ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Let's find a G-to-X (Done!)

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

Re: Let's find a G-to-X (Done!)

Postby dvgrn » March 22nd, 2015, 5:48 am

Scorbie wrote:Wow.This would change quite a lot of the gun collection. If there were a reasonably small Hto2g...

Don't know how well known this old H-to-G0 converter is -- I seem to recall I posted it somewhere else not too long ago, but there might be some uses for it here. At higher periods (p188+) it can be used to convert a wrong-color Herschel to a right-color glider, with the help of a (color-changing) semi-Snark.

Also there are two possible positions for the semi-Snark's toggle block, so you can trivially change the timing of the circuit by 119 ticks... Apologies for the heavy-handed narration in the viewer below -- just testing out the new waypoint system:

Code: Select all
#C [[ AUTOSTART X 0 Y 0 ZOOM 2.5 THEME 9 HEIGHT 300 ]]
#C [[ PAUSE 5 "Guns are identical except for one block" ]]
#C [[ T 147 ZOOM 10 X -57 Y 0 ]]
#C [[ PAUSE 3 "Left semi-Snark reflects first glider of pair" ]]
#C [[ T 200 ZOOM 2.5 X 0 Y 0 ]]
#C [[ T 266 ZOOM 10 X 78 Y 0 ]]
#C [[ PAUSE 3 "Right semi-Snark reflects 2nd glider instead" ]]
#C [[ T 350 ZOOM 2.5 X 0 Y 0 ]]
#C [[ T 700 ]]
#C [[ T 759 ZOOM 10 X -38 Y -20 ]]
#C [[ PAUSE 3 "Left-hand gun's period is 759" ]]
#C [[ T 820 X 0 Y 0 ZOOM 2.5 ]]
#C [[ T 878 ZOOM 10 X 100 Y -20 ]]
#C [[ PAUSE 3 "Right-hand gun's period is 878" ]]
#C [[ T 1000 X 0 Y 0 ZOOM 2.5 ]]
x = 246, y = 82, rule = B3/S23
96bo135bo$94b3o133b3o$93bo10bo124bo10bo$93b2o8bobo123b2o8bobo$76bo26bo
bo106bo26bobo$76b3o23b2ob3o104b3o23b2ob3o$79bo28bo106bo28bo$78b2o22b2o
b3o106b2o22b2ob3o$102b2obo132b2obo2$79b2o134b2o$47bo11b2o18b2o102bo11b
2o18b2o$46bobo10b2o121bobo10b2o$38bo3b2o2bobo125bo3b2o2bobo$37bobo2bo
2b2ob2o123bobo2bo2b2ob2o$37bobo3bobo127bobo3bobo$38bob4o2bob2o124bob4o
2bob2o$40bo3bobob2o126bo3bobob2o$39bo3bobo129bo3bobo$34bo3bo3bobo125bo
3bo3bobo$32b3o3b2o3bo124b3o3b2o3bo$31bo50b3o82bo50b3o$31b2o50bo8b2o73b
2o50bo8b2o$83b3o6bo126b3o6bo$51b2o40b3o91b2o40b3o$51b2o42bo91b2o42bo$
66b2o134b2o$65bo2bo132bo2bo$66b2obo132b2obo$69bo135bo$69b2o134b2o$54b
2o134b2o$55bo135bo$52b3o133b3o$39b2o11bo122b2o11bo$39bo135bo$40b3o15b
2o116b3o15b2o$42bo16bo118bo16bo$59bobo133bobo$60b2o22b2o110b2o22b2o$
35b2o47b2o85b2o47b2o$35bobo37b2o94bobo37b2o$37bo37b2o14bob2o78bo37b2o
14bob2o$37b2o52b2obo78b2o52b2obo$66b2o$bo56b2o6b2o69bo56b2o$obo55b2o
15bob2o57bobo55b2o5b2o8bob2o$obo72b2obo57bobo62b2o8b2obo$bo135bo$71bo
135bo$29b2o39bobo92b2o39bobo$29bo33b2o6b2o92bo33b2o6b2o$30b3o31bo101b
3o31bo$32bo21bo6b3o104bo21bo6b3o$52b3o6bo126b3o6bo$51bo135bo$51b2o134b
2o$36b2o134b2o$37bo135bo$37bob2o132bob2o$38bo2bo132bo2bo$39b2o134b2o$
54b2o13b2o119b2o13b2o$54b2o13b2o119b2o13b2o5$93b2o134b2o$60b2ob2o28b2o
101b2ob2o28b2o$57b2o2bobo3b2o124b2o2bobo3b2o$57b2obo2bo2bobo37b2o85b2o
bo2bo2bobo37b2o$60bobo3bo39bobo87bobo3bo39bobo$60bobobobo26b2o13bo87bo
bobobo26b2o13bo$61b2ob2o27b2o13b2o87b2ob2o27b2o13b2o$46b2o31b2o101b2o
31b2o$46b2o30bobo101b2o30bobo$78bo135bo$77b2o8b2o124b2o8b2o$87bo135bo$
88b3o133b3o$90bo135bo!

One potentially nice thing about it is that the two gliders can perfectly be run through an H-to-G, one after another, and the doubled output can be reflected with a semi-Snark much later, after several Snark reflections if necessary.

Haven't found a way to reduce any guns with this yet, though -- the above is just a proof-of-concept. I guess it does improve on the previous p759 gun and various other nearby periods, but I'm sure there's something better out there.
User avatar
dvgrn
Moderator
 
Posts: 5817
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Let's find a G-to-X (Done!)

Postby simsim314 » March 22nd, 2015, 6:21 am

@dvgrn - do you know of some spratan G->SL factory that might work here? one can "sacrifice" SL in many ways for this G->H (see here and here)
User avatar
simsim314
 
Posts: 1702
Joined: February 10th, 2014, 1:27 pm

Re: Let's find a G-to-X (Done!)

Postby dvgrn » March 22nd, 2015, 9:03 am

simsim314 wrote:@dvgrn - do you know of some spratan G->SL factory that might work here? one can "sacrifice" SL in many ways for this G->H (see here and here)

Well, there aren't very many known G-to-SL reactions at all, let alone Spartan ones with the output at the edge of the reaction envelope. And most of the linked examples aren't really quite clean enough to solve the problem, even if a there was a known G-to-SL that fit.

Mostly if you want a nice edgy still life you have to invest a Herschel:

#C [[ AUTOSTART THEME 3 LOOP 256 THUMBNAIL ]]
x = 59, y = 48, rule = LifeHistory
ABA$B2AB$.A3B$2.4B$3.4B$4.4B$5.4B7.C$6.4B6.3C$7.4B8.C$8.4B6.C.C$9.4B
5.C.CB$10.4B5.C3B$11.4B6.4B$12.4B5.6B$13.4B4.7B$14.4B2.8B.4B.B$15.17B
.B2C$16.18B2C$16.16B.2B$16.16B6.2C$16.15B8.C$14.2CB.12B3.2A.3C$13.C.C
B2.11B2.ABABC$13.C5.10B2.2BAB$12.2C5.2B2C6B.4B18.2C$18.3B2C10B4.2C13.
C$19.13B3.2B2CB9.BC.C$19.10B2D2B2.4B6.5B2C$18.7B.3B2D10B2.7B$18.6B.
25B$19.9B.20B$19.8B.22B$18.8B2.24B$18.7B3.26B$18.6B5.22BE2B$17.2B3D2B
6.14B.4BEBE3B$17.4BD2B6.13B2.4B3E2B$16.4B3DB7.13B.4BE5B$16.8B8.13B.9B
$16.8B8.15B6.4B$16.8B9.14B8.2C$16.7B11.13B8.C$34.12B10.3C$35.12B.B9.C
$37.11B2C$16.2A18.12B2C$15.A2.A18.10B.B$16.2A20.9B!

But of course if you have a Herschel to invest, then in most cases you've already solved your problem.

Something useful might certainly turn up during a careful review of results that Guam posted a few years ago. Guam's G->half-blockade (the first half of his G4 receiver) seems very promising indeed:

Code: Select all
#C three-stage G-to-H, repeat time 295 ticks
#C [[ AUTOSTART THEME 4 STEP 8 HEIGHT 320 LOOP 1000 ZOOM 3 X 43 Y 36 ]]
x = 301, y = 172, rule = B3/S23
o$b2o$2o72$75bo85b2o12bo$73bobo84bo2bo9bobo$74b2o85b2o11b2o16$150b2o$
149bobo$149bo$148b2o7$158b2o$158b2o7b2o$167bo$165bobo$165b2o3$151b2o$
150bobo$150bo$149b2o4$128bo99bo$126b3o97b3o42bo$125bo99bo43b3o$125b2o
98b2o41bo$110b2o98b2o56b2o$111bo70bo28bo$111bob2o65b3o28bob2o84bo$112b
o2bo63bo32bo2bo82bobo$113b2o64b2o32b2o83bobo$128b2o13b2o83b2o13b2o54bo
$128b2o13b2o83b2o13b2o26b2o$187b2ob2o79b2o$188bob2o$188bo$180b2o4b3o$
167b2o11b2o3bo3b2o$167b2o16b4o2bo$131b2o38b2o15bob2o39b2o$131b2o37bobo
12b3o2bo40b2o48b2o$170bo13bo5bo91bo$167b2obo14b5o76b2o11b3o$167b2ob2o
15bo42b2o34b2o11bo$120b2o31b2o65b2o8b2o$120b2o4b2o24bobo65b2o4b2o$126b
2o16b2o6bo73b2o16b2o6b2o$144b2o5b2o8b2o81b2o7bo$161bo88b3o$162b3o85bo$
164bo97b2o$133b2o98b2o27bo$133b2o98b2o28b3o$265bo2$130b2o20bo77b2o$
130bo21b3o75bo$128bobo24bo72bobo15b2o$128b2o24b2o72b2o16bobo$246bo3$
136b2o98b2o$136b2o98b2o2$164b2o$157b2o5bobo$157b2o7bo$166b2o2$153bo$
152bobob2o$152bobobobo$151b2obobobo2bo$152bo2b2ob4o$152bo4bo$153b3obo
2b2o$155b2o3b2o!

I think this is just about what you were asking for, actually. A single glider can reset, or preset, a Spartan version of the new G-to-H. It all works out rather nicely in fact -- the version on the left would have won the G-to-H speed competition by a landslide, until a couple of days ago. EDIT: Improved repeat rate to 295 ticks.

However, it's worth bearing in mind that as far as pure Spartan technology goes, we've had pretty much the same thing available since 1996. A standard Herschel receiver is Spartan, and it can be reset by a single glider in eight different ways -- four parallel and four 90-degree paths. By the time you finish adding in all the extra junk above, a Spartan syringe is about the same size as a receiver.

Did Guam report any other G->SL discoveries at about the same time? I don't remember all the details any more.
User avatar
dvgrn
Moderator
 
Posts: 5817
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Let's find a G-to-X (Done!)

Postby Freywa » March 28th, 2015, 5:04 am

I was looking at Golly's collection of eaters and I was wondering if such thing as a flintstone existed: a still life that, when given a spark of some sort, makes a glider and returns to its original configuration. Coupled with some of the flashy eaters we have, could we combine the two to make an on-track colour-changer or colour-changing reflector? It's a long shot, but we could try.
Princess of Science, Parcly Taxel
User avatar
Freywa
 
Posts: 580
Joined: June 23rd, 2011, 3:20 am
Location: Singapore

Re: Let's find a G-to-X (Done!)

Postby Extrementhusiast » March 28th, 2015, 11:26 am

Freywa wrote:I was looking at Golly's collection of eaters and I was wondering if such thing as a flintstone existed: a still life that, when given a spark of some sort, makes a glider and returns to its original configuration. Coupled with some of the flashy eaters we have, could we combine the two to make an on-track colour-changer or colour-changing reflector? It's a long shot, but we could try.


This comes close:
x = 31, y = 18, rule = B3/S23
4$14bo$15bo$15bo2$13b2o11bo$3b2o7bo2bo9bobo$3b2o7bobo11b2o$13bo!


Guam had posted these two examples, but the spark locations are relatively inaccessible:
x = 83, y = 36, rule = LifeHistory
44.3B14.A$44.4B11.3A$45.4B9.A$46.4B8.2A$47.4B2.2B.4B$48.4B.5B$48.11B$
19.3B23.14B.2B$18.4B22.19B$17.4B22.20B$16.4B24.20B$15.4B25.21B$14.4B
26.21B$13.4B27.22B$12.4B3.2A22.24B$2A6.2B.4B4.A23.24B14.2A$.A5.8B.BA.
A23.23B3.B11.A$.A.AB.2C7B.B2A23.32B4.BA.A$2.2AB.11B24.19BC16B.B2A$4.
4BA8B25.37B$4.3BABA7B25.19B2A16B$4.3BA2BA4B27.18BA2BA15B$4.4B2A5B.2B
24.19B2A14B$4.13B2A22.28B5.B.B$3.12B.B2A23.2B2A7B2.14B4.3B$4.10B3.B
25.B2A8B5.8B6.B2AB$5.3B2.2B31.12B4.6B9.2A$44.6B2.4B4.4B$46.4B3.4B$54.
4B$55.4B$56.4B$57.4B$58.4B$59.4B$60.3B!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Let's find a G-to-X (Done!)

