BlinkerSpawn wrote:The original soup should provide some clues, if you have it.
googoIpIex wrote:the original soup just produces a very large blob which shrinks into that.
dvgrn wrote:However, the soup linked to above is just the second C1 soup.
x = 23, y = 52, rule = B3/S23
19bo$19bo$obo16bo$b2o5bo9b3o$bo4b2o$7b2o12b2o$22bo$19b3o$19bo$8b2o$7bo
2bo$8b2o9$21bo$21bo$obo16bo$b2o5bo9b3o$bo4b2o$7b2o12b2o$22bo$19b3o$19b
o$8b2o$7bo2bo$8b2o10$20bo$obo13b2obo$b2o5bo9b3o$bo4b2o$7b2o12b2o$22bo$
19b3o$19bo$8b2o$7bo2bo$8b2o!
x = 37, y = 16, rule = B3/S23
35bo$2bo31bobo$bobo29bo2bo$o2bo26bo3b2o$b2o25b2ob2o$28b2ob2o$28b2ob2o$
30bo$18b2o$17bo2bo$18b2o2$23bo$22bobo$22bobo$23bo!
x = 126, y = 34, rule = B3/S23
56bobo$56b2o$2bo47bo6bo54bo$3bo47bo59bo$b3o45b3o59b3o2$109b2o$109b2o
12bo$123bobo$123b2o$41bo79bo$11b2o28bo5b2o71bobo$b2o7bobo28bo4bobo54bo
16b2o$obo8bo35bo55b3o$2bo59bo43bo$49b3o8b2o41b2o2bo$51bo9b2o39bo2b3o$
50bo6bo44bobo$56b2o45bobo$56bobo45bo12$71bo$70b2o$70bobo!
x = 16, y = 16, rule = B3/S23
oobooboboobbobob$
ooooobbboboooooo$
oobbbboobbbbbboo$
ooobbboooobooobo$
oooobboboobbobob$
bboobbobbobbbbbb$
booooooooobbbbbo$
obobbboooobboobo$
bobbooboboooobbb$
bbbobobbooboobbb$
boobobobboooooob$
bbbbbobbbbooobob$
obobobboboooobob$
ooobobboboooobbb$
obobboboobobbbbo$
oobbobbbbboooooo!
Freywa wrote:The synthesis file in Niemiec's database for 17.1202 was found to be botched – and it was listed as costing 70 gliders. Here's a 12-glider replacement synthesis from this soup:Code: Select allrle
x = 95, y = 61, rule = B3/S23
92bobo$92b2o$93bo25$56bobo$56b2o$2bo47bo6bo$3bo47bo$b3o45b3o6$41bo$11b
2o28bo5b2o$b2o7bobo28bo4bobo$obo8bo35bo$2bo59bo$49b3o8b2o$51bo9b2o$50b
o6bo$56b2o$56bobo12$71bo$70b2o$70bobo!
x = 10, y = 11, rule = B3/S23
2bo$obo$b2o$4bo3b2o$3bobobobo$3bobob2o$4bobo3$5b3o$5bo2bo!
Freywa wrote:I'm not one to be outdone though. There's this 17-cell heart-shaped SL that is listed as requiring 108 gliders; here it is in 13 from this soup: ... Edit: Never mind, found that 9G synthesis.
