ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Soup search results

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

Re: Soup search results

Postby BlinkerSpawn » January 10th, 2017, 5:05 pm

This is as close as I know how to get:
x = 11, y = 12, rule = B3/S23
7b2o$o7b2o$2o7bo$2bo3bo$2o3b3o$o3bo$4bob2obo$5bobo2$8b3o2$8b3o!

EDIT: Eureka! (kinda):
x = 16, y = 15, rule = B3/S23
10bo$8b2o$9b2o$3o$2bo$3o3b3o$5bo2bo$5bob2o$6bo5bo$7bo2b2o$11b2o2$13b3o
$13bo$14bo!

EDIT 2: Assembled; 10 gliders:
x = 28, y = 24, rule = B3/S23
21bo$21bobo$21b2o$5bo6bo$6bo6bo$4b3o4b3o3$23bo$23bobo$3o20b2o$2bo$bo$
10b2o$11b2o$10bo3$17b2o$8b2o6b2o$9b2o7bo7b2o$8bo3b3o10b2o$12bo14bo$13b
o!
Last edited by BlinkerSpawn on January 10th, 2017, 7:31 pm, edited 1 time in total.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1429
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Soup search results

Postby mniemiec » January 10th, 2017, 7:22 pm

A recent soup produced a 26-bit P6 oscillator http://catagolue.appspot.com/object/xp6_45a2zw66w7bcczy366w4o68/b3s23. This made me think about clocks as rocks, and it occurred to me that I had previously overlooked one 21-bit P6 (one half of this one), plus one 20-bit P8 (the only 20-bit P8 of which I am aware). These two can be easily synthesized from 12 and 14 respectively, although the one from this soup forms too quickly to yield a viable predecessor, and an attempt to synthesize it by prute force is missing two steps (adding two close blocks). I think inserters exist to do this; I seem to recall somebody posting some syntheses that do something like this, but I can't find any examples. A way to add an adjacent clock would also prove useful, although the only one I know of does so with the stator cells aligned the other way.
x = 189, y = 88, rule = B3/S23
128bo$127bo$91bo35b3o12bo$91bobo46boo$91boo48boo$123bobo10bobo$91bo18b
oo12boo4boo4boo$90boo17bobbo11bo4bobbo4bo$90bobo16bobbo16bobbo$110boo
18boo$135bo$3bobo38bo89bo22boo$3boo39bobo16boo18boo18boo18boo9b3o16boo
bobboboo$4bo39boo17boobboo14boobboo14boobboo14boobboo24bo4bobboo$47b3o
17boo18boo18boo18boo28bo$o46bo108bo$boo19bo19bo5bo13bo19bo19bo19bo10b
oo17bo$oo20bobo17bobo17bobo17bobo17bobo17bobo7boo18bobo$4boo15bobo17bo
bo17bobo17bobo17bobo17bobo10bo16bobo$3boo18bo19bo19bo19bo19bo19bo29bo$
5bo$$bo$boo$obo6$164bo$162bobo5bo$163boo4bo$169b3o3$77bo99bobbo$78bo3b
o18boo13bo4boo18boo18boo17bo$76b3oboo18bobbo10bobo3bobbo12boobbobbo12b
oobbobbo12bo4bo$81boo17bobbo11boo3bobbo12boobbobbo12boobbobbo12boobbob
o$101boo9boo7boo18boo18boo18boboo$111bobo$o6bobo31bo71bo$boo4boo17bo
12bobo4bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14bo4bo$oo6bo
18boo11boo5boo12boo4boo12boo4boo12boo4boo12boo4boo12boo4boo12boo4boo
12boo4boo$5bo6boo11boo10boo6boo18boo18boo18boo18boo18boo18boo18boo$5b
oo4boo14bo8bobo8bo19bo19bo19bo19bo19bo19bo19bo$4bobo6bo24bo15$43bo$41b
oo$42boo$$29bobo$30boo$30bo$$144bo$142bobo5bo$56bo19bo19bo39bo6boo4bo
16bo$54bobo17bobo3bo13bobo37bobo12b3o12bobo$55bobo17bobobbobo12bobo37b
obo27bobo$55bo19bo4boo13bo39bo29bo$170bo$81bo19boo38boo27bo$30b3o48boo
17bobbo32boobbobbo22bo4bo$32bo5bo41bobo17bobbo11bobobo16boobbobbo22boo
bbobo$31bo4bobo62boo38boo28boboo$37boobboo$o6bobo32boo$boo4boo17bo14bo
4bo19bo19bo19bo34boo3bo24bo4bo$oo6bo18boo18boo18boo18boo18boo32boo4boo
22boo4boo$5bo6boo11boo18boo18boo18boo18boo38boo28boo$5boo4boo14bo19bo
19bo19bo19bo39bo29bo$4bobo6bo!

EDIT:
BlinkerSpawn wrote:This is as close as I know how to get: ... Eureka! (kinda): ...

This yields a 10-glider synthesis. Unfortunately, replacing the house by an attached beehive or loaf isn't as simple as I had previously thought. (A beehive could be turned into the others).
x = 109, y = 24, rule = B3/S23
21bobo$21boo$22bo$4bo6bo$5boo5boo$4boo5boo$39boo20bo19bo18boo$39bobo
18bobo17bobo16bobbo$23bobo15bo18bobo16bobbo17bobo$23boo14boboboo16bob
oo15booboo16boboo$oo22bo14boobbobb3o14bobb3o14bobb3o14bobb3o$boo40bo
19bo19bo19bo$o43boobo16boobo16boobo16boobo$10boo36bo19bo19bo19bo$9bobo
35boo18boo18boo18boo$11bo3$17boo$8boo7bobo$7bobo7bo8boo$9bo3boo11bobo$
12boo12bo$14bo!

(EDIT: Apparently, you solved it exactly the same way!)
Last edited by mniemiec on January 10th, 2017, 7:57 pm, edited 1 time in total.
mniemiec
 
Posts: 793
Joined: June 1st, 2013, 12:00 am

Re: Soup search results

Postby Extrementhusiast » January 10th, 2017, 7:49 pm

This was my far more expensive approach:
x = 23, y = 16, rule = B3/S23
8bo5bobo$6bobo6b2o$7b2o6bo5bo$20bo$20b3o$11b2ob2o$11bo3bo$o11b3o7bo$b
2o17b2o$2o19b2o$4b2o6b3o$5b2o4bo3bo$4bo6bob2obo$12bobo2bo$15bobo$16bo!

I also found a way to get there from one of the other variants:
x = 21, y = 18, rule = B3/S23
9bobo$9b2o$10bo8bo$2o16bo$o3b2o12b3o$bobobo6bo$5bob2o3bobo2bo$3ob2obob
o2b2o2b2o$7bobo6bobo$7b2o4$6b2o$7b2o$6bo5bo$11b2o$11bobo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1638
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Soup search results

Postby Goldtiger997 » January 12th, 2017, 8:37 am

Can anyone use any of these reductions of symmetric soups for a better synthesis of french kiss?:

x = 26, y = 21, rule = B3/S23
obo$b2o$bo4$7bo9bo$7b2o6bobo$5b3o8b2o$6bo$18bo$7b2o8b3o$7bobo6b2o$7bo
9bo4$23bo$22b2o$22bobo!


x = 34, y = 30, rule = B3/S23
2$3b3o8$7bo$6bobo$5bo2bo9b2o$6b2o3b2o4bobo$11bobo2b2o$13b2o2bobo$11bob
o4b2o3b2o$11b2o9bo2bo$22bobo$23bo8$25b3o!


x = 34, y = 24, rule = B3/S23
3$3bo$2bobo$2bobo$3bo3$26bo$5b2o20bo$4bo2bo$4bo2bo17b2o$4b2o17bo2bo$
23bo2bo$3bo20b2o$4bo3$27bo$26bobo$26bobo$27bo!


x = 61, y = 34, rule = B3/S23
2$31b2o$32bo$7b2o19b2ob2o$6b3o20bobo$5b5o20bo$4b2o3b2o$5b2obo3bobo$6b
2o$7bob2o2bob3o$11b3obo2b2o$21bo$19b2obo$16bo4b2o24b2o$16b2o24b2o4bo$
42bob2o$43bo$45b2o2bob3o$47b3obo2b2obo$57b2o$50bobo3bob2o$54b2o3b2o$
34bo20b5o$33bobo20b3o$32b2ob2o19b2o$32bo$32b2o!


x = 29, y = 19, rule = B3/S23
4$19b2o$11b2o5bo2bo$10bo2bo4bo2b2o$3b2o5bo2bo3bo2b2o$2bo2bo5b2o4b4o$3b
2o$24b2o$8b4o4b2o5bo2bo$7b2o2bo3bo2bo5b2o$6b2o2bo4bo2bo$7bo2bo5b2o$8b
2o!
User avatar
Goldtiger997
 
Posts: 304
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Soup search results

Postby BlinkerSpawn » January 12th, 2017, 11:14 am

Sure, 18G:
x = 110, y = 90, rule = B3/S23
40bo$38b2o$39b2o25$12bo$obo7b2o$b2o8b2o$bo3$11bo$9b2o$10b2o2$3bo9bo$4b
2o6bo$3b2o7b3o$72bo20b2o$73bo19bo$14bo15bo40b3o16b2obo$15bo13bo45b2o
12bo2bo$13b3o13b3o42bo2bo11bo14b2o$9b3o13b3o47b2o14bo11bo2bo$11bo13bo
62bo2bo12b2o$10bo15bo60bob2o16b3o$87bo19bo$86b2o20bo$26b3o7b2o$28bo6b
2o$27bo9bo2$29b2o$30b2o$29bo3$39bo$28b2o8b2o$29b2o7bobo$28bo25$2o$b2o$
o!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1429
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Soup search results

Postby AbhpzTa » January 12th, 2017, 3:45 pm

10G:
x = 57, y = 46, rule = B3/S23
55bo$54bo$4bo49b3o$2bobo$3b2o2$37bo16bo$36bo15b2o$36b3o14b2o2$37bo$36b
2o$36bobo21$18bobo$19b2o$19bo2$2b2o14b3o$3b2o15bo$2bo16bo2$52b2o$52bob
o$3o49bo$2bo$bo!
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa
 
Posts: 313
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

Re: Soup search results

Postby mniemiec » January 12th, 2017, 4:51 pm

Goldtiger997 wrote:Can anyone use any of these reductions of symmetric soups for a better synthesis of french kiss?: ...