Postby chris_c » April 11th, 2015, 8:29 am

I thought it was about time to make syringe-assisted G-to-LWSS. Insisting that the repeat time should be 78, this is the best I have come up with:

x = 217, y = 87, rule = B3/S23
2bo$obo$b2o5$90b2o26b2o$90bobo25bobo$92bo4b2o21bo4b2o$88b4ob2o2bo2bo
15b4ob2o2bo2bo$88bo2bobobobob2o15bo2bobobobob2o$91bobobobo21bobobobo$
92b2obobo22b2obobo$96bo27bo68b2o$62bo104bo25bo$62b3o17b2o26b2o55b3o21b
obo$58bo6bo17bo7b2o18bo7b2o49bo20b2o$57bobo4b2o17bobo5b2o18bobo5b2o48b
2o$21bo35bobo24b2o26b2o$22bo32b3ob2o20bo68bo48b2o$20b3o31bo24b3o68b3o
47bo$48bo6b3ob2o17bo32bo41bo46bobo$48b3o6bob2o17b2o29b3o28bo11b2o11b2o
34b2o$51bo56bo29b3o24b2o$38bo11b2o56b2o27bo$36b3o36b2o17b2o26b2o13b2o$
35bo38bo2bo16bo27bo92b2o$35b2o38b2o18b3o25b3o89b2o$20b2o75bo28bo$21bo
101b2o2bo$21bob2o97bo2b2o$22bo2bo72b2o22b2o16b2o48b2o$23b2o72bobo5b2o
33b2o35b2o11b2o$38b2o57bo7b2o71bo$38b2o23b2o31b2o77b3o$63bo111bo$64b3o
43bo38bo3b2o$66bo39b2obobo36bobo3bo39b2o$47bo3b2o52bobobobo35bobo3bo
12b2o27bo$46bobo3bo49bo2bobobobob2o28b2obobo3bo13bobo23b3o$45bobo3bo
50b4ob2o2bo2bo28b2obo2b4obo13bo23bo$41b2obobo3bo55bo4b2o34bobo3bobo12b
2o$41b2obo2b4obo51bobo36b2ob2o2bo2bobo$45bobo3bobo50b2o38bobo2b2o3bo$
41b2ob2o2bo2bobo78b2o10bobo$42bobo2b2o3bo79b2o11bo$30b2o10bobo$30b2o
11bo8$178b2o$179bo$179bobo$147b2o14bo16b2o$122b2o24bo14b3o$123bo13b2o
6b3o18bo$123bobo11b2o6bo19b2o$113bo10b2o64bo$111b3o75bobo$110bo79bo$
110b2o$95b2o$96bo$96bob2o55b2o$97bo2bo54b2o$98b2o90b2o$113b2o75b2o$
113b2o3$152b2o$122bo3b2o24bo19b2o$121bobo3bo5b2o3b2o13bo17bobo$120bobo
3bo7bo3bo13b2o17bo$116b2obobo3bo5b3o5b3o28b2o12b2o$116b2obo2b4obo3bo9b
o42b2o$120bobo3bobo$116b2ob2o2bo2bobo$117bobo2b2o3bo$105b2o10bobo$105b
2o11bo!


EDIT: Here is a G->MWSS in very similar style:

x = 241, y = 88, rule = B3/S23
2bo$obo$b2o3$118b2o11bo$118b2o10bobo$90b2o38bobo2b2o3bo$90bobo36b2ob2o
2bo2bobo$92bo4b2o34bobo3bobo$88b4ob2o2bo2bo28b2obo2b4obo$88bo2bobobobo
b2o28b2obobo3bo$91bobobobo35bobo3bo$92b2obobo36bobo3bo$96bo38bo3b2o$
62bo91bo$62b3o17b2o68b3o13bo15bo9bo$58bo6bo17bo7b2o58bo16b3o13b3o5b3o
28b2o$57bobo4b2o17bobo5b2o33b2o23b2o18bo15bo3bo13b2o17bo$21bo35bobo24b
2o22b2o16b2o42b2o14b2o3b2o13bo17bobo$22bo32b3ob2o20bo26bo2b2o92bo19b2o
$20b3o31bo24b3o27b2o2bo91b2o$48bo6b3ob2o17bo33bo$48b3o6bob2o17b2o29b3o
$51bo56bo130b2o$38bo11b2o56b2o13b2o114b2o$36b3o36b2o17b2o27bo36b2o$35b
o38bo2bo16bo29b3o33b2o46b2o$35b2o38b2o18b3o28bo10b2o69b2o$20b2o75bo38b
obo$21bo114bo$21bob2o110b2o10b2o$22bo2bo72b2o48bo$23b2o72bobo5b2o38b3o
9b2o$38b2o57bo7b2o38bo11bo19b2o$38b2o23b2o31b2o60bo17bobo11b2o6bo19b2o
$63bo93b2o17bo13b2o6b3o18bo$64b3o43bo64b2o24bo14b3o$66bo39b2obobo88b2o
14bo$47bo3b2o52bobobobo$46bobo3bo49bo2bobobobob2o$45bobo3bo50b4ob2o2bo
2bo$41b2obobo3bo55bo4b2o$41b2obo2b4obo51bobo$45bobo3bobo50b2o$41b2ob2o
2bo2bobo$42bobo2b2o3bo$30b2o10bobo$30b2o11bo2$204bo$204b3o$164b2o41bo$
138bo25bo23bo17b2o$138b3o21bobo23b3o$141bo20b2o27bo$140b2o48b2o2$121bo
49bo$121b3o47b3o$124bo49bo$111bo11b2o11b2o35b2o11b2o$109b3o24b2o48b2o$
108bo$108b2o$93b2o$94bo123b2o$94bob2o120b2o$95bo2bo$96b2o$111b2o48b2o$
111b2o35b2o11b2o34b2o$149bo46bobo$146b3o47bo$146bo48b2o$120bo3b2o$119b
obo3bo39b2o$118bobo3bo12b2o27bo20b2o$114b2obobo3bo13bobo23b3o21bobo$
114b2obo2b4obo13bo23bo25bo$118bobo3bobo12b2o48b2o$114b2ob2o2bo2bobo$
115bobo2b2o3bo$103b2o10bobo$103b2o11bo90b2o$208bo$205b3o$205bo!
chris_c
 
Posts: 904
Joined: June 28th, 2014, 7:15 am

Re: Let's find a G-to-X (Done!)

Postby Extrementhusiast » April 11th, 2015, 6:56 pm

Well, here's a relatively messy synthesis of the large eater weld:
x = 306, y = 48, rule = B3/S23
176bo$174bobo$175b2o5$187bobo$42bo136bo5bo4bo$41bo135bobo3bobo4bo$41b
3o134b2o4b2obo2bo$130bo27bo29b3o$27bo100bobo28bo$26bo12bo89b2o26b3o33b
2o$22bo3b3o8b2o93bo59b2ob2o$23b2o7bo5b2o92bobo25bobo22bo7b4o$22b2o6b2o
100b2o26b2o15b4o2bobo2bo5b2o5bo2bo$31b2o128bo14bo3bo3b2o2bobo9bo$55bo
124bo7b2o10bo3bo$56bo56bobo15bo44bo2bo12bo7b4o19b2obo24b2obo24b2obo16b
2obo$8bo45b3o56b2o15bobo24b2o4b3o25bobo29b2ob3o22b2ob3o22b2ob3o14b2ob
3o$3o3b2o5b2o18b2o79bo15b2o26bo4bo28bo3b3o30bo27bo27bo19bo$2bo4b2o5bo
19bo17b2o6b2obo16b2obo22b2obo14b2obo24b2ob3o6bo21b2ob3o4bo26b2ob3o22b
2ob3o22b2ob3o14b2ob3o$bo9b3o17b3o7b2o8bobo5bo2b2o15bo2b2o21bo2b2o2b2o
9bo2b2o2b2o19bo2b2o29bo2b2o7bo24bo2b2o23bo2b2o23bo2b2o15bo2b2o$10bo17b
obo9b2o11bo4bobo17bobo23bobo5bo9bobo5bo19bobo31bobo34bobo25bobo25bobo
17bobo$9bob2obo13b2ob2obo7bo15b2ob2obo14bob2obo7bobobo8bob2obobo10bob
2obobo6bo13bob2obo28bob2obo31bob2obo20bobob2obo5bo14bobob2obo12bobob2o
bo$9bobob2o16bob2o26bob2o16bob2o22bob2obobo10bob2obobo2b2o16bob2o30bob
2o25b2o6bob2o15bobo3bo2bob2o3b2o16bo2bob2o13bo2bob2o$10bo20bo29bo19bo
25bo5b2o10bo5b2o3b2o15bo33bo27bobo6bo19b2o6bo7b2o8bo9bo19bo$30b2o28b2o
18b2o24b2o16b2o26b2o32b2o29bo5b2o19bo6b2o15bobo8b2o5bo12b2o$269b2ob2o
7b2o3bobo7bobo2b2o$218b3o51bobo6bobo2b2o8b2o2bo2bo$3b3o4b3o117b2o86bo
53bo9bo18b2o$5bo4bo120b2o86bo57b3o$4bo6bo118bo126b2o18bo$247b3o6b2o20b
o5b2o$9b3o237bo8bo24b2o$9bo2bo235bo36bo$9bo$9bo240b2o$10bobo238b2o$
250bo$253b2o$253bobo$253bo2$247b2o$248b2o$247bo!


Now, let's find another G-to-X.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Let's find a G-to-X (Done!)

Postby biggiemac » April 11th, 2015, 7:04 pm

Extrementhusiast wrote:Well, here's a relatively messy synthesis of the large eater weld:
RLE


Now, let's find another G-to-X.

Nice. And yeah, let's keep exploring, maybe a direct G->2G or G->*WSS is within reach.
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 504
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: Let's find a G-to-X (Done!)

Postby codeholic » April 11th, 2015, 7:35 pm

Catalyst variants:
x = 10, y = 13, rule = B3/S23
5b2ob2o$2b2o2bobo$2b2obo2bo$5bobo$2b2o2bo$bo2b2o$obobo$bo2bo2b2o$4bobo
bo$3b2obo$obo2bobo$2o2bo2bo$5b2o!

x = 12, y = 14, rule = B3/S23
6b2ob2o$3b2o2bobobo$3b2obo4bo$6bob3o$3b2obobo$3bo2b2o$b2o2bo$obob2o$bo
2bo$4bo$3b2obo$obo2bobo$2o2bo2bo$5b2o!
Ivan Fomichev
User avatar
codeholic
Moderator
 
Posts: 1142
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

Re: Let's find a G-to-X (Done!)

Postby simeks » April 20th, 2015, 1:13 pm

syringe can be welded to this splitter:

x = 57, y = 50, rule = B3/S23
55b2o$55bo$53bobo$53b2o10$35bo$34bobo$24bo2b2ob2o2bobo$10b2o11bobo2bob
o2b2ob2o$10b2o10bo2b2obo2bobo$22bobo3bob2o2bob2o$21b2ob2obobo2bobob2o$
25bobo3bobo$21b2obo2b4obo20b2o$21b2obobo3bo22b2o$25bobo3bo$26bobo3bo$
27bo3b2o4$18b2o$18b2o$3b2o$2bo2bo$bob2o$bo$2o$15b2o$15bo$16b3o$18bo10b
2o$28bobo$28bo$b2o24b2o14bo$obo36b2obobo2bo$2bo36b2obob4o$42b2o$39b2o
4b5o$39bo6bo2bo$40bo3bo$39b2o3b2o!
simeks
 
Posts: 369
Joined: March 11th, 2015, 12:03 pm
Location: Sweden

Re: Let's find a G-to-X (Done!)

Postby dvgrn » April 21st, 2015, 12:26 pm

simeks wrote:syringe can be welded to this splitter...

Nice! It makes a decent-sized p723 gun, with room in the lower right corner for semi-Snark period doublers:

x = 93, y = 82, rule = B3/S23
63b2o$63bo$61bobo$61b2o10$43bo$42bobo$32bo2b2ob2o2bobo$18b2o11bobo2bob
o2b2ob2o37bo$18b2o10bo2b2obo2bobo39b3o$30bobo3bob2o2bob2o34bo$29b2ob2o
bobo2bobob2o34b2o$33bobo3bobo$29b2obo2b4obo20b2o$29b2obobo3bo22b2o25b
2o$33bobo3bo49bo$34bobo3bo48bob2o$35bo3b2o40b2o4b3o2bo$81b2o3bo3b2o$
86b4o$72b2o15bo$26b2o43bobo12b3o$26b2o43bo13bo$11b2o57b2o14b5o$10bo2bo
76bo$9bob2o75bo$9bo78b2o$8b2o$3b2o18b2o$4bo18bo$2bo21b3o$2b5o14b3o2bo
10b2o$7bo13bo2bo11bobo$4b3o12bobo2b2o10bo$3bo15b2o14b2o14bo$3b4o40b2ob
obo2bo9bo$b2o3bo3b2o35b2obob4o8bo$o2b3o4b2o38b2o12b3o$2obo43b2o4b5o$3b
o43bo6bo2bo$3b2o43bo3bo$47b2o3b2o2$11b2o$12bo$9b3o$9bo3$92bo$90bobo$
38bo52b2o$38b3o$41bo$40b2o7$50b2o$43b2o5bobo$43b2o7bo$52b2o2$39bo$38bo
bob2o$38bobobobo$35b2obobobobo2bo$35bo2bo2b2ob4o$37b2o4bo$43bobo$44b2o
!
#C [[ AUTOSTART STEP 8 ZOOM 5 Y -4 LOOP 7230 ]]

The p723 is already the beginning of a very compact family of guns, and p723/3=241 and multiples are all covered by the p482+8N family. So I don't think this nice delay mechanism really improves anything in the gun collection, which is starting to look fairly robust these days.

However, this has given me the final push to start a formal H-to-2G converter collection in a new thread. I'm starting with just parallel outputs, but people are certainly welcome to post other H-to-2Gs (and H-to-3Gs, etc.) with outputs in different directions. Elementary or compact composite circuits are okay. Maybe the multidirectional H-to-Gs will get their own stamp collection -- especially if someone else does the work.
User avatar
dvgrn
Moderator
 
Posts: 5817
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Let's find a G-to-X (Done!)

Postby Kazyan » June 3rd, 2015, 10:12 am

Okay, I think it's high time we created a near-spartan version of the syringe--it seems to be possible. Look at this:

x = 21, y = 23, rule = B3/S23
6bo$6b3o$9bo$8bobo$obo5bobo$b2o6bo$bo9$4b2o$3bobo$3bo$2b2o7b2o$11b2o2$
19b2o$19b2o!


And this:

x = 29, y = 23, rule = B3/S23
6bo$6b3o$9bo$8bobo$obo5bobo$b2o6bo$bo20b2o$22b2o4$27b2o$27b2o3$4b2o$3b
obo$3bo$2b2o7b2o$11b2o2$19b2o$19b2o!


Simply bonking the systems with 2-cat CatForce runs doesn't get anything useful, but that doesn't mean it's not possible to regenerate the versatile sacrificial bait.
Tanner Jacobi
User avatar
Kazyan
 
Posts: 860
Joined: February 6th, 2014, 11:02 pm

Re: Let's find a G-to-X (Done!)

