Can someone run the potential 3c/14 front end through a search and see what might appear?
x = 15, y = 7, rule = B3/S23
3b3o3b3o$2bo3bobo3bo$2bo3bobo3bo$2bo3bobo3bo$o2b3o3b3o2bo$o13bo$o13bo!
how do I even run gfind? I must know
x = 15, y = 7, rule = B3/S23
3b3o3b3o$2bo3bobo3bo$2bo3bobo3bo$2bo3bobo3bo$o2b3o3b3o2bo$o13bo$o13bo!
muzik wrote:Can someone run the potential 3c/14 front end through a search and see what might appear?
x = 23, y = 43, rule = B3/S23
8bo5bo$7b3o3b3o$7b3o3b3o4$3b3o11b3o$3bobo11bobo$3b3o11b3o3$4bo13bo$3bo
bo11bobo$2b2ob2o9b2ob2o$2b2ob2o9b2ob2o$3bobo11bobo$2b2ob2o9b2ob2o$2b2o
b2o9b2ob2o$4bo13bo2$4bo13bo$3bobo11bobo$2b2ob2o9b2ob2o$2b2ob2o9b2ob2o$
b2obob2o7b2obob2o$obo3bobo5bobo3bobo$o7bo5bo7bo$2bo3bo9bo3bo$obo3bobo
5bobo3bobo2$3o3b3o5b3o3b3o$bo5bo7bo5bo2$b2o3b2o7b2o3b2o$2obobob2o5b2ob
obob2o$2o5b2o5b2o5b2o$2b5o9b5o2$2bo3bo9bo3bo$2bobobo9bobobo$o3bo3bo5bo
3bo3bo$b2o3b2o7b2o3b2o$bobobobo7bobobobo!
muzik wrote:how do I even run gfind?
x = 18, y = 49, rule = B3/S23
8b2o$7b4o$3bob2ob2ob2obo$2bobo8bobo$bo2bob2o2b2obo2bo$bo4b2o2b2o4bo$bo
bob3o2b3obobo$b2o12b2o$3b3o2b2o2b3o$3b12o$2bo12bo$bo2bo2b4o2bo2bo$2bob
o3b2o3bobo$ob3obo4bob3obo$3b2o2bo2bo2b2o$b3o3bo2bo3b3o$bo14bo$b2o12b2o
$bo4bo4bo4bo$2b2o2b2o2b2o2b2o$2b2o10b2o2$3bo2bo4bo2bo2$2b2o2b2o2b2o2b
2o$6bo4bo$4bo8bo$5b2o4b2o$3bob2o4b2obo$4bo8bo$5b2o4b2o$2bobo8bobo$2b3o
3b2o3b3o$6bo4bo$5b2o4b2o$2ob3o6b3ob2o$b4ob2o2b2ob4o$5bo6bo$3bobo6bobo$
3bobo6bobo$3bo3bo2bo3bo$5b2o4b2o$4bob2o2b2obo$2bobo2bo2bo2bobo$bobo2b
2o2b2o2bobo$2obo2b6o2bob2o$4obobo2bobob4o$5bob4obo$bo14bo!
x = 5, y = 8, rule = B3/S23
2bo$b3o$2ob2o$b3o$2bo2$b3o$b3o!
