For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

@A For Awesome
How did you find them? With jls?

EDIT:
Is this tagalong known?
x = 36, y = 17, rule = B3/S2329bo$6bobo18b2obo$3bo4bo17bo$2b3o4bo9b2o4bo$bobo14b3o3b2obo4b4o$2o2b2o4bo13b2ob3o3bo$b2o2b5o3bob2ob4o7b2obo$13bobo3bobob2o2b2o2bo$12bo4bobo$13bobo3bobob2o2b2o2bo$b2o2b5o3bob2ob4o7b2obo$2o2b2o4bo13b2ob3o3bo$bobo14b3o3b2obo4b4o$2b3o4bo9b2o4bo$3bo4bo17bo$6bobo18b2obo$29bo!

And this very sparky one?
x = 45, y = 17, rule = B3/S2323b2o$6bobo9b3ob3o5bo9b2o$3bo4bo9bo2bobo5b3o4b2o2b3o$2b3o4bo8b4ob2o4b3o2bobo2bo2b2o$bobo19bo2bo4b2o8bo2bo$2o2b2o4bo9bo2bo2b2o3b2obo2b3o2b2o$b2o2b5o3bobo2bobo2bobo2bo7b2o2b3o$13bob2obo2bobob2ob4o5b5o$12bo5bo3b2o$13bob2obo2bobob2ob4o5b5o$b2o2b5o3bobo2bobo2bobo2bo7b2o2b3o$2o2b2o4bo9bo2bo2b2o3b2obo2b3o2b2o$bobo19bo2bo4b2o8bo2bo$2b3o4bo8b4ob2o4b3o2bobo2bo2b2o$3bo4bo9bo2bobo5b3o4b2o2b3o$6bobo9b3ob3o5bo9b2o$23b2o!
Proud owner and founder of Sakagolue
x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo! (Check gen 2) Saka Posts: 2578 Joined: June 19th, 2015, 8:50 pm Location: In the kingdom of Sultan Hamengkubuwono X ### Re: Spaceship Discussion Thread Saka wrote:Is this tagalong known? And this very sparky one? Yes, these are both known. In fact, all width-17 bilaterally symmetric period-5 2c/5 spaceships are "known", since I ran a complete knightt search at this width a few weeks ago. Here are the results: knightt-2c5-w9-o.zip (173.78 KiB) Downloaded 82 times Every possible ship of this type can be constructed from the components in the attached file. These ships were certainly found earlier than my knightt search. In fact, the first one can be found in jslife. The second ship was almost certainly found by Paul Tooke in early 2002. Paul fairly extensive 2c/5 searches up to a search width of 11, so you probably won't find much new stuff below that width. By the way, I also ran the complete width-21 p5 2c/5 gutter search with knightt. Here are the results: knightt-2c5-w10-g.zip (1.5 MiB) Downloaded 89 times Saka wrote:@A For Awesome How did you find them? With jls? He said that he used JLS for his c/4 and 2c/5 orthogonal searches, so he might still be using it for his c/4 diagonal searches. However, if you are running Windows, Nicolay's modification of WLS is better at searching for c/4 diagonal ships. A c/4 diagonal search in JLS and standard WLS will find large fields of gliders, but Nicolay's modification can detect when a spaceship is found, and will skip solutions that don't interact with that spaceship. The best way to search for c/4 diagonal ships with Nicolay's WLS is to go to options->search settings, and in the box labeled "Ignore objects with a pop of up to", write "5". -Matthias Merzenich Sokwe Moderator Posts: 1334 Joined: July 9th, 2009, 2:44 pm ### Re: Spaceship Discussion Thread Sokwe wrote: Saka wrote:Is this tagalong known? And this very sparky one? Yes, these are both known. In fact, all width-17 bilaterally symmetric period-5 2c/5 spaceships are "known", since I ran a complete knightt search at this width a few weeks ago. Here are the results: knightt-2c5-w9-o.zip Every possible ship of this type can be constructed from the components in the attached file. These ships were certainly found earlier than my knightt search. In fact, the first one can be found in jslife. The second ship was almost certainly found by Paul Tooke in early 2002. Paul fairly extensive 2c/5 searches up to a search width of 11, so you probably won't find much new stuff below that width. By the way, I also ran the complete width-21 p5 2c/5 gutter search with knightt. Here are the results: knightt-2c5-w10-g.zip Saka wrote:@A For Awesome How did you find them? With jls? He said that he used JLS for his c/4 and 2c/5 orthogonal searches, so he might still be using it for his c/4 diagonal searches. However, if you are running Windows, Nicolay's modification of WLS is better at searching for c/4 diagonal ships. A c/4 diagonal search in JLS and standard WLS will find large fields of gliders, but Nicolay's modification can detect when a spaceship is found, and will skip solutions that don't interact with that spaceship. The best way to search for c/4 diagonal ships with Nicolay's WLS is to go to options->search settings, and in the box labeled "Ignore objects with a pop of up to", write "5". 1. Oh well... Back to 19 columns... 2. How do I do the sort for diagonals thing? Proud owner and founder of Sakagolue x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)

Saka

Posts: 2578
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Saka wrote:Oh well... Back to 19 columns...

As I said, Paul Tooke did fairly extensive searches up to a search width of 11. That corresponds to a full width of 21 for odd symmetric searches. Nobody has ever run a full knightt search at this width (it would take a very long time), but it's likely that most of the interesting stuff has been found. At width-23 there are more likely to be interesting new spaceships.

For long, thin 2c/5 ships, gfind and knightt are the best search programs. JLS and WLS are better for finding ships with "strange shapes" (this is what A For Awesome has been searching for).

Saka wrote:How do I do the sort for diagonals thing?

I'm guessing you want to know how to do a diagonal sort order for Nicolay's WLS. To do this, go to Options->Sort order. Under where it says "Direction 1" write "1" in the boxes labeled "cells right" and "cells down". For diagonal searches I also like to set the "sort center" to column 1, and row 1.

A word of warning when using Nicolay's WLS. For me, the program tends to crash after certain actions, such as saving or when I reset the search. As a result, I tend to save the search state before I start any search (even though saving crashes the program, it still saves the file). This way, if I want to change the search a little bit (since resetting often crashes the search), I can reload the initial state.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1334
Joined: July 9th, 2009, 2:44 pm

all right I'll do W 23 with wls
Proud owner and founder of Sakagolue
x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo! (Check gen 2) Saka Posts: 2578 Joined: June 19th, 2015, 8:50 pm Location: In the kingdom of Sultan Hamengkubuwono X ### Re: Spaceship Discussion Thread Sokwe wrote: Saka wrote:@A For Awesome How did you find them? With jls? He said that he used JLS for his c/4 and 2c/5 orthogonal searches, so he might still be using it for his c/4 diagonal searches. However, if you are running Windows, Nicolay's modification of WLS is better at searching for c/4 diagonal ships. Neither. I'm running knight2 at width 12. Here are two more ships (nothing too interesting): x = 12, y = 74, rule = B3/S234bo$2bo2bo$6bo$2bo2bo$6bo$4b2o$3bobo$4bo$3b2o$3bobo$6bo$6bo$4b3o2$bobo3bo$2b2o4b2o$2bo5b2o$7bo2$4bo4bo$5b3ob2o$9b2o2$2bobobobo$3b6o$6b2o$bobo$2b2o4bobo$9b2o$4bo4bo$2b2obo$2bo$3bo$3bobo$4b2o$4bo3$9bo$10bo$9b2o$9bo$6bob2o$8bo$7bo$bo$bo5b3o$2b4obo2bo$4b2o3b2o$9b2o2$4bo3b2o$4bo2b3o$4bob4o$8bo$3bo$7b2o$3bob3o$6bo2bobo$10b2o$obo2bobo2bo$b2o3bo$bo3b2o$3b3o2bo$2b3o3bo$2b2o3bo$9bobo$4bo5b2o$2b2obo4bo$2bo$3bo$3bobo$4b2o$4bo!

By the way, I'm also currently running c/6 width 11 asymmetric on knightt. It's currently at #D 22 after ~200 CPU-hours, so it'll take a while. The p9 zfind searches from a while back I may have to restart or just give up on; one of them I accidentally killed partway through (I forgot to dump the state) but I have some partials saved, and the other one is still ostensibly running but I always leave my old computer closed and I doubt it'll ever finish unless I do something about it. I also just started (2,1)c/7 width 12 using knight2.

EDIT: I didn't even notice that I found this ship:
x = 12, y = 36, rule = B3/S236bo$6bo$6b2o$3bobo4bo$3bob2obobo$3bobo3b2o$b3o$4bo$b4obobo$8bo$obo5bo$b2o$bo4bo2b2o$5bo3b2o$9bo$4bo5bo$3bo4b3o2$4b3o$6bo2$4bobo$o4b2o$b2o3bo$2o5bo$4bo$4bo2bo$2b2o2b2o$bo7bo$10b2o$bo2bo4b2o$o3bo$bo2bo$4bo$2bob2o$3b2o! EDIT 2: I also just ran (3,1)c/9 width 9 with knight2. Longest partial: ..*.**.**.*.**..*..*.**..*.**..*...**......*...**.**......*.....**...***...**...* x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt) $$x_1=\eta x$$ $$V^*_\eta=c^2\sqrt{\Lambda\eta}$$ $$K=\frac{\Lambda u^2}2$$ $$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$ http://conwaylife.com/wiki/A_for_all Aidan F. Pierce A for awesome Posts: 1660 Joined: September 13th, 2014, 5:36 pm Location: 0x-1 ### Re: Spaceship Discussion Thread A for awesome wrote:I didn't even notice that I found this ship A 60-cell ship and a 68-cell ship based on this: x = 36, y = 28, rule = B3/S2332bo$6bo24b2o$5b2o24bobo$5bobo$34b2o$8b2o24b2o$8b2o19b2o$29bo2b2o$6b2o21bo3bo$5bo2bo21b2obo$4b2obo21bo3b2o$3o22b3o$o24bo5bo2bo$bo24bo$2o3bo19b2o3bo$2o2bo4bo15b2o2bo4bo$8b2o23b2o$2bo5bobo16bo5bobo$2bo24bo$2bobob4o17bobob4o$6bo24bo$7b3o22b3o$2o3bobo17b2o3bobo$obob2obo17bobob2obo$o4bobo17bo4bobo$3b2o23b2o$4bo24bo$4bo24bo!