Postby dvgrn » June 3rd, 2015, 12:46 pm

Kazyan wrote:Okay, I think it's high time we created a near-spartan version of the syringe--it seems to be possible... Simply bonking the systems with 2-cat CatForce runs doesn't get anything useful, but that doesn't mean it's not possible to regenerate the versatile sacrificial bait.

These both have a sacrificial block in the place of the eater2. The best way I could find to send a signal in to rebuild the sacrificial block was posted a few messages back.

If people get desperate, it might be worth looking for ways to convert the suppressed spark at the bottom directly into the reset glider. Maybe CatForcing a replacement for the bottom block?

x = 213, y = 62, rule = LifeHistory
2.A119.A$A.A117.A.A60.A$.2A118.2A38.2A18.3A$162.A17.A$162.A.A15.2A$
163.2A2.2A$167.2A42.A$210.A.A$210.A.A$211.A$183.2A15.D$183.2A15.D.D$
25.A119.A54.3D$23.3A42.A74.3A56.D$22.A43.3A73.A$22.2A41.A76.2A$7.2A
56.2A60.2A$8.A119.A$8.A.2A84.A31.A.2A61.2A$9.A2.A82.A.A31.A2.A61.A$
10.2A83.A.A32.2A59.3A$25.2A13.2A54.A48.2A13.2A29.A$25.2A13.2A26.2A15.
D59.2A13.2A$68.2A15.D.D$85.3D$87.D4$28.2A118.2A$28.2A48.2A68.2A31.2A$
79.A101.A.A$63.2A11.3A104.A$63.2A11.A106.2A$17.2A118.2A$17.2A4.2A112.
2A4.2A$23.2A16.2A6.2A92.2A16.2A$41.2A7.A110.2A11.2A$47.3A124.2A$47.A$
59.2A$30.2A27.A90.2A$30.2A28.3A87.2A$62.A2$27.2A118.2A$27.A119.A$25.A
.A15.2D100.A.A15.2D$25.2A16.D.D99.2A16.D.D$43.D119.D3$33.2A118.2A$33.
2A3.3A112.2A3.3A$37.A3.A115.A3.A$41.A119.A$41.A119.A$39.2A118.2A$39.A
119.A$39.A119.A2$39.A119.A!

Seems like a very long shot, of course, since there are only a few ticks before the damaged R collapses into a block, and the eater is too close for comfort. Anyway, needing a dependent conduit after this mess probably makes the whole thing bigger than we really want a Spartan syringe to be.

There are also some workable Spartan H-to-block ways to replace the sacrificial block --

x = 68, y = 91, rule = LifeHistory
55.2A$54.A2.A$55.2A16$44.2A$43.A.A$43.A$42.2A7$52.2A$52.2A7.2A$61.A$
59.A.A$59.2A$42.2A$42.2A$32.2A$33.A$33.A.A$34.2A6$16.A$16.3A5.2A$19.A
4.2A$18.2A18.2A$13.A23.A.A$13.3A21.A$16.A19.2A$15.2A2$32.2A$31.A.A$
32.A5.2A$38.2A13.2A$53.2A$7.2A36.2A$8.A37.A$8.A.A32.3A$9.2A32.A7$9.C
35.2A$9.C.C33.2A$9.3C$11.C41.2A$53.2A7.2A$62.A$26.2A32.A.A$26.2A32.2A
$2.2A$3.A$3A9.2A23.2A$A11.2A23.2A6$56.A$55.A.A$55.A.A7.3A$56.A8.A$57.
3A6.A$59.A!

-- but of course to get the H input you'd need a ridiculously large Spartan Herschel splitter. Again it's hard to see how that approach would produce anything small enough to be interesting.

Maybe it would be better to try a similar approach with a different base reaction. What other resettable G(n) or other 2G->H reactions are there, where there might be some slight hope of CatForcing the right reset glider?
User avatar
dvgrn
Moderator
 
Posts: 5817
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Let's find a G-to-X (Done!)

Postby Extrementhusiast » June 3rd, 2015, 1:57 pm

dvgrn wrote:Maybe it would be better to try a similar approach with a different base reaction.

Or perhaps just starting from scratch.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Let's find a G-to-X (Done!)

Postby Kazyan » June 3rd, 2015, 3:34 pm

The point is that the chaos produced by FNG collision with the stray beehive or other debris might be tameable into replacing that sacrificial bait, but I see what you mean.

One possibility that I haven't explored that much--because of how time-consuming it is--is to thoroughly CatForce one side of a Pi up to generation ~80, then take every result and combine them with every other result on the other side, in the hopes of regenerating the bait on at least one of the combinations simply because there's so many of them. Like this:

x = 37, y = 51, rule = B3/S23
5b2o$6bo$6bobo$7b2o4$17b3o$17bobo$17bobo15$2o$bo$bobo$2b2o13b3o$6b2o9b
obo$5bobo9bobo$5b2o10$5b2o$6bo$6bobo$7b2o$35b2o$35bo$33bobo$17b3o13b2o
$17bobo9b2o$17bobo9bobo$30b2o!


Of course, a lane-blocking result wouldn't be combined with a second lane-blocking result.
Tanner Jacobi
User avatar
Kazyan
 
Posts: 860
Joined: February 6th, 2014, 11:02 pm

Re: Let's find a G-to-X (Done!)

Postby simeks » June 4th, 2015, 4:04 pm

This alternative way to weld an input Snark to syringe (on the right), reduces population count by 5:

x = 130, y = 39, rule = LifeHistory
9.A79.A$9.3A10.E66.3A10.E$12.A9.E.E67.A9.E.E$11.2A9.2E67.2A9.2E3$2A.
2A75.2A.2A$2A.A76.2A.A$3.A79.A$3.3A4.2A71.3A4.2A$.2A3.A3.2A69.2A3.A3.
2A$A2.4A73.A2.4A$2A.A15.2C59.2A.A15.2C2.2C$.A2.3A12.C.C2.2C55.A2.3A
12.C.C2.C$.A5.A13.C2.C56.A5.A13.2C$2.5A14.3C2.C55.5A14.C$4.A19.3C57.A
18.C$23.C78.2C$23.2C23.A79.A$8.2A37.A.A38.2A37.A.A$9.A37.A.A39.A37.A.
A$9.A.2A35.A40.A.2A35.A$10.A2.A76.A2.A$11.2A78.2A$26.2A78.2A$26.2A78.
2A4$35.A3.2A74.A3.2A$34.A.A3.A73.A.A3.A$33.A.A3.A73.A.A3.A$29.2A.A.A
3.A70.2A.A.A3.A$29.2A.A2.4A.A68.2A.A2.4A.A$33.A.A3.A.A71.A.A3.A.A$29.
2A.2A2.A2.A.A67.2A.2A2.A2.A.A$30.A.A2.2A3.A69.A.A2.2A3.A$18.2A10.A.A
65.2A10.A.A$18.2A11.A66.2A11.A!
simeks
 
Posts: 369
Joined: March 11th, 2015, 12:03 pm
Location: Sweden

Re: Let's find a G-to-X (Done!)

Postby Kazyan » June 5th, 2015, 4:19 pm

Nice! I didn't even notice that the snake-like catalysis affects the Pi the same way that eater does.

On the non-spartan side of exploration...this is probably more trouble than it's worth because the repeat time and size are atrocious, but the explosion here can likely be tamed into a functional G-to-X.

x = 35, y = 48, rule = LifeHistory
A$3A20.A$3.A17.3A$2.2A16.A$21.A$19.A.A$19.2A$25.A$23.3A$22.A$22.2A6$
13.2C$12.C2.C$13.2C11$31.2A$31.A.A$33.A$.A31.2A$.2A$A.A6$23.2A.A2.A$
24.A.4A$12.A9.A.A$11.A.A.2A5.2A2.2A$12.2A.A2.A8.A$14.A2.2A7.A$11.A.A
12.2A$11.2A!
Tanner Jacobi
User avatar
Kazyan
 
Posts: 860
Joined: February 6th, 2014, 11:02 pm

Re: Let's find a G-to-X (Done!)

Postby dvgrn » June 5th, 2015, 4:45 pm

Kazyan wrote:On the non-spartan side of exploration...this is probably more trouble than it's worth because the repeat time and size are atrocious, but the explosion here can likely be tamed into a functional G-to-X...

Hmm. A G11-to-X or G12-to-X tandem glider receiver I could see. But that extra beehive is not going to be too easy to clean up, and it settles out before the bait beehive does.

Why is it always an extra beehive, anyway?

(If I remember correctly, somebody was complaining recently about some other surplus still life being the inevitable one... but now I can't find the reference.)
User avatar
dvgrn
Moderator
 
Posts: 5817
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Let's find a G-to-X (Done!)

Postby fluffykitty » June 5th, 2015, 10:01 pm

dvgrn wrote:... (If I remember correctly, somebody was complaining recently about some other surplus still life being the inevitable one... but now I can't find the reference.)

It was boats.
http://conwaylife.com/forums/viewtopic.php?f=2&t=1682&p=19936#p19936
I like making rules
fluffykitty
 
Posts: 615
Joined: June 14th, 2014, 5:03 pm

Re: Let's find a G-to-X (Done!)