x = 133, y = 95, rule = B3/S23
7bo13bo9bo13bo41bo13bo9bo13bo$6bobo11bobo7bobo11bobo39bobo11bobo7bobo
11bobo$6bobo11bobo7bobo11bobo39bobo11bobo7bobo11bobo$7bo13bo9bo13bo41b
o13bo9bo13bo2$6b3o11b3o7b3o11b3o39b3o11b3o7b3o11b3o$5bob2o3b2ob2o3b2ob
o5bob2o3b2ob2o3b2obo37bob2o3b2ob2o3b2obo5bob2o3b2ob2o3b2obo$6bo4bobobo
bo4bo7bo4bobobobo4bo39bo4bobobobo4bo7bo4bobobobo4bo$10b2obobob2o15b2ob
obob2o47b2obobob2o15b2obobob2o$11bobobobo17bobobobo49bobobobo17bobobob
o$13bobo21bobo53bobo21bobo$13bobo21bobo53bobo21bobo$8bo3b2ob2o3bo11bo
3b2ob2o3bo43bo3b2ob2o3bo11bo3b2ob2o3bo$8b3ob2ob2ob3o11b3ob2ob2ob3o43b
3ob2ob2ob3o11b3ob2ob2ob3o$12b2ob2o19b2ob2o51b2ob2o19b2ob2o$8b3o7b3o11b
3o7b3o43b3o7b3o11b3o7b3o$11b2o3b2o17b2o3b2o49b2o3b2o17b2o3b2o$8b2ob2o
3b2ob2o11b2ob2o3b2ob2o43b2ob2o3b2ob2o11b2ob2o3b2ob2o$10bobo3bobo15bobo
3bobo47bobo3bobo15bobo3bobo$8b2o4bo4b2o11b2o4bo4b2o43b2o4bo4b2o11b2o4b
o4b2o$8bo11bo11bo11bo43bo11bo11bo11bo$7bo13bo9bo13bo41bo13bo9bo13bo$9b
o9bo13bo9bo45bo9bo13bo9bo$7b2obo2b3o2bob2o9b2obo2b3o2bob2o41b2obo2b3o
2bob2o9b2obo2b3o2bob2o$7bo2b2ob3ob2o2bo9bo2b2ob3ob2o2bo41bo2b2ob3ob2o
2bo9bo2b2ob3ob2o2bo$7bob11obo9bob11obo41bob11obo9bob11obo2$7bo4bo3bo4b
o9bo4bo3bo4bo41bo4bo3bo4bo9bo4bo3bo4bo$12bo3bo19bo3bo51bo3bo19bo3bo$8b
o3b2ob2o3bo11bo3b2ob2o3bo43bo3b2ob2o3bo11bo3b2ob2o3bo$8b2o2b2ob2o2b2o
11b2o2b2ob2o2b2o43b2o2b2ob2o2b2o11b2o2b2ob2o2b2o$8b2o9b2o11b2o9b2o43b
2o9b2o11b2o9b2o$7b2o11b2o9b2o11b2o41b2o11b2o9b2o11b2o$7b2o11b2o9b2o11b
2o41b2o11b2o9b2o11b2o$10b2o2bo2b2o15b2o2bo2b2o47b2o2bo2b2o15b2o2bo2b2o
$10b2o2bo2b2o15b2o2bo2b2o47b2o2bo2b2o15b2o2bo2b2o$10b3obob3o15b3obob3o
47b3obob3o15b3obob3o4$10b3o3b3o15b3o3b3o47b3o3b3o15b3o3b3o$6b3ob3o3b3o
b3o7b3ob3o3b3ob3o39b3ob3o3b3ob3o7b3ob3o3b3ob3o$6b3ob2o5b2ob3o7b3ob2o5b
2ob3o39b3ob2o5b2ob3o7b3ob2o5b2ob3o2$8bo11bo11bo11bo43bo11bo11bo11bo$8b
o11bo11bo55bo11bo11bo$5bo5bo7b3o9b3o53b3o9b3o9b3o$3bo9bo5b2o11b2o6bo7b
o38b3o9b2o11b2o6bo7bo$3bo9bo6b3o7b3o5b2o9b2o36b3o10b3o7b3o5b2o9b2o$2bo
11bo4bo5b3o5bo4bobo2b3o2bobo48bo5b3o5bo4bobo2b3o2bobo$3b2ob5ob2o5bo5b
3o5bo5b3ob3ob3o49bo5b3o5bo5b3ob3ob3o$4bo7bo5bo3b3o3b3o3bo5bobo3bobo34b
o9bo4bo3b3o3b3o3bo5bobo3bobo$4bobobobobo6bob2obobobob2obo5b2o7b2o32bob
o3bo3bobo4bob2obobobob2obo5b2o7b2o$4bo7bo12b3o11b2o7b2o32bo2b3ob3o2bo
10b3o11b2o7b2o$4bo7bo27bo7bo71bo7bo$2b2o9b2o23bobo7bobo35b5o27bobo7bob
o$2b2o4bo4b2o22bo13bo65bo13bo$2b2ob2o3b2ob2o23b3o7b3o34bo5bo26b3o7b3o$
41bobobobo36b2o5b2o28bobobobo$6b2ob2o30bobobobo35bo9bo27bobobobo$5b3ob
3o29bo5bo33bo2bo7bo2bo25bo5bo$b2o3b2ob2o3b2o21b2o2bobobobo2b2o30b3o7b
3o22b2o2bobobobo2b2o$b2o11b2o21b2o11b2o31bobo5bobo23b2o11b2o$37b3o9b3o
32b2o5b2o24b3o9b3o$2bobo7bobo24bo9bo34b2o5b2o26bo9bo$3bo9bo25bo9bo31b
2o3bo3bo3b2o23bo9bo$38b2o9b2o29bo15bo21b2o9b2o$2b2o9b2o23bo11bo30bobo
9bobo22bo11bo$bo13bo21bobo9bobo31b2o7b2o23bobo9bobo$b2o11b2o21bobo9bob
o31b2o7b2o23bobo9bobo$2b2o9b2o22b3o9b3o30b2o9b2o22b3o9b3o$39bo9bo31bo
13bo23bo9bo$o3bo7bo3bo64bobo9bobo$4bo7bo23b2o13b2o27b2ob2o7b2ob2o19b2o
13b2o$2o13b2o20b2obo7bob2o29bob2o7b2obo21b2obo7bob2o$2b3o7b3o25bo7bo
34bo9bo26bo7bo$2b3o7b3o23bo3bo3bo3bo67bo3bo3bo3bo$4b4ob4o30bobo34b3o
11b3o26bobo$5bobobobo31bobo34b4o9b4o26bobo$4bo2bobo2bo28bobobobo33b2o
