2b2o30bo3b2ob2o29b3ob2o47bo63b3o14bo37bobo
122bo14bo16b2o$12b3o6b2o30b3o3b2o27b2obo24bo4bo17b2o46bo14bo16b2o162b
3o12b2o42b2o$15b2o4bo19b2o11bo4bobo26b3o19b2o3bo2b3ob2o63b3o12b2o42b2o
138bo55bo2bo$15b2o6bo16bobo18bo27b5o15bobo7bob2o67bo55bo2bo135b2o17bo
4bo$22b2o16bo20b2o28b3o15bo6bob2obo16b2o49b2o17bo4bo188b2ob3o2bo3b2o
17b3o6bo2bo$18b2o19b2o4b2o62b3o6b2o18b2o66b2ob3o2bo3b2o17b3o6bo2bo153b
2obo7bobo15bo2bo5bo2bo$8bo9bo24bo2bo73bo10bo75b2obo7bobo15bo2bo5bo2bo
137b2o16bob2obo6bo15b2obo5bobo$8bobo8b3o21b2o44bo27bo12b3o57b2o16bob2o
bo6bo15b2obo5bobo138b2o18b2o6b3o25bo$8b2o11bo30b2o33b3o27bo2bo8bo2b2o
56b2o18b2o6b3o25bo147bo10bo87bo$52b2o64bo9b2o68bo10bo87bo95b3o12bo27bo
5b2o47b3o11bo$87b2o6bobo29b2ob3o64b3o12bo27bo5b2o47b3o11bo82b2o2bo8bo
2bo27b3o3b2o21b2o23bo14b3o$88b2ob2o3bo30b2o2bo64b2o2bo8bo2bo27b3o3b2o
21b2o23bo14b3o84b2o9bo58bo23b2o16bo14bo$2b2o80b2o3b3o30b2o6b3o67b2o9bo
58bo23b2o16bo14bo65b3ob2o29bobo6b2o27bobo38b2o12b3o$bobo79bobo4bo11b2o
19bo4b2o67b3ob2o29bobo6b2o27bobo38b2o12b3o66bo2b2o30bo3b2ob2o29b3ob2o
47bo$bo70b3o8bo18bobo16bo6b2o68bo2b2o30bo3b2ob2o29b3ob2o47bo68b3o6b2o
30b3o3b2o27b2obo24bo4bo17b2o$2o70bo2bo6b2o20bo16b2o74b3o6b2o30b3o3b2o
27b2obo24bo4bo17b2o70b2o4bo19b2o11bo4bobo26b3o19b2o3bo2b3ob2o$62b2o8bo
25b2o4b2o19b2o73b2o4bo19b2o11bo4bobo26b3o19b2o3bo2b3ob2o87b2o6bo16bobo
18bo27b5o15bobo7bob2o$62bo9bo25bo2bo24bo9bo63b2o6bo16bobo18bo27b5o15bo
bo7bob2o95b2o16bo20b2o28b3o15bo6bob2obo16b2o$60bobo10bobo24b2o21b3o8bo
bo70b2o16bo20b2o28b3o15bo6bob2obo16b2o74b2o19b2o4b2o62b3o6b2o18b2o$60b
2o29b2o30bo11b2o66b2o19b2o4b2o62b3o6b2o18b2o64bo9bo24bo2bo73bo10bo$8b
3o80b2o100bo9bo24bo2bo73bo10bo72bobo8b3o21b2o44bo27bo12b3o$7bo2bo42bob
2o136bobo8b3o21b2o44bo27bo12b3o71b2o11bo30b2o33b3o27bo2bo8bo2b2o$7b2ob
o41b5o136b2o11bo30b2o33b3o27bo2bo8bo2b2o114b2o64bo9b2o$11b2o29bo9b4o
85b2o94b2o64bo9b2o153b2o6bobo29b2ob3o$11b2o6b2o21b3o96bobo128b2o6bobo
29b2ob3o151b2ob2o3bo30b2o2bo$10bo2bo3bo2bo24bo7b3o87bo129b2ob2o3bo30b
2o2bo66b2o80b2o3b3o30b2o6b3o$11b2o4b2o4b2o19b2o7b3o87b2o42b2o80b2o3b3o
30b2o6b3o64bobo79bobo4bo11b2o19bo4b2o$b2o20bo16b2o12bo26b2o103bobo79bo
bo4bo11b2o19bo4b2o67bo70b3o8bo18bobo16bo6b2o$2bo18bobo16bo41bo103bo70b
3o8bo18bobo16bo6b2o66b2o70bo2bo6b2o20bo16b2o$2bobo16b2o19bo39bobo100b
2o70bo2bo6b2o20bo16b2o135b2o8bo25b2o4b2o19b2o$3b2o36b2o40b2o162b2o8bo
25b2o4b2o19b2o131bo9bo25bo2bo24bo9bo$134b3o110bo9bo25bo2bo24bo9bo119bo
bo10bobo24b2o21b3o8bobo$65b2o21b2obo42bo2bo107bobo10bobo24b2o21b3o8bob
o119b2o29b2o30bo11b2o$65bo22b5o41bob2o107b2o29b2o30bo11b2o67b3o80b2o$
18bo3bo40bobo23b4o9bo29b2o59b3o80b2o110bo2bo42bob2o$17b3obo2bo18bo8bo