Postby A for awesome » May 24th, 2016, 4:55 pm

A number of possible first catalysts for a Spartan G-X (Warning: raw search program output, not filtered or formatted nicely):
x = 16, y = 13, rule = B3/S23
3b2o$2bo2bo$3b2o4$10bo$9bobo$9bo2bo$10b2o4$3o$2bo$bo!
x = 16, y = 17, rule = B3/S23
3bo11bo$2bobo9bobo$2bobo9bobo$3bo11bo10$3o$2bo$bo!
x = 16, y = 16, rule = B3/S23
3bo$2bobo$2bobo$3bo10b2o$14b2o9$3o$2bo$bo!
x = 16, y = 6, rule = B3/S23
3bo$2bobo$2bo2bo$3b2o5$2b2o$2b2o4$3o$2bo$bo!
x = 16, y = 6, rule = B3/S23
3bo$2bobo$2bo2bo$3b2o3$4b2o$3bobo$4bo5$3o$2bo$bo!
x = 16, y = 6, rule = B3/S23
4bo$3bobo$2bo2bo$3b2o3$2b2o$2bobo$3bo5$3o$2bo$bo!
x = 16, y = 11, rule = B3/S23
2b2o$2b2o6$8b2o$7bo2bo$8b2o4$3o$2bo$bo!
x = 16, y = 9, rule = B3/S23
3b2o$2bobo$3bo6$7bo$6bobo$6bobo$7bo2$3o$2bo$bo!
x = 16, y = 15, rule = B3/S23
3bo$2bobo$3b2o$13b2o$13b2o9$3o$2bo$bo!
x = 16, y = 15, rule = B3/S23
4bo$3bobo$3bobo$4bo3$13bo$12bobo$13b2o5$3o$2bo$bo!
x = 16, y = 9, rule = B3/S23
4b2o$3bo2bo$4bobo$5bo7$7bo$6bobo$6bobo$3o4bo$2bo$bo!
x = 16, y = 11, rule = B3/S23
5b2o$4bo2bo$5b2o5$9b2o$9b2o5$3o$2bo$bo!
x = 16, y = 17, rule = B3/S23
6bo$5bobo7b2o$4bo2bo7b2o$5b2o10$3o$2bo$bo!
x = 16, y = 8, rule = B3/S23
5b2o$4bo2bo$5bobo$6bo3$4bo$3bobo$3bobo$4bo4$3o$2bo$bo!
x = 16, y = 14, rule = B3/S23
5b2o$4bo2bo4b2o$5bobo3bobo$6bo5bo10$3o$2bo$bo!
x = 16, y = 12, rule = B3/S23
4b2o$4b2o5$10b2o$9bobo$10bo5$3o$2bo$bo!
x = 16, y = 13, rule = B3/S23
4b2o$4b2o5$11bo$10bobo$11b2o5$3o$2bo$bo!
x = 17, y = 9, rule = B3/S23
5bo$4bobo$4b2o11$3o3b2o$2bo2bo2bo$bo4bobo$7bo!
x = 16, y = 11, rule = B3/S23
5bo$4bobo$5b2o2b2o$9b2o10$3o$2bo$bo!
x = 16, y = 15, rule = B3/S23
6b2o$5bo2bo$6b2o5bo$12bobo$12bobo$13bo8$3o$2bo$bo!
x = 16, y = 9, rule = B3/S23
6b2o$5bo2bo$5bobo$6bo8$6b2o$6b2o$3o$2bo$bo!
x = 16, y = 15, rule = B3/S23
6b2o$5bo2bo3b2o$5bobo3bo2bo$6bo5b2o10$3o$2bo$bo!
x = 16, y = 22, rule = B3/S23
6b2o$5bo2bo$6bobo11bo$7bo11bobo$19b2o9$3o$2bo$bo!
x = 16, y = 8, rule = B3/S23
6bo$5bobo$6b2o3$4b2o$4b2o7$3o$2bo$bo!
x = 16, y = 13, rule = B3/S23
7bo$6bobo$6bobo$7bo2$11b2o$11b2o7$3o$2bo$bo!
x = 16, y = 15, rule = B3/S23
7bo$6bobo$6bo2bo$7b2o10$3o$2bo10b2o$bo11b2o!
x = 16, y = 13, rule = B3/S23
7b2o$6bo2bo$6bobo$7bo2$11b2o$11b2o7$3o$2bo$bo!
x = 16, y = 18, rule = B3/S23
6b2o8bo$6b2o7bobo$14bo2bo$15b2o10$3o$2bo$bo!
x = 16, y = 9, rule = B3/S23
6b2o$6bobo$7bo4$5b2o$4bobo$5bo5$3o$2bo$bo!
x = 16, y = 18, rule = B3/S23
7bo$6bobo7b2o$6b2o8b2o11$3o$2bo$bo!
x = 16, y = 15, rule = B3/S23
7bo$6bobo3b2o$7b2o2bo2bo$12b2o10$3o$2bo$bo!
x = 16, y = 12, rule = B3/S23
8bo$7bobo$7bobo$8bo3$10b2o$10b2o6$3o$2bo$bo!
x = 16, y = 15, rule = B3/S23
8bo$7bobo$7bo2bo$8b2o10$3o10b2o$2bo10b2o$bo!
x = 16, y = 13, rule = B3/S23
8b2o$7bo2bo$7bobo$8bo2$11b2o$11b2o7$3o$2bo$bo!
x = 16, y = 11, rule = B3/S23
9bo$8bobo$7bo2bo$8b2o4$8bo$7bobo$8b2o4$3o$2bo$bo!
x = 16, y = 15, rule = B3/S23
9bo$8bobo$7bo2bo$8b2o10$3o10b2o$2bo10b2o$bo!
x = 16, y = 9, rule = B3/S23
7b2o$7b2o9$7bo$6bobo$6b2o$3o$2bo$bo!
x = 16, y = 16, rule = B3/S23
7b2o$7bobo$8bo7$13b2o$12bo2bo$13b2o2$3o$2bo$bo!
x = 16, y = 10, rule = B3/S23
8bo$7bobo$8b2o$2b2o$2b2o9$3o$2bo$bo!
x = 18, y = 19, rule = B3/S23
9b2o$8bo2bo$9b2o11$3o$2bo$bo14b2o$15bo2bo$16b2o!
x = 16, y = 21, rule = B3/S23
9b2o$8bo2bo$9b2o4$18b2o$17bo2bo$18bobo$19bo4$3o$2bo$bo!
x = 16, y = 22, rule = B3/S23
9b2o$8bo2bo$9b2o8b2o$18bo2bo$19bobo$20bo8$3o$2bo$bo!
x = 16, y = 18, rule = B3/S23
9bo$8bobo$8bo2bo$9b2o4$16bo$15bobo$15bobo$16bo3$3o$2bo$bo!
x = 16, y = 23, rule = B3/S23
9bo11bo$8bobo9bobo$8bo2bo7bo2bo$9b2o9b2o10$3o$2bo$bo!
x = 16, y = 12, rule = B3/S23
10bo$9bobo$8bo2bo$9b2o4$8bo$7bobo$7bobo$8bo3$3o$2bo$bo!
x = 16, y = 16, rule = B3/S23
9b2o$8bo2bo$9bobo$10bo9$14b2o$3o11b2o$2bo$bo!
x = 17, y = 10, rule = B3/S23
8b2o$8b2o12$3o3b2o$2bo2bo2bo$bo4bobo$7bo!
x = 16, y = 17, rule = B3/S23
10b2o$9bo2bo$10b2o8$14b2o$13bo2bo$13bobo$3o11bo$2bo$bo!
x = 16, y = 16, rule = B3/S23
10b2o$9bo2bo$10b2o9$14bo$13bobo$3o10bobo$2bo11bo$bo!
x = 16, y = 13, rule = B3/S23
10b2o$9bo2bo$9bobo$10bo7$11b2o$11b2o2$3o$2bo$bo!
x = 16, y = 13, rule = B3/S23
11bo$10bobo$9bo2bo$10b2o5$9b2o$9b2o4$3o$2bo$bo!
x = 16, y = 13, rule = B3/S23
10b2o$3b2o4bo2bo$3b2o5bobo$11bo10$3o$2bo$bo!
x = 16, y = 16, rule = B3/S23
9b2o2b2o$9b2o2bobo$14bo11$3o$2bo$bo!
x = 16, y = 18, rule = B3/S23
9b2o$9bobo$10bo5$16b2o$16b2o5$3o$2bo$bo!
x = 16, y = 12, rule = B3/S23
10bo$9bobo$9b2o11$3o$2bo5b2o$bo6b2o!
x = 16, y = 22, rule = B3/S23
10bo9b2o$9bobo8b2o$9b2o11$3o$2bo$bo!
x = 16, y = 24, rule = B3/S23
10bo$9bobo$9b2o11$3o18b2o$2bo17bo2bo$bo19b2o!
x = 16, y = 12, rule = B3/S23
10b2o$9bobo$10bo9$7bo$6bobo$3o3bo2bo$2bo4b2o$bo!
x = 16, y = 14, rule = B3/S23
11b2o$10bo2bo$11b2o10$11b2o$3o7bo2bo$2bo8b2o$bo!
x = 18, y = 15, rule = B3/S23
11b2o$10bo2bo$11b2o11$3o$2bo9b2o$bo9bo2bo$12bobo$13bo!
x = 16, y = 14, rule = B3/S23
11b2o$10bo2bo$11b2o11$3o$2bo8b2o$bo9b2o!
x = 16, y = 16, rule = B3/S23
11b2o$10bo2bo$11b2o4$14bo$13bobo$13bobo$14bo4$3o$2bo$bo!
x = 16, y = 22, rule = B3/S23
11b2o$10bo2bo$11b2o2$20b2o$19bobo$20bo7$3o$2bo$bo!
x = 16, y = 20, rule = B3/S23
11bo$10bobo$10bobo$11bo4$18b2o$18b2o5$3o$2bo$bo!
x = 16, y = 14, rule = B3/S23
11b2o$10bo2bo$10bobo$11bo4$8bo$7bobo$7bobo$8bo3$3o$2bo$bo!
x = 16, y = 12, rule = B3/S23
10b2o$3bo6b2o$2bobo$2b2o10$3o$2bo$bo!
x = 16, y = 12, rule = B3/S23
10b2o$10b2o$5b2o$4bobo$5bo9$3o$2bo$bo!
x = 16, y = 12, rule = B3/S23
10b2o$10b2o3$5b2o$4bo2bo$5b2o7$3o$2bo$bo!
x = 16, y = 12, rule = B3/S23
10b2o$10b2o3$5bo$4bobo$5b2o7$3o$2bo$bo!
x = 16, y = 12, rule = B3/S23
10b2o$10b2o4$5b2o$5b2o7$3o$2bo$bo!
x = 16, y = 13, rule = B3/S23
10b2o$10b2o8$11bo$10bobo$10b2o2$3o$2bo$bo!
x = 17, y = 14, rule = B3/S23
10b2o$10b2o12$3o8bo$2bo7bobo$bo8bo2bo$11b2o!
x = 16, y = 15, rule = B3/S23
10b2o$10b2o10$12b2o$11bo2bo$3o9b2o$2bo$bo!
x = 16, y = 15, rule = B3/S23
10b2o$10b2o10$12b2o$11bo2bo$3o8bobo$2bo9bo$bo!
x = 16, y = 15, rule = B3/S23
10b2o$10b2o10$12b2o$11bo2bo$3o9bobo$2bo10bo$bo!
x = 16, y = 17, rule = B3/S23
10b2o$10b2o3b2o$15b2o11$3o$2bo$bo!
x = 16, y = 20, rule = B3/S23
10b2o$10b2o6$18bo$17bobo$17bobo$18bo3$3o$2bo$bo!
x = 17, y = 20, rule = B3/S23
10b2o$10b2o12$3o$2bo$bo16b2o$18b2o!
x = 16, y = 23, rule = B3/S23
10b2o$10b2o9$20b2o$19bo2bo$20bobo$3o18bo$2bo$bo!
x = 17, y = 23, rule = B3/S23
10b2o$10b2o12$3o$2bo18bo$bo18bobo$21b2o!
x = 16, y = 20, rule = B3/S23
11bo$10bobo$10b2o7$18b2o$18b2o3$3o$2bo$bo!
x = 16, y = 19, rule = B3/S23
11b2o$10bobo$11bo4$17b2o$17b2o6$3o$2bo$bo!
x = 16, y = 15, rule = B3/S23
12bo$11bobo$11bo2bo$12b2o5$10bo$9bobo$8bo2bo$9b2o2$3o$2bo$bo!
x = 16, y = 15, rule = B3/S23
12b2o$11bo2bo$7bo3bobo$6bobo3bo$6bobo$7bo8$3o$2bo$bo!
x = 16, y = 15, rule = B3/S23
13bo$12bobo$11bo2bo$12b2o3$9bo$8bobo$8bobo$9bo4$3o$2bo$bo!
x = 16, y = 14, rule = B3/S23
11b2o$11b2o8$11b2o$10bo2bo$10bobo$11bo$3o$2bo$bo!
x = 16, y = 14, rule = B3/S23
11b2o$11b2o4$12b2o$12b2o7$3o$2bo$bo!
x = 16, y = 16, rule = B3/S23
11b2o$11b2o9$13b2o$13bobo$14bo$3o$2bo$bo!
x = 16, y = 18, rule = B3/S23
11b2o$11b2o3$15b2o$14bo2bo$15b2o7$3o$2bo$bo!
x = 16, y = 19, rule = B3/S23
11b2o$11b2o$16b2o$15bo2bo$16b2o9$3o$2bo$bo!
x = 16, y = 20, rule = B3/S23
11b2o$11b2o2$18bo$17bobo$17bobo$18bo7$3o$2bo$bo!
x = 17, y = 15, rule = B3/S23
12b2o$11bobo$12bo11$3o$2bo$bo11b2o$13b2o!
x = 16, y = 15, rule = B3/S23
13bo$12bobo$12bobo$13bo8$9b2o$8bo2bo$3o5bobo$2bo6bo$bo!
x = 16, y = 16, rule = B3/S23
13bo$12bobo$12bobo$13bo3$14bo$13bobo$12bo2bo$13b2o4$3o$2bo$bo!
x = 16, y = 16, rule = B3/S23
13bo$12bobo$12bobo$13bo3$13b2o$13bobo$14bo5$3o$2bo$bo!
x = 16, y = 16, rule = B3/S23
13bo$12bobo$12bo2bo$5b2o6b2o$4bo2bo$4bobo$5bo7$3o$2bo$bo!
x = 16, y = 16, rule = B3/S23
13b2o$12bo2bo$12bobo$13bo$7b2o$6bo2bo$7b2o7$3o$2bo$bo!
x = 16, y = 16, rule = B3/S23
14bo$13bobo$12bo2bo$13b2o3$11b2o$10bo2bo$11b2o5$3o$2bo$bo!
x = 16, y = 15, rule = B3/S23
13bo$12bobo$13b2o3$13b2o$13b2o7$3o$2bo$bo!
x = 16, y = 17, rule = B3/S23
15bo$14bobo$13bo2bo$14b2o$7b2o$6bo2bo$7b2o7$3o$2bo$bo!
x = 16, y = 15, rule = B3/S23
13b2o$13b2o4$10b2o$9bo2bo$9bobo$10bo5$3o$2bo$bo!
x = 16, y = 17, rule = B3/S23
14b2o$13bobo$14bo4$14b2o$13bo2bo$14bobo$15bo4$3o$2bo$bo!
x = 16, y = 22, rule = B3/S23
15b2o$14bo2bo$15b2o11$3o17b2o$2bo17b2o$bo!
x = 16, y = 18, rule = B3/S23
15b2o$14bo2bo$8b2o4bobo$8b2o5bo10$3o$2bo$bo!
x = 16, y = 26, rule = B3/S23
16bo$15bobo$14bo2bo$15b2o2$23b2o$22bo2bo$23bobo$24bo5$3o$2bo$bo!
x = 16, y = 26, rule = B3/S23
16bo$15bobo$14bo2bo$15b2o3$23bo$22bobo$22bo2bo$23b2o4$3o$2bo$bo!
x = 16, y = 18, rule = B3/S23
15b2o$14bo2bo$15bobo$16bo5$15b2o$15b2o4$3o$2bo$bo!
x = 16, y = 22, rule = B3/S23
15b2o$14bo2bo$15bobo$16bo8$20b2o$20b2o$3o$2bo$bo!
x = 16, y = 16, rule = B3/S23
14b2o$14b2o$9bo$8bobo$7bo2bo$8b2o8$3o$2bo$bo!
x = 16, y = 19, rule = B3/S23
14b2o$14bobo$15bo8$16b2o$15bo2bo$16bobo$3o14bo$2bo$bo!
x = 16, y = 22, rule = B3/S23
15b2o$14bobo$15bo6$19b2o$18bo2bo$19b2o3$3o$2bo$bo!
x = 16, y = 19, rule = B3/S23
16b2o$15bo2bo$9b2o4bobo$8bo2bo4bo$9b2o9$3o$2bo$bo!
x = 16, y = 19, rule = B3/S23
16b2o$15bo2bo$16bobo$17bo5$13b2o$12bo2bo$13b2o3$3o$2bo$bo!
x = 16, y = 23, rule = B3/S23
17bo$16bobo$16bobo$17bo2$21b2o$21b2o7$3o$2bo$bo!
x = 16, y = 20, rule = B3/S23
17bo$16bobo$16bo2bo$17b2o10$3o13b2o$2bo12bobo$bo14bo!
x = 19, y = 26, rule = B3/S23
17bo$16bobo$16bo2bo$17b2o10$3o$2bo$bo21b2o$22bo2bo$23bobo$24bo!
x = 16, y = 20, rule = B3/S23
17b2o$10b2o4bo2bo$10bobo3bobo$11bo5bo10$3o$2bo$bo!
x = 17, y = 20, rule = B3/S23
17b2o$16bo2bo$16bobo$17bo10$3o$2bo15bo$bo15bobo$18b2o!
x = 19, y = 26, rule = B3/S23
17b2o$16bo2bo$16bobo$17bo10$3o$2bo$bo21b2o$22bo2bo$23bobo$24bo!
x = 16, y = 23, rule = B3/S23
17b2o$16bo2bo$17bobo$18bo5$20b2o$19bo2bo$19bobo$20bo2$3o$2bo$bo!
x = 16, y = 18, rule = B3/S23
16b2o$16b2o5$5b2o$4bo2bo$5b2o5$3o$2bo$bo!
x = 16, y = 20, rule = B3/S23
16b2o$16b2o3$17b2o$17bobo$18bo7$3o$2bo$bo!
x = 16, y = 19, rule = B3/S23
17bo$16bobo$3b2o11b2o$3b2o10$3o$2bo$bo!
x = 16, y = 19, rule = B3/S23
17b2o$16bobo$5bo11bo$4bobo$4bo2bo$5b2o8$3o$2bo$bo!
x = 16, y = 25, rule = B3/S23
17b2o3bo$16bobo2bobo$17bo3bo2bo$22b2o10$3o$2bo$bo!
x = 16, y = 23, rule = B3/S23
18b2o$17bo2bo$18b2o3$20b2o$19bo2bo$20bobo$21bo5$3o$2bo$bo!
x = 16, y = 21, rule = B3/S23
19bo$18bobo$17bo2bo$8bo9b2o$7bobo$7bobo$8bo7$3o$2bo$bo!
x = 16, y = 19, rule = B3/S23
17b2o$17b2o8$8bo$7bobo$7b2o2$3o$2bo$bo!
x = 16, y = 19, rule = B3/S23
17b2o$17b2o10$10bo$9bobo$3o5bo2bo$2bo6b2o$bo!
x = 16, y = 19, rule = B3/S23
17b2o$17b2o10$13bo$12bobo$3o8bo2bo$2bo9b2o$bo!
x = 16, y = 19, rule = B3/S23
17b2o$17b2o3$13bo$12bobo$12bobo$13bo6$3o$2bo$bo!
x = 16, y = 19, rule = B3/S23
17b2o$17b2o4$12b2o$12b2o7$3o$2bo$bo!
x = 16, y = 19, rule = B3/S23
17b2o$17b2o4$12b2o$12bobo$13bo6$3o$2bo$bo!
x = 17, y = 19, rule = B3/S23
17b2o$17b2o12$3o$2bo10b2o$bo11bobo$14bo!
x = 16, y = 19, rule = B3/S23
17b2o$17b2o4$15b2o$14bobo$15bo6$3o$2bo$bo!
x = 16, y = 19, rule = B3/S23
17b2o$17b2o6$16bo$15bobo$15b2o4$3o$2bo$bo!
x = 16, y = 19, rule = B3/S23
17b2o$17b2o10$16bo$15bobo$3o12bobo$2bo13bo$bo!
x = 16, y = 19, rule = B3/S23
17b2o$17b2o10$16bo$15bobo$3o12bo2bo$2bo13b2o$bo!
x = 16, y = 19, rule = B3/S23
17b2o$17b2o10$16b2o$15bo2bo$3o12bobo$2bo13bo$bo!
x = 16, y = 19, rule = B3/S23
17b2o$17b2o10$16bo$15bobo$3o12b2o$2bo$bo!
x = 16, y = 19, rule = B3/S23
17b2o$17b2o11$15b2o$3o12b2o$2bo$bo!
x = 16, y = 19, rule = B3/S23
17b2o$17b2o11$15b2o$3o12bobo$2bo13bo$bo!
x = 16, y = 24, rule = B3/S23
17b2o$17b2o3$22b2o$22b2o8$3o$2bo$bo!
x = 16, y = 24, rule = B3/S23
17b2o$17bobo$18bo2$22b2o$22b2o8$3o$2bo$bo!