A for awesome wrote:I also just ran (3,1)c/9 width 9 with knight2.

Unfortunately, according to this post, (3,x)c/9 doesn't work properly in knight2 for unexplained reasons. Tim Coe said he would post a fix, but he never did (he seems to have gotten distracted with developing knightt instead).

A for awesome wrote:I also just started (2,1)c/7 width 12 using knight2.

For knight2 searches, you should use the -t command which prints the entire search tree to where ever the output is being directed. You can then use the -i command to restart the search, or even split the search over multiple CPUs, although splitting the search requires some changes to the code.

We could potentially use this search splitting to do a distributed search in the same vein as this.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1334
Joined: July 9th, 2009, 2:44 pm

Unfortunately, (1,1)c/4 width 12 just stopped for unexplained reasons. I'll restart (2,1)c/7 width 12 via your suggestions, and give up on the (3,1)c/9 searches.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

A for awesome

Posts: 1660
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

A for awesome wrote:Unfortunately, (1,1)c/4 width 12 just stopped for unexplained reasons.

I would guess that it ran out of memory (there is a memory limit set in the code). What value are you setting the -d parameter to? Are you using -m 3? Tim Coe talked about these issues a bit here.

Edit: some new c/4 diagonal ships based on one of A for awesome's ships:
x = 36, y = 185, rule = B3/S2313b2o$12b2obo$13bo$13bo2bo$13bo3bo$7b2o4bo2bo$6b2o$8bo7bo$10b2o2b2o$10bo2bo$13bo$10bo5b2o$11bo3b2o$11b2o4bo2$7bob2o$6b4o$6bo3b2o$11bo2bo2$10b2o3bo$10b2o3bo$11bo$11bo$12b2o16$13b2o$12b2obo$13bo$13bo2bo$13bo3bo$7b2o4bo2bo$6b2o$8bo7bo$10b2o2b2o$10bo2bo$13bo$10bo5b2o$11bo3b2o$11b2o4bo$6b2o$6bo2b2o$bo4bo3bo$2o5b2obo$obo3bo3b2o$4bo$3bo4bo2bo$3bo2bo19$13b2o15b2o$12b2obo13b2obo$13bo16bo$13bo2bo13bo2bo$13bo3bo12bo3bo$7b2o4bo2bo7b2o4bo2bo$6b2o15b2o$8bo7bo8bo7bo$10b2o2b2o11b2o2b2o$10bo2bo13bo2bo$13bo16bo$10bo5b2o9bo5b2o$11bo3b2o11bo3b2o$11b2o4bo10b2o4bo2$7bob2o13bob2o$6b4o13b4o$6bo3b2o11bo3b2o$11bo2bo13bo2bo2$10b2o4b2o9b2o5bo$10b2o4bobo8b2o4b2o$11bo4bo11bo4bobo$11bo16bo$12b2o15b2o16$13b2o15b2o$12b2obo13b2obo$13bo16bo$13bo2bo13bo2bo$13bo3bo12bo3bo$7b2o4bo2bo7b2o4bo2bo$6b2o15b2o$8bo7bo8bo7bo$10b2o2b2o11b2o2b2o$10bo2bo13bo2bo$13bo16bo$10bo5b2o9bo5b2o$11bo3b2o11bo3b2o$11b2o4bo10b2o4bo2$7bob2o13bob2o$6b4o13b4o$6bo3b2o11bo3b2o$11bo2bo13bo2bo2$10b2o3bo11b2o4b2o$10b2o3bo11b2o4bobo$11bo5b2o9bo4bo$11bo4b2o10bo3b2o$12b2o4bo10b2o16$13b2o$12b2obo$13bo$13bo2bo$13bo3bo$7b2o4bo2bo$6b2o$8bo7bo$10b2o2b2o$10bo2bo$13bo$10bo5b2o$11bo3b2o$11b2o4bo2$7bob2o$6b4o$6bo3b2o$11bo2bo$18bo$10b2o3bob2o$10b2o3bobobo$11bo5bo$11bo6bo$12b2o!

There are clearly still a huge number of undiscovered c/4 diagonal ships up to 70 bits.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1334
Joined: July 9th, 2009, 2:44 pm

Proud owner and founder of Sakagolue
x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo! (Check gen 2) Saka Posts: 2578 Joined: June 19th, 2015, 8:50 pm Location: In the kingdom of Sultan Hamengkubuwono X ### Re: Spaceship Discussion Thread Saka wrote:Where do I download knight and knight2? Knight was never publically released, as far as I know. The knight2 discussion thread in the scripts forum has a link to Tim Coe's post with the source code for knight2. The source code for knightt can be found in the knight2 discussion thread here. -Matthias Merzenich Sokwe Moderator Posts: 1334 Joined: July 9th, 2009, 2:44 pm ### Re: Spaceship Discussion Thread A pushalong to 2 c/6 waves: x = 21, y = 114, rule = B3/S2312b3o$11b5o$10bo5bo$11bob4o$12b3o$12b3o3$11bob2o$11b2o$11bo$11bo$11bob2o$15bo$12bo$16bo$14bobo$8b3o$8b3o4bo$9b3ob2o$11bo$9bo$9bo2bo2$9b3o$9bobo2$6bo7bo$4b2o9b2o$4bobo2b3o2bobo$5b3ob3ob3o$6bobo3bobo$5b2o7b2o$5b2o7b2o$6bo7bo$4bobo7bobo$3bo13bo$4b3o7b3o$7bobobobo$7bobobobo$7bo5bo$7bobobobo2$3b3o9b3o$6bo7bo$2bob4o5b4obo$b2obo11bob2o$2b3o11b3o$2b2o13b2o$4bo11bo2$5b3o5b3o$4bo11bo$4bo11bo$5b4o3b4o$9bobo$8b2ob2o$3b2o3b2ob2o3b2o$4b2o9b2o$3b2o2b2o3b2o2b2o$2bo4b2o3b2o4bo$6b2obobob2o$3b2o2bobobobo2b2o$3b2o2bobobobo2b2o$3bobo9bobo$3b3o9b3o$5b3o5b3o2$5bo9bo$4bobo7bobo$7bo5bo$4bobo7bobo$7bo5bo$6b3o3b3o$6b3o3b3o2$3b4o7b4o$2b6o5b6o$b8o3b8o$2o6b2ob2o6b2o3$2bo4bo5bo4bo$2b2o2b2o5b2o2b2o3$3b4o7b4o$3bo2bo7bo2bo$2bo4bo5bo4bo$3b4o7b4o$2b2o2b2o5b2o2b2o$3b4o7b4o$4b2o9b2o$3b4o7b4o$2b6o5b6o$b8o3b8o$2o6b2ob2o6b2o3$2bo4bo5bo4bo$2b2o2b2o5b2o2b2o3$3b4o7b4o$3bo2bo7bo2bo$2bo4bo5bo4bo$3b4o7b4o$2b2o2b2o5b2o2b2o$3b4o7b4o$4b2o9b2o$3b4o7b4o$2b6o5b6o$b8o3b8o$2o6b2ob2o6b2o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

