ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Spaceship Discussion Thread

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

Re: Spaceship Discussion Thread

Postby Ethanagor » March 21st, 2017, 7:47 pm

drc wrote:
Ethanagor wrote:I may or may not have just discovered a new spaceship. I checked through the wiki and couldn't find it, but tell me if this is already a thing. It is speed 2c/20 and orthogonal. Here is the RLE:

That ship is already known, other rules aren't on the wiki, and it's not in life.


Sorry, I didn't realize I wan't using the life rules... Oops! I can delete the response if you want...
"It's not easy having a good time. Even smiling makes my face ache." - Frank N. Furter
Ethanagor
 
Posts: 78
Joined: March 15th, 2017, 7:34 pm
Location: the Milky Way galaxy

Re: Spaceship Discussion Thread

Postby Goldtiger997 » April 1st, 2017, 9:07 am

Reporting negative result for c/8 diagonal for width 6 asymmetry, width 11 bilateral symmetry, width 12 glide-reflective symmetry, width 13 gutter symmetry, and width 14 skew gutter symmetry.

Also negative result for c/11 width 6 asymmetry and width 13 gutter symmetry.

I could not work out how to get partials from the c/8d search (gfind-pt), but here are some of the more "promising" partials from the c/11 search:

x = 341, y = 33, rule = B3/S23
29bo$3b2o8bo14bobo12bo3bo13bo3bo$2bo2bo6bobo13bobo11bobobobo11bobobobo
17bo3bo$2bo2bo5bo2bo14bo12bobobobo11bobobobo16bobobobo40bo3bo45bo3bo
47bo5bo$12b2o27b2obobob2o9b2obobob2o15bobobobo19bo3bo15bobobobo21bo3bo
17bobobobo45bobo3bobo20bo5bo$2bo38b2obobob2o9b2obobob2o14b2obobob2o17b
obobobo14bobobobo20bobobobo16bobobobo13bo3bo26bo2bo3bo2bo18bobo3bobo
26bo5bo$bobo25b2o10b2obobob2o9b2obobob2o14b2obobob2o17bobobobo13b2obob
ob2o19bobobobo15b2obobob2o12bo3bo27b2o5b2o19bobo3bobo26bo5bo30bo5bo$4b
o9bo13b3o13bobo15bobo17b2obobob2o16b2obobob2o12b2obobob2o18b2obobob2o
14b2obobob2o12bo3bo56bo5bo26b3o3b3o29bo5bo$b2o11bo13bobo12b2ob2o37bobo
19b2obobob2o12b2obobob2o18b2obobob2o14b2obobob2o145bo3bo$2bo9bo2bo13bo
14bobo14bo3bo41b2obobob2o15bobo21b2obobob2o17bobo13b3o3b3o27bo3bo54bo
3bobo3bo$2b2o8b2o28bo5bo10b3o3b3o16bo3bo21bobo45bobo36bo7bo26bobobobo
22b2ob2o27bobo3bobo28b2o5b2o$bob2o7bobo12bobo11bo2bobo2bo10bo5bo15b3o
3b3o39bo3bo45bo3bo12b3o3b3o25bo7bo19bo7bo62b2o5b2o$2obo23b2o54bo5bo19b
o3bo14b3o3b3o20bo3bo16b3o3b3o11bobobobo26b2o5b2o18b2o2bobo2b2o24b3o3b
3o30bo3bo$13bobo11bobo77b3o3b3o13bo5bo19b3o3b3o15bo5bo45b2obobob2o18b
2o2bobo2b2o22b2ob2o3b2ob2o25bobobobobobo$3b2o7bobo13bo28b2o9b2o38bo5bo
41bo5bo34b2o5b2o27b2ob2o20b5ob5o22b2obo5bob2o25bo3bobo3bo$2bo7b2o2bo
12bobo28bo9bo189b4o3b4o24bo7bo29b3ob3o$29bo29b2obobob2o129bobo3bobo51b
3obo3bob3o23b3o3b3o30b2ob2o$28bobo29bo5bo15bo7bo15bo9bo10bob2o3b2obo
42bo3bo12bo7bo26bo5bo20bo7bo24bo3bobo3bo27bo7bo$28b2o51b3o5b3o13bo11bo
9bo9bo16b3o5b3o11bo2bo5bo2bo7b2o7b2o24b3o3b3o20b2o3b2o28b2ob2o29bo2bo
3bo2bo$60bobobobo14bo2bo3bo2bo14bo2b2ob2o2bo38b2o5b2o68b3ob3o21bo5bo
25b2ob2ob2ob2o25b2o9b2o$60b2o3b2o14b3o5b3o15b2o5b2o12b2obobob2o18bo7bo
33b2o5b2o26b3ob3o18bo4bobo4bo22b2obo3bob2o25b2o9b2o$58bo9bo13bo7bo16bo
7bo10b2o3bobo3b2o17b2o3b2o36bo3bo53bobo7bobo21b2ob2o3b2ob2o25bo3bobo3b
o$60bo5bo15b3o3b3o15b[code][/code]2o2bobo2b2o9b2o3bobo3b2o92bo7bo20bo5bo63bo2bobo2b
o$58b3o5b3o14bo5bo17bobo3bobo11bob3ob3obo18bobobobo68bobo3bobo20bobobo
bo63bob2ob2obo$60bo5bo16bo5bo18b2o3b2o11b2o3bobo3b2o19bobo69bo2b2ob2o
2bo16b3o2bobo2b3o62bo3bo$60b3ob3o16b2o3b2o18b2o3b2o14b3ob3o96b2o3b2o
21b2o3b2o64bo5bo$60b3ob3o16bo5bo17bobo3bobo13b2o3b2o21bo3bo98b3ob3o63b
3o3b3o$59bo7bo14b3o3b3o15bobo5bobo9bo3bo3bo3bo17b3ob3o94bob2o5b2obo61b
2o3b2o$59bo2bobo2bo38bo9bo10b3o5b3o15b6ob6o162b2o2bo3bo2b2o$57bo4bobo
4bo10b3o7b3o14b2obobob2o12b2o5b2o18bo2bobo2bo$57b2o3bobo3b2o36bo3bobo
3bo10bo3bobo3bo15b2obobobobob2o$58b2o7b2o14b2o3b2o18b3ob3o$81b5ob5o!


EDIT:

negative result for c/11 width 12 even bilateral symmetry. Here are the most "promising" partials:

x = 181, y = 28, rule = B3/S23
119b2o20b2o31b2o$99b2o14bo8bo14b6o11b2o15b4o$50b2o4b2o8b2o4b2o8b2o4b2o
7b6o11bo10bo13b2o2b2o9b6o13bo2bo$bo3b2o3bo6b2o4b2o6b2o4b2o10b3o4b3o5b
4o4b4o4b4o4b4o5b2o2b2o12bo8bo13bobo2bobo8b2o2b2o13b4o$obo6bobo4b4o2b4o
5b3o2b3o10b3o4b3o36bo2bo2bo2bo11b3o2b3o14bobo2bobo7bobo2bobo11bob2obo$
o2bo4bo2bo3bobob4obobo6bo2bo27bo3bo2bo3bo4bo3bo2bo3bo3bob2o2b2obo10b2o
6b2o13bo6bo7bobo2bobo10bobo2bobo$15bobob4obobo3b3o4b3o25bo2bo2bo2bo6bo
2bo2bo2bo8b2o14bobo4bobo13b2o4b2o7bo6bo10bob4obo$2b3o2b3o6b2obo2bob2o
4bo8bo9bo8bo37bo6bo10bob2o4b2obo11b3o4b3o6bobo2bobo9b2o6b2o$3b2o2b2o9b
ob2obo7bob4obo10bo3b2o3bo6bo2bo2bo2bo21b2ob2ob2o12bo6bo13b3o4b3o5b3o4b
3o8b2o6b2o$2bo6bo8bo4bo6b2ob4ob2o9b4o2b4o5bo10bo5bobo4bobo3b3ob4ob3o9b
2o6b2o27b2o6b2o7b2o8b2o$o10bo4bo2bo2bo2bo5b3o2b3o12bo4bo8b2obo2bob2o5b
o2bo4bo2bo2b2o8b2o34bo2bo7b2o2b4o2b2o6b2obo4bob2o$2bobo2bobo6b2o6b2o6b
o4bo30bo2bo9bobo4bobo4b2o6b2o11bo6bo30bob2obo11b2o4b2o$o2b2o2b2o2bo3bo
b2ob2ob2obo23bobo2bobo7bob2o2b2obo7bo6bo6b2o4b2o10b3o6b3o13b2o2b2o8b2o
4b2o11bo4bo$2bobo2bobo6b3ob2ob3o5bo2b2o2bo10b3o4b3o24b2o2b2o7bo6bo34b
2o4b2o8b2o2b2o$29bobobo2bobobo8bobo4bobo6b3o4b3o7bobo2bobo6bo6bo10b2o
8b2o44bob2o2b2obo$49bobo4bobo6bobo4bobo9b4o7b4o2b4o33bo6bo7b3o2b3o9bob
2o2b2obo$66bob4obo7b2ob4ob2o4bo2bo2bo2bo12b2o2b2o18b2o10bobo2bobo9bob
6obo$65b2o2b2o2b2o8bo4bo6b4o2b4o11b2o4b2o13b3o4b3o6bo6bo$82bo6bo6b2o4b
2o13bob2obo14b2obo2bob2o6b2ob2ob2o$83b2o2b2o6b3o4b3o10b2o2b2o2b2o48b4o
$80bo10bo6b4o14bo6bo15b2o2b2o7bo2bo2bo2bo12b2o$97bo4bo14bo4bo15b8o5bo
3bo2bo3bo6b4o4b4o$137b3o4b3o5b3o4b3o7b2obo4bob2o$136bo2bo4bo2bo22bo8bo
$138b3o2b3o9bo2bo12b2o4b2o$138bo6bo7bo2b2o2bo$153bo6bo$170b3o4b3o!


EDIT 2:

Negative result for c/11 width 11 odd bilateral symmetry.
User avatar
Goldtiger997
 
Posts: 304
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Spaceship Discussion Thread

Postby A for awesome » April 2nd, 2017, 2:31 pm

I have confirmed the absence of even-symmetric full-period 3c/9 ships at width 12 using gfind, and I will likely soon do the same for 2c/8 glide-symmetric full-period width-16. My knightt width-11 asymmetric c/6 search is still going strong at #D 63 after 635 CPU-hours; the last two lines output were
#D 11 45 104 161 216 220 241 267 283 298 317 331 348 359 373 380 385 399 405 431 469 480 515 535 551 572 618 655 780 872 929 1003 1110 1235 1383 1759 2291 2751 2970 3232 3621 4096 4534 4884 5307 5757 6191 6622 7135 7661 8169 8722 9363 10123 10756 11410 12301 13160 14200 15230 16439
#D 63 37 223244119 27 913689402 129 109613574 88 791463671 11 973599409 825355 0 0 0 825783 1 17288
. Could someone explain what they mean?
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Spaceship Discussion Thread

Postby Sokwe » April 2nd, 2017, 3:00 pm

A for awesome wrote:the last two lines output were
#D 11 45 104 161 216 220 241 267 283 298 317 331 348 359 373 380 385 399 405 431 469 480 515 535 551 572 618 655 780 872 929 1003 1110 1235 1383 1759 2291 2751 2970 3232 3621 4096 4534 4884 5307 5757 6191 6622 7135 7661 8169 8722 9363 10123 10756 11410 12301 13160 14200 15230 16439
#D 63 37 223244119 27 913689402 129 109613574 88 791463671 11 973599409 825355 0 0 0 825783 1 17288
. Could someone explain what they mean?

The search space for knightt is a tree where each node represents a "row" of a potential spaceship. I'm not exactly sure what knightt considers to be a single "row", but it is probably similar to gfind: one node in the graph represents 2p actual rows of the spaceship, where p is the period. The root node then represents an empty row (this is the front of the spaceship). If a node in the tree only leads to dead ends, then it is removed from the search.

The first output line shows how many nodes are left at each level in the search. That is, at a depth of 1, there are only 11 possible nodes; at depth 2 there are 45 nodes; etc.

The second output line gives some statistics, but I'm not sure what they all are. You would need to check the source code to figure that out. Obviously, 63 is the current depth of the search. One of the numbers is the current memory usage, but I'm not sure which one.
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Spaceship Discussion Thread

Postby A for awesome » April 2nd, 2017, 3:33 pm

Sokwe wrote:The second output line gives some statistics, but I'm not sure what they all are. You would need to check the source code to figure that out. Obviously, 63 is the current depth of the search. One of the numbers is the current memory usage, but I'm not sure which one.