In all cases, exactly one of the still lives is regenerated. Given that there are (I think) 144 reactions there, there's probably something in there where the non-regenerated SL can be restored by further searches. I don't know if anyone has done this particular kind of search before, though, so this might be completely pointless.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1876
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Let's find a G-to-X (Done!)

Postby dvgrn » May 25th, 2016, 1:43 am

A for awesome wrote:A number of possible first catalysts for a Spartan G-X (Warning: raw search program output, not filtered or formatted nicely...
In all cases, exactly one of the still lives is regenerated.

Looks interesting!

It might be good to sort these somehow in order of likeliness, if that's possible. In the first pattern, the beehive is only restored between T=132 and T=137, and then it's gone again. A really useful Spartan G-to-X will probably have the restoration complete by say T=43 or T=74 or maybe T=90... wouldn't say no to a slower one, but it would be nice if it was in the same range as the syringe or even the Snark.

A still life that is restored for a longer period of time is also probably a better bet to investigate further, as opposed to a very brief restoration; there's more time to add catalysts to rescue it successfully.

Here's a quick script I wrote, that makes a LifeHistory stamp collection with candidates separated by gray cells so that they don't interact:

import golly as g

spacing=256
size=12
text="""3.2C$2.C2.C$3.2C4$10.C$9.C.C$9.C2.C$10.2C4$3C$2.C$.C!
3.C11.C$2.C.C9.C.C$2.C.C9.C.C$3.C11.C10$3C$2.C$.C!
3.C$2.C.C$2.C.C$3.C10.2C$14.2C9$3C$2.C$.C!
3.C$2.C.C$2.C2.C$3.2C5$2.2C$2.2C4$3C$2.C$.C!
3.C$2.C.C$2.C2.C$3.2C3$4.2C$3.C.C$4.C5$3C$2.C$.C!
4.C$3.C.C$2.C2.C$3.2C3$2.2C$2.C.C$3.C5$3C$2.C$.C!
2.2C$2.2C6$8.2C$7.C2.C$8.2C4$3C$2.C$.C!
3.2C$2.C.C$3.C6$7.C$6.C.C$6.C.C$7.C2$3C$2.C$.C!
3.C$2.C.C$3.2C$13.2C$13.2C9$3C$2.C$.C!
4.C$3.C.C$3.C.C$4.C3$13.C$12.C.C$13.2C5$3C$2.C$.C!
4.2C$3.C2.C$4.C.C$5.C7$7.C$6.C.C$6.C.C$3C4.C$2.C$.C!
5.2C$4.C2.C$5.2C5$9.2C$9.2C5$3C$2.C$.C!
6.C$5.C.C7.2C$4.C2.C7.2C$5.2C10$3C$2.C$.C!
5.2C$4.C2.C$5.C.C$6.C3$4.C$3.C.C$3.C.C$4.C4$3C$2.C$.C!
5.2C$4.C2.C4.2C$5.C.C3.C.C$6.C5.C10$3C$2.C$.C!
4.2C$4.2C5$10.2C$9.C.C$10.C5$3C$2.C$.C!
4.2C$4.2C5$11.C$10.C.C$11.2C5$3C$2.C$.C!
5.C$4.C.C$4.2C11$3C3.2C$2.C2.C2.C$.C4.C.C$7.C!
5.C$4.C.C$5.2C2.2C$9.2C10$3C$2.C$.C!
6.2C$5.C2.C$6.2C5.C$12.C.C$12.C.C$13.C8$3C$2.C$.C!
6.2C$5.C2.C$5.C.C$6.C8$6.2C$6.2C$3C$2.C$.C!
6.2C$5.C2.C3.2C$5.C.C3.C2.C$6.C5.2C10$3C$2.C$.C!
6.2C$5.C2.C$6.C.C11.C$7.C11.C.C$19.2C9$3C$2.C$.C!
6.C$5.C.C$6.2C3$4.2C$4.2C7$3C$2.C$.C!
7.C$6.C.C$6.C.C$7.C2$11.2C$11.2C7$3C$2.C$.C!
7.C$6.C.C$6.C2.C$7.2C10$3C$2.C10.2C$.C11.2C!
7.2C$6.C2.C$6.C.C$7.C2$11.2C$11.2C7$3C$2.C$.C!
6.2C8.C$6.2C7.C.C$14.C2.C$15.2C10$3C$2.C$.C!
6.2C$6.C.C$7.C4$5.2C$4.C.C$5.C5$3C$2.C$.C!
7.C$6.C.C7.2C$6.2C8.2C11$3C$2.C$.C!
7.C$6.C.C3.2C$7.2C2.C2.C$12.2C10$3C$2.C$.C!
8.C$7.C.C$7.C.C$8.C3$10.2C$10.2C6$3C$2.C$.C!
8.C$7.C.C$7.C2.C$8.2C10$3C10.2C$2.C10.2C$.C!
8.2C$7.C2.C$7.C.C$8.C2$11.2C$11.2C7$3C$2.C$.C!
9.C$8.C.C$7.C2.C$8.2C4$8.C$7.C.C$8.2C4$3C$2.C$.C!
9.C$8.C.C$7.C2.C$8.2C10$3C10.2C$2.C10.2C$.C!
7.2C$7.2C9$7.C$6.C.C$6.2C$3C$2.C$.C!
7.2C$7.C.C$8.C7$13.2C$12.C2.C$13.2C2$3C$2.C$.C!
8.C$7.C.C$8.2C$2.2C$2.2C9$3C$2.C$.C!
9.2C$8.C2.C$9.2C11$3C$2.C$.C14.2C$15.C2.C$16.2C!
9.2C$8.C2.C$9.2C4$18.2C$17.C2.C$18.C.C$19.C4$3C$2.C$.C!
9.2C$8.C2.C$9.2C8.2C$18.C2.C$19.C.C$20.C8$3C$2.C$.C!
9.C$8.C.C$8.C2.C$9.2C4$16.C$15.C.C$15.C.C$16.C3$3C$2.C$.C!
9.C11.C$8.C.C9.C.C$8.C2.C7.C2.C$9.2C9.2C10$3C$2.C$.C!
10.C$9.C.C$8.C2.C$9.2C4$8.C$7.C.C$7.C.C$8.C3$3C$2.C$.C!
9.2C$8.C2.C$9.C.C$10.C9$14.2C$3C11.2C$2.C$.C!
8.2C$8.2C12$3C3.2C$2.C2.C2.C$.C4.C.C$7.C!
10.2C$9.C2.C$10.2C8$14.2C$13.C2.C$13.C.C$3C11.C$2.C$.C!
10.2C$9.C2.C$10.2C9$14.C$13.C.C$3C10.C.C$2.C11.C$.C!
10.2C$9.C2.C$9.C.C$10.C7$11.2C$11.2C2$3C$2.C$.C!
11.C$10.C.C$9.C2.C$10.2C5$9.2C$9.2C4$3C$2.C$.C!
10.2C$3.2C4.C2.C$3.2C5.C.C$11.C10$3C$2.C$.C!
9.2C2.2C$9.2C2.C.C$14.C11$3C$2.C$.C!
9.2C$9.C.C$10.C5$16.2C$16.2C5$3C$2.C$.C!
10.C$9.C.C$9.2C11$3C$2.C5.2C$.C6.2C!
10.C9.2C$9.C.C8.2C$9.2C11$3C$2.C$.C!
10.C$9.C.C$9.2C11$3C18.2C$2.C17.C2.C$.C19.2C!
10.2C$9.C.C$10.C9$7.C$6.C.C$3C3.C2.C$2.C4.2C$.C!
11.2C$10.C2.C$11.2C10$11.2C$3C7.C2.C$2.C8.2C$.C!
11.2C$10.C2.C$11.2C11$3C$2.C9.2C$.C9.C2.C$12.C.C$13.C!
11.2C$10.C2.C$11.2C11$3C$2.C8.2C$.C9.2C!
11.2C$10.C2.C$11.2C4$14.C$13.C.C$13.C.C$14.C4$3C$2.C$.C!
11.2C$10.C2.C$11.2C2$20.2C$19.C.C$20.C7$3C$2.C$.C!
11.C$10.C.C$10.C.C$11.C4$18.2C$18.2C5$3C$2.C$.C!
11.2C$10.C2.C$10.C.C$11.C4$8.C$7.C.C$7.C.C$8.C3$3C$2.C$.C!
10.2C$3.C6.2C$2.C.C$2.2C10$3C$2.C$.C!
10.2C$10.2C$5.2C$4.C.C$5.C9$3C$2.C$.C!
10.2C$10.2C3$5.2C$4.C2.C$5.2C7$3C$2.C$.C!
10.2C$10.2C3$5.C$4.C.C$5.2C7$3C$2.C$.C!
10.2C$10.2C4$5.2C$5.2C7$3C$2.C$.C!
10.2C$10.2C8$11.C$10.C.C$10.2C2$3C$2.C$.C!
10.2C$10.2C12$3C8.C$2.C7.C.C$.C8.C2.C$11.2C!
10.2C$10.2C10$12.2C$11.C2.C$3C9.2C$2.C$.C!
10.2C$10.2C10$12.2C$11.C2.C$3C8.C.C$2.C9.C$.C!
10.2C$10.2C10$12.2C$11.C2.C$3C9.C.C$2.C10.C$.C!
10.2C$10.2C3.2C$15.2C11$3C$2.C$.C!
10.2C$10.2C6$18.C$17.C.C$17.C.C$18.C3$3C$2.C$.C!
10.2C$10.2C12$3C$2.C$.C16.2C$18.2C!
10.2C$10.2C9$20.2C$19.C2.C$20.C.C$3C18.C$2.C$.C!
10.2C$10.2C12$3C$2.C18.C$.C18.C.C$21.2C!
11.C$10.C.C$10.2C7$18.2C$18.2C3$3C$2.C$.C!
11.2C$10.C.C$11.C4$17.2C$17.2C6$3C$2.C$.C!
12.C$11.C.C$11.C2.C$12.2C5$10.C$9.C.C$8.C2.C$9.2C2$3C$2.C$.C!
12.2C$11.C2.C$7.C3.C.C$6.C.C3.C$6.C.C$7.C8$3C$2.C$.C!
13.C$12.C.C$11.C2.C$12.2C3$9.C$8.C.C$8.C.C$9.C4$3C$2.C$.C!
11.2C$11.2C8$11.2C$10.C2.C$10.C.C$11.C$3C$2.C$.C!
11.2C$11.2C4$12.2C$12.2C7$3C$2.C$.C!
11.2C$11.2C9$13.2C$13.C.C$14.C$3C$2.C$.C!
11.2C$11.2C3$15.2C$14.C2.C$15.2C7$3C$2.C$.C!
11.2C$11.2C$16.2C$15.C2.C$16.2C9$3C$2.C$.C!
11.2C$11.2C2$18.C$17.C.C$17.C.C$18.C7$3C$2.C$.C!
12.2C$11.C.C$12.C11$3C$2.C$.C11.2C$13.2C!
13.C$12.C.C$12.C.C$13.C8$9.2C$8.C2.C$3C5.C.C$2.C6.C$.C!
13.C$12.C.C$12.C.C$13.C3$14.C$13.C.C$12.C2.C$13.2C4$3C$2.C$.C!
13.C$12.C.C$12.C.C$13.C3$13.2C$13.C.C$14.C5$3C$2.C$.C!
13.C$12.C.C$12.C2.C$5.2C6.2C$4.C2.C$4.C.C$5.C7$3C$2.C$.C!
13.2C$12.C2.C$12.C.C$13.C$7.2C$6.C2.C$7.2C7$3C$2.C$.C!
14.C$13.C.C$12.C2.C$13.2C3$11.2C$10.C2.C$11.2C5$3C$2.C$.C!
13.C$12.C.C$13.2C3$13.2C$13.2C7$3C$2.C$.C!
15.C$14.C.C$13.C2.C$14.2C$7.2C$6.C2.C$7.2C7$3C$2.C$.C!
13.2C$13.2C4$10.2C$9.C2.C$9.C.C$10.C5$3C$2.C$.C!
14.2C$13.C.C$14.C4$14.2C$13.C2.C$14.C.C$15.C4$3C$2.C$.C!
15.2C$14.C2.C$15.2C11$3C17.2C$2.C17.2C$.C!
15.2C$14.C2.C$8.2C4.C.C$8.2C5.C10$3C$2.C$.C!
16.C$15.C.C$14.C2.C$15.2C2$23.2C$22.C2.C$23.C.C$24.C5$3C$2.C$.C!
16.C$15.C.C$14.C2.C$15.2C3$23.C$22.C.C$22.C2.C$23.2C4$3C$2.C$.C!
15.2C$14.C2.C$15.C.C$16.C5$15.2C$15.2C4$3C$2.C$.C!
15.2C$14.C2.C$15.C.C$16.C8$20.2C$20.2C$3C$2.C$.C!
14.2C$14.2C$9.C$8.C.C$7.C2.C$8.2C8$3C$2.C$.C!
14.2C$14.C.C$15.C8$16.2C$15.C2.C$16.C.C$3C14.C$2.C$.C!
15.2C$14.C.C$15.C6$19.2C$18.C2.C$19.2C3$3C$2.C$.C!
16.2C$15.C2.C$9.2C4.C.C$8.C2.C4.C$9.2C9$3C$2.C$.C!
16.2C$15.C2.C$16.C.C$17.C5$13.2C$12.C2.C$13.2C3$3C$2.C$.C!
17.C$16.C.C$16.C.C$17.C2$21.2C$21.2C7$3C$2.C$.C!
17.C$16.C.C$16.C2.C$17.2C10$3C13.2C$2.C12.C.C$.C14.C!
17.C$16.C.C$16.C2.C$17.2C10$3C$2.C$.C21.2C$22.C2.C$23.C.C$24.C!
17.2C$10.2C4.C2.C$10.C.C3.C.C$11.C5.C10$3C$2.C$.C!
17.2C$16.C2.C$16.C.C$17.C10$3C$2.C15.C$.C15.C.C$18.2C!
17.2C$16.C2.C$16.C.C$17.C10$3C$2.C$.C21.2C$22.C2.C$23.C.C$24.C!
17.2C$16.C2.C$17.C.C$18.C5$20.2C$19.C2.C$19.C.C$20.C2$3C$2.C$.C!
16.2C$16.2C5$5.2C$4.C2.C$5.2C5$3C$2.C$.C!
16.2C$16.2C3$17.2C$17.C.C$18.C7$3C$2.C$.C!
17.C$16.C.C$3.2C11.2C$3.2C10$3C$2.C$.C!
17.2C$16.C.C$5.C11.C$4.C.C$4.C2.C$5.2C8$3C$2.C$.C!
17.2C3.C$16.C.C2.C.C$17.C3.C2.C$22.2C10$3C$2.C$.C!
18.2C$17.C2.C$18.2C3$20.2C$19.C2.C$20.C.C$21.C5$3C$2.C$.C!
19.C$18.C.C$17.C2.C$8.C9.2C$7.C.C$7.C.C$8.C7$3C$2.C$.C!
17.2C$17.2C8$8.C$7.C.C$7.2C2$3C$2.C$.C!
17.2C$17.2C10$10.C$9.C.C$3C5.C2.C$2.C6.2C$.C!
17.2C$17.2C10$13.C$12.C.C$3C8.C2.C$2.C9.2C$.C!
17.2C$17.2C3$13.C$12.C.C$12.C.C$13.C6$3C$2.C$.C!
17.2C$17.2C4$12.2C$12.2C7$3C$2.C$.C!
17.2C$17.2C4$12.2C$12.C.C$13.C6$3C$2.C$.C!
17.2C$17.2C12$3C$2.C10.2C$.C11.C.C$14.C!
17.2C$17.2C4$15.2C$14.C.C$15.C6$3C$2.C$.C!
17.2C$17.2C6$16.C$15.C.C$15.2C4$3C$2.C$.C!
17.2C$17.2C10$16.C$15.C.C$3C12.C.C$2.C13.C$.C!
17.2C$17.2C10$16.C$15.C.C$3C12.C2.C$2.C13.2C$.C!
17.2C$17.2C10$16.2C$15.C2.C$3C12.C.C$2.C13.C$.C!
17.2C$17.2C10$16.C$15.C.C$3C12.2C$2.C$.C!
17.2C$17.2C11$15.2C$3C12.2C$2.C$.C!
17.2C$17.2C11$15.2C$3C12.C.C$2.C13.C$.C!
17.2C$17.2C3$22.2C$22.2C8$3C$2.C$.C!
17.2C$17.C.C$18.C2$22.2C$22.2C8$3C$2.C$.C!"""