A for awesome

Posts: 1660
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

A for awesome wrote:A pushalong to 2 c/6 waves

It can be pushed by one of Tim Coe's ships:
x = 19, y = 132, rule = B3/S2312bo$10bo3bo$10bo3bo$9bo5bo$10bo4bo$10bo$11bobo$12bo2$10bobo$9b2obo$9b2o$9b2o$11bobo$11b3o2$14bo$8bo5bo$7bobo4bo$13bo$7bo2b2obo$8bob2o$9bo2$8bobo$8bobo$8bobo2$4bo9bo$3bobo3bo3bobo$3bo2b3ob3o2bo2$7b5o2$6bo5bo$5b2o5b2o$4bo9bo$2bo2bo7bo2bo$3b3o7b3o$4bobo5bobo$5b2o5b2o$5b2o5b2o$7bo3bo$3bo11bo$3b2o9b2o$6bo5bo$2obob2o5b2obob2o$o4bo7bo4bo$3bo11bo$bo15bo$2bo13bo$4b2o7b2o$4b2o7b2o$3bobo7bobo$3bob2o5b2obo$4b4o3b4o$5bo2bobo2bo2$2b3o2b2ob2o2b3o$4bobobobobobo$2b6o3b6o$2bo5bobo5bo$2bo2bo2bobo2bo2bo$2b3obobobobob3o$bo2b2o7b2o2bo$bo2b2o7b2o2bo$2bo13bo$4b2o7b2o$4bo9bo$4bo9bo$4b2o7b2o$5b2o5b2o$5b2o5b2o$4bo2bo3bo2bo2$5bobo3bobo$9bo$b3o2b7o2b3o$o4b9o4bo$bo15bo$bobobo7bobobo$7bo3bo$5b3o3b3o$5bobobobobo$7b2ob2o$7bo3bo$8bobo$9bo2$7b2ob2o$7b2ob2o3$5b3o3b3o$5b2obobob2o$2bo5bobo5bo$2bo3bobobobo3bo$2bo3bobobobo3bo$5b3o3b3o$5bo7bo$4b2o7b2o2$4b2obo3bob2o$4b2ob2ob2ob2o$5bob2ob2obo$6b2o3b2o$7bo3bo$2b2o2bo5bo2b2o$2b2obob2ob2obob2o$2b3o2b2ob2o2b3o$7b2ob2o$2b2o3bo3bo3b2o$8bobo$6bobobobo$5b2obobob2o$5bo2bobo2bo$4bo3bobo3bo$3bo3b2ob2o3bo$3bo3b2ob2o3bo$3bo4bobo4bo$2b2o11b2o$2b2ob3o3b3ob2o$2b3o9b3o3$2b3o9b3o$5b2o5b2o$4b2o2b3o2b2o$b3o2b2obob2o2b3o$9bo$8bobo$8bobo! Here are some new c/4 diagonal ships: x = 53, y = 252, rule = B3/S23bo$2o$obo$2bo$3bo$ob2o$bo2$2b2o$2b2o4b2o$2bo4b2o$3b2o4bo$11b2o$3b3o4bo$3bo2bo$4bobob2o2bo2$8bob2o2b2o$8bo2bob2o$11bo3bo$9b2o$11bo$9b3o$8b2o2bo$10bo16$3o$o$bo$3o$3ob2o3$3bo$2b2o$2bo$3b3o2$3b2obo$3b2o$5bobo2$7b3o$15bo$9bobob2obo$11bo2bobo$13b2o2$11b2o$11b2o5b2o$13bo3b2o$13b2o3bo$12bo4b2o$13bo$12bo$13bo2bo$14bo10$3o$o$bo$3o$3ob2o3$3bo$2b2o$2bo$3b3o2$3b2obo$3b2o$5bobo2$7b3o$15bo$9bobob2obo$11bo2bobo$13b2o2$11b2o$11b2o$12bo$12bobo2$14bobo2$15bobo$15b2o$15bo2$12b2o2bo$12bo$12bo$13bo$13b2o$13b2o12$3o$o2b3o$bobo$6bo$4bo$6bobo3b2o$9bo2bobo$6bo2bo2bo$6bo2bo$6bo2bo$10b2o$7bo2b2o$11bobo$8b2o$8bo4bobo$9bo5bo$16bo$9b2o6bo$9bobo5bobo2$19b2o$19bo$18b2o$19b2o2$16b2o$15b2o$16b2o$16b3o$16bo$17b2o10$3o$o2b3o$bobo$6bo$4bo$6bobo$9bo$6bo2bo$5bo3bo$4b2o3bo$4bo4bo$3b2obobo$4bobobo2b3o$4bo3bo4b2o$5b2o7bo$9b2ob4o$12b2o2$12bo$11bobo$10bo2bo$11bo$11bo3bob3o$15bobo$12b2o5bo$14bo2b2o15$3o28bo$o2b3o24b2o$bobo26bobo$6bo25bo$4bo28bo$6bobo3b2o16bob2o$9bo2bobo16bo$6bo2bo2bo$6bo2bo22b2o$6bo2bo22b2o$10b2o20bo$7bo2b2o21b2o$11bobo$8b2o23b3o$8bo4bobo17bo2bo$9bo5bo18bo$16bo19b2o$9b2o6bo20bo$9bobo5bobo19b2o3b2o$13b2o25bob3obo$13b2o4b2o19bo$19bo23b3o$18b2o22b2o$19b2o20b2o$43bo$16b2o24bo$15b2o26bo$16b2o25bobo$16b3o$16bo28b2o$17b2o26bo$44b2o$45b2o2$47bo$46bo2b2o$47bob2o$51bo$49bobo$49bo$50bobo$52bo! -Matthias Merzenich Sokwe Moderator Posts: 1334 Joined: July 9th, 2009, 2:44 pm ### Re: Spaceship Discussion Thread Another double c/6 wave pushalong: x = 35, y = 130, rule = B3/S233$9b3o10b3o$4b3obo7b2o7bob3o$8bo3bo2bo2bo2bo3bo$8bo5bo4bo5bo$14b2o2b2o$11bo3bo2bo3bo$11bobo6bobo$12b10o$14bo4bo$12bo8bo$11bo10bo$12bo8bo$14bo4bo$15b4o$13b3o2b3o$11bo10bo$10b2o10b2o$8bo2bo2bo4bo2bo2bo$16b2o$9bobo4b2o4bobo$12bo8bo$11b2o8b2o$11bobo6bobo$10bo2bo6bo2bo$10bo12bo$8b2o3bo6bo3b2o$8b2o2bo8bo2b2o$9bob2o8b2obo$10bo12bo$10b3o8b3o2$10bo12bo$9bobo10bobo$12bo8bo$9bobo10bobo$12bo8bo$11b3o6b3o$11b3o6b3o2$8b4o10b4o$7b6o8b6o$6b8o6b8o$5b2o6b2o4b2o6b2o3$7bo4bo8bo4bo$7b2o2b2o8b2o2b2o3$8b4o10b4o$8bo2bo10bo2bo$7bo4bo8bo4bo$8b4o10b4o$7b2o2b2o8b2o2b2o$8b4o10b4o$9b2o12b2o$9b2o12b2o$8bo2bo10bo2bo$7bo4bo8bo4bo4$6bo6bo6bo6bo$5bobob2obobo4bobob2obobo$5b2o2b2o2b2o4b2o2b2o2b2o$9b2o12b2o2$7b2o2b2o8b2o2b2o$7b2o2b2o8b2o2b2o$8b4o10b4o$8bo2bo10bo2bo$7bo4bo8bo4bo$7bo4bo8bo4bo$7bob2obo8bob2obo$8bo2bo10bo2bo$8bo2bo10bo2bo3$8bo2bo10bo2bo$8b4o10b4o$9b2o12b2o4$6b8o6b8o$5bob6obo4bob6obo$5b3o4b3o4b3o4b3o$8bo2bo10bo2bo$7bo4bo8bo4bo$7b2o2b2o8b2o2b2o3$7b2o2b2o8b2o2b2o2$6bo2b2o2bo6bo2b2o2bo$9b2o12b2o$7b6o8b6o5$7b6o8b6o3$8b4o10b4o$7b6o8b6o$6b8o6b8o$5b2o6b2o4b2o6b2o3$7bo4bo8bo4bo$7b2o2b2o8b2o2b2o3$8b4o10b4o$8bo2bo10bo2bo$7bo4bo8bo4bo$8b4o10b4o$7b2o2b2o8b2o2b2o$8b4o10b4o$9b2o12b2o$9b2o12b2o$8bo2bo10bo2bo$7bo4bo8bo4bo! EDIT: Yet another: x = 23, y = 195, rule = B3/S2314bo$12bo3bo$12bo3bo$11bo5bo$12bo4bo$12bo$13bobo$14bo2$12bobo$11b2obo$11b2o$11b2o$13bobo$13b3o2$16bo$10bo5bo$9bobo4bo$15bo$9bo2b2obo$10bob2o$11bo2$10bobo$10bobo$10bobo2$6bo9bo$5bobo3bo3bobo$5bo2b3ob3o2bo2$9b5o2$8bo5bo$7b2o5b2o$6bo9bo$4bo2bo7bo2bo$5b3o7b3o$6bobo5bobo$7b2o5b2o$7b2o5b2o$9bo3bo$5bo11bo$5b2o9b2o$8bo5bo$2b2obob2o5b2obob2o$2bo4bo7bo4bo$5bo11bo$3bo15bo$4bo13bo$6b2o7b2o$6b2o7b2o$5bobo7bobo$5bob2o5b2obo$6b4o3b4o$7bo2bobo2bo2$4b3o2b2ob2o2b3o$6bobobobobobo$4b6o3b6o$4bo5bobo5bo$4bo2bo2bobo2bo2bo$4b3obobobobob3o$3bo2b2o7b2o2bo$3bo2b2o7b2o2bo$4bo13bo$6b2o7b2o$7bo7bo$8bo5bo$7bobo3bobo$7bobo3bobo$8bo5bo$8bo5bo$9bo3bo$9b2ob2o$8b2o3b2o$7bobo3bobo$6b4o3b4o$5b4obobob4o$4b2o3b2ob2o3b2o$10bobo$7b2obobob2o$7b3o3b3o$8bo5bo$6b3o5b3o$6b3o5b3o$6bo2bo3bo2bo3$3b3o11b3o$4b2o11b2o$7b3o3b3o$7bo2bobo2bo$8bobobobo$8bobobobo$7b2obobob2o$7b2obobob2o$8bobobobo$9b2ob2o$8b2o3b2o$8bo5bo$9bo3bo$9b2ob2o$7bobo3bobo$6bo9bo2$5bo3b2ob2o3bo$6b3o5b3o2$4b2o11b2o$2bo4bo7bo4bo$bo6bo5bo6bo$o8bo3bo8bo$2ob4ob2o3b2ob4ob2o3$2b2o2b2o7b2o2b2o$2b2o2b2o7b2o2b2o2$4b2o11b2o$3b4o9b4o$2b2o2b2o7b2o2b2o$2bo4bo7bo4bo$4b2o11b2o$2bo4bo7bo4bo$2bo4bo7bo4bo2$3bo2bo9bo2bo$3b4o9b4o5$bo6bo5bo6bo$ob6obo3bob6obo$2o6b2o3b2o6b2o$4b2o11b2o$3b4o9b4o$2b2o2b2o7b2o2b2o3$2b2o2b2o7b2o2b2o$2b2o2b2o7b2o2b2o$b2o4b2o5b2o4b2o$2bob2obo7bob2obo$2b2o2b2o7b2o2b2o4$3bo2bo9bo2bo$3bo2bo9bo2bo$3bo2bo9bo2bo3$2b6o7b6o$bo6bo5bo6bo$o8bo3bo8bo$o8bo3bo8bo$3bo2bo9bo2bo$2bo4bo7bo4bo$2b2o2b2o7b2o2b2o4$2b6o7b6o$4b2o11b2o$2bo4bo7bo4bo$3bo2bo9bo2bo$3b4o9b4o3$3b4o9b4o$3b4o9b4o$3b4o9b4o$4b2o11b2o$2bo4bo7bo4bo$bo6bo5bo6bo$o8bo3bo8bo$2ob4ob2o3b2ob4ob2o3$2b2o2b2o7b2o2b2o$2b2o2b2o7b2o2b2o2$4b2o11b2o$3b4o9b4o$2b2o2b2o7b2o2b2o$2bo4bo7bo4bo$4b2o11b2o$2bo4bo7bo4bo$2bo4bo7bo4bo2$3bo2bo9bo2bo$3b4o9b4o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

A for awesome

Posts: 1660
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

A new 70-cell c/4 diagonal ship:
x = 22, y = 34, rule = B3/S2318bo$17b2o$17bobo2$20b2o$19b3o$19bo2$15b2obobo$14bo5bo$13bo3b2o$12bo2bo$12bo$14bo$12bobo$11bo$10b2o$10bo4bo$9b2obob2o$11bo2bo$9b2o3b2o$9b2o$8bo2bo$9b2o$6b3o$6bo$6bob2o2$b2o4bo2bo$2o3b2o2bo$2bo3bo$4bo$4bo$5b2o!