It's in lines 2392-94 of the source code, it appears:
printf("#D %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n", rownum, numtriesb, numtries, contriesb, contries,
         conmissqb, conmissq, contritsb, contrits, contramissesb, contramisses,
         sortop - sortroads, inrealship, inship, openship, offroad - allroads, trims, numhits);
Unfortunately, while knightt's variable names are much more helpful than, say, those in the original version of zfind, they're still not transparent enough for me to figure out what all they mean (apart from rownum, of course).
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Spaceship Discussion Thread

Postby A for awesome » April 2nd, 2017, 7:42 pm

I'd be surprised if these aren't known, but they're not listed anywhere that I can see:
x = 77, y = 29, rule = B3/S23
48b2o14bo10b2o$2ob2o16b2o4b2o13b2o2bo7b2o9bo3b2o2bo$14bob2ob3o6b3obo3b
2o2bo4bo3bo5b3obo3b2o2bo4bo3bo$o3bo5b2o3bo4b2o6b2o3bo7bobo3b2o6b2o3bo
7bobo3b2o$b2obo8b2obobob2o6b2obobo3bo5bobobo7b2obobo3bo5bobobo$2bobobo
3bo5bobo12bobob2o3b2obob2o11bobob2o3b2obob2o$3b2obob3o2b2obob2o10b2obo
bo7bobo11b2obobo7bobo$4bobo6b2ob2o14b2o7bob2o14b2o7bob2o$7bo6bobo16bo
5bob2o17bo5bob2o$5bo6bo19b2o2bo4bo17b2o2bo4bo$5bo3bobob2o18b2o3bob2o
18b2o3bob2o$6bo2b5o20b3ob2o21b3ob2o$7b3o25bo26bo5$2b2o3bo2bo3bobo2b2ob
2o$6bo4bobo3bo2bobo$2bo3bob2obobobobobob2o$3b2obo4bobo3bobob2o$4bobobo
2bo2b2obobo$5b2obob2o3bobob2o$6bobo8b2o$9bo7bo$7bo6bo2b2o$7bo4bo3b2o$
8bo3bob3o$9b3o3bo!

EDIT: Another:
x = 22, y = 13, rule = B3/S23
4b2o$2o3bo2b2o2bobo2b2ob2o$4bob3o2bo3bo2bobo$o3bob2obobobobobob2o$b2ob
o4bobo3bobob2o$2bobobo2bo2b2obobo$3b2obob2o3bobob2o$4bobo8b2o$7bo7bo$
5bo6bo2b2o$5bo4bo3b2o$6bo3bob3o$7b3o3bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Spaceship Discussion Thread

Postby GUYTU6J » April 4th, 2017, 4:12 am

Remember this "double loafer"?
x = 14, y = 35, rule = B3/S23
2bo8bo$bobo6bobo$o2bo6bo2bo$b2o8b2o$6b2o$4b2o2b2o$4bo4bo$4bo4bo$3b8o$
2b4o2b4o$bo2bo4bo2bo$o3bo4bo3bo$bo2bo4bo2bo3$b3o6b3o3$2bo8bo$b3o6b3o$
2ob3o2b3ob2o$obo2bo2bo2bobo$b2o3b2o3b2o$5bo2bo$bo3b4o3bo2$bo2bo4bo2bo$
2b3o4b3o$2bo8bo$b2o2b4o2b2o$14o$3o8b3o$6b2o$2o3b4o3b2o$o12bo!