x = 168, y = 65, rule = B3/S23
96bo$97boo16bo$96boo17bobo$109bo5boo$94bo14bobo$95bo13boo44boo$93b3o
35boo18booboo$130bobo17bobo3bo$45bo85bo19bo$46bo$44b3o$48bobo62bo18boo
18boo$48boo23bo29bo9bobo16boo18boo$bo22bo24bo4bo17bobo17bobo7bobo8boo
8boo18boo18boo$bbo20bobo27bobo15bobobo17boo6bobobo17bobo17bobo17bobo$
3oboo17bobbo26bobbo14bobobbo16bo7bobobbo3b3o7boobobbo13boobobbo13boobo
bbo$4bobo17boo28boo16boboobo24boboobobbo9boboboobo12boboboobo12boboboo
bo$4bo42boo24bobbo26bobbo4bo11bobbo16bobbo16bobbo$48boo24boo28boo18boo
18boo18boo$36bo10bo10bo34b3o$36boo13bo4boo37bo$35bobo13boo4boo35bo$50b
obo$59boo$59bobo28boo$59bo29bobo$91bo6$48boo$49boo$48bo14$140bo$130bob
o8bo$131boo6b3o$131bo$93bo19bo29bo$92bobo17bobo21bobo3bobo19bo$91bobob
o15bobobo21boobbobobo17bobo$85bo5bobobbo14bobobbo20bo3bobobbo16bobbo$
86bo5boboobo14boboobo15b3o6boboobo13booboobo$84b3o6bobbo12bo3bobbo18bo
3bo3bobbo13bobbobbo$94boo12bobo3boo18bo3bobo3boo14boobboo$87b3o18bobo
27bobo$89bo19bo29bo$88bo$138boo$137bobo$139bo!
mniemiec wrote:It makes two previously obsolete syntheses for 17.1199 and 17.1644 again minimal from 20 and 17 gliders respectively (unless those numbers have been otherwise superceded?)
>>> from shinjuku.search import dijkstra, lookup_synth
>>> min_paths = dijkstra()
>>> lookup_synth(min_paths, "xs17_cidikozw56")
Instruction set AVX2 detected
(20, <Pattern(logdiam=9, beszel_index=402, ulqoma_index=0, rule=b3s23) owned by <lifelib.pythlib.session.Lifetree object at 0x7f0f582ec780>>)
>>> lookup_synth(min_paths, "xs17_cidik8z643")
(17, <Pattern(logdiam=9, beszel_index=527, ulqoma_index=0, rule=b3s23) owned by <lifelib.pythlib.session.Lifetree object at 0x7f0f582ec780>>)
x = 16, y = 16, rule = B3/S23
oboobobbooobooob$
booooboooooooobo$
bbooboboobobbbbo$
bobbobobobbobbbb$
obbbbbooooboboob$
bbobobbobbbbbooo$
bbbbbboobboboobb$
bbbbbbobbooooboo$
bobooobbboobobbo$
oobobbobbbbboboo$
oboobbbobbbbobob$
oobboooboboobobb$
bobooobobobboboo$
bbbooobobbobbbbb$
bobbooobboobobbo$
bbbbbbboooooooob!
x = 16, y = 16, rule = B3/S23
b3obob3o4b2o$ob8o2bo2bo$o2bo7b3o$o2b3o2b2o2bobo$2bo2b6o2b2o$2bo2bo5b2o
$3o2b3o2b2ob3o$o2b2o2bob7o$bo2b2o2bob2obo$bob4o3bo4bo$bo4b2o3bob2o$o2b
o2bo2bob2o2bo$2b3o2bob2o2b3o$b2o3bobobo3b2o$obobo2b3o5bo$o4bobobob3obo
!
Ian07 wrote:Natural sidecar found in G1:Code: Select allx = 16, y = 16, rule = B3/S23
oboobobbooobooob$
booooboooooooobo$
bbooboboobobbbbo$
bobbobobobbobbbb$
obbbbbooooboboob$
bbobobbobbbbbooo$
bbbbbboobboboobb$
bbbbbbobbooooboo$
bobooobbboobobbo$
oobobbobbbbboboo$
oboobbbobbbbobob$
oobboooboboobobb$
bobooobobobboboo$
bbbooobobbobbbbb$
bobbooobboobobbo$
bbbbbbboooooooob!
Haul: https://catagolue.appspot.com/haul/b3s2 ... 8da540b69c (Rob Liston, 2019-05-12)
Ian07 wrote:EDIT: Crystal-based methuselah, also in G1:Code: Select allx = 16, y = 16, rule = B3/S23
b3obob3o4b2o$ob8o2bo2bo$o2bo7b3o$o2b3o2b2o2bobo$2bo2b6o2b2o$2bo2bo5b2o
$3o2b3o2b2ob3o$o2b2o2bob7o$bo2b2o2bob2obo$bob4o3bo4bo$bo4b2o3bob2o$o2b
o2bo2bob2o2bo$2b3o2bob2o2b3o$b2o3bobobo3b2o$obobo2b3o5bo$o4bobobob3obo
!