@wildmyron
Did you ever end up running those width-17 odd and width-18 even symmetric c/8 searches?
-Matthias Merzenich
Sokwe
Moderator

Posts: 1334
Joined: July 9th, 2009, 2:44 pm

Is there a close-to-up-to-date c/4d collection?
If there is, where can I find it?
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Posts: 1795
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

BlinkerSpawn wrote:Is there a close-to-up-to-date c/4d collection?
If there is, where can I find it?

This collection compiled by Nicolay Beluchenko contains all known c/4 diagonal spaceships up to 70 bits except for the few that have been mentioned in this topic.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1334
Joined: July 9th, 2009, 2:44 pm

An unlikely but possible c/6 pushalong:
x = 18, y = 19, rule = B3/S234bo8bo$2bo3bo4bo3bo$2bo3bo4bo3bo$bo5bo2bo5bo$2bo4bo2bo4bo$2bo12bo$3bobo6bobo$4bo8bo2$b2obo8bob2o$b2obo8bob2o$2o14b2o$2b3o8b3o$3bo2bo4bo2bo$4bo8bo$6b2o2b2o$3bo2b2o2b2o2bo$3bo10bo$5b3o2b3o! x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt) $$x_1=\eta x$$ $$V^*_\eta=c^2\sqrt{\Lambda\eta}$$ $$K=\frac{\Lambda u^2}2$$ $$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$ http://conwaylife.com/wiki/A_for_all Aidan F. Pierce A for awesome Posts: 1660 Joined: September 13th, 2014, 5:36 pm Location: 0x-1 ### Re: Spaceship Discussion Thread Looks pretty promising tbh, just missing 4 bits/2 sparks waiting for apgsearch to support one-dimensional rules muzik Posts: 2855 Joined: January 28th, 2016, 2:47 pm Location: Scotland ### Re: Spaceship Discussion Thread Sokwe wrote:@wildmyron Did you ever end up running those width-17 odd and width-18 even symmetric c/8 searches? I did, and coincidentally as of yesterday I have something to report. Neither of the searches completed before I lost access to the machine they were running on but I had resumed the width 17 odd search on my desktop recently and it completed yesterday with a negative result. Total CPU time ended up being about 25 days. Here is a selection of partials from the search, I can't be sure that they're all new but there aren't any with width 15. x = 857, y = 60, rule = B3/S234b2o5b2o33bo3bo34bo5bo33bo5bo33bo5bo33bo5bo33bo5bo32bo7bo31bo7bo30bo9bo29bo9bo34bo39bo39bo39bo39bo39bo39bo39bo39bo39bo33bo11bo$2bo4bobo4bo30bobobobo33b2o3b2o32b2o5b2o31bobo3bobo31bobo3bobo31bobo3bobo30bobo5bobo29bobo5bobo28bobo7bobo27bobo7bobo33bo39bo39bo39bo39bo39bo39bo39bo39bo39bo33bo11bo$2bo4bobo4bo30bobobobo35bobo33bo2bo3bo2bo29bo2bo3bo2bo29bo2bo3bo2bo30bobo3bobo33bo3bo32bobo5bobo233b3o37b3o37b3o37b3o37b3o37b3o37b3o31b6o3b6o$bo5bobo5bo68bo2bobo2bo31bobo3bobo31b2o5b2o31b2o5b2o32bo5bo29b4ob2ob2ob4o28bo7bo29b4o5b4o27b4o5b4o32bobo37bobo37bobo314bo2bobo2bo$obo3b2ob2o3bobo25b6ob6o27b2obobobobob2o28bobo5bobo146bo2bob3ob3obo2bo66b2obo3bob2o29b2obo3bob2o32bobobo35bobobo35bobobo313b2obobob2o$b4o7b4o26bobo7bobo30bobobobo31b2o7b2o113bobo35bo5bo72bob2ob2obo31bob2ob2obo34bobo37bobo37bobo314b2obobob2o$2bob2o5b2obo28b2ob2ob2ob2o31bobobobo31bobo5bobo31b3ob3o33b3ob3o34b2ob2o29b2ob2ob2ob2ob2ob2o25b3o3bo3b3o28b2ob2ob2ob2o29b2ob2ob2ob2o29bo9bo111b7o33b7o33b7o33b7o33b7o33b7o33b7o29bobobobobobobobo$3bobob3obobo31b3ob3o30b3ob2ob2ob3o29b2ob3ob2o30b2obo3bob2o29b2obo3bob2o28b2o2bo3bo2b2o30b2o3b2o28b3o2bob3obo2b3o106bo9bo111bobobobo33bobobobo33bobobobo33bobobobo33bobobobo33bobobobo33bobobobo28b2ob2o2bobo2b2ob2o$2b13o108bobo2bo2bobo28b2o2b2ob2o2b2o27b2o2b2ob2o2b2o27b5o3b5o28bobo5bobo27bo2bobobobobo2bo29b2o3b2o33b2o3b2o29b2ob2o5b2ob2o30bo3bo34bo5bo28b3o5bo5b3o23b3o5bo5b3o23b3o5bo5b3o23b3o5bo5b3o23b3o5bo5b3o23b3o5bo5b3o23b3o5bo5b3o26b2obo3bob2o$3bo9bo108b2obo5bob2o30b2o3b2o33b2o3b2o32b9o68bo2bob2ob2obo2bo27bo3bobo3bo30bo2bobo2bo35bo34bo9bo31b2o3b2o28b2ob2o7b2ob2o23b2ob2o7b2ob2o23b2ob2o7b2ob2o23b2ob2o7b2ob2o23b2ob2o7b2ob2o23b2ob2o7b2ob2o23b2ob2o7b2ob2o23b2o4bo3bo4b2o$5b3ob3o29b2obo7bob2o27bo9bo28b2ob2o3b2ob2o30bo5bo33bo5bo30bo5bo5bo28bobo5bobo31b2obob2o30bob3o3b3obo28b2obo3bob2o68bo2b2obob2o2bo29b2o5b2o28bob2o7b2obo25bob2o7b2obo25bob2o7b2obo25bob2o7b2obo25bob2o7b2obo25bob2o7b2obo25bob2o7b2obo29b2o3b2o$5b2o3b2o32b2o5b2o29bob2o5b2obo68b2o7b2o29b2o7b2o30b2obobob2o73b5o31bo2b2o3b2o2bo28b2obo3bob2o34bo32b2o3b2ob2o3b2o30b5o30b2o11b2o25b2o11b2o25b2o11b2o25b2o11b2o25b2o11b2o25b2o11b2o25b2o11b2o28b2o5b2o$3b3o5b3o30b2o5b2o28bo13bo30bo3bo33b2o5b2o31b2o5b2o29bo5bo5bo27b4o5b4o27bo2b7o2bo28bob2o3b2obo68b3o3bo3b3o26b2obob2ob2obob2o26b2o3b3o3b2o308b2o7b2o$41b3obo5bob3o26bo3b2ob2o3bo27b3o7b3o26bo3b2o3b2o3bo25bo3b2o3b2o3bo29b3ob3o29bo3b2o3b2o3bo26bobobo3bobobo71b2ob2o31b2obob3obob2o27bobo2bobo2bobo27b2o4bo4b2o29b2o5b2o31b2o5b2o31b2o5b2o31b2o5b2o31b2o5b2o31b2o5b2o31b2o5b2o$2bo3bo3bo3bo29b3o3b3o29bo4bobo4bo30bo5bo30b5o3b5o27b5o3b5o26bobo3bobo3bobo30b2ob2o31bobob2ob2obobo32bobo72bo3bo3bo3bo31b5o32b2o7b2o30bobo3bobo31bobo3bobo31bobo3bobo31bobo3bobo31bobo3bobo31bobo3bobo31bobo3bobo29b2ob2obob2ob2o$b2o3bo3bo3b2o67bo3bobo3bo30b3obob3o29bo11bo27bo11bo27b2ob2o3b2ob2o26b2o3b2ob2o3b2o26b3o3bo3b3o27bobo2bobo2bobo28b3o5b3o28b2o2b2ob2o2b2o28bo2bo3bo2bo28bobo7bobo29bo2bobo2bo31bo2bobo2bo31bo2bobo2bo31bo2bobo2bo31bo2bobo2bo31bo2bobo2bo31bo2bobo2bo29b2o3bobo3b2o$bo3bo5bo3bo29b3ob3o31b4o3b4o26bo15bo109bo3bo34bobobobo31bo4bo4bo28bo2b7o2bo70bob3obo30bo11bo27bob2o5b2obo28bo3bobo3bo29bo3bobo3bo29bo3bobo3bo29bo3bobo3bo29bo3bobo3bo29bo3bobo3bo29bo3bobo3bo28b3o7b3o$bo13bo28b3o3b3o29bo11bo28bo9bo26b3o2b2o3b2o2b3o23b3o2b2o3b2o2b3o24bo4bo3bo4bo29b3ob3o33bo2bo2bo30b2o9b2o29b2o5b2o29b2obobobobob2o27b2o2bo3bo2b2o25bo3bo7bo3bo307b3o3b3o$bo13bo26bobo7bobo26bobo9bobo24b2o5b3o5b2o27bo7bo31bo7bo28bo4bo3bo4bo26bo11bo27b2ob2o3b2ob2o27b2o9b2o66bo3bo5bo3bo27bob2o3b2obo26bob2o9b2obo66bo9bo29bo9bo29bo3bobo3bo29bo3bobo3bo32bo3bo32bo9bo$3b2obo3bob2o26b2o2b2o5b2o2b2o23b2o13b2o25bo3bo3bo3bo27b2o9b2o27b2o9b2o27bo11bo26b2ob3o3b3ob2o26b2ob2o3b2ob2o28bo9bo30b3o3b3o28b3obo5bob3o29b2o3b2o30b2o2b5o2b2o30bobobobo32bo7bo31bo7bo31bo2bobo2bo31bo2bobo2bo29bo11bo29bobo3bobo33bo3bo$3bo2bo3bo2bo26b2o3bo5bo3b2o24bo2bo7bo2bo27bo2bo3bo2bo29bo9bo29bo9bo29bobo5bobo28bo4bobo4bo29b4ob4o30bobo5bobo29bob2o3b2obo27b2ob3o3b