I will start. Can anybody synthesize this thing:
x = 21, y = 21, rule = B3/S23
3b5o$2bo4bo$7bo5b4o$2bo3bo5b6o$4bo7b4ob2o$16b2o3$16bo$o3bo3bo3bo5bo$o
3bo3bo3bo6bo$o3bo3bo3bo6bo$15b5o3$16b3o$4bo10b5o$2bo3bo8b3ob2o$7bo10b
2o$2bo4bo$3b5o!
x = 21, y = 21, rule = B3/S23
3b5o$2bo4bo$7bo5b4o$2bo3bo5b6o$4bo7b4ob2o$16b2o3$16bo$o3bo3bo3bo5bo$o
3bo3bo3bo6bo$o3bo3bo3bo6bo$15b5o3$16b3o$4bo10b5o$2bo3bo8b3ob2o$7bo10b
2o$2bo4bo$3b5o!
Alexey_Nigin wrote:Can anybody synthesize this thing [blinker puffer 1 plus two trailing MWSSES]...
x = 56, y = 39, rule = B3/S23
46bo$45bo$45b3o8$39bobo$40b2o$40bo2$39b3o$41bo$40bo$23bobo$3b2o19b2o$
3ob2o18bo21bobo$5o41b2o$b3o43bo13$13b5o$b3o8bo4bo24b2o10b2o$5o12bo24bo
bo8b2o$3ob2o6bo3bo25bo12bo$3b2o9bo!
x = 9, y = 12, rule = B3/S23
5bo$4bobo$4bo2bo$b2ob3o$bobo$3bob4o$2b2obo2bo3$2bo$2o$bo!
A for awesome wrote:Is there any way to place the prepond in this component?:Code: Select allx = 9, y = 12, rule = B3/S23
5bo$4bobo$4bo2bo$b2ob3o$bobo$3bob4o$2b2obo2bo3$2bo$2o$bo!
x = 18, y = 23, rule = LifeHistory
14.A$13.A.A$13.A2.A$10.2A.3A$10.A.A$12.A.4A$11.2A.A2.A9$12.2C$12.C.C$
8.2C2.C$9.2C$8.C$2C$.2C$C!
x = 3, y = 7, rule = B3/S23
2bo$bo$o$o$o$bo$2bo!
gmc_nxtman wrote:Does anyone have a collection of phi spark syntheses?
Or pi syntheses?
x = 5, y = 6, rule = B3/S23
2bo$obo$b2o$4bo$4bo$4bo!
x = 12, y = 12, rule = B3/S23
2bo5b2obo$bobo6b2o$obo4bo$bo4bobo$5bo2bo$4bob2o$3bobo$2bo2bo$o2b2o$o$b
o$2o!
gmc_nxtman wrote:Any way to place the sparks here?Code: Select allx = 12, y = 12, rule = B3/S23
2bo5b2obo$bobo6b2o$obo4bo$bo4bobo$5bo2bo$4bob2o$3bobo$2bo2bo$o2b2o$o$b
o$2o!
x = 21, y = 21, rule = B3/S23
16bo$14bobo$15b2o2bo$18bo$18b3o3$18bo$10bo6bobo$9bobo6b2o$8bobo4bo$9bo
4bobo$13bo2bo$12bob2o$bo9bobo$2bo7bo2bo$3o8b2o$8bo$3b2o2bobo$2bobo3b2o
$4bo!
x = 37, y = 18, rule = B3/S23
7b2o$7b2o4$2o27b2o2bob2o$2o26bo2bo2b2o$29bobo$30bo$36bo$34b3o$33bo$34b
o$35b2o3$25b2o$25b2o!
muzik wrote:How would I go about turning this pi into a glider (preferably by extending this specific conduit)? Make sure it can still allow loafers in from outside.
x = 48, y = 30, rule = LifeHistory
18.2A$18.2A4$11.2A27.2A2.A.2A$11.2A26.A2.A2.2A$40.A.A$.2C38.A$C.C44.A
$2C43.3A$44.A$45.A$46.2A3$36.2A$22.3D11.2A$2.2C18.D$3.C18.3D$3C$C5$
24.2C$24.C$25.3C$27.C!
simeks wrote:muzik wrote:How would I go about turning this pi into a glider (preferably by extending this specific conduit)? Make sure it can still allow loafers in from outside.