I tried to put two front ends side by side and search for a continuation between,and here are all partials whose length > 150:
x = 1456, y = 61, rule = B3/S23
2bo8bo11bo8bo11bo8bo18bo8bo11bo8bo11bo8bo18bo8bo11bo8bo11bo8bo18bo8bo
11bo8bo11bo8bo18bo8bo11bo8bo11bo8bo18bo8bo11bo8bo11bo8bo18bo8bo11bo8bo
11bo8bo18bo8bo11bo8bo11bo8bo18bo8bo11bo8bo11bo8bo18bo8bo11bo8bo11bo8bo
18bo8bo11bo8bo11bo8bo18bo8bo11bo8bo11bo8bo18bo8bo11bo8bo11bo8bo18bo8bo
11bo8bo11bo8bo18bo8bo11bo8bo11bo8bo18bo8bo11bo8bo11bo8bo18bo8bo11bo8bo
11bo8bo18bo8bo11bo8bo11bo8bo18bo8bo11bo8bo11bo8bo18bo8bo11bo8bo11bo8bo
18bo8bo11bo8bo11bo8bo$bobo6bobo9bobo6bobo9bobo6bobo16bobo6bobo9bobo6bo
bo9bobo6bobo16bobo6bobo9bobo6bobo9bobo6bobo16bobo6bobo9bobo6bobo9bobo
6bobo16bobo6bobo9bobo6bobo9bobo6bobo16bobo6bobo9bobo6bobo9bobo6bobo16b
obo6bobo9bobo6bobo9bobo6bobo16bobo6bobo9bobo6bobo9bobo6bobo16bobo6bobo
9bobo6bobo9bobo6bobo16bobo6bobo9bobo6bobo9bobo6bobo16bobo6bobo9bobo6bo
bo9bobo6bobo16bobo6bobo9bobo6bobo9bobo6bobo16bobo6bobo9bobo6bobo9bobo
6bobo16bobo6bobo9bobo6bobo9bobo6bobo16bobo6bobo9bobo6bobo9bobo6bobo16b
obo6bobo9bobo6bobo9bobo6bobo16bobo6bobo9bobo6bobo9bobo6bobo16bobo6bobo
9bobo6bobo9bobo6bobo16bobo6bobo9bobo6bobo9bobo6bobo16bobo6bobo9bobo6bo
bo9bobo6bobo16bobo6bobo9bobo6bobo9bobo6bobo$o2bo6bo2bo7bo2bo6bo2bo7bo
2bo6bo2bo14bo2bo6bo2bo7bo2bo6bo2bo7bo2bo6bo2bo14bo2bo6bo2bo7bo2bo6bo2b
o7bo2bo6bo2bo14bo2bo6bo2bo7bo2bo6bo2bo7bo2bo6bo2bo14bo2bo6bo2bo7bo2bo
6bo2bo7bo2bo6bo2bo14bo2bo6bo2bo7bo2bo6bo2bo7bo2bo6bo2bo14bo2bo6bo2bo7b
o2bo6bo2bo7bo2bo6bo2bo14bo2bo6bo2bo7bo2bo6bo2bo7bo2bo6bo2bo14bo2bo6bo
2bo7bo2bo6bo2bo7bo2bo6bo2bo14bo2bo6bo2bo7bo2bo6bo2bo7bo2bo6bo2bo14bo2b
o6bo2bo7bo2bo6bo2bo7bo2bo6bo2bo14bo2bo6bo2bo7bo2bo6bo2bo7bo2bo6bo2bo
14bo2bo6bo2bo7bo2bo6bo2bo7bo2bo6bo2bo14bo2bo6bo2bo7bo2bo6bo2bo7bo2bo6b
o2bo14bo2bo6bo2bo7bo2bo6bo2bo7bo2bo6bo2bo14bo2bo6bo2bo7bo2bo6bo2bo7bo
2bo6bo2bo14bo2bo6bo2bo7bo2bo6bo2bo7bo2bo6bo2bo14bo2bo6bo2bo7bo2bo6bo2b
o7bo2bo6bo2bo14bo2bo6bo2bo7bo2bo6bo2bo7bo2bo6bo2bo14bo2bo6bo2bo7bo2bo
6bo2bo7bo2bo6bo2bo14bo2bo6bo2bo7bo2bo6bo2bo7bo2bo6bo2bo$b2o8b2o9b2o8b
2o9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b2o16b2o8b2o
9b2o8b2o9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b2o16b
2o8b2o9b2o8b2o9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b
2o16b2o8b2o9b2o8b2o9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b2o16b2o8b2o9b2o8b2o
9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b2o16b2o8b2o9b
2o8b2o9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b2o16b2o
8b2o9b2o8b2o9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b2o
16b2o8b2o9b2o8b2o9b2o8b2o$6b2o19b2o19b2o26b2o19b2o19b2o26b2o19b2o19b2o
26b2o19b2o19b2o26b2o19b2o19b2o26b2o19b2o19b2o26b2o19b2o19b2o26b2o19b2o
19b2o26b2o19b2o19b2o26b2o19b2o19b2o26b2o19b2o19b2o26b2o19b2o19b2o26b2o
19b2o19b2o26b2o19b2o19b2o26b2o19b2o19b2o26b2o19b2o19b2o26b2o19b2o19b2o
26b2o19b2o19b2o26b2o19b2o19b2o26b2o19b2o19b2o26b2o19b2o19b2o$4b2o2b2o
15b2o2b2o15b2o2b2o22b2o2b2o15b2o2b2o15b2o2b2o22b2o2b2o15b2o2b2o15b2o2b
2o22b2o2b2o15b2o2b2o15b2o2b2o22b2o2b2o15b2o2b2o15b2o2b2o22b2o2b2o15b2o
2b2o15b2o2b2o22b2o2b2o15b2o2b2o15b2o2b2o22b2o2b2o15b2o2b2o15b2o2b2o22b
2o2b2o15b2o2b2o15b2o2b2o22b2o2b2o15b2o2b2o15b2o2b2o22b2o2b2o15b2o2b2o
15b2o2b2o22b2o2b2o15b2o2b2o15b2o2b2o22b2o2b2o15b2o2b2o15b2o2b2o22b2o2b
2o15b2o2b2o15b2o2b2o22b2o2b2o15b2o2b2o15b2o2b2o22b2o2b2o15b2o2b2o15b2o
2b2o22b2o2b2o15b2o2b2o15b2o2b2o22b2o2b2o15b2o2b2o15b2o2b2o22b2o2b2o15b
2o2b2o15b2o2b2o22b2o2b2o15b2o2b2o15b2o2b2o22b2o2b2o15b2o2b2o15b2o2b2o$
4bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo
15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo
15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo
22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo
15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo
15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo
22bo4bo15bo4bo15bo4bo$4bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo
15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo
15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo
22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo
15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo
15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo
22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo$3b8o13b8o13b8o20b8o13b8o13b
8o20b8o13b8o13b8o20b8o13b8o13b8o20b8o13b8o13b8o20b8o13b8o13b8o20b8o13b
8o13b8o20b8o13b8o13b8o20b8o13b8o13b8o20b8o13b8o13b8o20b8o13b8o13b8o20b
8o13b8o13b8o20b8o13b8o13b8o20b8o13b8o13b8o20b8o13b8o13b8o20b8o13b8o13b
8o20b8o13b8o13b8o20b8o13b8o13b8o20b8o13b8o13b8o20b8o13b8o13b8o20b8o13b
8o13b8o$2b4o2b4o11b4o2b4o11b4o2b4o18b4o2b4o11b4o2b4o11b4o2b4o18b4o2b4o
11b4o2b4o11b4o2b4o18b4o2b4o11b4o2b4o11b4o2b4o18b4o2b4o11b4o2b4o11b4o2b
4o18b4o2b4o11b4o2b4o11b4o2b4o18b4o2b4o11b4o2b4o11b4o2b4o18b4o2b4o11b4o
2b4o11b4o2b4o18b4o2b4o11b4o2b4o11b4o2b4o18b4o2b4o11b4o2b4o11b4o2b4o18b
4o2b4o11b4o2b4o11b4o2b4o18b4o2b4o11b4o2b4o11b4o2b4o18b4o2b4o11b4o2b4o
11b4o2b4o18b4o2b4o11b4o2b4o11b4o2b4o18b4o2b4o11b4o2b4o11b4o2b4o18b4o2b
4o11b4o2b4o11b4o2b4o18b4o2b4o11b4o2b4o11b4o2b4o18b4o2b4o11b4o2b4o11b4o
2b4o18b4o2b4o11b4o2b4o11b4o2b4o18b4o2b4o11b4o2b4o11b4o2b4o18b4o2b4o11b
4o2b4o11b4o2b4o$bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo
4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9b
o2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo
2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2b
o4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo
16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4b
o2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo
2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2b
o9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo
4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9b
o2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo
2bo9bo2bo4bo2bo9bo2bo4bo2bo$o3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo14bo3bo
4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo14bo3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo14b
o3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo14bo3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3b
o14bo3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo14bo3bo4bo3bo7bo3bo4bo3bo7bo3bo
4bo3bo14bo3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo14bo3bo4bo3bo7bo3bo4bo3bo7b
o3bo4bo3bo14bo3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo14bo3bo4bo3bo7bo3bo4bo
3bo7bo3bo4bo3bo14bo3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo14bo3bo4bo3bo7bo3b
o4bo3bo7bo3bo4bo3bo14bo3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo14bo3bo4bo3bo
7bo3bo4bo3bo7bo3bo4bo3bo14bo3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo14bo3bo4b
o3bo7bo3bo4bo3bo7bo3bo4bo3bo14bo3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo14bo
3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo14bo3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo
14bo3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo$bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo
2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2b
o4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo
9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4b
o2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo
2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2b
o9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo
4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16b
o2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2b
o16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo
4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9b
o2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo3$b3o6b3o9b3o6b3o9b3o6b
3o16b3o6b3o9b3o6b3o9b3o6b3o25b3o9b3o6b3o9b3o6b3o16b3o6b3o9b3o6b3o9b3o
6b3o16b3o6b3o9b3o6b3o9b3o6b3o16b3o6b3o9b3o6b3o9b3o6b3o16b3o6b3o9b3o6b
3o9b3o6b3o16b3o6b3o9b3o6b3o9b3o6b3o16b3o6b3o9b3o6b3o9b3o6b3o16b3o6b3o
9b3o6b3o9b3o6b3o16b3o6b3o9b3o6b3o9b3o6b3o16b3o6b3o9b3o6b3o9b3o6b3o16b
3o6b3o9b3o6b3o9b3o6b3o16b3o6b3o9b3o6b3o9b3o6b3o16b3o6b3o9b3o6b3o9b3o6b
3o16b3o6b3o9b3o6b3o9b3o6b3o16b3o6b3o9b3o6b3o9b3o6b3o16b3o6b3o9b3o6b3o
9b3o6b3o16b3o6b3o9b3o6b3o9b3o6b3o16b3o6b3o9b3o6b3o9b3o6b3o16b3o6b3o9b
3o6b3o9b3o6b3o$141b3o2$11bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8bo11bo
36bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8b
o11bo36bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8bo11bo36bo
11bo8bo11bo36bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8bo11b
o36bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8bo11bo$10b3o9b
3o6b3o9b3o34b3o9b3o6b3o9b3o34b3o9b3o6b3o9b3o34b3o9b3o6b3o9b3o34b3o9b3o
6b3o9b3o34b3o9b3o6b3o9b3o34b3o9b3o6b3o9b3o34b3o9b3o6b3o9b3o34b3o9b3o6b
3o9b3o34b3o9b3o6b3o9b3o34b3o9b3o6b3o9b3o34b3o9b3o6b3o9b3o34b3o9b3o6b3o
9b3o34b3o9b3o6b3o9b3o34b3o9b3o6b3o9b3o34b3o9b3o6b3o9b3o34b3o9b3o6b3o9b
3o34b3o9b3o6b3o9b3o34b3o9b3o6b3o9b3o34b3o9b3o6b3o9b3o34b3o9b3o6b3o9b3o
$8b3ob2o7b2ob3o2b3ob2o7b2ob3o30b3ob2o7b2ob3o2b3ob2o7b2ob3o30b3ob2o7b2o
b3o2b3ob2o7b2ob3o30b3ob2o7b2ob3o2b3ob2o7b2ob3o30b3ob2o7b2ob3o2b3ob2o7b
2ob3o30b3ob2o7b2ob3o2b3ob2o7b2ob3o30b3ob2o7b2ob3o2b3ob2o7b2ob3o30b3ob
2o7b2ob3o2b3ob2o7b2ob3o30b3ob2o7b2ob3o2b3ob2o7b2ob3o30b3ob2o7b2ob3o2b
3ob2o7b2ob3o30b3ob2o7b2ob3o2b3ob2o7b2ob3o30b3ob2o7b2ob3o2b3ob2o7b2ob3o
30b3ob2o7b2ob3o2b3ob2o7b2ob3o30b3ob2o7b2ob3o2b3ob2o7b2ob3o30b3ob2o7b2o
b3o2b3ob2o7b2ob3o30b3ob2o7b2ob3o2b3ob2o7b2ob3o30b3ob2o7b2ob3o2b3ob2o7b
2ob3o30b3ob2o7b2ob3o2b3ob2o7b2ob3o30b3ob2o7b2ob3o2b3ob2o7b2ob3o30b3ob
2o7b2ob3o2b3ob2o7b2ob3o30b3ob2o7b2ob3o2b3ob2o7b2ob3o$8b2obobo7bobob2o
2b2obobo7bobob2o30b2obobo7bobob2o2b2obobo7bobob2o30b2obobo7bobob2o2b2o
bobo7bobob2o30b2obobo7bobob2o2b2obobo7bobob2o30b2obobo7bobob2o2b2obobo
7bobob2o30b2obobo7bobob2o2b2obobo7bobob2o30b2obobo7bobob2o2b2obobo7bob
ob2o30b2obobo7bobob2o2b2obobo7bobob2o30b2obobo7bobob2o2b2obobo7bobob2o
30b2obobo7bobob2o2b2obobo7bobob2o30b2obobo7bobob2o2b2obobo7bobob2o30b
2obobo7bobob2o2b2obobo7bobob2o30b2obobo7bobob2o2b2obobo7bobob2o30b2obo
bo7bobob2o2b2obobo7bobob2o30b2obobo7bobob2o2b2obobo7bobob2o30b2obobo7b
obob2o2b2obobo7bobob2o30b2obobo7bobob2o2b2obobo7bobob2o30b2obobo7bobob
2o2b2obobo7bobob2o30b2obobo7bobob2o2b2obobo7bobob2o30b2obobo7bobob2o2b
2obobo7bobob2o30b2obobo7bobob2o2b2obobo7bobob2o$9b4o9b4o4b4o9b4o32b4o
9b4o4b4o9b4o32b4o9b4o4b4o9b4o32b4o9b4o4b4o9b4o32b4o9b4o4b4o9b4o32b4o9b
4o4b4o9b4o32b4o9b4o4b4o9b4o32b4o9b4o4b4o9b4o32b4o9b4o4b4o9b4o32b4o9b4o
4b4o9b4o32b4o9b4o4b4o9b4o32b4o9b4o4b4o9b4o32b4o9b4o4b4o9b4o32b4o9b4o4b
4o9b4o32b4o9b4o4b4o9b4o32b4o9b4o4b4o9b4o32b4o9b4o4b4o9b4o32b4o9b4o4b4o
9b4o32b4o9b4o4b4o9b4o32b4o9b4o4b4o9b4o32b4o9b4o4b4o9b4o$13bobo3bobo12b
obo3bobo40bobo3bobo12bobo3bobo40bobo3bobo12bobo3bobo40bobo3bobo12bobo
3bobo40bobo3bobo12bobo3bobo40bobo3bobo12bobo3bobo40bobo3bobo12bobo3bob
o40bobo3bobo12bobo3bobo40bobo3bobo12bobo3bobo40bobo3bobo12bobo3bobo40b
obo3bobo12bobo3bobo40bobo3bobo12bobo3bobo40bobo3bobo12bobo3bobo40bobo
3bobo12bobo3bobo40bobo3bobo12bobo3bobo40bobo3bobo12bobo3bobo40bobo3bob
o12bobo3bobo40bobo3bobo12bobo3bobo40bobo3bobo12bobo3bobo40bobo3bobo12b
obo3bobo40bobo3bobo12bobo3bobo$13bobo3bobo12bobo3bobo40b3o3b3o12b3o3b
3o40b3o3b3o12b3o3b3o40b3o3b3o12b3o3b3o40b3o3b3o12b3o3b3o40b3o3b3o12b3o
3b3o40b3o3b3o12b3o3b3o40b3o3b3o12b3o3b3o40b3o3b3o12b3o3b3o40b3o3b3o12b
3o3b3o40b3o3b3o12b3o3b3o40b3o3b3o12b3o3b3o40b3o3b3o12b3o3b3o40b3o3b3o
12b3o3b3o40b3o3b3o12b3o3b3o40b3o3b3o12b3o3b3o40b3o3b3o12b3o3b3o40b3o3b
3o12b3o3b3o40b3o3b3o12b3o3b3o40b3o3b3o12b3o3b3o40b3o3b3o12b3o3b3o$9bo
6bobo6bo4bo6bobo6bo32bo6bobo6bo4bo6bobo6bo32bo5bo3bo5bo4bo5bo3bo5bo32b
o5bo3bo5bo4bo5bo3bo5bo32bo5bo3bo5bo4bo5bo3bo5bo32bo5bo3bo5bo4bo5bo3bo
5bo32bo5bo3bo5bo4bo5bo3bo5bo32bo5bo3bo5bo4bo5bo3bo5bo32bo5bo3bo5bo4bo
5bo3bo5bo32bo5bo3bo5bo4bo5bo3bo5bo32bo5bo3bo5bo4bo5bo3bo5bo32bo5bo3bo
5bo4bo5bo3bo5bo32bo5bo3bo5bo4bo5bo3bo5bo32bo5bo3bo5bo4bo5bo3bo5bo32bo
5bo3bo5bo4bo5bo3bo5bo32bo5bo3bo5bo4bo5bo3bo5bo32bo5bo3bo5bo4bo5bo3bo5b
o32bo5bo3bo5bo4bo5bo3bo5bo32bo5bo3bo5bo4bo5bo3bo5bo32bo5bo3bo5bo4bo5bo
3bo5bo32bo5bo3bo5bo4bo5bo3bo5bo$10bob2o2bobo2b2obo6bob2o2bobo2b2obo34b
ob3o5b3obo6bob3o5b3obo37bo7bo12bo7bo37bo2bo7bo2bo6bo2bo7bo2bo34bo2bo7b
o2bo6bo2bo7bo2bo34bo2bo7bo2bo6bo2bo7bo2bo34bo2bo7bo2bo6bo2bo7bo2bo34bo
2bo7bo2bo6bo2bo7bo2bo34bo2bo7bo2bo6bo2bo7bo2bo34bo2bo7bo2bo6bo2bo7bo2b
o34bo2bo7bo2bo6bo2bo7bo2bo34bo2bo7bo2bo6bo2bo7bo2bo34bo2bo7bo2bo6bo2bo
7bo2bo34bo2bo7bo2bo6bo2bo7bo2bo34bo2bo7bo2bo6bo2bo7bo2bo34bo2bo7bo2bo
6bo2bo7bo2bo34bo2bo7bo2bo6bo2bo7bo2bo34bo2bo7bo2bo6bo2bo7bo2bo37bo7bo
12bo7bo40bo7bo12bo7bo40bo7bo12bo7bo$15b2ob2o16b2ob2o42bobo3bobo12bobo
3bobo37bo2bo7bo2bo6bo2bo7bo2bo33bo4bo5bo4bo4bo4bo5bo4bo32bo4bo5bo4bo4b
o4bo5bo4bo36bo7bo12bo7bo40bo7bo12bo7bo41bo5bo14bo5bo42bo5bo14bo5bo42bo
5bo14bo5bo42bo5bo14bo5bo42bo5bo14bo5bo42bo5bo14bo5bo42bo5bo14bo5bo42bo
5bo14bo5bo42bo5bo14bo5bo42bo5bo14bo5bo42bo5bo14bo5bo42bo5bo14bo5bo42bo
5bo14bo5bo42bo5bo14bo5bo$14b2o3b2o14b2o3b2o38bo3bo5bo3bo6bo3bo5bo3bo
34bo2b2o5b2o2bo6bo2b2o5b2o2bo33bo2bo9bo2bo4bo2bo9bo2bo35bo9bo10bo9bo
37bo11bo8bo11bo36bo11bo8bo11bo37bo9bo10bo9bo38bo9bo10bo9bo38bo9bo10bo
9bo38bo9bo10bo9bo38bo9bo10bo9bo38bo9bo10bo9bo38bo9bo10bo9bo38bo9bo10bo
9bo38bo9bo10bo9bo38bo9bo10bo9bo38bo9bo10bo9bo36bobo9bobo6bobo9bobo34bo
bo9bobo6bobo9bobo34bobo9bobo6bobo9bobo$11bobo7bobo8bobo7bobo33b2obobo
7bobob2o2b2obobo7bobob2o31bobob2o5b2obobo4bobob2o5b2obobo32bobo11bobo
4bobo11bobo32bobo11bobo4bobo11bobo174bo3bo3bo3bo8bo3bo3bo3bo36bo3bo3bo
3bo8bo3bo3bo3bo36bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8b
o11bo36bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8bo11bo36bo
11bo8bo11bo35bo13bo6bo13bo34bo13bo6bo13bo34bo13bo6bo13bo$9b2o3bo5bo3b
2o4b2o3bo5bo3b2o32bo2b2o7b2o2bo4bo2b2o7b2o2bo32bobobobo3bobobobo4bobob
obo3bobobobo34b2o9b2o8b2o9b2o38bobo3bobo12bobo3bobo37b3o9b3o6b3o9b3o
34b3o9b3o6b3o9b3o34b5o5b5o6b5o5b5o34b5o5b5o6b5o5b5o34b4o7b4o6b4o7b4o
34b5o5b5o6b5o5b5o34b5o5b5o6b5o5b5o34b5o5b5o6b5o5b5o34b5o5b5o6b5o5b5o
34b5o5b5o6b5o5b5o34b5o5b5o6b5o5b5o34b5o5b5o6b5o5b5o34b5o5b5o6b5o5b5o
35bo11bo8bo11bo36bo11bo8bo11bo36bo11bo8bo11bo$12b2o7b2o10b2o7b2o36bobo
9bobo6bobo9bobo32bo4bobo3bobo4bo2bo4bobo3bobo4bo33bobo7bobo8bobo7bobo
33b2o3bo2bobo2bo3b2o2b2o3bo2bobo2bo3b2o31bo3bob2ob2obo3bo4bo3bob2ob2ob
o3bo38b2ob2o16b2ob2o39bo13bo6bo13bo34bo13bo6bo13bo35bo2bo5bo2bo8bo2bo
5bo2bo35bo3bo5bo3bo6bo3bo5bo3bo34bo4bo3bo4bo6bo4bo3bo4bo34bo4bo3bo4bo
6bo4bo3bo4bo34bo4bo3bo4bo6bo4bo3bo4bo34bo4bo3bo4bo6bo4bo3bo4bo34bo4bo
3bo4bo6bo4bo3bo4bo34bo4bo3bo4bo6bo4bo3bo4bo34bo4bo3bo4bo6bo4bo3bo4bo
35b3o7b3o8b3o7b3o36b3o7b3o8b3o7b3o36b3o7b3o8b3o7b3o$9b3o11b3o4b3o11b3o
32b6o5b6o4b6o5b6o32bob5o3b5obo4bob5o3b5obo101b2o2bo2bo3bo2bo2b2o2b2o2b
o2bo3bo2bo2b2o33b2o2b2ob2o2b2o8b2o2b2ob2o2b2o35bo2bobo3bobo2bo6bo2bobo
3bobo2bo33b2obo2bo3bo2bob2o4b2obo2bo3bo2bob2o32b2obobo5bobob2o4b2obobo
5bobob2o36bo7bo12bo7bo36b2o2bo7bo2b2o4b2o2bo7bo2b2o32b3o2bo5bo2b3o4b3o
2bo5bo2b3o32b3o2bo5bo2b3o4b3o2bo5bo2b3o32b3o2bo5bo2b3o4b3o2bo5bo2b3o
32b3o2bo5bo2b3o4b3o2bo5bo2b3o32b3o2bo5bo2b3o4b3o2bo5bo2b3o32b3o2bo5bo
2b3o4b3o2bo5bo2b3o32b3o2bo5bo2b3o4b3o2bo5bo2b3o34b3o7b3o8b3o7b3o36b3o
7b3o8b3o7b3o36b3o7b3o8b3o7b3o$13b2o5b2o12b2o5b2o36b2o3bo5bo3b2o4b2o3bo
5bo3b2o34b2ob2o3b2ob2o8b2ob2o3b2ob2o35bo13bo6bo13bo33bobo11bobo4bobo
11bobo31b2o3bo2bobo2bo3b2o2b2o3bo2bobo2bo3b2o33bo2bo5bo2bo8bo2bo5bo2bo
35bo3bobobobo3bo6bo3bobobobo3bo36bobobobobobo10bobobobobobo38bob2o3b2o
bo10bob2o3b2obo35b2ob2o7b2ob2o4b2ob2o7b2ob2o37bo5bo14bo5bo42bo5bo14bo
5bo42bo5bo14bo5bo42bo5bo14bo5bo42bo5bo14bo5bo42bo5bo14bo5bo42bo5bo14bo
5bo39bo2bo5bo2bo8bo2bo5bo2bo36bobo7bobo8bobo7bobo36bobo7bobo8bobo7bobo
$9bo2bo2bo3bo2bo2bo4bo2bo2bo3bo2bo2bo38b2ob2o16b2ob2o109b6o3b6o6b6o3b
6o35bo3bo3bo3bo8bo3bo3bo3bo35b3ob3ob3ob3o6b3ob3ob3ob3o35bo3bo3bo3bo8bo
3bo3bo3bo34b2o4b2ob2o4b2o4b2o4b2ob2o4b2o37bobobobo14bobobobo39b2obobob
obob2o8b2obobobobob2o35bobo9bobo6bobo9bobo32bo3b2o7b2o3bo2bo3b2o7b2o3b
o30bo3b2o7b2o3bo2bo3b2o7b2o3bo30bo3b2o7b2o3bo2bo3b2o7b2o3bo30bo3b2o7b
2o3bo2bo3b2o7b2o3bo30bo3b2o7b2o3bo2bo3b2o7b2o3bo30bo3b2o7b2o3bo2bo3b2o
7b2o3bo30bo3b2o7b2o3bo2bo3b2o7b2o3bo33bo11bo8bo11bo36bo11bo8bo11bo36bo
11bo8bo11bo$8bobo4bo3bo4bobo2bobo4bo3bo4bobo32b2o4bobo4b2o6b2o4bobo4b
2o38b2o3b2o14b2o3b2o40b3o5b3o10b3o5b3o39bo7bo12bo7bo38bo3bo3bo3bo8bo3b
o3bo3bo37bo9bo10bo9bo35b2o3bobobobo3b2o4b2o3bobobobo3b2o34bo4bobo4bo8b
o4bobo4bo35bobo3bobo3bobo6bobo3bobo3bobo34b2o11b2o6b2o11b2o32bo3bobo5b
obo3bo2bo3bobo5bobo3bo30bo3bobo5bobo3bo2bo3bobo5bobo3bo30bo3bobo5bobo
3bo2bo3bobo5bobo3bo30bo3bobo5bobo3bo2bo3bobo5bobo3bo30bo3bobo5bobo3bo
2bo3bobo5bobo3bo30bo3bobo5bobo3bo2bo3bobo5bobo3bo30bo3bobo5bobo3bo2bo
3bobo5bobo3bo32b4obo3bob4o6b4obo3bob4o34b3ob2o3b2ob3o6b3ob2o3b2ob3o36b
o9bo10bo9bo$8bo3bo2bo3bo2bo3bo2bo3bo2bo3bo2bo3bo32bo3bobobobo3bo6bo3bo
bobobo3bo34b2obo7bob2o6b2obo7bob2o104bo2bo7bo2bo6bo2bo7bo2bo36b4o3b4o
10b4o3b4o42bobo18bobo39b2ob3o5b3ob2o4b2ob3o5b3ob2o33bo2bo2bobo2bo2bo6b
o2bo2bobo2bo2bo34bo2bo2bobo2bo2bo6bo2bo2bobo2bo2bo105bo2bobobobo2bo8bo
2bobobobo2bo36bo2bobobobo2bo8bo2bobobobo2bo36bo2bobobobo2bo8bo2bobobob
o2bo36bo2bobobobo2bo8bo2bobobobo2bo36bo2bobobobo2bo8bo2bobobobo2bo36bo
2bobobobo2bo8bo2bobobobo2bo36bo2bobobobo2bo8bo2bobobobo2bo34b2o2b2obob
ob2o2b2o4b2o2b2obobob2o2b2o34bo4bobo4bo8bo4bobo4bo37b2o7b2o10b2o7b2o$
12bob2o3b2obo10bob2o3b2obo36bob3obobob3obo6bob3obobob3obo34b2o4bobo4b
2o6b2o4bobo4b2o34bo2bo7bo2bo6bo2bo7bo2bo34b2obob2ob2obob2o6b2obob2ob2o
bob2o39bo3bo16bo3bo40bo3b2ob2o3bo8bo3b2ob2o3bo105bo2bob2ob2obo2bo6bo2b
ob2ob2obo2bo36bo3bobo3bo10bo3bobo3bo35bo3bo7bo3bo4bo3bo7bo3bo32bob4obo
bob4obo4bob4obobob4obo32bob4obobob4obo4bob4obobob4obo32bob4obobob4obo
4bob4obobob4obo32bob4obobob4obo4bob4obobob4obo32bob4obobob4obo4bob4obo
bob4obo32bob4obobob4obo4bob4obobob4obo32bob4obobob4obo4bob4obobob4obo
39bobo18bobo42b2o2bobo2b2o10b2o2bobo2b2o38bo9bo10bo9bo$10b2o2bo5bo2b2o
6b2o2bo5bo2b2o33bo6bobo6bo4bo6bobo6bo39bobo18bobo41b4o5b4o8b4o5b4o38bo
b2ob2obo12bob2ob2obo38b4o5b4o8b4o5b4o36b2o9b2o8b2o9b2o37bob3ob3obo10bo
b3ob3obo39bo2bobo2bo12bo2bobo2bo38b3o2bobo2b3o8b3o2bobo2b3o40b2ob2o16b
2ob2o39bobob2o3b2obobo6bobob2o3b2obobo34bobob2o3b2obobo6bobob2o3b2obob
o34bobob2o3b2obobo6bobob2o3b2obobo34bobob2o3b2obobo6bobob2o3b2obobo34b
obob2o3b2obobo6bobob2o3b2obobo34bobob2o3b2obobo6bobob2o3b2obobo34bobob
2o3b2obobo6bobob2o3b2obobo40bobo18bobo46bobo18bobo39bo4bo5bo4bo4bo4bo
5bo4bo$9b3o3bo3bo3b3o4b3o3bo3bo3b3o32bob2obo5bob2obo4bob2obo5bob2obo
34b2o3bobo3b2o8b2o3bobo3b2o36bo3bo3bo3bo8bo3bo3bo3bo39bobobobo14bobobo
bo38b5o5b5o6b5o5b5o35b3o7b3o8b3o7b3o36b4o5b4o8b4o5b4o34bo4bobobobo4bo
4bo4bobobobo4bo35b2o7b2o10b2o7b2o34b2obobobo3bobobob2o2b2obobobo3bobob
ob2o36bo5bo14bo5bo42bo5bo14bo5bo42bo5bo14bo5bo42bo5bo14bo5bo42bo5bo14b
o5bo42bo5bo14bo5bo42bo5bo14bo5bo40b2obo3bob2o10b2obo3bob2o42bobo18bobo
39bo5bo3bo5bo4bo5bo3bo5bo$9bo15bo4bo15bo31b2ob6ob6ob2o2b2ob6ob6ob2o31b
2o3bo5bo3b2o4b2o3bo5bo3b2o34b2o2bo3bo2b2o8b2o2bo3bo2b2o37b2o7b2o10b2o
7b2o35b2o13b2o4b2o13b2o36b3o3b3o12b3o3b3o37bobob2o3b2obobo6bobob2o3b2o
bobo33b2obobobobobobob2o4b2obobobobobobob2o31b2o15b2o2b2o15b2o33bob2o
5b2obo8bob2o5b2obo36b4o5b4o8b4o5b4o36b4o5b4o8b4o5b4o36b4o5b4o8b4o5b4o
36b4o5b4o8b4o5b4o36b4o5b4o8b4o5b4o36b4o5b4o8b4o5b4o36b4o5b4o8b4o5b4o
35b2o2bo5bo2b2o6b2o2bo5bo2b2o37b2o5b2o12b2o5b2o36b6o5b6o4b6o5b6o$9bo4b
2o3b2o4bo4bo4b2o3b2o4bo31b2obobo7bobob2o2b2obobo7bobob2o32b6o3b6o6b6o
3b6o36bo2bo3bo2bo10bo2bo3bo2bo36b3obo5bob3o6b3obo5bob3o34b2o3b2ob2o3b
2o6b2o3b2ob2o3b2o33bo2b4o3b4o2bo4bo2b4o3b4o2bo35bo2bo3bo2bo10bo2bo3bo
2bo35b3o2bobobobo2b3o4b3o2bobobobo2b3o106bo7bo12bo7bo38bo11bo8bo11bo
36bo11bo8bo11bo35bo13bo6bo13bo37bo7bo12bo7bo40bo7bo12bo7bo176bo3b2o5b
2o3bo4bo3b2o5b2o3bo35b3o5b3o10b3o5b3o$86bobo18bobo42bo3bobo3bo10bo3bob
o3bo36b2o11b2o6b2o11b2o37b2o5b2o12b2o5b2o36b2obob3ob3obob2o4b2obob3ob
3obob2o31b3o4bo3bo4b3o2b3o4bo3bo4b3o35bo7bo12bo7bo37bobobobobobobobo6b
obobobobobobobo105bobo7bobo8bobo7bobo37bobo5bobo10bobo5bobo38b2o7b2o
10b2o7b2o36b2o11b2o6b2o11b2o35bo11bo8bo11bo36bo11bo8bo11bo36b3o7b3o8b
3o7b3o36b2ob2o3b2ob2o8b2ob2o3b2ob2o106bo11bo8bo11bo37b2obo3bob2o10b2ob
o3bob2o$149b3o4bobo4b3o4b3o4bobo4b3o32b2ob2obo3bob2ob2o4b2ob2obo3bob2o
b2o36bo7bo12bo7bo39b2ob2ob2ob2o10b2ob2ob2ob2o34b3o13b3o2b3o13b3o34bo2b
o3bo2bo10bo2bo3bo2bo38bo3bobo3bo10bo3bobo3bo107b2o9b2o8b2o9b2o35bobobo
5bobobo6bobobo5bobobo35bo2bo5bo2bo8bo2bo5bo2bo105bo2b2o5b2o2bo6bo2b2o
5b2o2bo34bo2b2o5b2o2bo6bo2b2o5b2o2bo32b2o4bo5bo4b2o2b2o4bo5bo4b2o32b2o
b3o3b3ob2o6b2ob3o3b3ob2o105bobobo3bobobo8bobobo3bobobo37bobobobobobo
10bobobobobobo$218bo4bobo3bobo4bo2bo4bobo3bobo4bo31b2o5bobo5b2o4b2o5bo
bo5b2o32bo5bo3bo5bo4bo5bo3bo5bo33bo3bobobobo3bo6bo3bobobobo3bo32b2o4b
2o3b2o4b2o2b2o4b2o3b2o4b2o30bo4b2o5b2o4bo2bo4b2o5b2o4bo102bo2bo7bo2bo
6bo2bo7bo2bo33b4obo5bob4o4b4obo5bob4o33b2o2bo5bo2b2o6b2o2bo5bo2b2o105b
o4bobo4bo8bo4bobo4bo36bobobo3bobobo8bobobo3bobobo33b2o4b2o3b2o4b2o2b2o
4b2o3b2o4b2o32b2o11b2o6b2o11b2o$218b3o2b2o5b2o2b3o2b3o2b2o5b2o2b3o31b
2o5bobo5b2o4b2o5bobo5b2o31bo7bobo7bo2bo7bobo7bo33b2ob3ob3ob2o8b2ob3ob
3ob2o33b2o3bo2bobo2bo3b2o2b2o3bo2bobo2bo3b2o33b5o3b5o8b5o3b5o105b2obo
7bob2o6b2obo7bob2o33b2o4bo3bo4b2o4b2o4bo3bo4b2o33b2ob2o5b2ob2o6b2ob2o
5b2ob2o105b2obo5bob2o8b2obo5bob2o36bo3bo3bo3bo8bo3bo3bo3bo34bo6bobo6bo
4bo6bobo6bo34b2o9b2o8b2o9b2o$292bo3bobo3bo10bo3bobo3bo34b2o4b2o3b2o4b
2o2b2o4b2o3b2o4b2o31bo5b2ob2o5bo4bo5b2ob2o5bo33bob2o2bobo2b2obo6bob2o
2bobo2b2obo36bobo5bobo10bobo5bobo107bobo7bobo8bobo7bobo40bo3bo16bo3bo
38b2obobo5bobob2o4b2obobo5bobob2o109bobo18bobo42b3o5b3o10b3o5b3o39b2ob
obob2o12b2obobob2o39bo9bo10bo9bo$292b2o7b2o10b2o7b2o35bo6bobo6bo4bo6bo
bo6bo35bo2b2ob2o2bo10bo2b2ob2o2bo34b3ob3obobob3ob3o2b3ob3obobob3ob3o
30b2o3bobo3bobo3b2o2b2o3bobo3bobo3b2o102bo2bo7bo2bo6bo2bo7bo2bo39b2ob
2o16b2ob2o38bo2b2o7b2o2bo4bo2b2o7b2o2bo102b2o2b2o5b2o2b2o4b2o2b2o5b2o
2b2o34b2o2bo3bo2b2o8b2o2bo3bo2b2o34b2o5bobo5b2o4b2o5bobo5b2o32b3o2b3ob
3o2b3o4b3o2b3ob3o2b3o$429b2o13b2o4b2o13b2o33bo3b2o3b2o3bo6bo3b2o3b2o3b
o34bo4bo3bo4bo6bo4bo3bo4bo103b2o2bo7bo2b2o4b2o2bo7bo2b2o33b3o9b3o6b3o
9b3o33bo5bo3bo5bo4bo5bo3bo5bo102b2o13b2o4b2o13b2o37b2o3b2o14b2o3b2o37b
o4bobobobo4bo4bo4bobobobo4bo32b2o4b2ob2o4b2o4b2o4b2ob2o4b2o$502b2o7b2o
10b2o7b2o36bob2obo3bob2obo6bob2obo3bob2obo103bo15bo4bo15bo33bo2bo7bo2b
o6bo2bo7bo2bo32bo5b2o3b2o5bo2bo5b2o3b2o5bo103bo2bo5bo2bo8bo2bo5bo2bo
38bobo3bobo12bobo3bobo35b2ob2o3bobo3b2ob2o2b2ob2o3bobo3b2ob2o30bo2bo2b
3ob3o2bo2bo2bo2bo2b3ob3o2bo2bo$501bo2b2o3b2o2bo8bo2b2o3b2o2bo34bobo11b
obo4bobo11bobo102bob5o3b5obo4bob5o3b5obo33bo3bo5bo3bo6bo3bo5bo3bo35bob
o7bobo8bobo7bobo106bo3bo3bo3bo8bo3bo3bo3bo35b2ob4ob4ob2o6b2ob4ob4ob2o
33bob2o3bobo3b2obo4bob2o3bobo3b2obo31bobo2b3o3b3o2bobo2bobo2b3o3b3o2bo
bo$503bob2ob2obo12bob2ob2obo35bob4ob2ob2ob4obo2bob4ob2ob2ob4obo100b3o
13b3o2b3o13b3o35bo7bo12bo7bo37bo5bobo5bo6bo5bobo5bo104bo2b3o3b3o2bo6bo
2b3o3b3o2bo33bo2bob3ob3obo2bo4bo2bob3ob3obo2bo31b3o2bobo3bobo2b3o2b3o
2bobo3bobo2b3o$708b3o2bo7bo2b3o2b3o2bo7bo2b3o31b3o4bobo4b3o4b3o4bobo4b
3o33b2obo2bobo2bob2o6b2obo2bobo2bob2o103b5o2bobo2b5o4b5o2bobo2b5o33bo
4bo3bo4bo6bo4bo3bo4bo108bo5bo14bo5bo$850bo3bo5bo3bo6bo3bo5bo3bo103b2o
13b2o4b2o13b2o33b3o9b3o6b3o9b3o33bob2ob2o3b2ob2obo4bob2ob2o3b2ob2obo
32bo3b2o5b2o3bo4bo3b2o5b2o3bo$988b2o3bo2bobo2bo3b2o2b2o3bo2bobo2bo3b2o
31bo3bo7bo3bo4bo3bo7bo3bo37b2o3b2o14b2o3b2o36b2obob2o5b2obob2o2b2obob
2o5b2obob2o$1059bob6ob6obo4bob6ob6obo33bobo2bo3bo2bobo6bobo2bo3bo2bobo
32b2o2bo9bo2b2o2b2o2bo9bo2b2o$1129bo2bo9bo2bo4bo2bo9bo2bo33bobobo5bobo
bo6bobobo5bobobo$1128bo5bo5bo5bo2bo5bo5bo5bo34b3o5b3o10b3o5b3o$1129bo
3bobo3bobo3bo4bo3bobo3bobo3bo33b2o2b2o3b2o2b2o6b2o2b2o3b2o2b2o$1198b2o
b2obo5bob2ob2o2b2ob2obo5bob2ob2o$1198b3obo9bob3o2b3obo9bob3o!