Haul: https://catagolue.appspot.com/haul/b3s2 ... b0c582469c (Rob Liston, 2019-05-11)
Macbi wrote:That's a new record by a long way! It lasts for 133100 generations. More than double the previous record holder, 47575M.
Apple Bottom wrote:Hmm? I reckon I'm just missing the obvious here, but in what sense is this a methuselah, much less one that stops evolving at generation 133,100?
Macbi wrote:Apple Bottom wrote:Hmm? I reckon I'm just missing the obvious here, but in what sense is this a methuselah, much less one that stops evolving at generation 133,100?
Some gliders are being shot backwards from the switch engines and reacting with the ash near the origin. They finally bore through it at 133100.
calcyman wrote:Indeed. I wouldn't classify that as a methuselah unless the reaction managed to destroy the switch-engines (as was the case for the 750k methuselah from b38s23/C1).
Macbi wrote:calcyman wrote:Indeed. I wouldn't classify that as a methuselah unless the reaction managed to destroy the switch-engines (as was the case for the 750k methuselah from b38s23/C1).
I see that there's something different about this pattern compared to other methuselahs, but I don't see why destroying the switch-engines or not would be an important part of the requirements. Is it because you don't think that an infinite-growth pattern can be said to have stabilised? I would say that an infinite growth pattern can be considered stabilised so long as it is growing in a regular way. (The phrase "regular way" isn't precisely defined, but I think switch engines definitely satisfy it.)
#C nikk-nikkm1r90-w4s906
#C http://nickgotts-nikk-nikkm1r90-w4s906.blogspot.com/
#C pattern given at http://nickgotts-eventful.blogspot.com/
x = 38, y = 940, rule = S23/B3
6bo$5bobo$$4bobbo$4boo$4bo25$34bobo$37bo$33bobbo$32b3o873$28bo3bo$29bo
bo$30bobbo$33bo$33bo24$o$bo$bbo$bo$o$bb3o!
Seed Ticks Before Boring Borificaton Method
D8_4/m_MqDCX5fsCpSu5292567 13,466,679 eater near center, boat-bit
D8_4/m_wENPkZhTVTmx3581125 16,467,563 eater tie eaters in arms, boat-bit
D8_4/m_55MBifjCkqyg1071727 9,307,907 glider-block bounce, 90-degree annihilation
D8_4/m_AsRrkqLwMJuA9526739 16,467,583 converges to m_wENPkZhTVTmx3581125 pattern
#C D8_1/27CHaXKUTxiw6209593 goes boring at T=456.601
x = 31, y = 31, rule = B3/S23
3b3obob2ob2obob2ob2obob3o$b3o3bo2bob7obo2bo3b3o$b5o7bobobo7b5o$3obo2b
5obo3bob5o2bob3o$ob2o2bo6b2ob2o6bo2b2obo$obo2b2o2bo3bo3bo3bo2b2o2bobo$
4b3ob3obo5bob3ob3o$2obo3b2ob2o7b2ob2o3bob2o$3bo2b6obo3bob6o2bo$o2bob2o
b3o2b5o2b3ob2obo2bo$2obo2b6ob2ob2ob6o2bob2o$3bo3b2obobobobobobob2o3bo$
2o4bo4bo7bo4bo4b2o$6o2b3o4bo4b3o2b6o$bo2bo4b3o3bo3b3o4bo2bo$3o6bo3b5o
3bo6b3o$bo2bo4b3o3bo3b3o4bo2bo$6o2b3o4bo4b3o2b6o$2o4bo4bo7bo4bo4b2o$3b
o3b2obobobobobobob2o3bo$2obo2b6ob2ob2ob6o2bob2o$o2bob2ob3o2b5o2b3ob2ob
o2bo$3bo2b6obo3bob6o2bo$2obo3b2ob2o7b2ob2o3bob2o$4b3ob3obo5bob3ob3o$ob
o2b2o2bo3bo3bo3bo2b2o2bobo$ob2o2bo6b2ob2o6bo2b2obo$3obo2b5obo3bob5o2bo
b3o$b5o7bobobo7b5o$b3o3bo2bob7obo2bo3b3o$3b3obob2ob2obob2ob2obob3o!