Well, actually PNW6T138 fits right in:Code: Select allx = 48, y = 30, rule = LifeHistory
18.2A$18.2A4$11.2A27.2A2.A.2A$11.2A26.A2.A2.2A$40.A.A$.2C38.A$C.C44.A
$2C43.3A$44.A$45.A$46.2A3$36.2A$22.3D11.2A$2.2C18.D$3.C18.3D$3C$C5$
24.2C$24.C$25.3C$27.C!
x = 24, y = 33, rule = B3/S23
3b2o14b2o$3b2o14b2o7$b2o2b2o10b2o2b2o$3b2o14b2o$3b2o14b2o$obo2bobo8bob
o2bobo$o6bo8bo6bo2$o6bo8bo6bo$b2o2b2o10b2o2b2o$2b4o5b2o5b4o$10bo2bo$3b
2o6b2o6b2o$2bo2bo12bo2bo2$bo4bo10bo4bo$2o4b2o8b2o4b2o$bob2obo10bob2obo
$2b4o12b4o$3b2o14b2o$10b4o$11b2o2$8b2o4b2o$7bo2bo2bo2bo$8b3o2b3o$8b2o
4b2o!
x = 8, y = 6, rule = B3/S23
2$2b3o$2b5o!
Rhombic wrote:This octomino evolves into a very recognisable pattern. Is there a trivial name for it?
x = 114, y = 98, rule = LifeHistory
69.A$67.3A$66.A$66.2A$61.7B6.2A$60.8B6.A$59.10B2.BA.A$59.7BC3B.B2A$
60.6BCBC3B$59.7B3C3B$56.12BC3B$55.17B$55.16B$56.15B$60.10B$59.12B$60.
12B$61.11B$60.12B3.B$59.12B3.2B$58.12B3.3B$57.13B2.4B$58.11B2.4B$58.
4B3D4B.4B$59.2BD3BD39B$57.3BD5BD38B$56.4BD5BD38B$57.3BD5BD38B$58.3BD
3BD39B$58.4B3D40B$58.12B$57.48B$57.48B$58.47B$58.6BE40B$52.2A4.5BEBE
39B$51.B2AB2.7BE40B$22.4B3.4B19.2B2.12B$23.4B3.4B17.2B2.13B2E$24.4B3.
4B.B6.2B5.4B.13B2E$25.4B3.6B4.6B.20B$26.4B3.5B3.28B$21.2A4.4B3.5B2.
28B$13.A6.B2AB4.4B.29B2C5B$13.3A5.3B5.28B2C2BC2BC5B$16.A3.B.B6.28B2C
3BCBC5B$15.2A2.6B4.34BC4B$15.10B2.41B4.7B3.B$7.2A8.50B4.9B.3B$8.A8.
50B3.15B$8.A.AB6.48B.19B$9.2AB.3B2.48B2C20B$11.21B3D28B2.B2C20B$11.
23BD28B4.14BD7B$12.20B3D28B7.10B2D9B$11.52B6.10BD13B$9.54B7.9B2D12B$
7.19B3.17B2.5B2D7B10.21B$7.2BD15B5.10B3.B5.4BDBD5B11.21B$6.3BDBD4B.7B
7.8B12.4B2D5B11.18B$7.2B3D4B2.6B7.7B13.12B11.16B$6.5BD4B3.6B6.2A18.
11B13.14B$5.10B6.4B7.A18.10B7.2A6.3B.9B16.2A$4.4B12.B2A2B4.3A18.10B8.
A11.10B15.A$4.3B14.2A.B2A2.A19.11B5.BA.A11.11B11.BA.A$2.4B18.BA.A.A
18.16B.B2A12.11B8.2B.B2A$2.2A23.A.2A16.19B9.2A3.11B7.5B$3.A23.A2.A15.
20B9.A2.B.12B4.7B$3A25.2A15.21B10.3A12B.B3.7B$A43.24B10.AB.14B.7B2.2A
.A$45.2B.20B8.2A4.23BA.2A$43.26B7.A5.22B$43.26B8.3A2.21B$43.28B8.A3.
20B$44.29B10.19B.B.2A2.2A$43.30B9.23BA.A2.A$41.28B.4B8.22B.B.A.A$39.
31B.2A2B5.2AB.22B2A.2A$39.2BD28BA.AB5.A.AB.21B.B$38.3BDBD4B.17B.3B2A
7.A6.19B$39.2B3D4B.10B.6B3.3B6.2A7.2B2.13B$38.5BD4B.8B5.B.B5.B20.12B$
37.10B.9B34.15B$36.4B6.10B.2B34.14B$36.3B5.14B2A35.12B$34.4B5.15B2A
36.11B$34.2A6.17B35.4B.4B3DB$35.A7.13B38.2A4.4BD2B$32.3A11.10B39.A4.
2B3D2B$32.A13.11B35.3A6.6B$46.10B36.A8.7B$47.8B48.B.4B$50.4B52.4B$51.