3ob2o24b2o13b2o25b4o2bo2b4o31bo3bo32b2o2bobo2b2o29b2o2bobo2b2o30bo2bobo2bo31bo2bobo2bo29bo2bo5bo2bo28bo9bo30bo2bobo2bo$2b2obo5bob2o26b5o5b5o25bo2bo7bo2bo28bob2ob2obo30b3o5b3o29b3o5b3o28b2o2bo3bo2b2o28bob2o3b2obo33bobo37bobo32b2o9b2o27bo3bo3bo3bo25bo2bo9bo2bo25b2obo2bo2bob2o27b3o7b3o31b2ob2o35b2ob2o29bob3o2bobo2b3obo23bob3o2bobo2b3obo25bobobo3bobobo29b2o5b2o32b2obob2o$bob2o7b2obo26bo3b2ob2o3bo30bo5bo31b2obo3bob2o31bo2bo2bo33bo2bo2bo30b2ob2o3b2ob2o25b2obo3bobo3bob2o27bo7bo31bo2bobo2bo29b2o9b2o27bob2o5b2obo29bo7bo30bob2obob2obo28bob2o5b2obo30bobobobo33bobobobo28bo3b3o3b3o3bo23bo3b3o3b3o3bo28b2o3b2o74bo3bo$bob2o2b3o2b2obo26bobob2ob2obobo27bobo7bobo69b9o31b9o32bobobobo31b3obobob3o32bo3bo30b2o2b2o3b2o2b2o25b3o2bo3bo2b3o25bo13bo28bo7bo30b2o3bo3b2o29b2o7b2o28b4obobob4o27b4obobob4o29b2o5b2o31b2o5b2o28bo5bobo5bo65bo13bo$bobo9bobo27b2o7b2o70bobo3bobo32bo5bo33bo5bo30b3o2bobo2b3o25bobo4bobo4bobo25bo3bo3bo3bo28bobo5bobo28b2ob2o3b2ob2o26bo2bo7bo2bo25bo2bo7bo2bo27b2o2bobo2b2o32b2ob2o31bo2bobobobo2bo27bo2bobobobo2bo26b2o11b2o25b2o11b2o25bo4b2ob2o4bo28b2o5b2o27bob2o4bo4b2obo$4bo7bo29b2obo5bob2o29b2o5b2o31bobo3bobo34b3o37b3o37bobo36b2ob2o32bobo5bobo27b3obo5bob3o26b2ob2o3b2ob2o26bo2bo7bo2bo25bo13bo27b2ob2ob2ob2o31b3ob3o33bobobobo35bobo32bob3o3b3obo27bob3o3b3obo26bo4b2ob2o4bo27bo2b5o2bo26bobo2b3ob3o2bobo$5bo5bo30b3o7b3o28b2obo3bob2o33b3o32b2obo2bo2bob2o27b2obo2bo2bob2o30bobobobo30bob2obobob2obo28bobo5bobo27b4obo3bob4o29b2o3b2o30bob2o5b2obo26bo3bo5bo3bo27bo2bo3bo2bo30bo7bo34bobo35bobobobo30b5o3b5o27b5o3b5o25b2o13b2o25b3o2b3o2b3o27bo11bo$3bo2bo3bo2bo33b3o34bo7bo32bo2bo2bo30bo3b2ob2o3bo27bo3b2ob2o3bo27b2ob2o3b2ob2o27bob2obobob2obo29bo7bo30bo9bo29bob2o3b2obo27b3obo5bob3o25bo2b2o5b2o2bo26bob3o3b3obo28b2o7b2o29b3obobob3o30bo2bobo2bo30bo2bo3bo2bo29bo2bo3bo2bo27b2o11b2o25bobo4bo4bobo29bo5bo$b2o2b2obob2o2b2o29bo5bo29bobo2b2ob2o2bobo28bobobobobo29bobo7bobo27bobo7bobo29b3o3b3o30b2o2bobo2b2o31b2o3b2o29b3obo5bob3o27bo9bo26b2o2bo2bobo2bo2b2o28bo5bo33bo5bo30bo11bo26bo2bobo3bobo2bo28bo7bo29b2o2b2ob2o2b2o27b2o2b2ob2o2b2o26bo13bo25b2o3bo3bo3b2o29b3ob3o$2b2obob3obob2o30bo5bo29bobobo5bobobo28b2o2bo2b2o29bo11bo27bo11bo26b3ob2o3b2ob3o29b3ob3o32b3o3b3o31bo7bo29b2o3b3o3b2o29bobobobobo28bobo9bobo26b2ob2o3b2ob2o26b2obo2bobo2bob2o24bo3bo7bo3bo29bo3bo30b3o9b3o25b3o9b3o66bob2obobob2obo31b2ob2o$41bo2bo7bo2bo28b2o5b2o31bo2bobo2bo29bo3b2ob2o3bo27bo3b2ob2o3bo31bo3bo30b2o2b7o2b2o25b2o3bo3bo3b2o67bobob3obobo29bo4bo4bo26b2ob4o3b4ob2o29b2ob2o30b2o11b2o25bo3bo5bo3bo27bo9bo27bo2bo7bo2bo25bo2bo7bo2bo26bobo7bobo27bobo7bobo29bo7bo$2bo5bo5bo27bobob2ob2obobo29b2o5b2o35bo34bo2b2ob2o2bo29bo2b2ob2o2bo69bobo5bobo26bob2o3bobo3b2obo25bo11bo27b2o4bo4b2o25b2o3b2o3b2o3b2o23b2o2bo2bobo2bo2b2o26bo9bo26b3ob3o3b3ob3o25b2o2bo3bo2b2o27b2o3bobo3b2o26bo2b4ob4o2bo25bo2b4ob4o2bo26b3ob2ob2ob3o26bobob2o3b2obobo27b2o3bo3b2o$bo3bobobobo3bo27bob2obob2obo33bobo33b2o7b2o31b2o3b2o33b2o3b2o70bob2o5b2obo25bo6bobo6bo108bob3obo32bo7bo29bo5bo5bo25bo2b2o2bobo2b2o2bo28b2o3b2o31bo2b2ob2o2bo27bo13bo25bo13bo25b2o2bobobobo2b2o24bo3b9o3bo29bobobo$bobobo5bobobo25bo5b3o5bo26bob2o5b2obo29bo2b3o2bo149b3o7b3o27b4obobob4o67bo2b2o3b2o2bo65b2o3b2obob2o3b2o25bobob5obobo26b2o11b2o27b3o5b3o71b2o3b2o33b2o3b2o34bo3bo33b2o2bo2b2o28bo4bobobo4bo$2bo2bo5bo2bo25bo3bo2bobo2bo3bo26bo9bo29b3o2bo2b3o28b3o7b3o27b3o7b3o67bob9obo28b2ob2ob2ob2o68bo4bobo4bo66b2o5bo5b2o25bo2b2o5b2o2bo26b2o9b2o27bo3bo3bo3bo28b4o3b4o29bob2o3b2obo29bob2o3b2obo$7b3o31b4o2b3o2b4o28bo2bobo2bo29bobo7bobo26bo3bo5bo3bo27bo2bo3bo2bo71b2o3b2o30bo4b3o4bo66b2o11b2o65b5o2bo2b5o25b3ob3ob3ob3o26bobo7bobo26bo2b3o3b3o2bo26bob2obobob2obo30b2o3b2o33b2o3b2o31b2obo3bob2o$2b5o3b5o30bo5bo29bo13bo26b2o9b2o26b3obobobobob3o25bobobobobobobobo66bobo7bobo27b2o9b2o65bob5o3b5obo104b2o2bo2bo2bo2b2o27b3obobob3o27b2obo2bobo2bob2o25b2o2b2o3b2o2b2o26b3o7b3o27b3o7b3o28bo3bobo3bo$b2o2bo5bo2b2o27bobo5bobo27b2o3b2ob2o3b2o25b2o4b3o4b2o26b2obo5bob2o25b2obo2bo3bo2bob2o64bo2b2ob3ob2o2bo26bobo2bobo2bobo65bo5bo3bo5bo104b2o3bo3bo3b2o30bo3bo34b7o30bo3b2ob2o3bo27bobobo3bobobo30bo5bo29bobobobobobobobo$bo13bo66bobob2ob2obobo69bobo3bobo27b2obo9bob2o106b2o3bo3b2o67bobo2b2ob2o2bobo106b2o2bo3bo2b2o68b2ob2ob2ob2o29b2o2bobo2b2o28b3o7b3o25bo3bo7bo3bo23b3ob2obobob2ob3o$3bo2bo3bo2bo28bo3b2ob2o3bo28b2o2bobo2b2o107bo3b2o3b2o3bo107b2o3bo3b2o69bo9bo107b2o2b3ob3o2b2o29b2o3b2o30bo3b2ob2o3bo27bo3bo3bo3bo32bobo30bo6bobo6bo23b3ob3o3b3ob3o$2o2b3obob3o2b2o25b4o5b4o28bobobobobobo28b4o5b4o26bobobo5bobobo31bobo111bobo9bobo71bobo111bo4bo3bo4bo26bob3o3b3obo26bo6bo6bo25bo13bo26b3obobobob3o26b3o2bo3bo2b3o26bobo7bobo$4b9o27b2o5b3o5b2o24b2o11b2o25b4ob2ob2ob4o25b4obo3bob4o25b2o11b2o104bo5b5o5bo225bo2bo5bo2bo27b2o9b2o26bo3bo5bo3bo26b2obo2bo2bob2o26b2o2b2o3b2o2b2o24b5obo3bob5o$2bo11bo25b2ob2obo3bob2ob2o27bo2bobo2bo31bob2ob2obo28b2ob3o3b3ob2o26bobo7bobo112b3o232bobo7bobo28bo9bo27b2ob2o2bo2b2ob2o29b2o3b2o34bo3bo$83b2obo3bob2o28bo4bobo4bo29bo2bobo2bo31bobobobobo107bo2bo3b3o3bo2bo225bo2b2o3b2o2bo27bo4bobo4bo30bob3obo29bo2bo3bo3bo2bo29bobobobo35bobo$82bobo3bo3bobo26bo2bobo3bobo2bo28b3obob3o31bo2bobo2bo107bob2o9b2obo225bobobo3bobobo26bobo2b2ob2o2bobo25bobobo5bobobo24bo5b2ob2o5bo28b2o3b2o34bo3bo$81bo5bobo5bo24bob2o2bobobo2b2obo25b2o9b2o149bo3bo3bo231bob2ob2obo27bo3bo2b3o2bo3bo28bo5bo28bo2b2obo3bob2o2bo23bob5o3b5obo25b3ob2ob2ob3o$121bo13bo26bo2bo5bo2bo26b3o4bo4b3o105bo2b2obobob2o2bo269bo2bo2bo29bo3b2obob2o3bo29bob3obo28bo5bo3bo5bo29bo3bo$120bo4b7o4bo24b2o11b2o25b2o3b5o3b2o105bob2o7b2obo306b2o9b2o25b2o4b5o4b2o25bo3b5o3bo29b2o5b2o$126bobobo30b2ob2o5b2ob2o24bo2bob2o3b2obo2bo106b3obobob3o308bobo2bobo2bobo28b2obo3bob2o27b2o2bob3obo2b2o$160bo3b4ob4o3bo466b3o2bo2b3o26b2o3b2obob2o3b2o25bo11bo28b2o7b2o$203bo9bo109b2ob2ob2ob2o307bobob7obobo25b3o3b3o3b3o26bo3b5o3bo27bobo2b3o2bobo$202b2ob3ob3ob2o108b2obo3bob2o348b3obo3bob3o26bo13bo24b2o6bo6b2o$206bo3bo109b3obo2b3o2bob3o344bo3bob3obo3bo28bo7bo27b3obobo3bobob3o$205bo2bo2bo114bo3bo351bo3bo3bo3bo26bo6bo6bo25b2o2b2o3b2o2b2o$201b3o3b3o3b3o108b3o3b3o352bobobobo29bob2o3bo3b2obo25b3o9b3o$200b2ob2obo3bob2ob2o105bo11bo346b3obobobobob3o25bo5bobo5bo27b2obo3bob2o$321b4obo3bob4o426bobob2ob2obobo$762bobo2b3o2bobo$768bo$761b2o3b2ob2o3b2o!