pats=text.split("\n")
g.new("144 possibilities")
x, y = 0, 0
for pat in pats:
  g.putcells(g.parse(pat,x*256,y*256))
  x+=1
  if x==size: x, y = 0, y+1
linelength=spacing*size
horiz=g.parse("F"*linelength+"!")
vert=g.parse("F$"*linelength+"!")
for i in range(size+1):
  g.putcells(horiz,-spacing/2,i*spacing-spacing/2)
  g.putcells(vert,i*spacing-spacing/2,-spacing/2)


Here's the actual stamp collection. It's three times too big to post as RLE, but only 20K in macrocell format:

[M2] (golly 2.8b3)
#R LifeHistory
1 0 0 6 6
2 0 0 1 1
3 0 0 2 2
4 0 0 3 3
5 0 0 4 4
6 0 0 5 5
7 0 0 6 6
1 6 0 6 0
2 8 0 8 0
3 9 0 9 0
4 10 0 10 0
5 11 0 11 0
6 12 0 12 0
7 13 0 13 0
8 0 7 0 14
9 0 0 0 15
10 0 0 0 16
11 0 0 0 17
12 0 0 0 18
1 0 0 0 3
2 0 0 0 20
1 0 0 3 0
2 0 0 22 0
3 0 0 21 23
4 0 0 24 0
5 0 0 25 0
6 0 0 26 0
7 0 0 27 0
8 7 7 28 14
3 0 0 21 0
3 0 0 0 21
4 0 0 30 31
5 0 0 32 0
6 0 0 33 0
7 0 0 34 0
8 7 7 35 14
9 0 0 29 36
4 0 0 30 0
5 0 0 38 0
6 0 0 39 0
7 0 0 40 0
8 7 7 41 14
9 0 0 42 42
10 0 0 37 43
3 0 0 0 23
4 0 0 45 0
5 0 0 46 0
6 0 0 47 0
7 0 0 48 0
8 7 7 49 14
9 0 0 42 50
1 0 0 3 3
2 0 0 0 52
3 0 0 53 0
4 0 0 54 0
5 0 0 55 0
6 0 0 56 0
7 0 0 57 0
8 7 7 58 14
9 0 0 59 29
10 0 0 51 60
11 0 0 44 61
2 0 0 52 0
3 0 0 0 63
4 0 0 64 0
5 0 0 65 0
6 0 0 66 0
7 0 0 67 0
8 7 7 68 14
1 0 0 6 0
2 0 0 70 0
3 0 0 71 0
4 0 0 72 0
5 0 0 73 0
6 0 0 74 0
7 0 0 75 0
2 0 0 20 22
3 0 0 0 77
4 0 0 78 0
5 0 0 79 0
6 0 0 80 0
7 0 0 81 0
8 7 76 82 14
9 0 0 69 83
10 0 0 51 84
11 0 0 85 0
12 0 0 62 86
1 6 0 6 6
2 8 0 88 1
3 9 0 89 2
4 10 0 90 3
5 11 0 91 4
6 12 0 92 5
7 13 0 93 6
8 0 94 0 14
9 0 95 0 95
10 0 96 0 96
11 0 97 0 97
8 0 94 0 0
9 0 95 0 99
10 0 96 0 100
11 0 101 0 0
12 0 98 0 102
1 3 0 0 3
2 0 104 0 0
1 0 3 3 0
2 106 0 0 0
3 105 107 0 0
1 0 3 0 3
1 0 3 0 0
2 0 22 109 110
3 0 0 111 23
1 3 3 0 0
1 3 0 3 0
2 113 114 110 0
3 0 0 115 0
2 0 113 0 0
3 117 0 0 0
4 108 112 116 118
5 119 0 0 0
6 120 0 0 0
7 121 0 6 6
2 0 0 0 22
3 0 0 0 123
4 0 0 124 0
5 0 0 125 0
6 0 0 126 0
7 0 0 127 0
8 122 94 128 14
2 0 114 0 110
2 114 0 0 0
3 130 131 0 0
3 0 130 0 0
4 132 133 116 0
3 131 0 0 0
4 135 0 0 0
5 134 136 0 0
6 137 0 0 0
7 138 0 6 6
8 139 94 82 14
1 3 0 0 0
2 106 109 110 141
3 0 142 0 0
2 0 109 0 0
3 0 144 0 0
4 143 145 116 0
5 146 136 0 0
6 147 0 0 0
7 148 0 6 6
4 0 0 31 0
5 0 0 150 0
6 0 0 151 0
7 0 0 152 0
8 149 94 153 14
2 104 109 0 141
2 0 0 0 109
2 22 0 109 0
3 0 155 156 157
2 141 0 0 0
3 0 159 115 0
4 158 0 160 0
5 161 0 0 0
6 162 0 0 0
7 163 0 6 6
8 164 94 153 14
9 129 140 154 165
1 3 3 3 3
2 0 0 0 167
3 0 168 0 0
4 132 169 116 0
5 170 0 0 0
6 171 0 0 0
7 172 0 6 6
8 173 94 82 14
2 104 0 141 0
3 130 175 53 0
3 117 0 115 0
4 176 0 177 0
5 178 0 0 0
6 179 0 0 0
7 180 0 6 6
8 181 94 68 14
3 0 155 0 0
2 0 20 0 0
1 3 3 0 3
2 185 0 141 0
3 184 186 0 0
4 183 187 116 0
5 188 0 0 0
6 189 0 0 0
7 190 0 6 6
3 0 0 23 0
4 0 0 31 192
5 0 0 193 0
6 0 0 194 0
7 0 0 195 0
8 191 94 196 14
2 113 0 0 0
3 0 198 0 0
2 0 52 110 106
3 0 0 200 0
4 199 201 116 0
5 202 0 0 0
6 203 0 0 0
7 204 0 6 6
3 0 0 0 53
4 0 0 206 0
4 0 0 192 0
5 0 0 207 208
6 0 0 209 0
7 0 0 210 0
8 205 94 211 14
9 174 182 197 212
3 131 0 144 131
4 133 214 116 0
5 215 0 0 0
6 216 0 0 0
7 217 0 6 6
8 218 94 196 14
3 175 0 0 0
2 20 22 110 141
3 0 0 0 221
4 133 220 116 222
5 223 0 0 0
6 224 0 0 0
7 225 0 6 6
8 226 94 196 14
2 0 110 0 0
3 0 228 0 0
3 159 0 0 0
1 3 0 3 3
2 0 20 0 231
3 0 232 115 0
2 0 0 141 0
3 234 0 0 0
4 229 230 233 235
5 236 0 0 0
6 237 0 0 0
7 238 0 6 6
4 0 0 0 54
5 0 0 240 0
6 0 0 241 0
7 0 0 242 0
8 239 94 243 14
3 107 0 0 0
2 106 104 110 141
3 0 246 0 0
4 229 245 116 247
5 248 0 0 0
6 249 0 0 0
7 250 0 6 6
8 251 94 243 14
9 219 227 244 252
3 107 0 144 131
4 133 254 116 0
5 255 0 0 0
6 256 0 0 0
7 257 0 6 6
4 0 0 0 192
5 0 0 259 0
6 0 0 260 0
7 0 0 261 0
8 258 94 262 14
3 0 117 0 0
2 0 106 0 110
3 0 265 0 0
4 264 266 116 0
2 109 0 141 0
3 268 0 0 0
4 269 0 0 0
5 267 270 0 0
6 271 0 0 0
7 272 0 6 6
3 0 0 77 0
4 0 0 0 274
5 0 0 275 0
6 0 0 276 0
7 0 0 277 0
8 273 94 278 14
3 168 228 0 0
1 0 3 3 3
2 281 0 0 0
3 282 0 0 0
4 280 283 116 0
5 284 0 0 0
6 285 0 0 0
7 286 0 6 6
4 0 0 0 30
5 0 0 288 0
6 0 0 289 0
7 0 0 290 0
8 287 94 291 14
2 104 106 0 0
3 293 0 0 0
4 0 294 116 31
2 0 0 113 22
3 0 0 296 0
4 0 0 297 0
3 198 0 0 0
4 299 0 0 0
5 295 298 0 300
6 301 0 0 0
7 302 0 6 6
8 303 94 243 14
9 263 279 292 304
10 166 213 253 305
2 0 0 0 110
2 52 0 106 0
3 130 175 307 308
4 309 0 116 0
5 310 0 0 0
6 311 0 0 0
7 312 0 6 6
8 313 94 68 14
2 0 52 0 104
3 265 268 315 234
4 316 0 116 0
5 317 0 0 0
6 318 0 0 0
7 319 0 6 6
2 0 0 20 0
3 0 0 0 321
4 0 0 322 0
5 0 0 323 0
6 0 0 324 0
7 0 0 325 0
8 320 94 326 14
2 0 20 0 104
2 0 0 114 0
3 0 0 328 329
4 199 330 116 0
5 331 0 0 0
6 332 0 0 0
7 333 0 6 6
5 0 0 207 0
6 0 0 335 0
7 0 0 336 0
8 334 94 337 14
2 231 141 0 0
3 0 339 0 0
2 20 113 0 104
3 0 0 115 341
2 22 0 141 0
3 0 0 343 0
4 340 0 342 344
5 345 0 0 0
6 346 0 0 0
7 347 0 6 6
8 348 94 153 14
9 314 327 338 349
3 117 0 0 21
4 351 297 116 299
5 352 0 0 0
6 353 0 0 0
7 354 0 6 6
8 355 94 326 14
3 105 159 0 21
3 0 130 115 0
4 357 0 358 135
5 359 0 0 0
6 360 0 0 0
7 361 0 6 6
8 362 94 337 14
2 104 114 0 0
3 0 364 0 0
3 221 0 0 0
4 365 366 116 0
5 367 0 0 0
6 368 0 0 0
7 369 0 6 6
8 370 94 153 14
2 110 52 0 0
3 0 372 0 0
2 20 0 114 114
2 110 0 0 0
3 159 374 0 375
4 373 376 116 0
5 377 0 0 0
6 378 0 0 0
7 379 0 6 6
8 380 94 262 14
9 356 363 371 381
2 20 22 104 141
3 0 105 0 383
4 384 230 116 0
5 385 0 0 0
6 386 0 0 0
7 387 0 6 6
8 388 94 278 14
2 0 231 0 0
3 0 390 0 0
4 391 230 116 0
2 167 0 0 0
3 393 0 0 0
4 394 0 0 0
5 392 395 0 0
6 396 0 0 0
7 397 0 6 6
8 398 94 278 14
4 0 294 116 0
2 0 52 110 22
3 0 0 401 329
3 228 0 0 0
4 402 0 403 0
5 400 404 0 0
6 405 0 0 0
7 406 0 6 6
3 0 0 77 77
4 0 0 0 408
5 0 0 409 0
6 0 0 410 0
7 0 0 411 0
8 407 94 412 14
3 328 157 0 159
4 414 0 0 0
5 400 415 0 0
6 416 0 0 0
7 417 0 6 6
8 418 94 278 14
9 389 399 413 419
3 0 105 0 0
2 114 20 0 0
2 113 22 113 0
3 422 423 0 0
4 421 424 116 0
5 425 0 0 0
6 426 0 0 0
7 427 0 6 6
3 0 0 321 0
4 0 0 0 429
5 0 0 430 0
6 0 0 431 0
7 0 0 432 0
8 428 94 433 14
2 0 52 0 113
3 268 0 435 0
4 145 436 116 0
5 437 0 0 0
6 438 0 0 0
7 439 0 6 6
5 0 0 430 323
6 0 0 441 0
7 0 0 442 0
8 440 94 443 14
2 114 104 110 141
3 445 0 0 21
4 0 446 116 229
2 0 0 104 0
3 0 0 448 0
4 449 0 245 0
5 447 450 0 0
6 451 0 0 0
7 452 0 6 6
3 0 0 123 0
4 0 0 0 454
5 0 0 455 0
6 0 0 456 0
7 0 0 457 0
8 453 94 458 14
3 445 0 0 0
4 0 460 116 0
2 141 114 113 0
3 184 462 0 0
4 463 0 0 0
5 461 464 0 0
6 465 0 0 0
7 466 0 6 6
5 0 0 455 65
6 0 0 468 0
7 0 0 469 0
8 467 94 470 14
9 434 444 459 471
10 350 382 420 472
3 372 159 0 0
2 0 0 20 104
2 110 106 0 0
3 0 475 0 476
4 0 474 116 477
5 478 0 0 0
6 479 0 0 0
7 480 0 6 6
4 0 0 0 24
5 0 0 482 0
6 0 0 483 0
7 0 0 484 0
8 481 94 485 14
2 109 20 0 141
3 487 159 0 0
2 0 20 0 110
3 489 343 0 0
4 0 488 116 490
5 491 0 0 0
6 492 0 0 0
7 493 0 6 6
8 494 94 485 14
3 0 0 489 343
4 0 108 116 496
5 497 0 0 0
6 498 0 0 0
7 499 0 6 6
8 500 94 243 14
2 0 22 109 109
3 105 107 0 502
2 0 141 0 0
3 0 504 0 0
4 0 503 116 505
5 506 0 0 0
6 507 0 0 0
7 508 0 6 6
8 509 94 243 14
9 486 495 501 510
2 20 141 0 113
3 512 131 77 0
2 110 141 0 0
3 514 0 0 0
4 0 513 116 515
5 516 0 0 0
6 517 0 0 0
7 518 0 6 6
8 519 94 485 14
3 144 131 0 0
2 110 22 0 110
3 522 131 0 0
4 521 523 116 0
5 524 0 0 0
6 525 0 0 0
7 526 0 6 6
8 527 94 291 14
4 0 108 116 0
3 0 63 228 107
4 530 0 0 0
5 529 531 0 0
6 532 0 0 0
7 533 0 6 6
8 534 94 243 14
4 0 132 116 0
3 0 0 168 0
4 537 0 0 0
5 536 538 0 0
6 539 0 0 0
7 540 0 6 6
8 541 94 243 14
9 520 528 535 542
3 21 296 0 198
4 0 118 116 544
5 545 0 0 0
6 546 0 0 0
7 547 0 6 6
4 0 0 0 322
5 0 0 549 0
6 0 0 550 0
7 0 0 551 0
8 548 94 552 14
3 21 296 228 107
4 0 118 116 554
5 555 0 0 0
6 556 0 0 0
7 557 0 6 6
8 558 94 485 14
3 184 462 374 0
3 375 0 0 0
4 0 560 116 561
5 562 0 0 0
6 563 0 0 0
7 564 0 6 6
4 0 0 0 78
5 0 0 566 0
6 0 0 567 0
7 0 0 568 0
8 565 94 569 14
3 228 159 0 0
2 0 106 0 104
3 572 175 0 0
4 0 571 116 573
5 574 0 0 0
6 575 0 0 0
7 576 0 6 6
4 0 0 0 124
5 0 0 578 0
6 0 0 579 0
7 0 0 580 0
8 577 94 581 14
9 553 559 570 582
2 104 141 0 0
3 21 296 0 584
4 0 118 116 585
5 586 0 0 0
6 587 0 0 0
7 588 0 6 6
8 589 94 485 14
3 117 144 0 0
4 0 591 116 0
5 592 136 0 0
6 593 0 0 0
7 594 0 6 6
8 595 94 485 14
3 228 159 0 393
4 0 597 116 0
5 598 0 0 0
6 599 0 0 0
7 600 0 6 6
8 601 94 552 14
2 20 22 110 106
3 0 603 0 0
4 0 571 116 604
5 605 0 0 0
6 606 0 0 0
7 607 0 6 6
4 0 0 0 31
5 0 0 609 0
6 0 0 610 0
7 0 0 611 0
8 608 94 612 14
9 590 596 602 613
10 511 543 583 614
3 514 476 0 0
4 0 616 116 0
5 617 0 0 0
6 618 0 0 0
7 619 0 6 6
8 620 94 485 14
3 476 0 0 0
4 0 622 116 0
2 0 0 167 0
3 0 0 624 0
4 625 0 0 0
5 623 626 0 0
6 627 0 0 0
7 628 0 6 6
8 629 94 243 14
3 130 107 448 0
3 0 228 115 0
4 31 631 632 245
5 633 0 0 0
6 634 0 0 0
7 635 0 6 6
8 636 94 243 14
2 0 106 0 113
2 22 0 0 0
3 638 639 0 0
4 640 118 116 0
5 641 0 0 0
6 642 0 0 0
7 643 0 6 6
8 644 94 243 14
9 621 630 637 645
2 109 106 0 0
3 647 0 0 0
2 52 0 113 0
3 0 0 649 0
4 0 648 116 650
5 651 0 0 0
6 652 0 0 0
7 653 0 6 6
8 654 94 243 14
4 0 648 116 0
4 199 0 0 0
5 656 657 0 0
6 658 0 0 0
7 659 0 6 6
8 660 94 243 14
3 0 383 0 0
4 662 118 116 0
5 663 0 0 0
6 664 0 0 0
7 665 0 6 6
8 666 94 243 14
3 0 77 0 293
4 668 118 116 0
5 669 0 0 0
6 670 0 0 0
7 671 0 6 6
8 672 94 243 14
9 655 661 667 673
4 0 118 116 0
3 0 0 475 0
4 676 0 622 0
5 675 677 0 0
6 678 0 0 0
7 679 0 6 6
8 680 94 485 14
4 0 0 537 0
5 675 682 0 0
6 683 0 0 0
7 684 0 6 6
8 685 94 485 14
2 141 0 0 20
3 228 687 0 105
4 0 688 116 0
3 23 0 107 0
4 690 0 0 0
5 689 691 0 0
6 692 0 0 0
7 693 0 6 6
8 694 94 569 14
2 141 0 0 110
3 228 696 0 0
4 0 697 116 0
2 52 0 52 141
3 699 0 0 0
4 700 0 0 0
5 698 701 0 0
6 702 0 0 0