Another attempt
x = 54, y = 37, rule = B3/S23
2bo8bo10bo8bo10bo8bo$bobo6bobo8bobo6bobo8bobo6bobo$o2bo6bo2bo6bo2bo6bo
2bo6bo2bo6bo2bo$b2o8b2o8b2o8b2o8b2o8b2o$6b2o18b2o18b2o$4b2o2b2o14b2o2b
2o14b2o2b2o$4bo4bo14bo4bo14bo4bo$4bo4bo14bo4bo14bo4bo$3b8o12b8o12b8o$
2b4o2b4o10b4o2b4o10b4o2b4o$bo2bo4bo2bo8bo2bo4bo2bo8bo2bo4bo2bo$o3bo4bo
3bo6bo3bo4bo3bo6bo3bo4bo3bo$bo2bo4bo2bo8bo2bo4bo2bo8bo2bo4bo2bo3$b3o6b
3o8b3o6b3o8b3o6b3o3$2bo8bo10bo8bo10bo8bo$b3o6b3o8b3o6b3o8b3o6b3o$8b3ob
2o6b2ob3o2b3ob2o6b2ob3o$8b2obobo6bobob2o2b2obobo6bobob2o$9b4o8b4o4b4o
8b4o$13bob4obo12bob4obo$13b3o2b3o12b3o2b3o$9bo6b2o6bo4bo6b2o6bo$10bob
4o2b4obo6bob4o2b4obo$11bobo6bobo8bobo6bobo$12bo2bo2bo2bo10bo2bo2bo2bo$
10b4obo2bob4o6b4obo2bob4o2$9bo2bo8bo2bo4bo2bo8bo2bo$10bo2b2o4b2o2bo6bo
2b2o4b2o2bo$10b3o2bo2bo2b3o6b3o2bo2bo2b3o$15bo2bo16bo2bo$9bo5bo2bo5bo
4bo5bo2bo5bo$9b2o3b6o3b2o4b2o3b6o3b2o!