The second last one features a push-along - here it is with the longest width 17 partial I was able to find which supports it.
x = 96, y = 43, rule = B3/S237bo39bo$6b3o37b3o$6b3o37b3o$6b3o37b3o$4bobobobo33bobobobo$4bo5bo33bo5bo$4bo5bo33bo5bo$o5b3o5bo25bo5b3o5bo$3o9b3o25b3o9b3o$ob2o7b2obo25bob2o7b2obo$b2o9b2o27b2o9b2o$b3o7b3o27b3o7b3o$3b2o5b2o31b2o5b2o$3bo7bo31bo7bo$4bo5bo33bo5bo$2bo2b2ob2o2bo29bo2b2ob2o2bo$bo3bo3bo3bo27bo3bo3bo3bo$2bo2bo3bo2bo29bo2bo3bo2bo$4bo5bo33bo5bo$3bo7bo31bo7bo$3b2o5b2o31b2o5b2o3$43bobo3bobo31bobo3bobo$43b2o5b2o31b2o5b2o$41b2obo5bob2o27b2obo5bob2o$41bo3b5o3bo27bo3b5o3bo$40bo2b9o2bo25bo2b9o2bo$40b3o9b3o25b3o9b3o$42b2ob2ob2ob2o29b2ob2ob2ob2o$45b2ob2o35b2ob2o$43bobo3bobo31bobo3bobo$39b2o2bo2bobo2bo2b2o23b2o2bo2bobo2bo2b2o$42bo2bo3bo2bo29bo2bo3bo2bo$40b2o5bo5b2o25b2o5bo5b2o$41bo4bobo4bo27bo4bobo4bo$44bo5bo33bo5bo$42bob2o3b2obo29bob2o3b2obo$41b2o2b2ob2o2b2o27b2o2b2ob2o2b2o$41bo3b5o3bo27bo3b5o3bo$41bobo7bobo27bobo7bobo$45b5o35b5o$42b2o7b2o29b2o7b2o!

I've kicked off the continuation of the even search too, hopefully won't be too much longer.

Edit:
The width 9 even symmetric search completed with no results. The total CPU time was approximately 22 days.