2bo5bo2b2o25bobobobo$6b2ob2o29b2obobob2o71b2obobob2o$3bobobobobobo29bo
bo40b2ob2o32bobo$4b3o3b3o26bo3bobo3bo37bobo29bo3bobo3bo$4b3o3b3o30bobo
38b2obobob2o30bobo$5b2o3b2o28bobo3bobo35b2obobob2o27bobo3bobo$40b2o5b
2o35bo2bobo2bo27b2o5b2o$bob2o7b2obo22b3o7b3o35b2ob2o27b3o7b3o$bo2bo7bo
2bo20b2o2b2o5b2o2b2o33b2ob2o25b2o2b2o5b2o2b2o$bo2bo7bo2bo68bobo3bobo$
37bo13bo65bo13bo$obo11bobo20bo13bo29b2o11b2o21bo13bo$bo13bo21bo13bo29b
2ob2o5b2ob2o21bo13bo$80b2o13b2o2$80b3o11b3o!
x = 13, y = 8, rule = B3/S23
ob2o$3o$bo3$10bobo$10b2o$11bo!
muzik wrote:Futile it may be, but could someone be as kind as to run this reaction through a c/26 orthogonal search (probably a glide symmetric 2c/52 one) to see if any interesting partials come up?
muzik wrote:guess we should perhaps focused n finding that 3c/14 first.
muzik wrote:Do you reckon we might be able to find an "elementary replicator" <1000 cells, using the pre-pulsar reaction? We already have an engineerable replicator (the linear propagator) so looking for a small elementary replicator might be an interesting project, however you would do that.
dvgrn wrote:-- Unless you count what Catagolue is doing, anyway. If there was a really small fast B3/S23 replicator, it might have showed up at the edge of a soup by now, and Catagolue would have collected it. The best plan I can think of for finding something like that would be to encourage everyone on Hacker News, Reddit, Digg and Slashdot to start running apgmera -- but if no sub-1000-cell replicator exists, we'll have a hard time ever knowing that for sure.
muzik wrote:biggiemac's legendary tiny c/18 ship
drc wrote:muzik wrote:biggiemac's legendary tiny c/18 ship
When did this happen? I've trying searching but C and 18 are too common
x = 11, y = 11, rule = B3/S23
b5o$bo4bo$bo$2bo4bo$4bo$5b2o2bo$3bo2bo3bo$bo7bo$o5bo2bo$o3b2o$4o2b2o!
x = 7, y = 4, rule = B3/S23
2o$2o2bo$4bobo$4b2o!
muzik wrote:Can someone send the famous glider-pulling-block reaction through an oblique search and see what comes up?
(Hint: probably nothing interesting, but who cares)
muzik wrote:However, I'd definitely like to see the unholy 2-number gap in the elementary spaceship speeds be filled in ASAP. How long should it take to discover our c/8 or c/9?
Then a p8 spaceship search with the same methods will take about a thousand weeks [of CPU time], and a p9 search will take a million weeks.
muzik wrote:So how long would c/11, c/12, 2c/9 and 2c/11 orthogonal take, respectively?
muzik wrote:And how was the copperhead found so fast if it has such a high period?
dvgrn wrote:...Not to increase your mental anguish about gaps, but why aren't you worried about the equally painful empty space between c/7 diagonal and c/12 diagonal?
muzik wrote:I'm assuming that searches for diagonal ships are even harder? How long would searches for c/8, 9, 10 and 11 diagonal take?
muzik wrote:I guess what we should be looking for now is not spaceships, but reactions.
We have the switch engine, which moves at c/12 and can be tamed to move at c/12. So what about a reaction that moves at c/9 diagonal or so?