BlinkerSpawn wrote:Sure, 18G: ...

From 16, based on predecessor #3:
x = 126, y = 30, rule = B3/S23
39bo$37boo$38boo$77bo$78bo$76b3o$50boo28boo$9bobo21bo15bobbo26bobbo$3b
o5boo20boo17boo28boo$4boo4bo21boo$3boo52boo28boo28boo$11bo46bo29bo29bo
$12bo16bobo9boo15boboo26boboo26boboo$10b3o17boo8boo17bobbo26bobbo26bo
bbo$30bo11bo19bo29bo29bo$o11bo47bo29bo29bo$boo8boo17b3o27bobbo26bobbo
26bobbo$oo9bobo16bo30boobo26boobo26boobo$31bo32bo29bo29bo$38boo24boo
28boo28boo$9boo21bo4boo$10boo20boo5bo31boo28boo$9bo21bobo36bobbo26bobb
o$71boo28boo$104b3o$104bo$105bo$3boo$4boo$3bo!

EDIT:
AbhpzTa wrote:10G: ...

(oops!) Nice! This also reduces 1 20- and the 2 21-bit variants to < 1 glider/bit.
mniemiec
 
Posts: 793
Joined: June 1st, 2013, 12:00 am

Re: Soup search results

Postby Goldtiger997 » January 13th, 2017, 10:09 pm

AbhpzTa wrote:10G:
x = 57, y = 46, rule = B3/S23
55bo$54bo$4bo49b3o$2bobo$3b2o2$37bo16bo$36bo15b2o$36b3o14b2o2$37bo$36b
2o$36bobo21$18bobo$19b2o$19bo2$2b2o14b3o$3b2o15bo$2bo16bo2$52b2o$52bob
o$3o49bo$2bo$bo!


Very nice!

I'm reposting something I already posted in the birthdays thread because I did not think it was actually a suitable thread.

Here is an 18-20 glider synthesis of trans-skewed poles which I think previously had no synthesis:

x = 106, y = 96, rule = B3/S23
14bo$12bobo$13b2o9$2bo$obo$b2o15$67bo$65b2o$56bo9b2o$57b2o$56b2o$60bo$
60bobo$46bo13b2o$47bo$45b3o2bo$49bobo$49bobo$50bo5$54bo$54bo$54bo$51bo
$51bo$51bo5$55bo$54bobo$54bobo$55bo2b3o$58bo$44b2o13bo$43bobo$45bo$48b
2o$47b2o$38b2o9bo$39b2o$38bo15$103b2o$103bobo$103bo9$91b2o$91bobo$91bo
!
User avatar
Goldtiger997
 
Posts: 304
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Soup search results

Postby mniemiec » January 14th, 2017, 3:05 am

Goldtiger997 wrote:Here is an 18-20 glider synthesis of trans-skewed poles which I think previously had no synthesis: ...

Extrementhusiast had previously posted this 20-glider synthesis on 2015-08-06. Either yours or his would be cheaper if there were appropriate 3-glider syntheses of the beehive+blinker constellations.
x = 235, y = 32, rule = B3/S23
112bobo$113boo8bo$113bo10bo$122b3o$126bo$47bo78bobo$48boo76boo6bo$47b
oo83boo$121bo11boo$45bo36bo29bo9bo$45boo35bo29bo7b3o$4bo39bobo35bo29bo
40boo38boo28boo$5bo19bo29bo29bo29bo37bo32bo6bo29bo$3b3o18bobo27bobo27b
obo27bobo37bobo27bobo7bobo27bobo$16bo7bobo27bobo27bobo27bobo32boo5boo
11boo14boobboo5boo11boo15boo$3o12bo9bo29bo29bo29bo34bo6bobbo9bo19bo6bo
bbo9bo16bobbo$bbo12b3o14bo29bo29bo29bo24bo9bobbo6bo19bo9bobbo6bo19bobb
o$bo29bobo27bobo27bobo27bobo23boo11boo5boo18boo11boo5boobboo17boo$12b
3o16bobo27bobo27bobo27bobo37bobo37bobo7bobo17bobo$12bo19bo29bo29bo29bo
41bo39bo6bo22bo$13bo57bobo21bo29bo37boo38boo28boo$71boo22bo19b3o7bo$
72bo22bo19bo9bo$103boo11bo$69boo33boo$68boo33bo6boo$70bo38bobo$111bo$
113b3o$113bo10bo$114bo8boo$123bobo!

EDIT: FYI, the only known period 3+ oscillators up to 21 bits lacking syntheses are these 5 P3s and 1 P4:
x = 112, y = 10, rule = B3/S23
o19booboo15boo5boo11boo18boo18boo8boo$3o4booboo8bo4booboo10bo5bobo11bo
19bo19bobo4boobbo$3boboo4bo9boo6bo11boboobboo12bobo17bobo17b3obo$bbo6b
oo13bobobo14bo26bo32bo3b3o$bboobobo16bo4b3o16bobo11bobo3b3o11bobo22bo$
7bo23bo11bobo3boo11bo4bo14bo4boo15bobo$44bo19bobobo15bobobo17bo$63boo
bboo14boobbo$88b3o$90bo!
mniemiec
 
Posts: 793
Joined: June 1st, 2013, 12:00 am

Re: Soup search results

Postby Goldtiger997 » January 14th, 2017, 3:35 am

mniemiec wrote:
Goldtiger997 wrote:Here is an 18-20 glider synthesis of trans-skewed poles which I think previously had no synthesis: ...

Extrementhusiast had previously posted this 20-glider synthesis on 2015-08-06. Either yours or his would be cheaper if there were appropriate 3-glider syntheses of the beehive+blinker constellations.
Extrementhusiast's synthesis

...


I wrote:...Here is an 18-20 glider synthesis of trans-skewed poles which I think previously had no synthesis:

x = 106, y = 96, rule = B3/S23
14bo$12bobo$13b2o9$2bo$obo$b2o15$67bo$65b2o$56bo9b2o$57b2o$56b2o$60bo$
60bobo$46bo13b2o$47bo$45b3o2bo$49bobo$49bobo$50bo5$54bo$54bo$54bo$51bo
$51bo$51bo5$55bo$54bobo$54bobo$55bo2b3o$58bo$44b2o13bo$43bobo$45bo$48b
2o$47b2o$38b2o9bo$39b2o$38bo15$103b2o$103bobo$103bo9$91b2o$91bobo$91bo
!


However, the beehives in my synthesis are not necessary because they are made just to create r-pentominos. Possibly one of the other "still-life + glider = r-pentomino" collisions could be used such that the constellation with that still life and the blinker could be made in 3-gliders.


P.S. It bothers me that currently the hexapole can be synthesised in 8 gliders whereas the pentapole takes 10 gliders.
User avatar
Goldtiger997
 
Posts: 304
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Soup search results

Postby mniemiec » January 14th, 2017, 4:43 am

Goldtiger997 wrote:However, the beehives in my synthesis are not necessary because they are made just to create r-pentominos. Possibly one of the other "still-life + glider = r-pentomino" collisions could be used such that the constellation with that still life and the blinker could be made in 3-gliders.

I only know of 3 within the budget - one loaf+glider, your beehive+glider, and another beehive+glider that fails because the glider hits the blinker, and no way to make either+blinker from 3 gliders. Others may have more extensive R-pentomino or 3-glider-to-constellation libraries.
Goldtiger997 wrote:P.S. It bothers me that currently the hexapole can be synthesised in 8 gliders whereas the pentapole takes 10 gliders.