7 703 0 6 6
4 0 0 0 206
5 0 0 705 0
6 0 0 706 0
7 0 0 707 0
8 704 94 708 14
9 681 686 695 709
2 52 0 22 114
3 307 711 0 375
4 0 0 712 0
5 675 713 0 0
6 714 0 0 0
7 715 0 6 6
8 716 94 485 14
2 20 0 104 114
3 0 0 0 718
4 0 0 719 0
5 675 720 0 0
6 721 0 0 0
7 722 0 6 6
4 0 0 0 64
5 0 0 724 0
6 0 0 725 0
7 0 0 726 0
8 723 94 727 14
4 0 571 116 0
3 475 0 476 0
4 730 0 0 0
5 729 731 0 0
6 732 0 0 0
7 733 0 6 6
5 0 0 609 208
6 0 0 735 0
7 0 0 736 0
8 734 94 737 14
3 228 107 0 0
2 0 0 109 114
3 0 0 0 740
4 0 739 116 741
5 742 0 0 0
6 743 0 0 0
7 744 0 6 6
8 745 94 737 14
9 717 728 738 746
10 646 674 710 747
11 306 473 615 748
3 105 131 0 0
3 0 740 0 0
4 750 751 116 0
5 752 0 0 0
6 753 0 0 0
7 754 0 6 6
8 755 94 337 14
3 144 268 0 0
4 757 719 116 0
5 758 0 0 0
6 759 0 0 0
7 760 0 6 6
8 761 94 337 14
3 0 487 0 0
3 0 168 115 0
4 763 230 764 0
5 765 0 0 0
6 766 0 0 0
7 767 0 6 6
8 768 94 262 14
2 141 20 0 0
3 770 423 0 0
4 763 771 116 0
5 772 0 0 0
6 773 0 0 0
7 774 0 6 6
3 0 0 63 0
4 0 0 0 776
5 0 0 777 0
6 0 0 778 0
7 0 0 779 0
8 775 94 780 14
9 756 762 769 781
2 22 114 110 0
3 228 783 0 0
2 0 20 0 114
3 0 785 115 228
3 329 0 0 0
4 784 0 786 787
5 788 0 0 0
6 789 0 0 0
7 790 0 6 6
8 791 94 337 14
3 0 293 0 0
3 0 0 740 0
4 793 794 116 0
5 795 0 0 0
6 796 0 0 0
7 797 0 6 6
8 798 14 128 14
3 0 522 0 0
4 800 135 116 0
2 22 0 106 0
3 156 802 0 0
4 803 0 0 0
5 801 804 0 0
6 805 0 0 0
7 806 0 6 6
8 807 94 433 14
2 110 281 0 0
3 0 809 0 393
4 810 0 116 0
5 811 0 0 0
6 812 0 0 0
7 813 0 6 6
8 814 14 433 14
9 792 799 808 815
2 110 22 113 0
3 817 0 0 0
2 109 114 0 0
3 0 0 0 819
4 145 818 116 820
5 821 0 0 0
6 822 0 0 0
7 823 0 6 6
8 824 94 458 14
2 20 141 141 0
3 826 0 144 131
4 145 827 116 0
5 828 0 0 0
6 829 0 0 0
7 830 0 6 6
8 831 94 278 14
3 142 0 448 0
4 31 833 632 245
5 834 0 0 0
6 835 0 0 0
7 836 0 6 6
8 837 94 458 14
3 155 0 0 0
3 0 53 0 117
4 0 839 116 840
5 841 0 0 0
6 842 0 0 0
7 843 0 6 6
8 844 94 243 14
9 825 832 838 845
3 0 184 0 21
3 462 0 448 0
4 847 848 116 299
5 849 0 0 0
6 850 0 0 0
7 851 0 6 6
8 852 94 780 14
3 0 184 0 0
3 462 0 0 0
4 854 855 116 820
5 856 0 0 0
6 857 0 0 0
7 858 0 6 6
8 859 14 243 14
4 0 299 342 344
5 861 0 0 0
6 862 0 0 0
7 863 0 6 6
8 864 94 485 14
2 0 52 109 20
3 0 866 0 504
4 0 474 116 867
4 0 0 235 0
5 868 869 0 0
6 870 0 0 0
7 871 0 6 6
8 872 14 485 14
9 853 860 865 873
10 782 816 846 874
3 0 0 0 246
4 0 0 876 0
5 656 877 0 0
6 878 0 0 0
7 879 0 6 6
8 880 94 243 14
2 0 0 0 106
3 0 882 115 105
4 0 622 883 690
5 884 0 0 0
6 885 0 0 0
7 886 0 6 6
8 887 94 243 14
3 0 321 0 364
4 889 118 116 0
5 890 0 0 0
6 891 0 0 0
7 892 0 6 6
8 893 94 291 14
4 820 118 116 0
5 895 0 0 0
6 896 0 0 0
7 897 0 6 6
8 898 94 485 14
9 881 888 894 899
3 21 23 105 107
4 0 108 116 901
5 902 0 0 0
6 903 0 0 0
7 904 0 6 6
8 905 94 243 14
3 0 0 307 711
4 0 108 116 907
3 0 375 0 0
4 0 909 0 0
5 908 0 910 0
6 911 0 0 0
7 912 0 6 6
8 913 14 243 14
4 0 118 116 640
5 915 0 0 0
6 916 0 0 0
7 917 0 6 6
4 0 0 0 45
5 0 0 919 0
6 0 0 920 0
7 0 0 921 0
8 918 94 922 14
3 0 0 572 802
4 0 118 116 924
5 925 0 0 0
6 926 0 0 0
7 927 0 6 6
8 928 14 727 14
9 906 914 923 929
3 390 159 0 0
4 0 931 116 0
2 0 167 0 0
3 933 0 0 0
4 0 0 934 0
5 932 935 0 0
6 936 0 0 0
7 937 0 6 6
8 938 94 552 14
3 105 159 0 0
4 0 940 116 0
3 0 0 221 0
4 942 0 0 0
5 941 943 0 0
6 944 0 0 0
7 945 0 6 6
8 946 94 552 14
2 114 114 110 0
3 0 948 0 0
2 0 0 106 104
3 950 0 584 0
4 0 949 116 951
5 952 0 0 0
6 953 0 0 0
7 954 0 6 6
5 0 0 0 208
6 0 0 956 0
7 0 0 957 0
8 955 94 958 14
2 0 22 106 109
3 0 948 0 960
3 0 514 0 0
4 0 961 116 962
5 963 0 0 0
6 964 0 0 0
7 965 0 6 6
8 966 94 958 14
9 939 947 959 967
3 144 817 123 0
3 142 0 0 0
4 0 969 116 970
5 971 0 0 0
6 972 0 0 0
7 973 0 6 6
8 974 94 552 14
3 0 785 0 228
2 0 109 114 0
3 977 826 0 0
4 976 978 116 0
5 979 0 0 0
6 980 0 0 0
7 981 0 6 6
8 982 14 552 14
3 0 948 0 603
4 0 984 116 0
5 985 0 0 0
6 986 0 0 0
7 987 0 6 6
8 988 94 737 14
3 0 950 0 584
3 0 445 0 0
4 990 991 116 0
5 992 0 0 0
6 993 0 0 0
7 994 0 6 6
8 995 14 737 14
9 975 983 989 996
10 900 930 968 997
11 875 0 998 0
3 0 21 0 105
2 114 106 110 0
3 23 1001 107 0
4 1000 1002 116 0
5 1003 0 0 0
6 1004 0 0 0
7 1005 0 6 6
8 1006 94 708 14
3 0 142 328 802
4 0 1008 116 0
5 1009 0 0 0
6 1010 0 0 0
7 1011 0 6 6
8 1012 94 708 14
3 0 21 0 0
2 20 0 141 114
3 1015 117 198 0
4 1014 1016 116 0
5 1017 0 0 0
6 1018 0 0 0
7 1019 0 6 6
4 0 0 776 0
5 0 0 0 1021
6 0 0 1022 0
7 0 0 1023 0
8 1020 94 1024 14
3 0 307 0 0
4 0 421 116 1026
3 711 0 375 0
4 230 0 1028 0
5 1027 1029 0 0
6 1030 0 0 0
7 1031 0 6 6
8 1032 94 1024 14
9 1007 1013 1025 1033
3 0 364 0 819
4 0 1035 116 0
5 1036 0 0 0
6 1037 0 0 0
7 1038 0 6 6
8 1039 94 737 14
3 23 512 107 0
4 1000 1041 116 0
5 1042 136 0 0
6 1043 0 0 0
7 1044 0 6 6
8 1045 94 1024 14
4 0 421 116 0
3 159 0 21 23
4 1048 0 108 0
5 1047 1049 0 0
6 1050 0 0 0
7 1051 0 6 6
4 0 0 429 0
5 0 0 0 1053
6 0 0 1054 0
7 0 0 1055 0
8 1052 94 1056 14
2 20 22 104 106
3 1058 144 0 0
4 0 1059 116 0
3 826 0 0 0
4 1061 0 0 0
5 1060 1062 0 0
6 1063 0 0 0
7 1064 0 6 6
4 0 0 274 0
5 0 0 0 1066
6 0 0 1067 0
7 0 0 1068 0
8 1065 94 1069 14
9 1040 1046 1057 1070
3 0 0 0 1058
4 1072 0 116 0
5 1073 300 0 0
6 1074 0 0 0
7 1075 0 6 6
8 1076 94 1069 14
4 0 0 116 0
2 113 0 20 22
3 1079 0 476 0
4 1080 0 0 0
5 1078 1081 0 0
6 1082 0 0 0
7 1083 0 6 6
8 1084 94 1069 14
1 3 3 3 0
2 1086 22 110 0
3 0 0 0 1087
4 0 1088 116 0
4 515 0 0 0
5 1089 1090 0 0
6 1091 0 0 0
7 1092 0 6 6
8 1093 94 0 0
3 0 0 0 603
4 0 0 116 1095
5 1096 1090 0 0
6 1097 0 0 0
7 1098 0 6 6
8 1099 94 0 0
9 1077 1085 1094 1100
4 490 0 116 0
3 339 0 0 0
4 1103 0 0 0
5 1102 1104 0 0
6 1105 0 0 0
7 1106 0 6 6
8 1107 94 1069 14
2 20 0 114 104
3 0 1109 0 514
4 1110 0 116 0
3 584 0 0 0
4 1112 0 0 0
5 1111 1113 0 0
6 1114 0 0 0
7 1115 0 6 6
8 1116 94 1069 14
3 0 0 0 265
4 0 1118 116 0
3 514 0 131 0
4 1120 0 0 0
5 1119 1121 0 0
6 1122 0 0 0
7 1123 0 6 6
8 1124 94 0 0
4 0 31 116 229
3 514 0 448 0
4 1127 0 230 0
5 1126 1128 0 0
6 1129 0 0 0
7 1130 0 6 6
8 1131 94 0 0
9 1108 1117 1125 1132
10 1034 1071 1101 1133
2 20 113 110 106
3 0 514 1135 639
4 0 1136 116 0
5 1137 0 0 0
6 1138 0 0 0
7 1139 0 6 6
8 1140 94 1024 14
3 0 476 0 401
4 0 1142 116 229
3 0 0 329 0
4 1144 0 0 0
5 1143 1145 0 0
6 1146 0 0 0
7 1147 0 6 6
8 1148 94 1056 14
3 0 228 0 77
4 0 1150 116 793
3 783 0 0 0
4 1152 0 0 0
5 1151 1153 0 0
6 1154 0 0 0
7 1155 0 6 6
3 0 0 77 123
4 0 0 1157 0
5 0 0 0 1158
6 0 0 1159 0
7 0 0 1160 0
8 1156 94 1161 14
3 948 0 0 819
4 1163 0 0 0
5 1078 1164 0 0
6 1165 0 0 0
7 1166 0 6 6
5 0 0 0 55
6 0 0 1168 0
7 0 0 1169 0
8 1167 94 1170 14
9 1141 1149 1162 1171
3 0 0 0 393
4 245 0 1173 0
5 1047 1174 0 0
6 1175 0 0 0
7 1176 0 6 6
8 1177 94 1056 14
3 649 130 0 0
4 0 1179 116 0
4 245 0 0 0
5 1180 1181 0 0
6 1182 0 0 0
7 1183 0 6 6
8 1184 94 1056 14
3 0 0 0 184
4 0 0 116 1186
3 0 0 186 0
4 460 0 1188 0
5 1187 1189 0 0
6 1190 0 0 0
7 1191 0 6 6
5 0 0 0 38
6 0 0 1193 0
7 0 0 1194 0
8 1192 94 1195 14
3 0 0 0 882
4 460 0 1197 449
4 229 245 0 0
5 1078 1198 0 1199
6 1200 0 0 0
7 1201 0 6 6
8 1202 94 1069 14
9 1178 1185 1196 1203
2 109 110 0 113
3 584 1205 0 0
3 639 0 0 0
4 1206 1207 0 0
5 1078 1208 0 0
6 1209 0 0 0
7 1210 0 6 6
8 1211 94 1069 14
2 113 22 104 141
3 372 159 184 1213
4 1214 0 0 0
5 1078 1215 0 0
6 1216 0 0 0
7 1217 0 6 6
8 1218 94 1069 14
3 0 21 0 228
4 0 0 116 1220
3 448 0 107 0
4 515 0 1222 0
5 1221 1223 0 0
6 1224 0 0 0
7 1225 0 6 6
8 1226 94 0 0
2 52 141 0 0
3 448 0 1228 0
4 515 0 1229 0
5 1221 1230 0 0
6 1231 0 0 0
7 1232 0 6 6
8 1233 94 0 0
9 1212 1219 1227 1234
4 1220 1222 116 0
3 512 131 0 0
4 1237 0 0 0
5 1236 1238 0 0
6 1239 0 0 0
7 1240 0 6 6
8 1241 94 1069 14
3 0 489 115 0
4 0 0 1243 220
5 1244 1090 0 0
6 1245 0 0 0
7 1246 0 6 6
8 1247 94 1069 14
3 296 0 107 0
4 515 0 1249 0
5 1221 1250 0 0
6 1251 0 0 0
7 1252 0 6 6
8 1253 94 0 0
3 448 0 159 0
4 515 0 1255 0
5 1221 1256 0 0
6 1257 0 0 0
7 1258 0 6 6
8 1259 94 0 0
9 1242 1248 1254 1260
10 1172 1204 1235 1261
11 1134 1262 0 0
4 0 266 116 0
3 268 0 0 265
2 104 0 106 0
3 0 0 1266 0
4 1265 1267 0 0
5 1264 1268 0 0
6 1269 0 0 0
7 1270 0 6 6
8 1271 94 1069 14
3 268 0 0 785
4 1273 449 229 230
5 1264 1274 0 0
6 1275 0 0 0
7 1276 0 6 6
8 1277 94 1069 14
2 0 1086 0 110
3 1279 639 0 0
4 0 1280 116 0
3 1001 0 0 0
4 1282 0 0 0
5 1281 1283 0 0
6 1284 0 0 0
7 1285 0 6 6
8 1286 94 1069 14
2 0 22 110 281
3 0 0 1288 0
4 1282 0 1289 0
5 1078 1290 0 0
6 1291 0 0 0
7 1292 0 6 6
8 1293 94 1069 14
9 1272 1278 1287 1294
3 0 105 0 21
4 0 1296 116 229
3 268 0 23 0
4 1298 0 230 0
5 1297 1299 0 0
6 1300 0 0 0
7 1301 0 6 6
8 1302 94 1069 14
3 0 624 0 0
4 269 0 1304 0
5 1047 1305 0 0
6 1306 0 0 0
7 1307 0 6 6
8 1308 14 1069 14
4 1282 0 1197 449
5 1078 1310 0 1199
6 1311 0 0 0
7 1312 0 6 6
8 1313 94 1069 14
3 155 0 0 63
3 144 826 0 0
4 1315 0 1316 0
5 1078 1317 0 0
6 1318 0 0 0
7 1319 0 6 6
8 1320 14 1069 14
9 1303 1309 1314 1321
3 475 0 293 0
4 0 0 116 1323
5 1324 1090 0 0
6 1325 0 0 0
7 1326 0 6 6
8 1327 94 1069 14
2 0 0 106 22
3 0 1329 228 1228
4 0 0 116 1330
5 1331 1090 0 0
6 1332 0 0 0
7 1333 0 6 6
8 1334 94 1069 14
3 23 0 159 0
4 515 0 1336 0
5 1221 1337 0 0
6 1338 0 0 0
7 1339 0 6 6
8 1340 94 0 0
4 515 0 690 0
5 1221 1342 0 0
6 1343 0 0 0
7 1344 0 6 6
8 1345 94 0 0
9 1328 1335 1341 1346
3 0 321 0 948
4 0 1348 116 0
5 1349 1090 0 0
6 1350 0 0 0
7 1351 0 6 6
8 1352 94 1069 14
4 0 1173 116 0
5 1354 1090 0 0
6 1355 0 0 0
7 1356 0 6 6
8 1357 14 1069 14
3 514 53 0 117
4 1359 0 0 0
5 1078 1360 0 0
6 1361 0 0 0
7 1362 0 6 6
8 1363 94 0 0
3 476 53 0 117
4 1365 0 0 0
5 1078 1366 0 0
6 1367 0 0 0
7 1368 0 6 6
1 6 0 0 0
2 8 0 1370 0
3 9 0 1371 0
4 10 0 1372 0
5 11 0 1373 0
6 12 0 1374 0
7 13 0 1375 0
8 1369 1376 0 0
9 1353 1358 1364 1377
10 1295 1322 1347 1378
11 1379 0 0 0
12 749 999 1263 1380
13 19 87 103 1381