EDIT:Just did some asymmetric search
x = 199, y = 39, rule = B3/S23
5bo8bo11bo8bo11bo8bo18bo8bo11bo8bo11bo8bo18bo8bo11bo8bo11bo8bo$4bobo6b
obo9bobo6bobo9bobo6bobo16bobo6bobo9bobo6bobo9bobo6bobo16bobo6bobo9bobo
6bobo9bobo6bobo$3bo2bo6bo2bo7bo2bo6bo2bo7bo2bo6bo2bo14bo2bo6bo2bo7bo2b
o6bo2bo7bo2bo6bo2bo14bo2bo6bo2bo7bo2bo6bo2bo7bo2bo6bo2bo$4b2o8b2o9b2o
8b2o9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b2o16b2o8b2o9b2o8b2o9b2o8b2o$9b2o19b
2o19b2o26b2o19b2o19b2o26b2o19b2o19b2o$7b2o2b2o15b2o2b2o15b2o2b2o22b2o
2b2o15b2o2b2o15b2o2b2o22b2o2b2o15b2o2b2o15b2o2b2o$7bo4bo15bo4bo15bo4bo
22bo4bo15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo$7bo4bo15bo4bo15bo4bo22bo4bo
15bo4bo15bo4bo22bo4bo15bo4bo15bo4bo$6b8o13b8o13b8o20b8o13b8o13b8o20b8o
13b8o13b8o$5b4o2b4o11b4o2b4o11b4o2b4o18b4o2b4o11b4o2b4o11b4o2b4o18b4o
2b4o11b4o2b4o11b4o2b4o$4bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo
2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo$3bo3b
o4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo14bo3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo
14bo3bo4bo3bo7bo3bo4bo3bo7bo3bo4bo3bo$4bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4b
o2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo2bo4bo2bo16bo2bo4bo2bo9bo2bo4bo2bo9bo
2bo4bo2bo3$4b3o6b3o9b3o6b3o9b3o6b3o16b3o6b3o9b3o6b3o9b3o6b3o16b3o6b3o
9b3o6b3o9b3o6b3o3$5b2o7b2o9b2o8b2o9b2o27bo8b2o9b2o8b2o9b2o26b2o8b2o9b
2o8b2o9b2o$4b2o7bob2o7b2obo6bob2o7b2obo25b3o6bob2o7b2obo6bob2o7b2obo
24b2obo6bob2o7b2obo6bob2o7b2obo$bo3bo11bo5bo14bo5bo28b2ob3o8bo5bo14bo
5bo28bo13bo5bo14bo5bo$b2o4bo7bo2bo3bo2bo10bo2bo3bo2bo26bobob2o6bo2bo3b
o2bo10bo2bo3bo2bo26bob2o8bo2bo3bo2bo10bo2bo3bo2bo$2bo3b2o7bobo5bobo10b
obo5bobo27b4o7bobo5bobo10bobo5bobo25b3o10bobo5bobo10bobo5bobo$7b2o62bo
bo$2bobo2b2o7bobo3bobo12bobo3bobo25bobo12b2o5b2o12b2o5b2o29bo10b2o5b2o
12b2o5b2o$2bobo13bo3bo16bo3bo27bo16bo3bo16bo3bo28b2o14bo3bo16bo3bo$5bo
11bo5bo14bo5bo26bob2o11bobo3bobo12bobo3bobo25bo2bo10b3o5b3o10b3o5b3o$
3o3b2o10bo3bo16bo3bo26b3o2bo11bo5bo14bo5bo25bob3o8bo13bo6bo13bo$8bo9b
2ob2o16b2ob2o26b3o3bo11bo3bo16bo3bo27bo2bo8bo13bo6bo13bo$2ob2o2b2o5b3o
b2ob2ob3o8b3ob2ob2ob3o27b3o7b2ob2ob2ob2o10b2ob2ob2ob2o23b4o8bobob2o5b
2obobo4bobob2o5b2obobo$15b2o7b2o10b2o7b2o25bobobo7bo3b2ob2o3bo8bo3b2ob
2o3bo23bo2b2o5b2obo11bob2o2b2obo11bob2o$12b2ob2ob2ob2ob2ob2o4b2ob2ob2o
b2ob2ob2o20b2o2bo8b2obobo3bobob2o6b2obobo3bobob2o24b3o7b3ob2o3b2ob3o6b
3ob2o3b2ob3o$14b2o2bo3bo2b2o8b2o2bo3bo2b2o22bo4b3o5bo2b3o3b3o2bo6bo2b
3o3b3o2bo23bo3b2o9b2o3b2o14b2o3b2o$13bo5bobo5bo6bo5bobo5bo33b2obo3bobo
3bob2o4b2obo3bobo3bob2o20bo5bobo3bob2o9b2obo4bob2o9b2obo$18bo3bo16bo3b
o38bo3bo2bobo2bo3bo4bo3bo2bobo2bo3bo20bo5bo5bo15bo4bo15bo$12b2obobo5bo
bob2o4b2obobo5bobob2o34bobo7bobo8bobo7bobo34bo2bo2b2ob2o2bo2bo4bo2bo2b
2ob2o2bo2bo$15b2obo3bob2o10b2obo3bob2o35bo2b2o2bobo2b2o2bo4bo2b2o2bobo
2b2o2bo33b2o2b2o3b2o2b2o6b2o2b2o3b2o2b2o$153bobo2b2ob2o2bobo6bobo2b2ob
2o2bobo$154b2ob3ob3ob2o8b2ob3ob3ob2o!
Last edited by GUYTU6J on April 15th, 2017, 8:37 am, edited 1 time in total.
Welcome to share your ideas about
etymology of names!
User avatar
GUYTU6J
 
Posts: 334
Joined: August 5th, 2016, 10:27 am
Location: outside Plain of Life

Re: Spaceship Discussion Thread

Postby A for awesome » April 7th, 2017, 6:22 pm

I'm doing some c/6 diagonal searches with JLS; here's a somewhat promising partial from that:
x = 32, y = 32, rule = B3/S23
22b7obo$27bo2bo$27b2obo$22b3o$23b3obob2o$23bo3bo$25bo3bo$24b2obobo$26b
o$26bob3o$26b2obo$23bobo$23b4o2bo$25bo2bo$28bo2$27bob2o$25bo3bo$22b2o
4bo$25b3o2$25bo$o2bo14bo5bob2obo$o2b3o5b2o5bo5bobo$o2b2o2bo4bo9b2o5b3o
$o3bob2o3b3o3bobobo7b2o$o7b3obo6bo2b2o2b2obo$3ob2obo2bo5bo2bo2bo3bo$ob
o6bo3b2o3bo9bo$4bob2ob2obo3b2o4bob3o$3obo4bo6bo7b2o$24bo!