Bob Shemyakin found a 5-glider quadpole synthesis on 2015-03-28, making pentapole 9 gliders:
x = 67, y = 22, rule = B3/S23
bo$bobo$boo$$bo$bbo4bo11boo18boo18boo$3o4bobo9bobo17bobo17bobo$7boo$
21bobo17bobo17bobo$$23bobo17bobo17bobo$3o21boo18boo20bo$bbo5b3o54boo$b
o6bo42bobo$9bo41boo$52bo$$37b3o12boo$39bo12bobo$38bo9bo3bo$48boo$47bob
o!
mniemiec
 
Posts: 793
Joined: June 1st, 2013, 12:00 am

Re: Soup search results

Postby mniemiec » January 14th, 2017, 7:41 pm

Extrementhusiast wrote:I also found a way to get there from one of the other variants: ...

This made me think about other ways to make the remaining 19-bit variant (that can be turned into the 20-bit loaf ones that yield the missing 25-bit molds and 26-bit jams). From the "close but no cigar" department. Maybe somebody can finish/rescue this:
x = 239, y = 24, rule = B3/S23
14bo$bbo12boo$obo11boo3bo48bobo$boo8bo7bobo47boo$9bobo7boo48bo57bo$10b
oo114bo66bo$73b4o49b3o64bobo$69bo3bo3bo25boo18boo22bobobo41boo26bobobo
$17bo51bobobo29boo18boo21bo5bo67bo5bo$17bobo20boo18boo7boo3bobbo12boo
6boo10boo6boo10boo6boo20boo6boo10boo6boo10boo11boo15boo$17boo21bo19bo
29bo6bobo10bo6bobo10bo6bobo12bo7bo6bobo10bo6bobo10bo6boo4boo11bo3bo$
28bo12boboo16boboo26boboobbo13boboobbo13boboobbo11bobo9boboobbo13boboo
bbo13boboo18bobo5boboo$26boo17bo19bo29boboo16boboo16boboo26boboo16bob
oo4boo10bo29bo$4bo22boo11b3obbobboo10b3obbobboo20b3obbo14b3obbo14b3obb
o13bo10b3obbo14b3obbo7bobo4b3obbo17bo6b3obbo$4boo38boobobo14boobobo24b
oo18boo18boo28boo18boo7bo10boo28boobo$3bobo41bo19bo98boo18boo18bobo27b
obo$47bobo17bobo79bo16bobo17bobo17bobo14bo12bobo$48boo18boo97bo19bo3b
oo14bo29bo$16boo5boo165boo$15boo5boo162boo4bo$17bo6bo48boo110bobo$6bo
65boo113bo$6boo66bo$5bobo!
mniemiec
 
Posts: 793
Joined: June 1st, 2013, 12:00 am

Re: Soup search results

Postby Kazyan » January 15th, 2017, 2:23 am

Another "sparse" p2 has appeared: https://twitter.com/conwaylifebot/statu ... 5856801793

If Mark's site is correct, this is one of the 13 unsynthesized 16-bit oscillators. Proof of concept synthesis, but not a practical one:

x = 18, y = 23, rule = B3/S23
4bo$4bo$4bo4$16bo$15bo$6bo8b3o$5bobo5bo$5bobo4bobo$6bo5bobo$obo10bo$b
2o$bo4$8bo$7b2o$2b2o3bobo$3b2o$2bo!


If there is a component to shorten a barberpole, it also solves one of the three remaining 15-bit oscillators (again according to Mark's site).

EDIT: It's not up-to-date with regards to the 15-bit oscillators, but I still can't tell if this one has been checked off.
Tanner Jacobi
User avatar
Kazyan
 
Posts: 677
Joined: February 6th, 2014, 11:02 pm

Re: Soup search results

Postby mniemiec » January 15th, 2017, 4:19 am

Kayzan wrote:Another "sparse" p2 has appeared: ... If Mark's site is correct, this is one of the 13 unsynthesized 16-bit oscillators.
Proof of concept synthesis, but not a practical one: ...

When there is no synthesis yet, even a ludicrously expensive one is good!
Kayzan wrote:If there is a component to shorten a barberpole, it also solves one of the three remaining 15-bit oscillators (again according to Mark's site).

Sadly, there is no such component known yet, and it would likely be very difficult. When I discussed this topic with Dave Buckinhgam years ago, he said that lengthening a barber pole was relatively easy (he had several converters to do so, and I found several other related ones), but that I would not likely find a way to shorten one.
Kayzan wrote:It's not up-to-date with regards to the 15-bit oscillators, but I still can't tell if this one has been checked off.

FYI, here is my current list of unsynthesized P2s up to 18 bits: 1 14, 2 15s, 6 16s, 24 17s, and 52 18s. Of these, the last 16, 6 of the 17s, and the last 22 18s are trivial, applying grow-barberpole converter to a smaller unsynthethesized one.
x = 149, y = 114, rule = B3/S23
bb3o11boo13boo13boo13boo4boo7boo16bo13bobo10boo$16bobob3o8boboboo9bobo
bb3o7bobo4bo7bobob3o9bobobo11bobboo8bobobo$boobbobo28bo28bobo24bo5bo7b
obboo14bo$6bo9bobbobo10bobbo10bobboobo8bobbo11bobbobo9bobo4bobo11boo9b
obbo$bbo4boo8bo4bo10bo13bo5bo8bo3b3o8bo15bo5bo6boo14bo$4bo12bo3boo10bo
bobo9bo4boo8bo14bo3bobo11bobobo12bo9boobobo$4bobo29boo44boo13bo10bobo
17bo$110bo16boo6$boo5boo6boo5boo6boo4bo8boo3b3o7boobboo9boobboo10bobb
3o8boo13boo13boo$bobo3bobo6bobo3bobo6bobobobboo6bo14bobbobo9bobobbo10b
o13bo6boo6bobo12bobobb3o$35bo11boboobo9bo17bo10bobbobboo8bobo4bo12b3o$
3bobobo8bobboobo10bo3bo27bo11bo33bobo9bobo10bobboobo$17bo14bo13b3o3bob
o6bobo12bobbobo9bobobobbo8bobbo15bobo8bo$bb3ob3o8bo3b3o8boob3o15boo6bo
bobboo8boo4bo8boo3bo11bo3b3o7b3o4bo7bo4bobo$61bo3bo15boo13bo11bo19boo
13boo7$boo13boobb3o8b3o12b3o12boo13boobb3o11bo11boo13boo13boo$bobobo
10bo36boo6bobbobo9bo17boboboo6bobo12bobo3bo8bobob3o$5bobo9bobobboo8bob
oob3o7boboobobo8bobbobo8bobobboo8bo6bo27bo$3bo5bo21bo14bo21bo29bo7bobb
oob3o8bobobbo7bobbobo$bbo6bo8bobbobbo6boo3bobo7boo3bobbo7boo4bo9bo3bo
8boo14bo29bo$bboobobobo9bo3bo15bo13bo11boo13bo16bobo7bo3bobo8b3obobo8b
o3bobo$7bo11bo3bo14boo13bo9boo11boobbo12bobobboo14bo14bo14bo$65bo12bo
16bo17boo13boo13boo6$bboo13boo12boo13boo13boo4boo7boo3bo9boo5bo7boo3bo
bo8bo3bo9boo$bbobo12bobo11bo3boo9bobo12bobo4bo7bo4bo9bo6bo7bo4bo10bobo
bboo7bobobboo$21bo10bobobo13bo14bobo9bobobbo9bobobobbo7bobo4boo6bobo
15bobo$bbobboo10bo3bo26bobboo10bo49bo12bo11bo$7bo14bo9boobbo29bo10bo3b
obo8bobbobobo7bo3bo11bo17bo$boo13boo16bo13bobobo9bobobbo8bobbobobo9bo
6bo5bobbobo13bobo9bobo$7bobo12bobo11bobo9boo12boobboo8boo5bo9bo5boo5b
oo13boobbobo9boobbobo$3bobobboo8bobobboo14bo12bobo68bo3bo14boo$5bo14bo
17boo13boo5$boo4bo10bo12boo4bo9bo14bo14bo3bo9boo13boo3bo9bo3bo14bo$bob
o3bo10bo4boo6bo5bo9bo6boo6bobo12bo3bobo7bobo5boo5bo4bobo7bo3bobo12bobo
$5bobbo7bobbo4bo7bobobobbo6bobbo3bobo6bobobo9bobbo20bo6bobo10bobbo14bo
5bobo$3bo17bobo44bo15boo5bobboobobo14boo12boo6boo6bo$6boo8boobbo11bobb
obboo6boboboobo9bo4bobo6boo13bo15bo12boo17bo6boo$bbobo17b3o8bo12boo14b
o6bo14bo7bo3bobbo7bo6bo12bobbo7bobo5bo$bboobb3o8b3o13bobb3o13b3o7boobo
bobo6b3obobo15bo8boobobo10bobo3bo12bobo$67bo14bo15bo13bo12bo3bo14bo6$
bboo12boo13boobo13boo12bo14boo12boo13boo15bobo$bbobo11bobobobo8bo3boo
12bo12bo14bobo11bobo12bobo16bo12bobo$6bo13bo11bo15bo3bo8bobbo16bobo37b
oo4bo12bo$bbobbobo10bo4boo9bo3boo10bobobo14boo6bo3bo9bobboo3bo6bobboo
3boo7bo4boo6boo4bo$7bo14bo11bo4bo6boo6bo6boboboobobo13boo6bo6bo7bo7bo
22bo4boo$boo15boobobo11boobo14bobo5boo13boo5bo8bo3boobbo6bo3boobo9boo
4bo9bo$7bobo37bo5bo13bobbo11bobo41bo4boo7bo4bo$3bobobboo7b3o17b3o9bobo
17bo8bobo17bobo12b3o12bo12bo4boo$5bo43bo19bo10bo18boo27bobo12bo$143bob
o4$bbobo14bo14bo14bo11boo6boo5boobboo9boo13boo13boo13boo$4bo14bobo12bo
bo12bobo9bobo6bo5bobobbo9bobo12bobo12bobo5bo6bobo5bo$oo4bo10bo14bo5bo
8bo5bo13bobo10bo18boo11b3o14bo10bobobo$bbo19boo14bo14bo9bobo11bo15bobo
4bo7bobo12bobobobbo7bo3bobo$6boo8boo6bo6boo6bo6boo6bo11bobbo6bobbobo
15bobo11bobo$3boo57b3o3bo7boo15bobbo10b3o13bobbobobo7bobobbo$8bo9bo6b
oo6bo6boo6bo6boo11bo12bobo10bo3b3o12bobo8bo4boo7boobbo$4bo4boo8boo13bo
14boo31boo10bo19boo8bo17bo$6bo18bo8bo5bo14bo$6bobo12bobo12bobo12bobo$
23bo14bo14bo3$boo13boo13boo13boo4bo8boo4bo8boo4bo8boo13boo4bo8boo13boo
$bobo5boo5bobo5boo5bobo4bo7bo5bo8bo5bo8bobo3bo8bobo12bo5bo8bobo12bobo$
10bo14bo12bo8bobobobbo7boboobbo11bobbo11bobo9bobobobbo$3bobobobo8bobob
obo8boboobbo36bobbo13bo3bo25bobo3boo5bobboob3o$49bo3boo6b3obbobo8bo3bo
bo15bo9bo3boo15bo6bo$3bobbob3o6b3obobbo7b3obbobo37bo15bobo4boo20b3oboo
bo7bo3bobo$4bo18bo16bo8b3ob3o12bobo12bobo7boobbo10bobobo$4bo18bo15boo
28boo13boo11bobo8bobo17b3o12bobo$108bo35boo5$boo13boo3bo9boo3bo9boo3bo
9boo13boo$bobo3bo8bo4bo9bo4bobo7bo4bobo7bobo12boboboo$7bo9bobobbo9bobo
12bobo15bo15bo$3bobobbo30boo13boo7bobboo9bobbo$16b3obobo11bo14bo28bo$
bb3obobo26bo3bo10boobbo8bobobo10bobobo$22bobo10bo27boo$8bobo14bo11bobo
12bobo12bobo12bobo$9boo13boo12boo13boo15bo14bo$69boo13boo!
mniemiec
 