x = 16, y = 31, rule = B3/S23
bbbbooobobbbbbob$
bbbbbboboobobbob$
obobbooobbbbbboo$
oobooobbobbbobbb$
obooobooboboobob$
bobbbobbbooobobb$
boboobobbbobbobo$
obbooobobbooboob$
booboobbobobbbbb$
boboobobbobboooo$
booobbbboobobobb$
boobobooooobbobo$
oobbobbobooooooo$
obbooobboooobbbb$
obbbooobobobbboo$
bbbbboooobbboobo$
obbbooobobobbboo$
obbooobboooobbbb$
oobbobbobooooooo$
boobobooooobbobo$
booobbbboobobobb$
boboobobbobboooo$
booboobbobobbbbb$
obbooobobbooboob$
boboobobbbobbobo$
bobbbobbbooobobb$
obooobooboboobob$
oobooobbobbbobbb$
obobbooobbbbbboo$
bbbbbboboobobbob$
bbbbooobobbbbbob!
A for awesome wrote:An asymmetric p4 that's more common in odd orthogonal symmetries (analogous to the overabundance of Achim's p8 in diagonal symmetries): ...
x = 117, y = 87, rule = B3/S23
62bobo23bobo$63boo8bo14boo$63bo10boo13bo$73boo$$79bo$77boo$78boo17bo
17bo$96bobo15bobo$96bobbo13bobbo$31bo33b3o17b3o9bobo13bobo$32bo34bo17b
o12booboo7booboo$30b3o33bo19bo13bobbo5bobbo$50boo18boo28bobobbobobbobo
$32bo17bobo17bobo28bo9bo$31boo18bo19bo30booboboboo$31bobo70bo3bo3$77bo
$77boo$76bobo$$65boo$66boo16boo$65bo17boo$85bo$74boo$73bobo$75bo8$68bo
$51bo17bo11bo$52boo13b3o9boo$51boo18bo8boo$11bo58bo$9bobo19boo16bo11b
oo7b3o10bo$10boo19boo16boo10boo19boo$7boo39bobo31bobo$6bobo$8bo$63bo
33bo17bo$63bobo30bobo15bobo$63boo31bobbo13bobbo$97bobo13bobo$58bobo37b
ooboo7booboo$59boo39bobbo5bobbo$59bo14boo24bobobbobobbobo$73boo26bo9bo
$75bo26booboboboo$45b3o3boo27boo3b3o16bo3bo$47bobbobo17boo8bobobbo$46b
o5bo18boo7bo5bo$70bo14$8bo75bo$6bobo75bobo$7boobbobo65bobobboo$11boo
67boo$7bo4bo12bo29bo24bo4bo$bo4bobo15bobo27bobo27bobo4bo$boo3bobbo13bo
bbo26bobbo26bobbo3boo$obo4bobo13bobo27bobo27bobo4bobo$8booboo7booboo
16boo7booboo16boo7booboo16boo7boo$10bobbo5bobbo17bobbo5bobbo17bobbo5bo
bbo17bobbo5bobbo$4boo4bobobbobobbobo17bobobbobobbobo17bobobbobobbobo4b
oo11bobobbobobbobo$3bobo5bo9bo19bo9bo19bo9bo5bobo11bo9bo$5bo6boobobob
oo21booboboboo21booboboboo6bo14booboboboo$14bo3bo25bo3bo25bo3bo25bo3bo
!