I don't know how to get JLS to report partials in any useful kind of fashion, unfortunately. It may be impossible.

EDIT: Here's something slightly different:
x = 25, y = 25, rule = B3/S23
19b2o2b2o$19b3o2bo$20b2o2$19b2o$19bobo2$19bo2bo$19bo2bo$15bob3obo$15bo
b2obo$15bob2o2$20b2o$16b3o$9b3o5b2o3bo$14bo7bo$9b3o2b2o6bo$9b3o2b2o3bo
bo$2o2b2ob3o8b3o$3obo5bo2bo5bo$b2o2bo3bo3bo4bo$7b2o6b3o$o$2o!


EDIT 2:
x = 39, y = 40, rule = B3/S23
$30bo6bo$31bobo2bo$30b2obo2bo$29bo3b5o$37bo$31b2o3b2o$29bob3o2bo$29bo
6bo$30b4o$30bo$31bobob2o$30bo5bo$31bo2bo$35bo$31bobo$36b2o$31bo2bob2o$
32bo3bo$33bobo$34bobo$34bo$35bo2$34bob2o$32bo3bo$29b2o4bo$32b3o2$32bo$
3bo2b2o17bo5bob2obo$obo5b2obo13bo5bobo$b2o2b2obobobobobo12b2o5b3o$5b2o
bo8bo6bobobo7b2o$b3o2bobobo3bo3bo7bo2b2o2b2obo$3bo8bo3bo2b2o2bo2bo2bo
3bo$3bo6bo2bo4bo2bo3bo9bo$b3ob3o2b2o3b3obo3b2o4bob3o$o2b3o9b2o6bo7b2o$
31bo!

Time to expand my search area.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Spaceship Discussion Thread

Postby velcrorex » April 8th, 2017, 10:55 am

Partial p6 knightship:
x = 31, y = 26, rule = B3/S23
7b2o$5bo3bo$5bo$b2obob2ob2o$o3b2o3b2o$o3bo3b2o$2o3b2o3bo$bo$2bo5b3o$4b
o3b5o$4bo6bo3b2o$5b2o3bo4b2o2bobo$4bo2b2o2bobo3bobo2bo$4b2o3bobobobob
2o3bo$4b3o2bobobo2b5o2bo$6bobobobobo2bo5bo$18b2o4b2o$13b4o6b4o$13b4o2b
o4bo2bo$13bobob2o2b2o4b3o$21b2o4b3o$24b2obo$27bo$24bo3bobo$27b2obo$28b
2o!


Partial c/6 diagonal:
x = 69, y = 69, rule = B3/S23
26b2o$25bobo$25b3o$26bo$27bo$25b3ob2o$25bobo$28bo$26b2o$26b2o$26b2o$
24bo2bo$23bo2bo$23bo2bo$22b2obo$25bo$24b2obo$25bobo$27bob2o$26bo2b2o
37bo$27b3o23bob4obo6b2o$27b3o12bo9b2o4b2o2bo$14bo26b2o8bo4b2obo2b3o$
12b3o14b3o4b2o11b3o7bobob2o$11bo4bo12bobob2obobo3bo3b2o3bo6b2o$b2o2b2o
7b4o10b2obob4o10bo2bo7b2o$ob2obo2b3ob2o5bo11b2o4b2ob2o5bobo8b2o$3ob3ob
4o4b3ob2o6bo8b2ob2obo8bo$7bo12b2o3bobob3o11bo4bo$5bo12b4ob3o2bo$5bo12b
2o3bo4bo$23b4obo$26bo$24b2o$24b2o$25bo$23b3o$23bo2b2o$24bob2o2$26b2o$
22bo3b2o$21b2obo$27b2o3$24bo$24b3o$28bo$23bo2bo$23bobo$22b3o$21bo5bo$
20b2o2$20bo$20bobo$20bobo$20b2o2b3o$21b6o$20bo$23bo$21b2o$22b2o$22b2o
3$20bo$19b2o!
-Josh Ball.
User avatar
velcrorex
 
Posts: 313
Joined: November 1st, 2009, 1:33 pm

Re: Spaceship Discussion Thread

Postby Gamedziner » April 8th, 2017, 11:29 am

velcrorex wrote:Partial p6 knightship:
x = 31, y = 26, rule = B3/S23
7b2o$5bo3bo$5bo$b2obob2ob2o$o3b2o3b2o$o3bo3b2o$2o3b2o3bo$bo$2bo5b3o$4b
o3b5o$4bo6bo3b2o$5b2o3bo4b2o2bobo$4bo2b2o2bobo3bobo2bo$4b2o3bobobobob
2o3bo$4b3o2bobobo2b5o2bo$6bobobobobo2bo5bo$18b2o4b2o$13b4o6b4o$13b4o2b
o4bo2bo$13bobob2o2b2o4b3o$21b2o4b3o$24b2obo$27bo$24bo3bobo$27b2obo$28b
2o!


Now that looks promising!
A base-2 ruler for all your measuring needs in CGOL:
32b32o$16b16o16b16o$8b8o8b8o8b8o8b8o$4b4o4b4o4b4o4b4o4b4o4b4o4b4o4b4o$2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
Gamedziner
 
Posts: 345
Joined: May 30th, 2016, 8:47 pm

Re: Spaceship Discussion Thread

Postby Rhombic » April 8th, 2017, 12:08 pm

Gamedziner wrote:
velcrorex wrote:Partial p6 knightship:
x = 31, y = 26, rule = B3/S23
7b2o$5bo3bo$5bo$b2obob2ob2o$o3b2o3b2o$o3bo3b2o$2o3b2o3bo$bo$2bo5b3o$4b
o3b5o$4bo6bo3b2o$5b2o3bo4b2o2bobo$4bo2b2o2bobo3bobo2bo$4b2o3bobobobob
2o3bo$4b3o2bobobo2b5o2bo$6bobobobobo2bo5bo$18b2o4b2o$13b4o6b4o$13b4o2b
o4bo2bo$13bobob2o2b2o4b3o$21b2o4b3o$24b2obo$27bo$24bo3bobo$27b2obo$28b
2o!


Now that looks promising!


It really does!!
There might be something right here, unless it becomes the new c/6 almost-knightship, but I hope there's more to it.
Good job!
User avatar
Rhombic
 
Posts: 722
Joined: June 1st, 2013, 5:41 pm

Re: Spaceship Discussion Thread

Postby A for awesome » April 8th, 2017, 5:19 pm

velcrorex wrote:Partial p6 knightship:
x = 31, y = 26, rule = B3/S23
7b2o$5bo3bo$5bo$b2obob2ob2o$o3b2o3b2o$o3bo3b2o$2o3b2o3bo$bo$2bo5b3o$4b
o3b5o$4bo6bo3b2o$5b2o3bo4b2o2bobo$4bo2b2o2bobo3bobo2bo$4b2o3bobobobob
2o3bo$4b3o2bobobo2b5o2bo$6bobobobobo2bo5bo$18b2o4b2o$13b4o6b4o$13b4o2b
o4bo2bo$13bobob2o2b2o4b3o$21b2o4b3o$24b2obo$27bo$24bo3bobo$27b2obo$28b
2o!


Partial c/6 diagonal:
x = 69, y = 69, rule = B3/S23
26b2o$25bobo$25b3o$26bo$27bo$25b3ob2o$25bobo$28bo$26b2o$26b2o$26b2o$
24bo2bo$23bo2bo$23bo2bo$22b2obo$25bo$24b2obo$25bobo$27bob2o$26bo2b2o
37bo$27b3o23bob4obo6b2o$27b3o12bo9b2o4b2o2bo$14bo26b2o8bo4b2obo2b3o$
12b3o14b3o4b2o11b3o7bobob2o$11bo4bo12bobob2obobo3bo3b2o3bo6b2o$b2o2b2o
7b4o10b2obob4o10bo2bo7b2o$ob2obo2b3ob2o5bo11b2o4b2ob2o5bobo8b2o$3ob3ob
4o4b3ob2o6bo8b2ob2obo8bo$7bo12b2o3bobob3o11bo4bo$5bo12b4ob3o2bo$5bo12b
2o3bo4bo$23b4obo$26bo$24b2o$24b2o$25bo$23b3o$23bo2b2o$24bob2o2$26b2o$
22bo3b2o$21b2obo$27b2o3$24bo$24b3o$28bo$23bo2bo$23bobo$22b3o$21bo5bo$
20b2o2$20bo$20bobo$20bobo$20b2o2b3o$21b6o$20bo$23bo$21b2o$22b2o$22b2o
3$20bo$19b2o!


Nice! What did you use to find them?
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Spaceship Discussion Thread

Postby A for awesome » April 23rd, 2017, 9:42 am

I have ruled out the existence of c/4 p8 even-glide-symmetric ships with width 16 using gfind. The search output two p4 ships, but no p8 ones:
x = 14, y = 28, rule = B3/S23
4b2o2b2o$4b2o2b2o$3bo6bo$3bo2b2o2bo$3bo6bo$4b6o$4bob2obo$3b2o4b
2o$bo10bo$o4bo2bo4bo$o4bo2bo4bo$3b3o2b3o$obo3b2o3bobo$obo8bobo$3b
o6bo$2b3o4b3o$3bobo2bobo$2obob4obob2o$b2o3b2o3b2o$bo2bo4bo2bo$2b
3ob2ob3o$2b3ob2ob3o$3bo6bo3$2bobo4bobo$3bo6bo$3bo6bo!
x = 14, y = 43, rule = B3/S23
2b2o6b2o$2bo8bo$5bo2bo$2bobo4bobo$4bo4bo$2bo8bo$2bo8bo$2b3o4b3o
$3b3o2b3o$3b3o2b3o3$5b4o$5b4o2$4b2o2b2o$3bo6bo$5b4o$2bo2b4o2bo2$
3b2o4b2o$5bo2bo$3b3o2b3o$3b3o2b3o$5b4o$3o2b4o2b3o$2b2o6b2o$bo4b2o
4bo$b2o3b2o3b2o$bo10bo$b2o8b2o$2o2bo4bo2b2o$2obobo2bobob2o$2obob
o2bobob2o$2b4o2b4o$5b4o$2b2ob4ob2o$3bo6bo$3bo6bo2$2b3o4b3o$2b3o4b
3o$3bo6bo!


My knightt c/6 width 11 search is STILL going, but it's showing some signs of slowing down, although it'll probably be a long time before it finishes anyway.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Spaceship Discussion Thread

Postby Sokwe » April 23rd, 2017, 8:08 pm

A for awesome wrote:I have ruled out the existence of c/4 p8 even-glide-symmetric ships with width 16 using gfind.

Unfortunately, I don't think an unmodified gfind can eliminate the possibility of higher-period spaceships if it manages to find a lower-period ship at the same speed. This is because the search can reject, say, a period-8 front end because it can be replaced with a shorter period-4 front end.
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Spaceship Discussion Thread

Postby A for awesome » April 23rd, 2017, 9:17 pm

Sokwe wrote:
A for awesome wrote:I have ruled out the existence of c/4 p8 even-glide-symmetric ships with width 16 using gfind.

Unfortunately, I don't think an unmodified gfind can eliminate the possibility of higher-period spaceships if it manages to find a lower-period ship at the same speed. This is because the search can reject, say, a period-8 front end because it can be replaced with a shorter period-4 front end.

Oops, ~950 CPU-hrs down the drain. Sorry for wasting my time with that when I could have been doing much more valuable searches.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Spaceship Discussion Thread

Postby Sokwe » April 24th, 2017, 1:48 am

A for awesome wrote:Oops, ~950 CPU-hrs down the drain. Sorry for wasting my time with that when I could have been doing much more valuable searches.

I wouldn't say it's wasted time. Although it's not quite a proof, it suggests an extremely high probability that there are no (2,0)c/8 glide-symmetric ships at this width. There's more potential for a width-18 search due to the large number of symmetric width-18 c/4 orthogonal ships, but a direct gfind search might be too slow.
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Spaceship Discussion Thread

Postby A for awesome » April 24th, 2017, 8:35 am

Sokwe wrote:[A] direct gfind search might be too slow.