5bo4b2o35b3o21b2o6b2o58bo2bo42bob2o146b2obo41b5o$17bobobo19bo3bo4bobo
5b3o28b3o7bo24bo2bo3bo2bo57b2obo41b5o150b2o29bo9b4o85b2o$23bo17bo3bo3b
o8b4o27b3o7b2o19b2o4b2o4b2o62b2o29bo9b4o85b2o64b2o6b2o21b3o96bobo$23b
2o16bobo6b2o10bo27bo12b2o16bo20b2o52b2o6b2o21b3o96bobo62bo2bo3bo2bo24b
o7b3o87bo$17bo3bobo37b2o41bo16bobo18bo52bo2bo3bo2bo24bo7b3o87bo63b2o4b
2o4b2o19b2o7b3o87b2o$21bobo34bo43bo19b2o16bobo53b2o4b2o4b2o19b2o7b3o
87b2o52b2o20bo16b2o12bo26b2o$9b2o91b2o36b2o44b2o20bo16b2o12bo26b2o115b
o18bobo16bo41bo$5b2o2b2o176bo18bobo16bo41bo115bobo16b2o19bo39bobo$4bob
o38b2o31b2o107bobo16b2o19bo39bobo114b2o36b2o40b2o$4bo23b2o16bo7b2o23bo
108b2o36b2o40b2o245b3o$3b2o23bo14b3o4b2obo2bob2o19bobo40bo3bo192b3o
124b2o21b2obo42bo2bo$29b3o11bo6b2o2bo4bo12b3o5b2o4bo5bo8bo18bo2bob3o
122b2o21b2obo42bo2bo123bo22b5o41bob2o$31bo23bo16bo2bo8b3o5bobo4bo3bo
19bobobo122bo22b5o41bob2o76bo3bo40bobo23b4o9bo29b2o$56bobo13bo10b4o8bo
3bo3bo17bo81bo3bo40bobo23b4o9bo29b2o79b3obo2bo18bo8bo5bo4b2o35b3o21b2o
6b2o$72bo9bo10b2o6bobo16b2o80b3obo2bo18bo8bo5bo4b2o35b3o21b2o6b2o79bob
obo19bo3bo4bobo5b3o28b3o7bo24bo2bo3bo2bo$59bo13bobo6b2o37bobo3bo74bobo
bo19bo3bo4bobo5b3o28b3o7bo24bo2bo3bo2bo84bo17bo3bo3bo8b4o27b3o7b2o19b
2o4b2o4b2o$53bobo3bobo24bo34bobo84bo17bo3bo3bo8b4o27b3o7b2o19b2o4b2o4b
2o85b2o16bobo6b2o10bo27bo12b2o16bo20b2o$49b2o2bob2obo4b2o69b2o72b2o16b
obo6b2o10bo27bo12b2o16bo20b2o69bo3bobo37b2o41bo16bobo18bo$45b2obob3o5b
ob2o2b3o67b2o2b2o62bo3bobo37b2o41bo16bobo18bo74bobo34bo43bo19b2o16bobo
$46bobobobob3ob2o5b2o31b2o38bobo65bobo34bo43bo19b2o16bobo62b2o91b2o36b
2o$44bo4bo2bobo4bo6bo2bo19b2o7bo16b2o23bo53b2o91b2o36b2o59b2o2b2o$44b
2o2b2ob2o2bobob2o5bo18b2obo2bob2o4b3o14bo23b2o48b2o2b2o189bobo38b2o31b
2o$46bobobo2bobo10bo3bo14bo4bo2b2o6bo11b3o73bobo38b2o31b2o120bo23b2o
16bo7b2o23bo$46bobobo2bobo10bo3bo18bo23bo75bo23b2o16bo7b2o23bo119b2o
23bo14b3o4b2obo2bob2o19bobo40bo3bo$44b2o2b2ob2o2bobob2o5bo19bobo99b2o
23bo14b3o4b2obo2bob2o19bobo40bo3bo98b3o11bo6b2o2bo4bo12b3o5b2o4bo5bo8b
o18bo2bob3o$44bo4bo2bobo4bo6bo2bo9b2o133b3o11bo6b2o2bo4bo12b3o5b2o4bo
5bo8bo18bo2bob3o99bo23bo16bo2bo8b3o5bobo4bo3bo19bobobo$46bobobobob3ob
2o5b2o8b2o2b2o135bo23bo16bo2bo8b3o5bobo4bo3bo19bobobo124bobo13bo10b4o
8bo3bo3bo17bo$45b2obob3o5bob2o2b3o7bobo164bobo13bo10b4o8bo3bo3bo17bo
146bo9bo10b2o6bobo16b2o$49b2o2bob2obo4b2o10bo181bo9bo10b2o6bobo16b2o
133bo13bobo6b2o37bobo3bo$53bobo3bobo9bo172bo13bobo6b2o37bobo3bo121bobo
3bobo24bo34bobo$59bo17b2o159bobo3bobo24bo34bobo121b2o2bob2obo4b2o69b2o
$69b3obo3bo156b2o2bob2obo4b2o69b2o105b2obob3o5bob2o2b3o67b2o2b2o$68bob
2o6b3o149b2obob3o5bob2o2b3o67b2o2b2o102bobobobob3ob2o5b2o31b2o38bobo$
68b2obo8bo150bobobobob3ob2o5b2o31b2o38bobo99bo4bo2bobo4bo6bo2bo19b2o7b