Posts: 793
Joined: June 1st, 2013, 12:00 am

Re: Soup search results

Postby Extrementhusiast » January 15th, 2017, 10:03 pm

That one other P2 variant mentioned recently:
x = 194, y = 38, rule = B3/S23
142bo$64bo76bo$65bo75b3o$63b3o73bo$67bo72bo$67bobo68b3o$67b2o$114bo$
113bo26bobo$2o53b2o44b2o6b2o2b3o14b2o8b2o15b2o26b2o$o17b2o35bo17b3o25b
o6bo2bo18bo10bo15bo27bo$bob2o3b2o4b2ob2o37bob2o3b2o8bo28bob2o2bob2o19b
ob2o23bob2o24bob2o$5bobobo3bobo3bo40bobobo9bo31bobo26bo7bo18bo27bo$3o
2bobo5b2o40b3o2bobo38b3o2bobo21b3o2bo7bobo11b3o2bo22b3o2bo$4b2ob2o20bo
29b2ob2o41b2ob2o24b2ob2o4b2o16b2obo24b2obo$29bobo29bo2bo42bo2bo25bo2bo
23bobo25bobo$13b2o14b2o30bobo43bobo26bobo24bo2bo24bobo$b2o9bo2bo46bo
45bo28bo16bo9bobo25bo$o2bo8bo2bo139b2o8bo$o2bo3b2o4b2o139b2o$b2o4bobo
103bo28bo$7bo105bo28bo27bo$14b2o97bo28bo27bo$4bo9bobo153bo$4b2o8bo45b
3o46b3o3b3o20b3o3b3o10bo$3bobo151b2o7b3o3b3o$64b2o47bo28bo13bobo4b2o$
63bo2bo46bo28bo21b2o4bo$63bo2bo46bo28bo20bo6bo$64b2o104bo2$62bo$62b2o$
61bobo2$76b3o$76bo$77bo!

It's probably possible to get to the traffic light with only two cleanup gliders, although that would probably require a computer search.

mniemiec wrote:
Kayzan wrote:If there is a component to shorten a barberpole, it also solves one of the three remaining 15-bit oscillators (again according to Mark's site).

Sadly, there is no such component known yet, and it would likely be very difficult. When I discussed this topic with Dave Buckinhgam years ago, he said that lengthening a barber pole was relatively easy (he had several converters to do so, and I found several other related ones), but that I would not likely find a way to shorten one.


I found a way, although it isn't applicable here:
x = 15, y = 27, rule = B3/S23
5bo$5bobo$5b2o2$o$b2o$2o3$10b2o$9bobo$b2o$obo4bobo4bo$2bo3bo5b2o$6b2o
5b2o6$3o9bo$2bo8b2o$bo9bobo2$6b2o$6bobo$6bo!


However, based off of the predecessor, here is a final step for the 15-bit version:
x = 32, y = 29, rule = B3/S23
31bo$29b2o$30b2o$7bo$8b2o13bo$7b2o3bobo6b2o$12b2o8b2o$13bo2$6bo$4bobo
10b2o$b2o2b2o9bobo$obo8bo4bo$2bo7bobob2obo$10bob2obobo5b2o$8b2obo4bo5b
2o$8bo2bo12bo$2bo6b2o$2b2o$bobo$14b2o$13bobo$15bo4b2o$20bobo$20bo2$13b
2o$12bobo$14bo!


EDIT: The prior steps:
x = 184, y = 34, rule = B3/S23
125bobo$125b2o$126bo$110bo$111b2o15bobo$110b2o16b2o$129bo4$83bo29bo$
18bo65b2o28bo42bo$18bobo62b2o27b3o40b2o$18b2o136b2o$83bo26b2o$9bobo71b
2o24bobo40b2o$10b2o10b2o38b2o18bobo6b2o18bo7b3o5b2o24bo5b2o21b2o$10bo
10bobo20bo16bobo26bobo33bobo18b2o3bo5bobo20bobo$21bo23b2o14bo28bo35bo
19bobo3b2o4bo17bo4bo$obo14bob2obo21b2o11bob2obo23bob2obo30bob2obo20bo
5bob2obo15bobob2obo$b2o2b2o10b2obobo34b2obobo23b2obobo30b2obobo26b2obo
bo15bob2obobo$bo2bobo14bo33b2o4bo22b2o4bo29b2o4bo25b2o4bo14b2obo4bo$6b
o47bobo26bobo33bobo29bobo19bo2bo$55bo26bobo33bobo29bobo21b2o$82b2o34b
2o30b2o$10b3o$12bo133bo5b2o$11bo134b2o4bobo$18b3o124bobo4bo$18bo29bo$
19bo27b2o$43bo3bobo$44b2o$43b2o!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1638
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Soup search results