4B52.3B$109.B2A$109.BA.A$112.A$112.2A!
x = 59, y = 21, rule = B3/S23
37b3o11b3o$36bo3bo9bo3bo$35b2o4bo7bo4b2o$5b3o11b3o12bobob2ob2o5b2ob2ob
obo$4bo3bo9bo3bo10b2obo4bob2ob2obo4bob2o$3b2o4bo7bo4b2o8bo4bo3bo2bobo
2bo3bo4bo$2bobob2ob2o5b2ob2obobo19bobo$b2obo4bob2ob2obo4bob2o6b2o7b2ob
obob2o7b2o$o4bo3bo2bobo2bo3bo4bo17bobo$12bobo23b3o9b3o$2o7b2obobob2o7b
2o11bo3bo9bo$12bobo23bobo4b3o$6b3o9b3o23bo2bo4b2o$6bo9bo3bo26bo$11b3o
4bobo22bo3bo$5b2o4bo2bo28bo3bo$11bo35bo$11bo3bo28bobo$11bo3bo$11bo$12b
obo!
gmc_nxtman wrote:Is there any way to insert the block and tub in the yellow positions with a conduit to make an H-to-Flotilla?
x = 4, y = 13, rule = B3/S23
b2o$b2o3$b2o$b2o5$2obo$b3o$2bo!
Rhombic wrote:How can I restore the block
Rhombic wrote:How can I restore the block that reacts away with the B-heptomino here? The top block acts as a catalyst, but after having tried to use the dot sparks to the right I found no way to restore the block that reacts away. (By the way, this creates a Herschel in gen 20)Code: Select allx = 4, y = 13, rule = B3/S23
b2o$b2o3$b2o$b2o5$2obo$b3o$2bo!
x = 4, y = 9, rule = B3/S23
2o$2o5$2obo$b3o$2bo!
x = 56, y = 30, rule = LifeHistory
15.A$3.A9.3A23.A$3.3A6.A25.A.A$6.A5.2A24.A.A$5.2A14.2A16.A$20.A.A$16.
2A3.A$15.A2.A$16.2A$4.C7.D$5.C6.D.D$5.2C5.3D$4.2C8.D18.C18.2A$4.C28.C
.C16.A.A$33.3C18.A$35.C18.2A4$51.2A$50.A.A$51.A3$42.2A$43.A$2.2A36.3A
$3.A36.A$3A$A!
gmc_nxtman wrote:Is there any stable conduit that produces a clean eater capable of blocking a glider lane?
x = 100, y = 62, rule = LifeHistory
97.3B$96.4B$49.2A44.4B$50.A43.4B$37.A11.A37.C5.4B$37.3A9.2A36.C.C2.4B
$40.A9.B26.B9.2C2.4B$4.C22.2A10.2A9.3B23.3B11.4B$5.C22.A10.5B5.6B19.
6B8.5B$3.3CB21.A.AB9.4B3.10B10.4B2.7B3.8B$4.4B10.A10.2AB.3B4.6B2.11B
3.2B2.26B$5.4B7.3A12.7B.9BD3B2A15BD23B$6.4B5.A15.17B2D2B2A15BDBD21B.
3B$7.4B4.2A15.17B2D18B3DB2A22B$2A6.9B14.18BD21BDB2A21B2A$.A7.6B14.19B
D45B.B2A$.A.2A5.6B3.B2.2B2.19B.B3.13B.B5.23B3.B$2.A2.A4.19BC15B5.7B.B
13.B2.18B$3.2AB3.20BCBC4B.7B31.17B$4.14B2A9B3C4B2.7B30.17B$5.13B2A11B
C4B4.2B2A31.19B$6.29B3.4B2A32.18B$6.17B.B.2B10.2A36.4B2.12B$7.15B4.3B
10.A42.11B$7.15B5.A2B.2A3.3A43.8B$8.13B5.A.A2B.A3.A45.10B$10.13B2.A.A
B2.A46.A.2AB.4B2.2A$9.8B4.2A.A.A3.A45.3AB2AB7.A$9.6B6.2ABA2.4A.A42.A
4.B10.3A$9.5B8.B2.A.A3.A.A42.3A.2A11.A$9.B.B9.2A.2A2.A2.A.A44.2A2.A$
10.3B9.A.A2.2A3.A48.2A$9.B2AB9.A.A$10.2A11.A26$22.2C$21.C.C$23.C!
x = 11, y = 10, rule = B3/S23
4b2o$bo2bo$obobo$obobob2o$b2obo2bo$5bo$6b4o$10bo$8bobo$8b2o!
muzik wrote:Can someone hit this with a few gliders so a loaf placed in the correct position would form a functional eater3?Code: Select allx = 11, y = 10, rule = B3/S23
4b2o$bo2bo$obobo$obobob2o$b2obo2bo$5bo$6b4o$10bo$8bobo$8b2o!
Users browsing this forum: Google [Bot] and 7 guests