I very much agree.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Spaceship Discussion Thread

Postby Bullet51 » April 25th, 2017, 10:34 am

A 2c/6 wave:
x = 5, y = 144, rule = B3/S23:T144,144
3b2o$2bo$2b3o$b2obo2$2o$3o$2obo$bo2bo$2b2o2$2b2o$2b2o2$2b2o$bo2bo$2obo
$3o$2o2$b2obo$2b3o$2bo$3b2o$3b2o$2bo$2b3o$b2obo2$2o$3o$2obo$bo2bo$2b2o
2$2b2o$2b2o2$2b2o$bo2bo$2obo$3o$2o2$b2obo$2b3o$2bo$3b2o$3b2o$2bo$2b3o$
b2obo2$2o$3o$2obo$bo2bo$2b2o2$2b2o$2b2o2$2b2o$bo2bo$2obo$3o$2o2$b2obo$
2b3o$2bo$3b2o$3b2o$2bo$2b3o$b2obo2$2o$3o$2obo$bo2bo$2b2o2$2b2o$2b2o2$
2b2o$bo2bo$2obo$3o$2o2$b2obo$2b3o$2bo$3b2o$3b2o$2bo$2b3o$b2obo2$2o$3o$
2obo$bo2bo$2b2o2$2b2o$2b2o2$2b2o$bo2bo$2obo$3o$2o2$b2obo$2b3o$2bo$3b2o
$3b2o$2bo$2b3o$b2obo2$2o$3o$2obo$bo2bo$2b2o2$2b2o$2b2o2$2b2o$bo2bo$2ob
o$3o$2o2$b2obo$2b3o$2bo$3b2o!
Still drifting.
Bullet51
 
Posts: 379
Joined: July 21st, 2014, 4:35 am

Re: Spaceship Discussion Thread

Postby A for awesome » May 4th, 2017, 10:36 pm

73-cell 1c/2:
x = 26, y = 14, rule = B3/S23
14b2o2$2o13bo8b2o$3bo11b3o6bo$o3bobo2b2o10bob2o$b2o3bo2bo8b2obob2o$2bo
bobob2o11bo$3b2obob2o9bob2o$4bobo6bo3bob2o$7bo6bo4bo$5bo6bo3bob2o$5bo
3bobob2ob2o$6bo2b5o$7b3o!

I don't know if there's some kind of listing for the smallest of these or not.

EDIT: And, of course, this relatively obvious 66-cell:
x = 32, y = 8, rule = B3/S23
2o7b2o10b2o7b2o$12bo6bo$o4bo3bo4bo2bo4bo3bo4bo$b2obo4bob2ob4ob2obo4bob
2o$2bobob2ob2o3b4o3b2ob2obobo$3b2o4bo12bo4b2o$4bo3bo14bo3bo$5b3o16b3o!

EDIT 2: Another 73-cell:
x = 33, y = 9, rule = B3/S23
2ob2o$bobo7b2o9b2o7b2o$b2obo9bo5bo$b2obo2bo3bo4bobo4bo3bo4bo$4bobo4bob
2ob3ob2obo4bob2o$3b2obob2ob2o3b3o3b2ob2obobo$5b2o4bo11bo4b2o$6bo3bo13b
o3bo$7b3o15b3o!

And 66, 68, 68, 70 cells:
x = 34, y = 44, rule = B3/S23
31bo$32bo$b2o7b2o9b2o7b2o$13bo5bo$bo4bo3bo4bobo4bo3bo4bo$2b2obo4bob2ob
3ob2obo4bob2o$3bobob2ob2o3b3o3b2ob2obobo$4b2o4bo11bo4b2o$5bo3bo13bo3bo
$6b3o15b3o2$bo29bo$o31bo$b2o7b2o9b2o7b2o$13bo5bo$bo4bo3bo4bobo4bo3bo4b
o$2b2obo4bob2ob3ob2obo4bob2o$3bobob2ob2o3b3o3b2ob2obobo$4b2o4bo11bo4b
2o$5bo3bo13bo3bo$6b3o15b3o2$32bo$33bo$b2o7b2o10b2o7b2o$13bo6bo$bo4bo3b
o4bo2bo4bo3bo4bo$2b2obo4bob2ob4ob2obo4bob2o$3bobob2ob2o3b4o3b2ob2obobo
$4b2o4bo12bo4b2o$5bo3bo14bo3bo$6b3o16b3o3$bo30bo$o32bo$b2o7b2o10b2o7b
2o$13bo6bo$bo4bo3bo4bo2bo4bo3bo4bo$2b2obo4bob2ob4ob2obo4bob2o$3bobob2o
b2o3b4o3b2ob2obobo$4b2o4bo12bo4b2o$5bo3bo14bo3bo$6b3o16b3o!

EDIT 3: 70 cells:
x = 29, y = 15, rule = B3/S23
2o$3bo$o3bobo2b2o$b2o3bo2bo$2bobobob2o$3b2obob2o$4bobo$7bo10b2o7b2o$5b
o3b2o5bo$5bo6bobo4bo3bo4bo$6bo3bob3ob2obo4bob2o$7b3o2b3o3b2ob2obobo$
19bo4b2o$20bo3bo$21b3o!

EDIT 4: 69:
x = 29, y = 15, rule = B3/S23
2ob2o2$o3bo5b2o$b2obo$2bobobo3bo$3b2obob3o$4bobo$7bo10b2o7b2o$5bo3b2o
5bo$5bo6bobo4bo3bo4bo$6bo3bob3ob2obo4bob2o$7b3o2b3o3b2ob2obobo$19bo4b
2o$20bo3bo$21b3o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Spaceship Discussion Thread

Postby A for awesome » May 13th, 2017, 8:30 pm

Elsewhere, Sokwe wrote:You might consider starting the [1c/2] collection yourself, since you seem to be finding many of the small ships.

Okay, here's a preliminary collection of all known 1c/2 ships with 75 or fewer bits:
x = 158, y = 385, rule = B3/S23
28bobo$27bo2bo$26b2o$25bo$24b4o$23bo4bo$23bo2bo$23bo2bo$24bo$25b4obo$
26bo3bo$obobo3bo3bo14bo$27bobo$o7bo3bo$26b3o$obobo3bobobo13b2o$26b3o$o
3bo7bo$27bobo$obobo7bo14bo$26bo3bo$25b4obo$24bo$23bo2bo$23bo2bo$23bo4b
o$24b4o$25bo$26b2o$27bo2bo$28bobo7$51bo$28bobo17bobobo$27bo2bo16bo2bo$
26b2o18b2o$25bo19bo$24b4o16b4o$23bo4bo14bo4bo$23bo2bo16bo2bo$23bo2bo
16bo2bo$24bo19bo$25b4obo14b4obo$26bo3bo15bo3bo$obobo3bobobo14bo19bo$
27bobo17bobo$o7bo$26b3o17b3o$obobo3bobobo13b2o18b2o$26b2o18b3o$o3bo3bo
3bo13b3o$47bobo$obobo3bobobo14bobo17bo$27bo18bo3bo$26bo3bo14b4obo$25b
4obo13bo$24bo18bo2bo$23bo2bo16bo2bo$23bo2bo16bo4bo$23bo4bo15b4o$24b4o
17bo$25bo20b2o$26b2o19bo2bo$27bo2bo17bobo$28bobo7$31bo19bo$28bobobo15b
obobo$27bo2bo16bo2bo$26b2o18b2o$25bo19bo$24b4o16b4o$23bo4bo14bo4bo$23b
o2bo16bo2bo$23bo2bo16bo2bo$24bo19bo$25b4obo14b4obo$26bo3bo15bo3bo$obob
o3bobobo14bo19bo$27bobo17bobo$o7bo3bo$26b3o17b3o$obobo3bobobo13b2o18b
2o$26b2o18b3o$o3bo3bo3bo13b3o$47bobo$obobo3bobobo14bobo17bo$27bo18bo3b
o$26bo3bo14b4obo$25b4obo13bo$24bo18bo2bo$23bo2bo16bo2bo$23bo2bo16bo4bo
$23bo4bo15b4o$24b4o17bo$25bo20b2o$26b2o19bo2bo$27bo2bo17bobobo$28bobo
20bo9$35bobo$34bo2bo$33b2o$32bo4bo$31b5obo$28b2o$27bo3b3o$26bo3bo$26bo
5bo$obobo3bobobo13bo2bo2bo$27bobo2b2obo$o7bo3bo22bo$26b3o$obobo3bobobo
13b2o$26b3o$o3bo7bo$27bobo$obobo3bobobo14bo$26bo3bo$25b4obo$24bo$23bo
2bo$23bo2bo$23bo4bo$24b4o$25bo$26b2o$27bo2bo$28bobo7$31bo$28bobobo$27b
o2bo$26b2o91bobo$25bo92bo2bo$24b4o89b2o$23bo4bo23bobo19bobo19bo19bo3bo
$23bo2bo24bo2bo18bo2bo16b4o18b3obo$23bo2bo23b2o20b2o19b3o16b2o$24bo24b
o21bo4bo14bo3bo15bo3b5o$25b4obo17b6o16b5obo14b3o16bo3bo$26bo3bo14b2o7b
o12b2o19bobo4bo14bo5b2o$bobobo3bobobo13bo16bo3b3obo13bo3b3o14b8o15bo2b
o2b4o$27bobo13bo3bo4bo12bo3bo16b2o23bobo5bo$5bo3bo3bo29bo5bo4bo10bo5bo
13b2o4b2o$26b3o14b3o3b5o11b3o3bo14bobo3bo2bo14b3o$5bo3bo3bo12b2o38bo4b
2obo18bobo14b2o$26b2o15b3o3b5o12b2o6bo11b2o22b3o$5bo3bo3bo12b3o14bo5bo
4bo11bobo17bo2bo$43bo3bo4bo13b2o2b2obo13bo4bo2bo15bobo$5bo3bobobo13bob
o14bo3b3obo14bob3obobo11b4obobo16bo$27bo17b2o7bo19bo14bo6bo13bo3bo$26b
o3bo17b6o15b5obo14b5obo12b4obo$25b4obo18bo20bo4bo14bo17bo$24bo25b2o19b
3o17b3obo11bo2bo$23bo2bo24bo2bo16bo3bo16bo3bo10bo2bo$23bo2bo25bobo18b
3o17b2o12bo4bo$23bo4bo44b4o17bo2bo10b4o$24b4o48bo18bobo11bo$25bo84b2o$
26b2o83bo2bo$27bo2bo81bobo$28bobobo$31bo9$77bobo$34bobo18bobo18bo2bo$
33bo2bo17bo2bo17b2o$32b2o19b2o19bo4bo$31bo4bo15bo4bo15b5obo$30b5obo14b
5obo12b2o$27b2o19b2o19bo3b3o$26bo3b3o14bo3b3o14bo3bo$25bo3bo16bo3bo17b
o5bo$25bo5bo14bo5bo15bo2bo2bo$bobobo4bobo12bo2bo2bo14bo2bo2bo16bobo2b
2obo$26bobo2b2obo12bobo2b2obo21bo$5bo6bo21bo20bobo10b3o$25b3o18b3o7bo
11b2o$5bo6bo12b2o19b2o20b2o$25b3o18b3o19b3o$5bo6bo$26bobo18bobo19bobo$
5bo4bobobo11bo20bo21bo$25bo3bo16bo3bo17bo3bo$24b4obo15b4obo16b4obo$23b
o20bo21bo$22bo2bo17bo2bo18bo2bo$22bo2bo17bo2bo18bo2bo$22bo4bo15bo4bo
16bo4bo$23b4o17b4o18b4o$24bo20bo21bo$25b2o19b2o20b2o$26bo2bo17bo2bo18b
o2bo$27bobobo16bobo19bobo$30bo11$97bobo$77bobo16bo2bo$35bo40bo2bo15b2o
$32bobobo17bo20b2o17bo3bo$31bo2bo16b4o19bo3bo14b3obo$30b2o19b3o19b3obo
12b2o$29bo19bo3bo16b2o17bo3b5o$28b6o15b3o17bo3b5o10bo3bo$25b2o7bo11bob
o4bo14bo3bo15bo5b2o$bobobo3bobobo10bo3b3obo12b8o15bo5b2o12bo2bo2b4o$
23bo3bo4bo11b2o22bo2bo2b4o11bobo5bo$5bo7bo9bo5bo4bo8b2o4b2o18bobo5bo$
23b3o3b5o10bobo3bo2bo34b3o$5bo3bobobo37bobobo12b3o17b2o$23b3o3b5o10b2o
8bo13b2o18b2o$5bo3bo13bo5bo4bo9bo2bo20b3o17b3o$23bo3bo4bo12bo4bo2bo$5b
o3bobobo10bo3b3obo12b4obobo16bobo17bobo$25b2o7bo12bo6bo14bo19bo$28b6o
14b5obo13bo3bo15bo3bo$29bo18bo18b4obo14b4obo$30b2o17b3obo12bo19bo$31bo
2bo15bo3bo10bo2bo16bo2bo$32bobo16b2o12bo2bo16bo2bo$52bo2bo9bo4bo14bo4b
o$53bobo10b4o16b4o$67bo19bo$68b2o18b2o$69bo2bo16bo2bo$70bobobo15bobo$
73bo8$90bobo$89bo2bo23bobo15bobo$34bobo18bobo30b2o25bo2bo14bo2bo$33bo
2bo17bo2bo29bo26b2o16b2o$32b2o19b2o31b4o23bo4bo12bo4bo$31bo4bo15bo3bo
17bobo8bo4bo21b5obo11b5obo$30b5obo14b3obo17bo2bo8bo2bo20b2o16b2o$27b2o
19b2o22b2o11bo2bo19bo3b3o11bo3b3o$26bo3b3o14bo3b5o15bo3bo10bo20bo3bo
13bo3bo$25bo3bo16bo3bo19b3obo12b4obo14bo5bo11bo5bo$25bo5bo14bo5b2o13b
2o19bo3bo14bo2bo2bo11bo2bo2bo$bobobo3bobobo11bo2bo2bo14bo2bo2b4obo8bo
3b5o14bo18bobo2b2obo9bobo2b2obo$26bobo2b2obo12bobo5b2o8bo3bo19bobo24bo
17bobo$5bo7bo20bobo20bo7bo5b2o34b3o15b3o7bo$25b3o7bo10b3o16b3o3b4o13b
3o16b2o16b2o$5bo3bobobo11b2o19b2o18bo7bo13b2o17b2o16b2o$25b3o18b3o17b
2o20b3o16b3o15b3o$5bo7bo52bobo$26bobo18bobo16b2o2bo18bobo16bobo15bobo$
5bo3bobobo12bo20bo19bobo8bo10bo18bo17bo$25bo3bo16bo3bo24b2obo9bo3bo14b
o3bo13bo3bo$24b4obo15b4obo16b2o6bo11b4obo13b4obo12b4obo$23bo20bo22bo2b
o4bo10bo18bo17bo$22bo2bo17bo2bo21bo4bo11bo2bo15bo2bo14bo2bo$22bo2bo17b
o2bo21b4obo11bo2bo15bo2bo14bo2bo$22bo4bo15bo4bo21bo14bo4bo13bo4bo12bo
4bo$23b4o17b4o23b4o11b4o15b4o14b4o$24bo20bo25bo15bo18bo17bo$25b2o19b2o
25b2o13b4obo13b2o16b2o$26bo2bo17bo2bo22b4o11bo3b2o14bo2bo14bo2bo$27bob
obo16bobo25bo13b2o17bobobo13bobo$30bo59b4o18bo$93bo8$77bobo$48bobo25bo
2bo14bobo$47bo2bo24b2o16bo2bo$34bo11b2o26bo3bo13b2o$31bobobo9bo27b3obo
13bo4bo$30bo2bo10b4o22b2o18b5obo$29b2o12bo4bo6bo13bo3b5o9b2o$28bo14bo
2bo5b2obo12bo3bo13bo3b3o$27b6o10bo2bo5bo15bo5b2o9bo3bo$24b2o7bo10bo7bo
15bo2bo2b4o7bo5bo$bobobo3bo3bo9bo3b3obo13b4obo18bobo5bo7bo2bo2bo$22bo
3bo4bo14bo3bo35bobo2b2obo$5bo3bo3bo8bo5bo4bo13bo20b3o23bo$22b3o3b5o14b
5o16b2o15b3o$5bo3bobobo54b2o15b2o$22b3o3b5o14b5o16b3o14b3o$5bo7bo8bo5b
o4bo13bo46bo$22bo3bo4bo14bo3bo18bobo14bobo2b2obo$5bo7bo9bo3b3obo13b4ob
o18bo15bo2bo2bo$24b2o7bo10bo7bo15bo3bo12bo5bo$27b6o10bo2bo5bo14b4obo
12bo3bo$28bo14bo2bo5b2obo10bo19bo3b3o$29b2o12bo4bo6bo9bo2bo18b2o$30bo
2bo10b4o17bo2bo21b5obo$31bobobo9bo19bo4bo20bo4bo$34bo11b2o18b4o22b2o$
47bo2bo16bo25bo2bo$48bobo17b2o24bobo$69bo2bo$70bobobo$73bo8$70bobo21bo
$69bo2bo18bobobo$34bobo18bobo10b2o20bo2bo$33bo2bo17bo2bo9bo21b2o64bobo
$32b2o19b2o11b4o18bo65bo2bo$31bo3bo16bo4bo7bo4bo16b4o62b2o$30b3obo16b
5obo7bo2bo17bo4bo20bobo19bobo15bo3bo$27b2o19b2o15bo2bo17bo2bo21bo2bo
18bo2bo14b3obo$26bo3b5o12bo3b3o12bo19bo2bo20b2o20b2o14b2o$25bo3bo16bo
3bo16b4obo14bo21bo3bo17bo15bo3b5o$25bo5b2o13bo5bo15bo3bo15b4obo14b3obo
17b6o10bo3bo$25bo2bo2b4obo9bo2bo2bo16bo19bo3bo11b2o20b2o7bo9bo5b2o$bob
obo3bobobo12bobo5b2o11bobo2b2obo13bobo18bo13bo3b5o13bo3b3obo11bo2bo2b
4o$36bo18bobo32bobo10bo3bo17bo3bo4bo12bobo5bo$5bo3bo15b3o18b3o7bo11b3o
32bo5b2o14bo5bo4bo$25b2o19b2o20b2o19b3o11b3o3b4o12b3o3b5o10b3o$5bo3bob
obo11b2o19b2o20b2o19b2o13bo7bo33b2o$25b3o18b3o19b3o18b3o12b2o19b3o3b4o
bo9b3o$5bo7bo90bobo18bo5bo3b2o18bo$26bobo18bobo19bobo18bobo11b2o2bo8bo
7bo3bo4b2o11bobo2b2obo$5bo3bobobo12bo20bo21bo20bo14bobo8bobo7bo3b3ob2o
10bo2bo2bo$25bo3bo16bo3bo17bo3bo16bo3bo19b2obo10b2o7b2o8bo5bo$24b4obo
15b4obo16b4obo15b4obo11b2o6bo16b6obo8bo3bo$23bo20bo21bo20bo17bo2bo4bo
17bo15bo3b3o$22bo2bo17bo2bo18bo2bo17bo2bo16bo4bo20b2o14b2o$22bo2bo17bo
2bo18bo2bo17bo2bo16b4obo21bo2bo14b5obo$22bo4bo15bo4bo16bo4bo15bo4bo16b
o25bobo15bo4bo$23b4o17b4o18b4o17b4o18b4o40b2o$24bo20bo21bo20bo20bo44bo
2bo$25b2o19b2o20b4obo15b4obo16b2o42bobo$26bo2bo17bo2bo17bo3b2o15bo3b2o
16b4o$27bobo18bobobo17b2o19b2o21bo$51bo18b4o17b4o$73bo20bo!