Postby Goldtiger997 » January 16th, 2017, 9:08 pm

mniemiec wrote:...
FYI, here is my current list of unsynthesized P2s up to 18 bits: 1 14, 2 15s, 6 16s, 24 17s, and 52 18s. Of these, the last 16, 6 of the 17s, and the last 22 18s are trivial, applying grow-barberpole converter to a smaller unsynthethesized one.
x = 149, y = 114, rule = B3/S23
bb3o11boo13boo13boo13boo4boo7boo16bo13bobo10boo$16bobob3o8boboboo9bobo
bb3o7bobo4bo7bobob3o9bobobo11bobboo8bobobo$boobbobo28bo28bobo24bo5bo7b
obboo14bo$6bo9bobbobo10bobbo10bobboobo8bobbo11bobbobo9bobo4bobo11boo9b
obbo$bbo4boo8bo4bo10bo13bo5bo8bo3b3o8bo15bo5bo6boo14bo$4bo12bo3boo10bo
bobo9bo4boo8bo14bo3bobo11bobobo12bo9boobobo$4bobo29boo44boo13bo10bobo
17bo$110bo16boo6$boo5boo6boo5boo6boo4bo8boo3b3o7boobboo9boobboo10bobb
3o8boo13boo13boo$bobo3bobo6bobo3bobo6bobobobboo6bo14bobbobo9bobobbo10b
o13bo6boo6bobo12bobobb3o$35bo11boboobo9bo17bo10bobbobboo8bobo4bo12b3o$
3bobobo8bobboobo10bo3bo27bo11bo33bobo9bobo10bobboobo$17bo14bo13b3o3bob
o6bobo12bobbobo9bobobobbo8bobbo15bobo8bo$bb3ob3o8bo3b3o8boob3o15boo6bo
bobboo8boo4bo8boo3bo11bo3b3o7b3o4bo7bo4bobo$61bo3bo15boo13bo11bo19boo
13boo7$boo13boobb3o8b3o12b3o12boo13boobb3o11bo11boo13boo13boo$bobobo
10bo36boo6bobbobo9bo17boboboo6bobo12bobo3bo8bobob3o$5bobo9bobobboo8bob
oob3o7boboobobo8bobbobo8bobobboo8bo6bo27bo$3bo5bo21bo14bo21bo29bo7bobb
oob3o8bobobbo7bobbobo$bbo6bo8bobbobbo6boo3bobo7boo3bobbo7boo4bo9bo3bo
8boo14bo29bo$bboobobobo9bo3bo15bo13bo11boo13bo16bobo7bo3bobo8b3obobo8b
o3bobo$7bo11bo3bo14boo13bo9boo11boobbo12bobobboo14bo14bo14bo$65bo12bo
16bo17boo13boo13boo6$bboo13boo12boo13boo13boo4boo7boo3bo9boo5bo7boo3bo
bo8bo3bo9boo$bbobo12bobo11bo3boo9bobo12bobo4bo7bo4bo9bo6bo7bo4bo10bobo
bboo7bobobboo$21bo10bobobo13bo14bobo9bobobbo9bobobobbo7bobo4boo6bobo
15bobo$bbobboo10bo3bo26bobboo10bo49bo12bo11bo$7bo14bo9boobbo29bo10bo3b
obo8bobbobobo7bo3bo11bo17bo$boo13boo16bo13bobobo9bobobbo8bobbobobo9bo
6bo5bobbobo13bobo9bobo$7bobo12bobo11bobo9boo12boobboo8boo5bo9bo5boo5b
oo13boobbobo9boobbobo$3bobobboo8bobobboo14bo12bobo68bo3bo14boo$5bo14bo
17boo13boo5$boo4bo10bo12boo4bo9bo14bo14bo3bo9boo13boo3bo9bo3bo14bo$bob
o3bo10bo4boo6bo5bo9bo6boo6bobo12bo3bobo7bobo5boo5bo4bobo7bo3bobo12bobo
$5bobbo7bobbo4bo7bobobobbo6bobbo3bobo6bobobo9bobbo20bo6bobo10bobbo14bo
5bobo$3bo17bobo44bo15boo5bobboobobo14boo12boo6boo6bo$6boo8boobbo11bobb
obboo6boboboobo9bo4bobo6boo13bo15bo12boo17bo6boo$bbobo17b3o8bo12boo14b
o6bo14bo7bo3bobbo7bo6bo12bobbo7bobo5bo$bboobb3o8b3o13bobb3o13b3o7boobo
bobo6b3obobo15bo8boobobo10bobo3bo12bobo$67bo14bo15bo13bo12bo3bo14bo6$
bboo12boo13boobo13boo12bo14boo12boo13boo15bobo$bbobo11bobobobo8bo3boo
12bo12bo14bobo11bobo12bobo16bo12bobo$6bo13bo11bo15bo3bo8bobbo16bobo37b
oo4bo12bo$bbobbobo10bo4boo9bo3boo10bobobo14boo6bo3bo9bobboo3bo6bobboo
3boo7bo4boo6boo4bo$7bo14bo11bo4bo6boo6bo6boboboobobo13boo6bo6bo7bo7bo
22bo4boo$boo15boobobo11boobo14bobo5boo13boo5bo8bo3boobbo6bo3boobo9boo
4bo9bo$7bobo37bo5bo13bobbo11bobo41bo4boo7bo4bo$3bobobboo7b3o17b3o9bobo
17bo8bobo17bobo12b3o12bo12bo4boo$5bo43bo19bo10bo18boo27bobo12bo$143bob
o4$bbobo14bo14bo14bo11boo6boo5boobboo9boo13boo13boo13boo$4bo14bobo12bo
bo12bobo9bobo6bo5bobobbo9bobo12bobo12bobo5bo6bobo5bo$oo4bo10bo14bo5bo
8bo5bo13bobo10bo18boo11b3o14bo10bobobo$bbo19boo14bo14bo9bobo11bo15bobo
4bo7bobo12bobobobbo7bo3bobo$6boo8boo6bo6boo6bo6boo6bo11bobbo6bobbobo
15bobo11bobo$3boo57b3o3bo7boo15bobbo10b3o13bobbobobo7bobobbo$8bo9bo6b
oo6bo6boo6bo6boo11bo12bobo10bo3b3o12bobo8bo4boo7boobbo$4bo4boo8boo13bo
14boo31boo10bo19boo8bo17bo$6bo18bo8bo5bo14bo$6bobo12bobo12bobo12bobo$
23bo14bo14bo3$boo13boo13boo13boo4bo8boo4bo8boo4bo8boo13boo4bo8boo13boo
$bobo5boo5bobo5boo5bobo4bo7bo5bo8bo5bo8bobo3bo8bobo12bo5bo8bobo12bobo$
10bo14bo12bo8bobobobbo7boboobbo11bobbo11bobo9bobobobbo$3bobobobo8bobob
obo8boboobbo36bobbo13bo3bo25bobo3boo5bobboob3o$49bo3boo6b3obbobo8bo3bo
bo15bo9bo3boo15bo6bo$3bobbob3o6b3obobbo7b3obbobo37bo15bobo4boo20b3oboo
bo7bo3bobo$4bo18bo16bo8b3ob3o12bobo12bobo7boobbo10bobobo$4bo18bo15boo
28boo13boo11bobo8bobo17b3o12bobo$108bo35boo5$boo13boo3bo9boo3bo9boo3bo
9boo13boo$bobo3bo8bo4bo9bo4bobo7bo4bobo7bobo12boboboo$7bo9bobobbo9bobo
12bobo15bo15bo$3bobobbo30boo13boo7bobboo9bobbo$16b3obobo11bo14bo28bo$
bb3obobo26bo3bo10boobbo8bobobo10bobobo$22bobo10bo27boo$8bobo14bo11bobo
12bobo12bobo12bobo$9boo13boo12boo13boo15bo14bo$69boo13boo!


I mistakenly thought I found this p2 16-bit oscillator in the list above and found a synthesis for it:

x = 5, y = 8, rule = B3/S23
o2b2o$obobo$o$2bo$2bo$o$obobo$o2b2o!


It is quite a cheap synthesis so I'll post it anyway. What was the previously known synthesis?

Here it is 12 gliders:

x = 34, y = 61, rule = B3/S23
4$11bo$10bo$10b3o3$11bo$12b2o$11b2o$15b2o$14bobo$16bo4$17bo$17bobo$17b
2o$8bobo$9b2o$9bo3$6bo$7bo$5b3o2$2b3o$4bo$3bo2$15bo$14b2o$14bobo$6b2o$
5bobo$7bo3$20bo$19bo$19b3o$15b3o$15bo$16bo4$10b3o$10bo$11bo!


It kind of looks like the gliders would collide when rewound but in fact they don't:

EDIT:
Extrementhusiast wrote:...
EDIT: The prior steps:
prior steps that I had no luck constructing myself


Great!

That makes 42 gliders in total:

(EDIT 4: replaced this with a 37 glider version using a better converter from Extrementhusiast and chris_c)

x = 447, y = 30, rule = B3/S23
49bo$47bobo381bo$48b2o7bo371b2o$57bobo4bo280bo84b2o$57b2o4bo279bobo61b
o$63b3o110bo3bo163b2o3bo58b2o13bo$177bobo53bo115bobo55b2o3bobo6b2o$
175b3ob3o51bobo113b2o61b2o8b2o$67b2o164b2o178bo$57bo8b2o276bo3bo$56bo
11bo19bo29bo29bo29bo45bobo118bo3b2o55bo$56b3o28bobo27bobo27bobo27bobo
27b2o16b2o10b2o28b2o28b2o28b2o14b3o2b2o7b2o28b2o15bobo10b2o$86bobo3b2o
22bobo3b2o22bobo27bobo27bobo16bo10bobo27bobo10bo16bobo27bobo27bobo27bo
bo12b2o2b2o9bobo21b2o$54b2o30bo5b2o22bo5b2o22bo29bo29bo29bo29bo13b2o
14bo29bo29bo24bo4bo13bobo8bo4bo23bobob3o$31b2o20bobo5b2o19bob2obo24bob
2obo24bob2obo24bob2obo24bob2obo7bobo14bob2obo24bob2obo11b2o11bob2obo
24bob2obo24bob2obo22bobob2obo14bo7bobob2obo$3o28b2o22bo5b2o19b2obobo
24b2obobo6b2o16b2obobo24b2obobo24b2obobo8b2o2b2o10b2obobo24b2obobo24b
2obobo24b2obobo24b2obobo22bob2obobo22bob2obobo5b2o15bo2bobo$2bo83bo29b
o7bobo19bo29bo29bo9bo2bobo14bo23b2o4bo23b2o4bo23b2o4bo23b2o4bo21b2obo
4bo21b2obo4bo5b2o17bo4bo$bo122bo96bo37bobo27bobo27bobo27bobo26bo2bo26b
o2bo12bo16bo3b2o$3b3o254bo29bo27bobo27bobo28b2o21bo6b2o$3bo314b2o28b2o
52b2o$4bo220b3o173bobo$227bo116bo5b2o62b2o$226bo117b2o4bobo60bobo$233b
3o107bobo4bo64bo4b2o$233bo49bo136bobo$234bo47b2o136bo$278bo3bobo$279b
2o132b2o$278b2o132bobo$414bo!