mniemiec wrote:(It's quite possible that there is a cheaper way to delete the attached doves)
x = 99, y = 30, rule = B3/S23
41bobo23bobo$42b2o8bo14b2o$42bo10b2o13bo$52b2o2$58bo$56b2o$57b2o3$bo
42b3o17b3o$2bo43bo17bo22b2o7b2o$3o42bo19bo20bo2bo5bo2bo$20b2o27b2o35bo
bo2bobo2bobo$2bo17bobo26bobo35bo9bo$b2o18bo28bo37b2obobob2o$bobo86bo3b
o3$56bo$32b3o21b2o18b3o$34bo20bobo18bo$33bo43bo$44b2o$45b2o16b2o$44bo
17b2o$64bo$53b2o$52bobo$54bo!
x = 16, y = 16, rule = B3/S23
bbobooooobbbbbbo$
ooobobooboboobbo$
boobbbboobbboooo$
bboboboooboboooo$
oobobobbbboobobb$
bbobboooobbbooob$
bbbbbobbboooobbb$
obobooooobbbbboo$
bbbobbooobbooobb$
bobobooooooooobb$
boooooobobbbbobo$
boobbobobobbbboo$
bobooooboobboobb$
boobobobbboooooo$
bobboboobbobobbb$
obbooooboobooobb!
x = 32, y = 32, rule = B3/S23
bbbboooboooboooboobbooboobbbbbbb$
bboobbobobobobboooboobboobbbobbb$
boobboobbobbobooboboobbbbobobobb$
bobobbbbboobbbobboboobboobobobob$
obbbooobooooobbbobbbbobboboobobb$
obobobobobbbbbobboboobbbooboobbb$
oooboobooboboboobbbbboobobobbobb$
bbbbbboobbooobboobbobooboooooboo$
oobbooobobbobboooboboboobbbboboo$
obooobbbbboobboobobooobooobbbbbb$
ooboobooboobbbobbboooooboobobbbo$
bbbbobbooobbbobbbboobooobboboooo$
oooboboobbbbbobbbbobooobobobooob$
obbbbbbbbbboobobbobooobobbbbbbbb$
obooboobooobbobbobobbbobbboboooo$
boobbboooobbbbbooobbbbboobbobboo$
oobbobboobbbbbooobbbbboooobbboob$
oooobobbbobbbobobbobbooobooboobo$
bbbbbbbbobooobobboboobbbbbbbbbbo$
booobobobooobobbbbobbbbboobobooo$
oooobobboooboobbbbobbbooobbobbbb$
obbboboobooooobbbobbbooboobooboo$
bbbbbboooboooboboobboobbbbbooobo$
oobobbbboobobobooobbobbobooobboo$
ooboooooboobobboobbooobboobbbbbb$
bbobboboboobbbbboobobobooboobooo$
bbbooboobbboobobbobbbbbobobobobo$
bboboobobbobbbbobbbooooobooobbbo$
boboboboobboobobbobbboobbbbbobob$
bbobobobbbbooboboobobbobboobboob$
bbbobbboobboobooobbobobobobboobb$
bbbbbbbooboobboobooobooobooobbbb!
x = 32, y = 32, rule = B3/S23
booboooobboooobbbboooobbooooboob$
bbobboobooooooooooooooooboobbobb$
oobboobbbbbboooooooobbbbbboobboo$
obbbbbobobbbobbbbbbobbbobobbbbbo$
boobbobbbbbobobbbbobobbbbbobboob$
oobboboobbobooobbooobobboobobboo$
oboboobooooobobbbboboooooboobobo$
bobbbobbboobbbboobbbboobbbobbbob$
ooboobobobbbbbbbbbbbbbbobobooboo$
boooboooobobbboooobbboboooobooob$
bboboooboobbboooooobbboobooobobb$
obbbobooboobobboobbobooboobobbbo$
obbbbbobobboobbbbbboobbobobbbbbo$
ooobbboooooobbobbobboooooobbbooo$
obbboobobbobobbbbbbobobboboobbbo$
bboooobbboobbboooobbboobbboooobb$
bboooobbboobbboooobbboobbboooobb$
obbboobobbobobbbbbbobobboboobbbo$
ooobbboooooobbobbobboooooobbbooo$
obbbbbobobboobbbbbboobbobobbbbbo$
obbbobooboobobboobbobooboobobbbo$
bboboooboobbboooooobbboobooobobb$
boooboooobobbboooobbboboooobooob$
ooboobobobbbbbbbbbbbbbbobobooboo$
bobbbobbboobbbboobbbboobbbobbbob$
oboboobooooobobbbboboooooboobobo$
oobboboobbobooobbooobobboobobboo$
boobbobbbbbobobbbbobobbbbbobboob$
obbbbbobobbbobbbbbbobbbobobbbbbo$
oobboobbbbbboooooooobbbbbboobboo$
bbobboobooooooooooooooooboobbobb$
booboooobboooobbbboooobbooooboob!