Search: zfind-s-p8-k1-w9 v l4000

A selection of partials:
x = 658, y = 54, rule = B3/S233b2o8b2o28b2o8b2o29b2o6b2o31bo6bo32bo6bo32bo6bo31bo8bo30bo8bo34b2o38b2o38b2o33bo10bo28bo10bo28bo10bo28bo10bo27bo12bo26bo12bo$bo4bo4bo4bo25b4o6b4o27bo2bo4bo2bo30b2o4b2o32b2o4b2o32b2o4b2o30bobo6bobo28bobo6bobo33b2o37bo2bo36bo2bo30bo3bo6bo3bo26b2o8b2o27bobo8bobo26bobo8bobo25bobo10bobo24bobo10bobo$bo4bo4bo4bo24b4obo4bob4o25bo4bo2bo4bo27bo2bo4bo2bo28bo2bo4bo2bo28bo2bo4bo2bo31bo4bo30bo2bo6bo2bo30bob2obo30b3o2bo2bo2b3o26b3o2bo2bo2b3o24bo4bo6bo4bo24b2obo6bob2o26bobo8bobo26bobo8bobo25bobo10bobo24bobo10bobo$o2bo2bo4bo2bo2bo22b2o4b2o2b2o4b2o26bo2b4o2bo27b2o12b2o24b2o12b2o24b2o12b2o24b4ob2o2b2ob4o26b2o8b2o29b2o6b2o28b2obo6bob2o26b2obo6bob2o24b2obo2bo4bo2bob2o26b3o4b3o29bo10bo28bo10bo27bo5b2o5bo26bo12bo$5b2o4b2o32b2o4b2o28bo4b2o2b2o4bo24b2o12b2o24b2o12b2o24b2o12b2o23bo2bob3o2b3obo2bo30b2o34b2o6b2o28bo2b2o4b2o2bo26bo2b2o4b2o2bo64b2o3b2o4b2o3b2o109bo2bo$4b2o6b2o32bo4bo29bobo2b2o2b2o2bobo24b2o2bo6bo2b2o24b2o2bo6bo2b2o24b2o2bo6bo2b2o28bo6bo33b2o2b2o31b2o8b2o28bo10bo28bo10bo32bo2bo29b2o4bo4bo4b2o25bo10bo73b2o$5bobo2bobo30bo2bo4bo2bo26bobo10bobo25b4o6b4o26b4o6b4o26b4o6b4o24b2ob2ob2o2b2ob2ob2o28bo4bo31bobo6bobo30bo6bo32bo6bo29b2obobo2bobob2o25bo4b2o2b2o4bo25bobo8bobo26b3o8b3o26b4o6b4o25b3o10b3o$5bob4obo30b2ob2o2b2ob2o26bo2bo8bo2bo26b12o28b12o28b12o30b2o4b2o33bo4bo33bo6bo31bo2bo2bo2bo30bo2bo2bo2bo28bobo8bobo65bo3bo6bo3bo26bo10bo26bob4o4b4obo25bobo8bobo$46b2o2b2o28b2ob3o6b3ob2o26bo2bo2bo2bo30bo2bo2bo2bo30bo2bo2bo2bo29bobo6bobo30b8o29bo12bo27bo10bo28bo10bo25b2o14b2o27bo6bo29bo12bo25bob2o8b2obo30b4o31bobo8bobo$5b2o4b2o33bo4bo33bo6bo32bob4obo32bob4obo32bob4obo71b4o2b4o31b2o4b2o30b2ob2o2b2ob2o28b2ob2o2b2ob2o25bo2bob3o2b3obo2bo27b8o29bobo8bobo24b3o12b3o23bobobo2b2o2bobobo25bob2o6b2obo$42bo12bo68b2ob4ob2o30b2ob4ob2o30b2ob4ob2o28bo12bo27bo2bo4bo2bo27b2o10b2o26b4o6b4o26b4o6b4o25bo5bo2bo5bo28b2o4b2o30b2o2bo2bo2b2o67b2o3b4o3b2o26b2o2bo4bo2b2o$2b3o8b3o29bob4obo31b2o6b2o147bobob2o4b2obobo25bo3bo4bo3bo64b3o12b3o22b3o12b3o28b2o2b2o35b4o34b2o4b2o29b2o10b2o27bo3bo2bo3bo28bobo6bobo$2b2ob2o4b2ob2o26b2o10b2o25bo14bo26bo10bo28bo10bo28bo10bo28bob2o4b2obo28bo2bo4bo2bo31bo4bo111bo2b2o2b2o2bo32bo2bo35bo4bo32bo8bo30bo2bo2bo2bo31b2o4b2o$bo14bo26bo10bo27b2o10b2o26bo12bo26bo12bo26bo12bo26bo4bo2bo4bo106bo12bo26bo12bo25bobob3o2b3obobo26b2ob2o2b2ob2o27bo12bo70b2o2b2o32b2o6b2o$3b5o2b5o72bo2bo30b2o5b2o5b2o24b2o5b2o5b2o24b2o5b2o5b2o27b4o2b4o69b2ob2o2b2ob2o105bo2bob2o4b2obo2bo24bo2bo6bo2bo25b2o12b2o25bo3bo4bo3bo30bob2obo32b3o4b3o$3b2o8b2o27b5o4b5o27bo3bo2bo3bo25bo6b4o6bo22bo6b4o6bo22bo6b4o6bo26bo2bo2bo2bo29b3o6b3o28b2ob2o2b2ob2o26bo2b2o6b2o2bo23bo3b2o6b2o3bo23bo2b2o6b2o2bo26b2o8b2o27bo12bo28b2obo2bob2o32b6o30bo4bo2bo4bo$8b2o31b2o4b4o4b2o25bo3bo4bo3bo30b6o34b6o34b6o29bobobo6bobobo67bobo4bobo30b2o6b2o26bo3b2o6b2o3bo23bo2bo3b2o3bo2bo25bo12bo27b2o8b2o29bo2bo2bo2bo32bo4bo29bo2b4o2b4o2bo$6b6o30bobobo4bobobo27b3o6b3o25bobo12bobo22bobo12bobo22bobo12bobo23b2o3b2o2b2o3b2o67b2o6b2o28bo12bo28bobo4bobo28bobo3b2o3bobo25b3obobo2bobob3o26b2ob6ob2o29b2o6b2o32bo4bo28bo3bob2o2b2obo3bo$4b2o6b2o29b4o4b4o65bobo12bobo22bobo12bobo22bobo12bobo23b3o10b3o27bo8bo28b3o8b3o26b3o8b3o29bo6bo28b2o5b2o5b2o23b2obo2bo4bo2bob2o22bobo12bobo29bo2bo31bo12bo24bo2bo2b6o2bo2bo$2bobo8bobo106bo5b2o5bo26bo5b2o5bo26bo5b2o5bo27bobo6bobo28b3o6b3o68b2o8b2o26b3o10b3o26bo3b4o3bo25b2ob2o8b2ob2o25bo10bo29bo2bo2bo2bo27bob3o6b3obo$3obo8bob3o25bo10bo30b2o4b2o27b2o3bob4obo3b2o22b2o3bob4obo3b2o22b2o3bob4obo3b2o64b2ob3o2b3ob2o25bo14bo28bo6bo28b2o12b2o25bo3bo4bo3bo27b2o8b2o25bob2o10b2obo30b2o72bo12bo$5bo6bo30bo10bo28b3o6b3o29bob2o2b2obo30bob2o2b2obo30bob2o2b2obo29b3o6b3o27bobo2bo2bo2bobo25bo4bob2obo4bo28bo6bo29b2o10b2o26b3o8b3o29b2o4b2o32bobo2bobo31bo2bo2bo2bo30bo8bo28b2o10b2o$6b6o30bo2b2o4b2o2bo26b3o3b2o3b3o27bo3bo2bo3bo28bo3bo2bo3bo28bo3bo2bo3bo68b2o3b2o3b2o26b2obob6obob2o29bo4bo30b5o4b5o31b4o30b4o2bo2bo2b4o28bo2b2o2bo31b2o6b2o27bo2bo2bo2bo2bo2bo24bo14bo$5b2o4b2o29b2o3b4o3b2o27b2o2bo2bo2b2o29bobo4bobo30bobo4bobo30bobo4bobo31bo6bo34bo2bo33bo8bo30b3o4b3o32bo4bo28b3o2bobo2bobo2b3o23b3o3b4o3b3o27bo8bo71b2o4b2o29b2o10b2o$3b3o6b3o28b2o8b2o30bo2b2o2bo33bo4bo34bo4bo34bo4bo34bob2obo31bo3b4o3bo29bo8bo29bobo6bobo27bo12bo25b2o3b2o2b2o3b2o23bo2bo2bo4bo2bo2bo30b2o71bo3b2o4b2o3bo29b2o2b2o$2b2o2b2o2b2o2b2o67bo2bo4bo2bo28b3o6b3o28b3o6b3o28b3o6b3o28b2obo4bob2o68b3o6b3o28bobo6bobo26bo4bo4bo4bo25bo3b2o2b2o3bo25b2o5b2o5b2o26b2o8b2o28b2ob2o2b2ob2o26b2o12b2o26bo10bo$bo2bo8bo2bo23b2o3bo6bo3b2o24bo4bo2bo4bo27bo10bo28bo10bo28bo10bo30bob4obo30bo2bo4bo2bo67bobo8bobo24b2o5bo2bo5b2o22bob2ob2o4b2ob2obo26bo3b2o3bo28bo3b2o2b2o3bo27b3o2b2o2b3o26b2o12b2o29bo4bo$3b2o8b2o25b2obob2o4b2obob2o24bobo8bobo27b2o8b2o28b2o8b2o28b2o8b2o69b3o4b3o29b3o6b3o27b3o8b3o27b2obo4bob2o29b2ob4ob2o30b2o6b2o28b2obo6bob2o28bo3b2o3bo27b2ob2o6b2ob2o26b2o8b2o$bo3b2o4b2o3bo26bo2bo4bo2bo27bo3b2o2b2o3bo27bo10bo28bo10bo28bo10bo68bo10bo28b3ob4ob3o27b3o8b3o30bo4bo70b2o2bob2obo2b2o27bob2ob2ob2obo31b2o2b2o34bo4bo30b3o8b3o$bo4b6o4bo26bo10bo31b2o2b2o149b3ob3o2b3ob3o27bo8bo30b2o2b2o2b2o29bo2bo4bo2bo25b2o14b2o26b3o4b3o27bob5o2b5obo30bo2bo31bobo8bobo65bo4bo4bo4bo$2b2o4b2o4b2o25b2o2bobo2bobo2b2o26b3o6b3o27b2o10b2o26b2o3b4o3b2o26b2o2b2o2b2o2b2o27bobo6bobo29bo8bo29b3o2b2o2b3o29b2o6b2o32bo4bo30b3o3b2o3b3o25bobo10bobo30b4o32b2o2bo2bo2b2o29bobo4bobo27bo2bobo4bobo2bo$41bobo3bo2bo3bobo24bobobo6bobobo28b3o2b3o32b2o4b2o34b4o29bo2b2o2bo2bo2b2o2bo66bo8bo30bobo4bobo28b3obo4bob3o25bo2b2ob4ob2o2bo25b2o10b2o25b3o3bo2bo3b3o27bo3b2o3bo32b2o2b2o34bob2obo$41bo4bo4bo4bo24bobo10bobo24bo4b2o2b2o4bo27b2o6b2o29bo4b2o4bo69b2o6b2o34b2o33bob2ob2ob2obo26b2o3bo4bo3b2o66bo2bo4bo2bo26b2obobo4bobob2o31b2o36b2o2b2o30b2o2b6o2b2o$43bobo2b2o2bobo26bo2bo3b2o3bo2bo24bo14bo27b2obo2bob2o29b3o6b3o67bo4bo2bo4bo25b2o3b2o2b2o3b2o24b3o2b6o2b3o25bo3bo4bo3bo65b2ob3o4b3ob2o24b2obobo4bobob2o24bob2o8b2obo24b2o4b4o4b2o25bo4bo2bo4bo$84b2obo2bob2o29bo10bo31bo4bo35b4o71b3o8b3o65bo4bob2obo4bo25b2obo6bob2o64bo2bo4b2o4bo2bo26bo8bo26bo3b3ob2ob3o3bo24b2o2bo4bo2b2o30b2o2b2o$82bo12bo24bob3o8b3obo65bo3b4o3bo67bobob2o2b2obobo65b3o10b3o25b3o8b3o66bobo8bobo26bo3bob2obo3bo25bobo3bo2bo3bobo25b2ob2o4b2ob2o27bob2ob2ob2obo$81b3ob2ob2ob2ob3o24bo2bo8bo2bo25b2o3b4o3b2o28bo8bo67b2o2bo6bo2b2o67b3o4b3o33b4o69b2ob4o4b4ob2o24b2o3bo2bo3b2o25bo2b2obo2bob2o2bo25b2ob2ob2ob2ob2o29bo2b2o2bo$81b2o2bo6bo2b2o27b2o2b2o2b2o28b2o2bo4bo2b2o31bo2bo69bo2bo10bo2bo63b6o4b6o29bo4bo69bo6b2o6bo24b3o3bo2bo3b3o23b2obob2o4b2obob2o23bo5b4o5bo25bo12bo$85bo6bo29b3o2bo2bo2b3o25bobo3bo2bo3bobo25bo12bo64bobo12bobo63bo5bo2bo5bo24bo3b2ob2ob2o3bo63bo5bob2obo5bo22b2o2bobo4bobo2b2o28bo4bo29b2o2bo2b2o2bo2b2o25b5o4b5o$121b2o4b4o4b2o25bo4bo2bo4bo25bob4o4b4obo144b3o3bo2bo3b3o143b2o3b8o3b2o64bo4bo2bo4bo25bo2b2ob4ob2o2bo$120bo3b3o4b3o3bo25bo2b2o2b2o2bo29b3o4b3o66bob2ob2o4b2ob2obo65bo3bo2bo3bo185b2obo3bo2bo3bob2o24bob2o6b2obo24bo3bo3b2o3bo3bo$120bo2b2o2bo2bo2b2o2bo23bo2b4o2b4o2bo26bo2bo4bo2bo66bo3b2o4b2o3bo67bo8bo187b2ob2obo2bob2ob2o24b2obo8bob2o24bo2b2ob4ob2o2bo$161bo2bo8bo2bo26bob3o2b3obo71b2o2b2o76b2o191b2o3b2o2b2o3b2o24b3o10b3o25bob2obo2bob2obo$162bobob2o2b2obobo31bo2bo74b3o2b3o72b2ob2ob2o187b2o4b6o4b2o25bo2b2o2b2o2bo$166b2o2b2o29b2ob2o6b2ob2o64b3o3bo2bo3b3o65b5o4b5o184bob3o8b3obo23bo4bob2obo4bo24bo3b3o2b3o3bo$162b3obo4bob3o29b2o4b2o67bo3bo3b2o3bo3bo63bobo3bo2bo3bobo227bo8bo27b3o10b3o$161b2o2b2o4b2o2b2o23bo2bobo6bobo2bo70b2o70bo2bo3bo2bo3bo2bo223b2o12b2o26b3obo2bob3o$161b2obo2bo2bo2bob2o23bo16bo65bo3bo2bo3bo66bo14bo264b2o4bo2bo4b2o$168b2o34bobo4bobo67b2o4bo2bo4b2o67b10o$200bobo12bobo62bobo4bo2bo4bobo64bo4b4o4bo$201bob5o2b5obo68b3o2b3o68bo3bo6bo3bo$206b2o2b2o68bo5bo4bo5bo63bobobo6bobobo$281bob3obo2bob3obo65bo12bo$360b2ob3o6b3ob2o! I've excluded most of the partials containing the double loaf pusher as I posted a lot more of them earlier in this thread. It's hard to say if any of these are more promising that the rest, but if I had to guess I'd say the frontend of the tenth and eleventh partials looks kind of promising. Last edited by wildmyron on March 19th, 2017, 11:15 pm, edited 1 time in total. wildmyron Posts: 875 Joined: August 9th, 2013, 12:45 am ### Re: Spaceship Discussion Thread wildmyron wrote: Sokwe wrote:@wildmyron Did you ever end up running those width-17 odd and width-18 even symmetric c/8 searches? I did, and coincidentally as of yesterday I have something to report. Neither of the searches completed before I lost access to the machine they were running on but I had resumed the width 17 odd search on my desktop recently and it completed yesterday with a negative result. Total CPU time ended up being about 25 days. Since there are no (1,0)c/7 ships up to a search-width of 9, it wouldn't be surprising if there are no (1,0)c/8 ships at this width either. I suppose I can still hope for the width-18 even-symmetric ship. I noticed that many of the known high-period ships only display their full width in a small number of rows. The new c/7 is width-19 in only 4 rows. The first width-19 c/6 was only width-19 in 7 rows, and I later found one that was width-19 in only 2 rows. It might therefore be