Only one 15-bit oscillator left; muttering moat 1.

EDIT 2:

Here's one of the unsolved 17-bit p2s in 15 gliders:

x = 34, y = 55, rule = B3/S23
31bo$31bobo$31b2o8$10bobo$11b2o$11bo$19bobo$10bo8b2o$9bo10bo$9b3o$obo$
b2o10bobo$bo11b2o$14bo5$16bobo$16b2o$17bo$19b2o$19bobo$19bo4$14bo$bo
11b2o4b3o$b2o10bobo3bo$obo17bo$9b3o$9bo$10bo3$24bo$23b2o$23bobo$7bo$7b
2o$6bobo4$31b2o$31bobo$31bo!


EDIT 3:

Here's one of the unsolved 18-bit p2s in 16 gliders:

x = 49, y = 58, rule = B3/S23
11bo$12bo$10b3o4$15bo$13bobo$14b2o4$2bo$obo$b2o3$23bo$22bobo$22bo2bo$
23b2o6$36bo$15b2o19bobo$14bo2bo14b2o2b2o$11b2o2b2o14bo2bo$10bobo19b2o$
12bo6$24b2o$23bo2bo$24bobo$25bo3$46b2o$46bobo$46bo4$33b2o$33bobo$33bo
4$36b3o$36bo$37bo!
Last edited by Goldtiger997 on January 17th, 2017, 7:07 pm, edited 1 time in total.
User avatar
Goldtiger997
 
Posts: 304
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Soup search results

Postby chris_c » January 17th, 2017, 9:15 am

Extrementhusiast wrote:The prior steps


This gives a 5 glider reduction and yields 16.897 and 16.1086 in 14 and 13 gliders respectively:

x = 35, y = 44, rule = LifeHistory
29.A$23.A5.A.A$21.2A6.2A$15.A6.2A$13.A.A$14.2A10$3A$2.A$.A4$22.E.2E$
22.2E.E$20.2E$19.E.E$18.E.E$18.2E15$.2A30.2A$A.A29.2A$2.A31.A!
chris_c
 
Posts: 724
Joined: June 28th, 2014, 7:15 am

Re: Soup search results

Postby AbhpzTa » January 17th, 2017, 12:33 pm

Goldtiger997 wrote:Here it is 12 gliders:

x = 34, y = 61, rule = B3/S23
4$11bo$10bo$10b3o3$11bo$12b2o$11b2o$15b2o$14bobo$16bo4$17bo$17bobo$17b
2o$8bobo$9b2o$9bo3$6bo$7bo$5b3o2$2b3o$4bo$3bo2$15bo$14b2o$14bobo$6b2o$
5bobo$7bo3$20bo$19bo$19b3o$15b3o$15bo$16bo4$10b3o$10bo$11bo!


It kind of looks like the gliders would collide when rewound but in fact they don't:


10G:
x = 23, y = 50, rule = B3/S23
12bo$11bo$11b3o3$12bo$13b2o$12b2o$16b2o$15bobo$17bo8$o$b2o$2o$14bo$12b
2o$13b2o3$13b2o$12b2o$3b2o9bo$4b2o$3bo8$21bo$20bo$20b3o$16b3o$16bo$17b
o4$11b3o$11bo$12bo!
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa
 
Posts: 313
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

Re: Soup search results

Postby Extrementhusiast » January 17th, 2017, 5:10 pm

chris_c wrote:
Extrementhusiast wrote:The prior steps


This gives a 5 glider reduction and yields 16.897 and 16.1086 in 14 and 13 gliders respectively:

RLE


Oh yeah, forgot about that component. Here's a better version (same cost, but much cleaner):
x = 13, y = 21, rule = LifeHistory
2.A$A.A$.2A3.A$6.A.A$6.2A2$.A3.A$2.A3.2A$3A2.2A3$9.E.2E$9.2E.E$7.2E$
6.E.E$5.E.E$5.2E2$.A5.2A$.2A4.A.A$A.A4.A!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1638
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Soup search results

Postby A for awesome » January 17th, 2017, 10:16 pm

A 41-cell SL that also implies a simpler synthesis of a 40-cell pseudo-SL:
x = 16, y = 16, rule = B3/S23
booboobobooboooo$
obooobbbobobboob$
obbboooboobbbobo$
obboobbbobbobbbb$
oooboooboobbooob$
ooooboobbbbbbobo$
obbbbbbobbbobbbo$
booooboobboboboo$
bboooobobooobobo$
oobbobbbbbbobobo$
ooboobooobbobbbo$
bbbbbooboooobobo$
bbooobbbbbboboob$
oobobbbobbbbbbob$
bobbbboobbboobob$
bobooooooobobbbb!

What I'm calling a "two-leaf clover":
x = 16, y = 16, rule = B3/S23
obobbbbobobbooob$
obbobboooboobobo$
boobobbbooboobbo$
obbbobbbbooboooo$
boboooobbboboooo$
bobobooobooooobo$
bbboboobboobobbo$
boboobobooooobbo$
oobbobbooobboboo$
obbbboboooboobbb$
bbboobbobbbbooob$
obboooobboooobbo$
obooobooobboooob$
obooobbooobbbobo$
bbbbbooobbbbboob$
oooboobbbbobbbbb!
(Although I definitely don't have naming rights.)
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Soup search results

Postby BlinkerSpawn » January 17th, 2017, 11:24 pm

The 41-cell SL and the two variants:
x = 104, y = 24, rule = B3/S23
13bo39bo39bo$12bo39bo39bo$12b3o37b3o37b3o2$5bobo37bobo14bo15bo6bobo14b
o$6b2o38b2o13bo17bo6b2o13bo$6bo39bo14b3o13b3o6bo14b3o$16bo39bo39bo$14b
2o38b2o38b2o$15b2o38b2o38b2o$8bo39bo39bo$bo4bobo10bo21bo4bobo10bo21bo
4bobo10bo$2bo4b2o9bo23bo4b2o9bo23bo4b2o9bo$3o15b3o19b3o15b3o19b3o15b3o
8$3b3o9b3o25b3o9b3o25b3o9b3o$5bo9bo29bo9bo29bo9bo$4bo11bo27bo11bo27bo
11bo!

The two-leaf's reaction, and another found while experimenting, both in 5 gliders:
x = 67, y = 25, rule = B3/S23
27bo37bo$26bo31bo5bo$26b3o28bo6b3o$10bo46b3o$11b2o$10b2o3$59bo$2b2o3b
2o33b2o3b2o8b2o$bo2bobo2bo31bo2bobo2bo8b2o$bob2ob2obo10bo20bob2ob2obo$
2o2bobo2b2o8bo20b2o2bobo2b2o$2b2o3b2o10b3o20b2o3b2o$2o2bobo2b2o4b3o22b
2o2bobo2b2o$bob2ob2obo5bo25bob2ob2obo$bo2bobo2bo6bo24bo2bobo2bo$2b2o3b
2o33b2o3b2o$56b3o$18b3o35bo$18bo38bo$19bo$48b2o$49b2o$48bo!
43bo$44bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1429
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Soup search results

Postby AbhpzTa » January 18th, 2017, 1:15 pm

The 41-cell SL in 8G:
x = 51, y = 59, rule = B3/S23
49bo$48bo$48b3o19$o$b2o$2o15$17bo$18b2o$17b2o$30b2o$26bo3b2o$25b2o$25b
obo8$17bobo$18b2o$18bo2$18b3o$20bo$19bo!
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa
 
Posts: 313
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

Re: Soup search results

Postby BlinkerSpawn » January 19th, 2017, 1:52 am

"22-bit p4 oscillator #2" in 14 gliders:
x = 34, y = 26, rule = B3/S23
15bo$16bo$14b3o$22bo$21bo$21b3o7bo$30bo$16bo13b3o$15bo$15b3o$bo8bo17bo
$2bo8b2o14bo$3o7b2o15b3o$4b3o15b2o7b3o$6bo14b2o8bo$5bo17bo8bo$16b3o$
18bo$b3o13bo$3bo$2bo7b3o$12bo$11bo$17b3o$17bo$18bo!

Tight predecessor for "22-bit p4 oscillator #3":
x = 9, y = 22, rule = B3/S23
bo$obo$obo5bo$bo4b2o$8bo3$6b3o$8bo$5b3o3$5b3o$8bo$6b3o3$8bo$bo4b2o$obo
5bo$obo$bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1429
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Soup search results

Postby mniemiec » January 19th, 2017, 3:05 am

Kayzan wrote:If there is a component to shorten a barberpole ...

Extrementhusiast wrote:I found a way, although it isn't applicable here: ...