x = 32, y = 37, rule = B3/S23
6b2o18b2o$5bo2bo16bo2bo$5bo2bo16bo2bo$4b2o2b2o13b3o2b3o$3bo6bo2bo8bobo
4bobo$b3obo2bob4o8bobo4bobo$o4b4o14b3o2b3o$ob3o4b3o13bo2bo$b2o2bo2bo2b
o13bo2bo$4b2o2b2o16b2o8$11b2o$10bobo2$9b3o$9b2o17bo$6b2o17bo3b2o$5bobo
b2o13bob2o$5b2ob3o7b2o5bobob2o$7bo8bo2bo5b2o2b2o$3b2ob2o4b2ob2obo4bo5b
o$bob2ob2o4b2ob2o7bob3o$o2bo8bo11bob2o$2o7b3ob2o$9b2obobo$12b2o$9b2o$
8b3o2$7bobo$7b2o!
x = 32, y = 31, rule = B3/S23
bbbbbbbbbbbbbbbboobbbbbobobbobob$
bbbbbbbbbbbbbbbboobbbbbbbboooobb$
bbbbbbbbbbbbbbbboobboobboboboooo$
bbbbbbbbbbbbbbbbooobbobbbobobbbb$
bbbbbbbbbbbbbbbboboooobbbooooooo$
bbbbbbbbbbbbbbbbobobooboobbbobob$
bbbbbbbbbbbbbbbbobbooobbboobboob$
bbbbbbbbbbbbbbbbbbobbobboobbooob$
bbbbbbbbbbbbbbbbobobobboboobbooo$
bbbbbbbbbbbbbbbbbbboobbobbbbbobo$
bbbbbbbbbbbbbbbbooobooooobbobobo$
bbbbbbbbbbbbbbbbbbobobbbbboobooo$
bbbbbbbbbbbbbbbbbbbboooobbbboboo$
bbbbbbbbbbbbbbbboobooboboboobbbo$
bbbbbbbbbbbbbbbboooooooboobbobbb$
obbooboooooobbboobbbooooooboobbo$
bbbobboobooooooobbbbbbbbbbbbbbbb$
obbboobobobooboobbbbbbbbbbbbbbbb$
oobobbbboooobbbbbbbbbbbbbbbbbbbb$
oooboobbbbbobobbbbbbbbbbbbbbbbbb$
obobobbooooobooobbbbbbbbbbbbbbbb$
obobbbbbobboobbbbbbbbbbbbbbbbbbb$
ooobboobobbobobobbbbbbbbbbbbbbbb$
booobboobbobbobbbbbbbbbbbbbbbbbb$
boobboobbbooobbobbbbbbbbbbbbbbbb$
bobobbbooboobobobbbbbbbbbbbbbbbb$
ooooooobbboooobobbbbbbbbbbbbbbbb$
bbbbobobbbobbooobbbbbbbbbbbbbbbb$
oooobobobboobboobbbbbbbbbbbbbbbb$
bboooobbbbbbbboobbbbbbbbbbbbbbbb$
bobobbobobbbbboobbbbbbbbbbbbbbbb!
Users browsing this forum: No registered users and 6 guests