It will take a bit more work to have the script dig out the first tick when the still life is restored, and how long the still life lasts. Is that information easily available from your search program?
User avatar
dvgrn
Moderator
 
Posts: 5817
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Let's find a G-to-X (Done!)

Postby Jackk » May 25th, 2016, 5:04 am

Just casually browsing through them, I guess it's not that surprising that most of them are a bit unlikely... but one of the more promising might be this: (block added by me to delete a TL)
x = 9, y = 18, rule = LifeHistory
6.2C$6.C.C$7.C4$5.2C$4.C.C$5.C5$3C$2.C$.C$5.2E$5.2E!
Jackk
 
Posts: 80
Joined: March 13th, 2012, 3:49 pm

Re: Let's find a G-to-X (Done!)

Postby simsim314 » May 25th, 2016, 5:23 am

This brings me an idea of sequential "sacrifice and restore" strategy:

We can use a search that has a sequence of spartan SLs, and the search is looking to find a "new sacrifice" of SL, which restores a previously sacrificed SL (together with regular catalysts of course). This will allow much much deeper "sacrifice" strategy, than anything else we currently have. In more advanced stage we can allow N sacrificed SLs.
User avatar
simsim314
 
Posts: 1702
Joined: February 10th, 2014, 1:27 pm

Re: Let's find a G-to-X (Done!)

Postby Jackk » May 25th, 2016, 5:31 am

This one makes an LWSS (!!). Unfortunately, it looks rather difficult to salvage.
x = 37, y = 28, rule = LifeHistory
10$24.C$23.C.C$23.C.C$24.C8$20.2C$19.C2.C$11.3C5.C.C$13.C6.C$12.C!


EDIT: This, however, looks distinctly more possible...
x = 19, y = 16, rule = LifeHistory
17.2C$17.2C11$15.2C$3C12.2C$2.C$.C!
Jackk
 
Posts: 80
Joined: March 13th, 2012, 3:49 pm

Previous

Return to Patterns

Who is online

Users browsing this forum: No registered users and 1 guest