Wow! Very impressive! I would not have expected such a converter to have been found for a long time (and certainly not this cheaply). One of the gliders can be moved to make this less obtrusive, and allow its use in many situations where one side the modified pattern protrudes beyond the lane the barber-pole is in on one side, but not the other. While there are few cases I can think of where this converter is advantageous, it IS useful for adding tripoles, because that takes around 20 gliders, while adding a quadpole takes only 7, and shorting it another 7, saving 6 gliders. (This does not help with bipoles, because adding a bipole is cheaper than shortening a quadpole twice.)

I have tried applying this to all my syntheses involving tripoles. This improves 5 oscillator syntheses. It also improves 5 pseudo-oscillator syntheses; the last one requires a slight alteration of this method, but it could not previously be done this way at all, so this dramatically reduces the cost from 41 to 20 gliders. I currently have 5 syntheses that cannot currently be improved because they protrude on both sides; 3 of these are pseudo-objects, formed from the 3 still-lifes that I originally found most challenging when first investingating pseudo-object syntheses. There are 133 other syntheses where this improves an alternate synthesis, but not the minimal one.

The 5 improved oscillator syntheses:
x = 227, y = 209, rule = B3/S23
93bo$92bo$38bobo51b3o$39boo$39bo5bo53bo$46boo43bo5boo$11bo33boo42bobo
6boo$9boo30boo47boo$10boo30boo$41bo58bo$99boo$64boo28boo3bobo$64bo29bo
20boo$bbo62bobo23bo3bobo17bobo$obo89bo$boo25boo18boo17bobo15boo3b3o4bo
bo17bobo$13b3o12bobo17bobo19bo15boo12bo19bo$13bo15boo18boo18boo14bo4bo
8boo18boo$4bobo7bo16boo18boo18boo17boo9boo18boo$5boo24bo19bo19bo17bobo
9bo19bo$5bo26bobo17bobo17bobo27bobo17bobo$35bo19bo19bo29bo19bo$6b3o11b
oo12boo18boo18boo28boo18boo$8bo11bobo$7bo12bo3$19boo$19bobo$19bo$$8boo
$9boo$8bo6$10bo$8bobo$9boo138bo$88bobo57bo$33bo55boo57b3o$13bobo17bobo
53bo5bo$14boo17boo61boo$14bo80boo41bo12bo$91boo46boo5bobobbobo$92boo
44boo7boobboo$91bo42bo12bo$56bobo75boo$23bo28bo3boo56boo17bobo8boo$24b
o28boobbo56bo29bo20boo$22b3o27boo61bobo27bobo17bobo$26bo$26bobo10bo19b
o18boo18boo17bobo17b3o7bobo17bobo$26boo10boboboo14boboboo14boboboo14bo
boboo16boboo15bo3boo5boboo16boboo$17bo21boobobo14boobobo14boobobo14boo
bobo14boobobo13bo4bobo3boobobo14boobobo$18boo21bobbo16bobbo16bobbo16bo
bbo16bobbo18bo7bobbo16bobbo$17boo22bobo17bobo17bobo17bobo17bobo27bobo
17bobo$42bo19bo19bo19bo19bo29bo19bo10$19bo$19boo$18bobo3$7boo16bo$8boo
14boo$7bo16bobo13$9bo$10bo178bo$8b3o117bobo57bo$19bo109boo57b3o$18bo
110bo5bo$18b3o115boo$135boo41bo12bo$131boo46boo5bobobbobo$10bobo119boo
44boo7boobboo$11boo118bo42bo12bo$11bo10bo73bobo75boo$21bo70bo3boo56boo
17bobo8boo$21b3o69boobbo56bo29bo20boo$92boo61bobo27bobo17bobo$24boo$
24bobo12bobboo15bobboo15bobboo15bobboo14boobboo14boobboo13bobobboo13b
3o7bobobboo13bobobboo$24bo13bobobbo14bobobbo14bobobbo14bobobbo14bobobb
o14bobobbo16bobbo15bo3boo5bobbo16bobbo$8bo30boobo16boobo16boobo16boobo
16boobo16boobo16boobo15bo4bobo3boobo16boobo$8boo4b3o24bo19bo19bo19bo
19bo19bo19bo21bo7bo19bo$7bobo6bo15bo8bobo17bobo17bobo17bobo17bobo17bob
o17bobo27bobo17bobo$15bo15bo10boo18boo18boo18boo18boo18boo18boo28boo
18boo$31b3o$42boo18boo$42boo18boo$17bo4b3o$17boo5bo39b3o$16bobo4bo40bo
$65bo8$11bo$12boo$11boo$37bo$36bo$36b3o154bo$192bo$138bobo51b3o$139boo
$139bo5bo53bo$16bo129boo43bo5boo$14bobo27bo100boo42bobo6boo$15boo22bob
obbobo94boo47boo$39boo3boo96boo$40bo100bo58bo$106bobo90boo$102bo3boo
56boo28boo3bobo$78bo24boobbo56bo29bo20boo$78bobo21boo61bobo23bo3bobo
17bobo$78boo112bo$49bo19bo19bo19bo18boo18boo17bobo15boo3b3o4bobo17bobo
$8bo3bo35bobo5boo10bobo5boo10bobo17bobo17bobo17bobo19bo15boo12bo19bo$
9boobobo34boo5boo11boo5boo11boo18boo18boo18boo18boo14bo4bo8boo18boo$8b
oobboo37boo18boo18boo18boo18boo18boo18boo17boo9boo18boo$51bo19bo19bo
19bo19bo19bo19bo17bobo9bo19bo$52bobo17bobo17bobo17bobo17bobo17bobo17bo
bo27bobo17bobo$$54bobo17bobo17bobo17bobo17bobo17bobo17bobo27bobo17bobo
$55boo18boo18boo18boo18boo18boo18boo28boo18boo13$3boo30bo$4boo28boo$3b
o30bobo3$6b3o$8bo$7bo7$3boo28boo18boo28boo18boo28boo28boo38boo$3bo29bo
19bo29bo19bo29bo29bo39bo$5boo28boo18boo28boo18boo28boo28boo38boo$$6bob
o27bobo17bobo27bobo17bobo27bobo27bobo37bobo$$8bobo27bobo17bobo27bobo
17bobo27bobo27bobo37bobo$$10bobo27bobo17bobo27bobo17bobo27bobo27bobo
37bobo$12bo8bo20bo19bo29bo19bo29bo29bo39bo$14bo4boo23bo19bo29bo19bo29b
o29bo39bo$13boo5boo21boo18boo28boo18boo28boo28boo7bo30boo$45boo18boo
28boo18boo28boo28boo3bobo4bo27boo$5bobbo9bo26bobo17bobo27bobo17bobo27b
o29bo5boo3bo28bo$9bobbo4boo27bo19bo29boo18boo28bobo27bobo7b3o27bobo$5b
o3bobboo3bobo$6b4obobo58boo74bobo27bobo37bobo$68bobboo78bo29bo37boo$
15boo51boo3bo76boo28boo8bobo$15bobo49bobo120boo$15bo108bo53bo12bo$122b
oo49boobboo7boo$123boo47bobobbobo5boo$119boo53bo12bo$118boo$120bo5bo$
125boo48b3o$125bobo49bo$176bo!