Due to simple 2-cell extensions, many of these are boring variants of smaller ones. Did I miss anything?

I'm not sure that I have enough spare time on my hands to try to catalogue any larger ones without some sort of component-assembling software.

EDIT: Added two ships I had missed; fixed wording error.

EDIT 2: My knightt c/6 asymmetric width 11 search just finished with no ships, unfortunately. Here's the longest partial:
x = 10, y = 101, rule = B3/S23
2bo$bobo$4bo$bo$5bo3bo$2b2obo3bo$6bo2bo$3b3o$3b2o$4bobo$7bo$6b2o$5bo$
5bo$4bo$4bo$3bo$3b2o$4b2o$b2o$2bo2$3b2o$3bo$2bo$2bob4o$6b2o$2b2o$2b2ob
2o$3bo2bo$2bobo$bobo3bo$o3b3o$2b2o$5b2o$2bo3b2o$3bo4bo$3bo3bo$3bo$3bo$
2b2o3b2o$2b2o2b3o$3bobo2bo3$7b2o$3b2obobo$6bo2bo$3bo4bo$4bo3bo$7bo$5bo
2bo$4b2ob2o$5bo3bo$5bo$4b2o$2b2o2bo$2b2o2bo$bob2o2$3b3o$2b2obo$2b2o2bo
$2bo2b2o$4bo2b2o$4bobo$6b3o$b2o5bo$3bobo$bo2bo3bo$bo2b3o$2b2o2$bob2o$
4bo$bo2b3o$bobo2bo$bo3bo$2o$bo$bobo2bo$bo4bo$6bobo$2b3ob3o$4bobo$b2o5b
o$5b2o$2bo2b2obo$3obo3bo$o2b2obo2bo$2bobobobo$2bo3bo$6b2o$3bo2b2o$4b2o
$3bob4o$3b2o2b2o$b2ob2o$6bobo$2bobobob2o$2b5o!

It features an interesting front end, which I don't think is known. I may try extending this partial in various ways later to try to find a width-12 ship.

I would recommend that nobody try the complete width-12 search, because just the width-11 search took me about 1600 CPU-hours (~3 CPU-months) to complete.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Spaceship Discussion Thread

Postby Sokwe » May 16th, 2017, 4:42 am

A for awesome wrote:My knightt c/6 asymmetric width 11 search just finished with no ships, unfortunately.... the width-11 search took me about 1600 CPU-hours (~3 CPU-months) to complete.

Thanks! This is a valuable, if disappointing result. Now (1,1)c/6 is the only potentially possible velocity for a width-11 period-6 ship, but this seems unlikely.
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Spaceship Discussion Thread

Postby A for awesome » May 29th, 2017, 9:38 am

I have completed w9 zfind 2.0 searches for 5c/11 odd, even, and gutter symmetries with no spaceships found. Here are the longest partials:
x = 78, y = 23, rule = B3/S23
3bo9bo16bo10bo23bo5bo$2bobo7bobo14bobo8bobo21bobo3bobo$b2ob2o5b2ob2o
12b2ob2o6b2ob2o19bo3bobo3bo$2bo2bo5bo2bo17bo6bo23bo9bo$3b3o5b3o19b2o2b
2o24bobobobobobo$3b2o7b2o15bo2bobo2bobo2bo24bobo$28bobo2b6o2bobo20bo7b
o$b2o11b2o12bo2b2obo2bob2o2bo21b2o3b2o$6b2ob2o18b2o10b2o19bo3bo3bo3bo$
7bobo21bo8bo19b3o11b3o$4b2obobob2o16b2ob2o4b2ob2o18bobo9bobo$4bo2bobo
2bo15bo3b2o4b2o3bo18b4o5b4o$b2obo2bobo2bob2o13bo12bo19bo2bo5bo2bo$bo4b
2ob2o4bo17bo4bo24bo2bo3bo2bo$bo13bo12b3ob2o4b2ob3o17b2ob2o5b2ob2o$3b2o
bo3bob2o14bo3b2o4b2o3bo$3bo9bo14bobob2o4b2obobo$4bo3bo3bo14b2ob2o8b2ob
2o14b2o3b2o5b2o3b2o$b5obobob5o13bo3bob2obo3bo21b2o5b2o$2obo9bob2o13bo
4b2o4bo18bobob2o5b2obobo$27b3o3b2o2b2o3b3o15b3ob2o5b2ob3o$27bobobob2o
2b2obobobo$28bo14bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Spaceship Discussion Thread

Postby A for awesome » June 7th, 2017, 6:02 pm

A couple (2,1)c/7 partials:
x = 60, y = 28, rule = B3/S23
40bo$36bo3bo$37b3obo$6bo30bobob2o$5bo29bo5bob2o$4bob2o26b2o9bo$4bo4bo
23bo3bobo3bobo$2b3o4bo22b2ob2o3bob3o$3bo2bo3bo22bo4b2obob2o$obo3bo3b2o
21bo3bobobo2b2o$2bo3bo4bo27bo8bo$4bo4bob2o23b2obo4bo3bobo$4bo3bo3b2obo
23b3o3bo4bo$7b2o3bob2o23b3o2b3o$5b2o7bo29b2o4b2o$7bob3o30bobo4b3o$11bo
3b2o25b2o5bobo$9bob4o2bo31bo3b2o$10bob2o4bo30b2o4bo$13bobo34bo5bo$15bo
2bob2o25b2o2b2o$16b3o2bo25b2ob5obo$16b2o4bo32bo$18b2ob2o34bo$21bobo31b
o$18bo4b2o30bo2b2o$19bob3o33b2o$20b3o34bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Spaceship Discussion Thread

Postby Sokwe » June 13th, 2017, 6:38 am

A 2c/6 ship that I think is new:
x = 19, y = 63, rule = B3/S23
3bob3o3b3obo$2b2ob2obobob2ob2o$bo2b2o2bobo2b2o2bo$5bo2bobo2bo$bo4bobob
obo4bo$2o2bobobobobobo2b2o$2o6bobo6b2o$bobo3b2ob2o3bobo$2b2o2bobobobo
2b2o$b2o2b2obobob2o2b2o$8bobo$2bo5bobo5bo$bobo3b2ob2o3bobo$6bobobobo$b
o3b2obobob2o3bo$bobo4bobo4bobo$3bo4bobo4bo$2o6bobo6b2o$4b3obobob3o$2bo
4b2ob2o4bo$2o6bobo6b2o$obo2b2obobob2o2bobo$8bobo$4b2o2bobo2b2o$3b2o2bo
3bo2b2o$7b2ob2o$3b2o9b2o$3b2o9b2o$2bo2bo7bo2bo$2bo3bo5bo3bo$5bo7bo$2b
5o5b5o$b2o13b2o$7b2ob2o$8bobo$5b2obobob2o$4bobobobobobo$b2obo3bobo3bob
2o$b2obo3bobo3bob2o$bobo4bobo4bobo$7b2ob2o2$2b3o9b3o$2b3o9b3o$2o3bo7bo
3b2o2$o4bo7bo4bo$5b2o5b2o$5b2o5b2o$4b2o7b2o$7bo3bo$3b6ob6o$2b2obo2bobo
2bob2o$5bo2bobo2bo$6bobobobo$3b2obobobobob2o$4bobobobobobo$3bo2bobobob
o2bo$4b2ob2ob2ob2o$3b2o2bo3bo2b2o2$2bo13bo$3bo3bo3bo3bo!

Notice that it has two period-6 components, but only the back component is new.
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Spaceship Discussion Thread

Postby muzik » June 13th, 2017, 12:12 pm

Since the wiki doesn't seem to have pages on them yet, what are the smallest ships of these speeds?:

2c/6
2c/8
4c/8
3c/9
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2474
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

PreviousNext

Return to Patterns

Who is online

Users browsing this forum: drc, Kazyan and 6 guests