useful to modify zfind to allow a small fixed number of full-width rows, while operating the rest of the search at the smaller width. Hopefully, such a search wouldn't take too much longer than a standard search at the lower width. I'll work on this modification over the next couple of weeks. I have a farther-off plan of rewriting zfind as a breadth-first search with depth-first pruning, similar to gfind. I also plan to use openMP for distributing the depth-first pruning. This is a more ambitious endeavor than simple zfind modifications, so I don't plan to start it for at least a couple of months. -Matthias Merzenich Sokwe Moderator Posts: 1334 Joined: July 9th, 2009, 2:44 pm ### Re: Spaceship Discussion Thread Sokwe wrote: wildmyron wrote: Sokwe wrote:@wildmyron Did you ever end up running those width-17 odd and width-18 even symmetric c/8 searches? I did, and coincidentally as of yesterday I have something to report. Neither of the searches completed before I lost access to the machine they were running on but I had resumed the width 17 odd search on my desktop recently and it completed yesterday with a negative result. Total CPU time ended up being about 25 days. Since there are no (1,0)c/7 ships up to a search-width of 9, it wouldn't be surprising if there are no (1,0)c/8 ships at this width either. I suppose I can still hope for the width-18 even-symmetric ship. The even width-18 search with zfind-s finished over the weekend. Alas, it too found no spaceships at that search width. I have updated the post above with a selection of partials to keep the width-17 odd and width-18 even results together. Sokwe wrote:I noticed that many of the known high-period ships only display their full width in a small number of rows. The new c/7 is width-19 in only 4 rows. The first width-19 c/6 was only width-19 in 7 rows, and I later found one that was width-19 in only 2 rows. It might therefore be useful to modify zfind to allow a small fixed number of full-width rows, while operating the rest of the search at the smaller width. Hopefully, such a search wouldn't take too much longer than a standard search at the lower width. I'll work on this modification over the next couple of weeks. This is an interesting idea to explore. Do you have some method in mind for determining which rows will be allowed to be at the full width? I suppose the limit of this idea is allowing an attempt at widening the current search state after every row when the current search state does not yet include a row of the full width. Whilst such a search will be faster than the complete full width search, I'm not sure that it "won't take too much longer than a standard search at the lower width" - like the ships with small full-width sections, there is a significant fraction of the search space which only has a small number of rows at the full width. Another thought: Will the full-width portion be required to be contiguous? If not, you could constrain the search with a maximum number of full width rows and they would be allowed to occur anywhere in the current search state. Once the limit was reached all further rows would be constrained to the lower width. I fear I'm at risk of bike-shedding here - I should just bide my time and look forward to the results instead of muddying the waters (and not go off-topic for this thread). Sokwe wrote:I have a farther-off plan of rewriting zfind as a breadth-first search with depth-first pruning, similar to gfind. I also plan to use openMP for distributing the depth-first pruning. This is a more ambitious endeavor than simple zfind modifications, so I don't plan to start it for at least a couple of months. I sure am looking forward to this development. I suspect it will deliver a significant step change in the performance of spaceship search programs. wildmyron Posts: 875 Joined: August 9th, 2013, 12:45 am ### Re: Spaceship Discussion Thread wildmyron wrote:The even width-18 search with zfind-s finished over the weekend. Alas, it too found no spaceships at that search width. https://www.youtube.com/watch?v=cdEQmpVIE4A wildmyron wrote:This is an interesting idea to explore. Do you have some method in mind for determining which rows will be allowed to be at the full width? I have a few ideas I want to test out. My first thought was simply to allow only a certain number of rows to be full-width and allow them to occur anywhere in the spaceship. Another idea is to have parameters that say a full-width row must occur by row N and no full-width rows can occur after row N. wildmyron wrote:Whilst such a search will be faster than the complete full width search, I'm not sure that it "won't take too much longer than a standard search at the lower width" - like the ships with small full-width sections, there is a significant fraction of the search space which only has a small number of rows at the full width. This is a good point. It's hard to know how these modifications will affect search length, and their purpose is for searches that are already reaching the edge of what is possible in a reasonable amount of time. A combination of the modifications described above may be necessary to get reasonable search lengths. wildmyron wrote:Will the full-width portion be required to be contiguous? If not, you could constrain the search with a maximum number of full width rows and they would be allowed to occur anywhere in the current search state. Once the limit was reached all further rows would be constrained to the lower width. This is how I first envisioned the modification. wildmyron wrote: Sokwe wrote:I have a farther-off plan of rewriting zfind as a breadth-first search with depth-first pruning, similar to gfind. I also plan to use openMP for distributing the depth-first pruning. This is a more ambitious endeavor than simple zfind modifications, so I don't plan to start it for at least a couple of months. I sure am looking forward to this development. I suspect it will deliver a significant step change in the performance of spaceship search programs. This has been my plan ever since I figured out that zfind works basically the same as gfind. I've noticed from running gfind that most of the time is taken in the depth-first stage. gfind works as a breadth-first search with a limited queue size. Once the queue fills up, it takes each element (which represents a particular partial result), and tries to extend it to a specified depth. If it reaches that depth, the element is kept, but if no extension is found then the element is thrown away. Once it has gone through the whole queue, it repacks the remaining nodes of the search tree to save space and goes back to the breadth-first search. It should be simple to split the depth-first portion among multiple processors. Just give each processor an element of the queue to check. A bit of care must be taken to avoid false sharing and potentially other issues. I don't have much knowledge of computer architecture or parallel computing, so if anyone has suggestions on what to watch out for, I would like to hear them. Of course, the breadth-first portion can be split too, but that's a bit more complicated. I'll stick with the easiest implementation to begin with. Other possibilities that I have no plans for at the moment: • Distributed computing: parts of the breadth-first search queue could be sent out to multiple computers to perform the depth-first pruning. Besides just being a lot of work, I don't know enough about networks to do this. • GPU computing: since zfind uses large lookup tables to find successive rows, I'm not sure if a GPU version could easily be written. gfind doesn't rely on large lookup tables, so it might work better. I might be completely wrong here, since I know very little about GPU programming. -Matthias Merzenich Sokwe Moderator Posts: 1334 Joined: July 9th, 2009, 2:44 pm ### Re: Spaceship Discussion Thread I may or may not have just discovered a new spaceship. I checked through the wiki and couldn't find it, but tell me if this is already a thing. It is speed 2c/20 and orthogonal. Here is the RLE: x = 0, y = 0, rule = B3/S23-a4ei64bo3b2o$3b3o3b2o$2bobo3b2o$3obo3bo!

If it is new, I am thinking of naming it either the arrowhead, flaming arrow, or fireball. But seeing as I am a relative novice at cellular automata in general, this is probably not new.

~Thanks!
"It's not easy having a good time. Even smiling makes my face ache." - Frank N. Furter
Ethanagor

Posts: 78
Joined: March 15th, 2017, 7:34 pm
Location: the Milky Way galaxy

Ethanagor wrote:I may or may not have just discovered a new spaceship. I checked through the wiki and couldn't find it, but tell me if this is already a thing. It is speed 2c/20 and orthogonal. Here is the RLE:

That ship is already known, other rules aren't on the wiki, and it's not in life.
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y

drc

Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

PreviousNext