o16b2o23bo$66bob3o158bo4bo2bobo4bo6bo2bo19b2o7bo16b2o23bo99b2o2b2ob2o
2bobob2o5bo18b2obo2bob2o4b3o14bo23b2o$229b2o2b2ob2o2bobob2o5bo18b2obo
2bob2o4b3o14bo23b2o100bobobo2bobo10bo3bo14bo4bo2b2o6bo11b3o$68bo162bob
obo2bobo10bo3bo14bo4bo2b2o6bo11b3o126bobobo2bobo10bo3bo18bo23bo$231bob
obo2bobo10bo3bo18bo23bo126b2o2b2ob2o2bobob2o5bo19bobo$229b2o2b2ob2o2bo
bob2o5bo19bobo151bo4bo2bobo4bo6bo2bo9b2o$229bo4bo2bobo4bo6bo2bo9b2o
161bobobobob3ob2o5b2o8b2o2b2o$231bobobobob3ob2o5b2o8b2o2b2o160b2obob3o
5bob2o2b3o7bobo$230b2obob3o5bob2o2b3o7bobo168b2o2bob2obo4b2o10bo$234b
2o2bob2obo4b2o10bo173bobo3bobo9bo$238bobo3bobo9bo183bo17b2o$244bo17b2o
186b3obo3bo$254b3obo3bo186bob2o6b3o$253bob2o6b3o183b2obo8bo$253b2obo8b
o181bob3o$251bob3o$449bo$253bo!
muzik wrote:Kiran wrote:Wow, how did you find it? This is the second loafer!
Or blocker, because it involves a block instead of a loaf?
"decapod"
dvgrn wrote:muzik wrote:Kiran wrote:Wow, how did you find it? This is the second loafer!
Or blocker, because it involves a block instead of a loaf?
Sadly, blocker is a name for a well-known p8 oscillator -- no hope of reassigning it to this spaceship. And "block puller" also kind of means something else.
"Blockhauler" might work, or something more abstract that gives a hint that it's even slower than a loafer. Or... how about "decapod", or some other reference to the new c/10 speed?
... It might be a little premature to have "copperhead" on the wiki already, before hearing back from the discoverer. But it's easy enough to change it if necessary.
x = 38, y = 46, rule = B3/S23
15bobo$18bo6b2o$14bo3bo6b3o$14bo3bo5bob2o$18bo5b3o$12bo2bo2bo6bo$2bo7b
obo3b3o$3bo7b2o$b3o$8bo12bo5bobo$9b2o10bobo3b2o$8b2o11b2o5bo$15bo$13bo
bo$bobo10b2o$2b2o6b2o$2bo6bo2bo12b2o3b3o$10bobo11b2o4bo$5b2o4bo14bo4bo
$6b2o9bob2o$5bo10bob2obo$16bo4bo$17b4o2$15b3o2b3o$14bo2bo2bo2bo$9bo4b
2o6b2o4bo$9bo18bo$9bo18bo$13b2o3b2o3b2o$12bobo3b2o3bobo$7bo4bo12bo4bo$
b2o4b2o4bo10bo4b2o4b2o$obo3bobo3b2o10b2o3bobo3bobo$2bo32bo2$14bo2bo2bo
2bo$14b4o2b4o2$7b2o5b2o6b2o5b2o$8b2o4b2o6b2o4b2o$7bo22bo2$10b2o14b2o$
9bobo14bobo$11bo14bo!
#A21C version -1.0
#Probably a CGOL one-liner:
f(&a){a=(ind(a),((-1:2)**2))`@int(x,y){return a[x],y``@int(z,w){\
return z+a[(x,w)`(+)]\:0}}`@bool(x,y){return y==3||(x&&y==4)}}
x = 28, y = 21, rule = B3/S23
6bobo2b2o2b2o2bobo$7b2o2b2o2b2o2b2o$7bo12bo2$10b2o4b2o$10bobo2bobo$12b
o2bo$11bo4bo$4b2o5b6o5b2o$3bo2bo5b4o5bo2bo$3bo2bo14bo2bo$4b2o16b2o$10b
o6bo$4bo5b2o4b2o5bo$4b2o3bobo4bobo3b2o$3bobo16bobo$13b2o$13b2o$3o22b3o
$2bo22bo$bo24bo!
Users browsing this forum: No registered users and 3 guests