The 5 improved pseudo-oscillator syntheses:
x = 227, y = 167, rule = B3/S23
199bo$198bo$154bobo41b3o$155boo$155bo5bo43bo$162boo33bo5boo$161boo32bo
bo6boo$157boo37boo$158boo$157bo48bo$122bobo80boo$118bo3boo56boo18boo3b
obo$46bobo70boobbo56bo19bo20boo$47boo69boo61bobo13bo3bobo17bobo$47bo
36bo113bo$85bo19bo19bo18boo18boo17bobo5boo3b3o4bobo17bobo$29boo18boo
32b3o18bobo17bobo17bobo17bobo19bo5boo12bo19bo$29boo18boo54boo18boo18b
oo18boo18boo4bo4bo8boo18boo$196boo$25boo18boo18boo18boo18boo18boo18boo
18boo18boo8bobo7boo18boo$26bo19bo19bo19bo19bo19bo19bo19bo19bo19bo19bo$
23bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo$4bo
17bo19bo19bo19bo19bo19bo19bo19bo19bo19bo19bo$5bobbobo11boo18boo18boo
18boo18boo18boo18boo18boo18boo18boo18boo$3b3obboo7boo$9bo6boo$18bo$4b
oo$3boo$5bo12$179bo$148bobo29bo$148boo28b3o$143bo5bo$3bo137boo$bobo
138boo33bo12bo$bboo142boo27bobobbobo5boo$12bobo130boo29boobboo7boo$12b
oo88bobo42bo33bo12bo$13bo88boo89boo$103bo59boo18boo8bobo$31boo18boo18b
oo18boo18boo18boo18boo11bo6boo11bo16boo9boo$31bobo17bobo17bobo17bobo
10boo5bobo17bobo17bobo7bobo7bobo7bobo17bobo7bobo$60bo42boo$33bobo17bob
obboo13bobo3bo13bobo3bo5bo7bobo3boo12bobo3boo12bobo3bobo11bobo3bobo7b
3o11bobo3bobo$36bo19bobboo15bobobo15bobobo15bobobo15bobobo15bobo17bobo
5boo3bo16bobo$35boo18boo18booboo15booboo15booboo15booboo15booboo15boob
oo3bobo4bo14booboo$3o182bo$bbo$bo13b3o$11boobbo$12boobbo$11bo$24boo$
24bobo$24bo9$3bo$bobo$bboo$12bobo$12boo$13bo$63bo$31boo18boo11bo6boo
18boo18boo18boo18boo18boo28boo$31bobo17bobo8b3o6bobo17bobo17bobo17bobo
17bobo17bobo27bobo$$33bobo17bobo5b3o9bobo17bobo17bobo17bobo17bobo17bob
o9bo17bobo$36bo19bo4bo14boboo16boboo16boboo16boboo16boboo16boboo3bobo
4bo15boboo$35boo18boo5bo12boobobo14boobobo14boobobo14boobobo14boobo16b
oobo5boo3bo15boobo$3o76bo19bo5bo13boo18boo18bobo17bobo7b3o17bobo$bbo
56bo43boo$bo13b3o41boo43boo55bobo17bobo27bobo$11boobbo42bobo103bo19bo
27boo$12boobbo86bo59boo18boo8bobo$11bo90boo89boo$24boo76bobo42bo33bo
12bo$24bobo118boo29boobboo7boo$24bo121boo27bobobbobo5boo$142boo33bo12b
o$141boo$143bo5bo$148boo28b3o$148bobo29bo$179bo8$129bo$128bo$74bobo51b
3o$75boo$75bo5bo53bo$82boo43bo5boo$81boo42bobo6boo$77boo47boo$78boo$
77bo58bo$135boo$38bo10boo49boo28boo3bobo$6bo7bo24bo7bobobo48bo29bo20b
oo$4bobo5boo23b3o5bobobo51bobo23bo3bobo17bobo$5boo6boo31boo80bo$41boo
21boo18boo17bobo15boo3b3o4bobo17bobo$5bo36boo20bobo17bobo19bo15boo12bo
19bo$5boo34bo23boo18boo18boo14bo4bo8boo18boo$4bobo9boo11boo18boo18boo
18boo18boo15boo11boo18boo$16bobo6boo3bo14boo3bo14boo3bo14boo3bo14boo3b
o14bobo7boo3bo14boo3bo$16bo9bobbo16bobbo16bobbo16bobbo16bobbo26bobbo
16bobbo$26bobo17bobo17bobo17bobo17bobo27bobo17bobo$27bo19bo19bo19bo19b
o29bo19bo$$bbo$bboo$bobo4$172bo$173bo$135bobo33b3o$135boo$130bo5bo29bo
$128boo37boo5bo$129boo35boo6bobo$133boo39boo$132boo$134bo30bo$87bobo
75boo$44bo43boo3bo56boo12bobo3boo$6bo7bo27bobo43bobboo58bo19bo17boo$4b
obo5boo29boobbo44boo54bobo17bobo3bo13bobo$5boo6boo31bo126bo$46b3o17bo
19bo19boo18boo18bobo17bobo4b3o3boo5bobo$5bo35b3o21bobo17bobo17bobo17bo
bo17bo19bo12boo5bo$5boo36bo21boo18boo18boo18boo18boo18boo8bo4bo4boo$4b
obo9boo11boo11bo6boo18boo18boo18boo18boo18boo18boo3boo13boo$16bobo6boo
3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo3bobo8boo3b
o$16bo9bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo$
26bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo$27bo19bo19bo19b
o19bo19bo19bo19bo3boo14bo$172boo$bbo168bo4boo$bboo171boo$bobo173bo!

The 5 syntheses that could not be improved:
x = 86, y = 14, rule = B3/S23
80boo$39boo17boobo17bobbo$38bobo17boboo16bobboo$37bo18boo19bo$36bo19bo
19bo$oo18boo14boboboo16boboo14boboboo$obo17bobo14boobobo14boobobo14boo
bobo$$bbobo17bobobboo13bobo17bobo17bobo$5boboo16bobbo16bo19bo19bo$4boo
bo16boobo16boo18boo18boo$7bo18bo$4b3o16bobo$4bo18boo!
mniemiec
 
Posts: 793
Joined: June 1st, 2013, 12:00 am

Re: Soup search results

Postby AbhpzTa » January 19th, 2017, 2:00 pm

BlinkerSpawn wrote:"22-bit p4 oscillator #2" in 14 gliders:
x = 34, y = 26, rule = B3/S23
15bo$16bo$14b3o$22bo$21bo$21b3o7bo$30bo$16bo13b3o$15bo$15b3o$bo8bo17bo
$2bo8b2o14bo$3o7b2o15b3o$4b3o15b2o7b3o$6bo14b2o8bo$5bo17bo8bo$16b3o$
18bo$b3o13bo$3bo$2bo7b3o$12bo$11bo$17b3o$17bo$18bo!

10 gliders:
x = 24, y = 24, rule = B3/S23
11bo$12bo$10b3o$16bo$15bo$15b3o2$10bo$9bo$9b3o$6bo14bobo$bo5b2o7b2o3b
2o$b2o3b2o7b2o5bo$obo14bo$12b3o$14bo$13bo2$6b3o$8bo$7bo$11b3o$11bo$12b
o!

mniemiec wrote:The 5 improved pseudo-oscillator syntheses:
x = 227, y = 167, rule = B3/S23
199bo$198bo$154bobo41b3o$155boo$155bo5bo43bo$162boo33bo5boo$161boo32bo
bo6boo$157boo37boo$158boo$157bo48bo$122bobo80boo$118bo3boo56boo18boo3b
obo$46bobo70boobbo56bo19bo20boo$47boo69boo61bobo13bo3bobo17bobo$47bo
36bo113bo$85bo19bo19bo18boo18boo17bobo5boo3b3o4bobo17bobo$29boo18boo
32b3o18bobo17bobo17bobo17bobo19bo5boo12bo19bo$29boo18boo54boo18boo18b
oo18boo18boo4bo4bo8boo18boo$196boo$25boo18boo18boo18boo18boo18boo18boo
18boo18boo8bobo7boo18boo$26bo19bo19bo19bo19bo19bo19bo19bo19bo19bo19bo$
23bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo$4bo
17bo19bo19bo19bo19bo19bo19bo19bo19bo19bo19bo$5bobbobo11boo18boo18boo
18boo18boo18boo18boo18boo18boo18boo18boo$3b3obboo7boo$9bo6boo$18bo$4b
oo$3boo$5bo12$179bo$148bobo29bo$148boo28b3o$143bo5bo$3bo137boo$bobo
138boo33bo12bo$bboo142boo27bobobbobo5boo$12bobo130boo29boobboo7boo$12b
oo88bobo42bo33bo12bo$13bo88boo89boo$103bo59boo18boo8bobo$31boo18boo18b
oo18boo18boo18boo18boo11bo6boo11bo16boo9boo$31bobo17bobo17bobo17bobo
10boo5bobo17bobo17bobo7bobo7bobo7bobo17bobo7bobo$60bo42boo$33bobo17bob
obboo13bobo3bo13bobo3bo5bo7bobo3boo12bobo3boo12bobo3bobo11bobo3bobo7b
3o11bobo3bobo$36bo19bobboo15bobobo15bobobo15bobobo15bobobo15bobo17bobo
5boo3bo16bobo$35boo18boo18booboo15booboo15booboo15booboo15booboo15boob
oo3bobo4bo14booboo$3o182bo$bbo$bo13b3o$11boobbo$12boobbo$11bo$24boo$
24bobo$24bo9$3bo$bobo$bboo$12bobo$12boo$13bo$63bo$31boo18boo11bo6boo
18boo18boo18boo18boo18boo28boo$31bobo17bobo8b3o6bobo17bobo17bobo17bobo
17bobo17bobo27bobo$$33bobo17bobo5b3o9bobo17bobo17bobo17bobo17bobo17bob
o9bo17bobo$36bo19bo4bo14boboo16boboo16boboo16boboo16boboo16boboo3bobo
4bo15boboo$35boo18boo5bo12boobobo14boobobo14boobobo14boobobo14boobo16b
oobo5boo3bo15boobo$3o76bo19bo5bo13boo18boo18bobo17bobo7b3o17bobo$bbo
56bo43boo$bo13b3o41boo43boo55bobo17bobo27bobo$11boobbo42bobo103bo19bo
27boo$12boobbo86bo59boo18boo8bobo$11bo90boo89boo$24boo76bobo42bo33bo
12bo$24bobo118boo29boobboo7boo$24bo121boo27bobobbobo5boo$142boo33bo12b
o$141boo$143bo5bo$148boo28b3o$148bobo29bo$179bo8$129bo$128bo$74bobo51b
3o$75boo$75bo5bo53bo$82boo43bo5boo$81boo42bobo6boo$77boo47boo$78boo$
77bo58bo$135boo$38bo10boo49boo28boo3bobo$6bo7bo24bo7bobobo48bo29bo20b
oo$4bobo5boo23b3o5bobobo51bobo23bo3bobo17bobo$5boo6boo31boo80bo$41boo
21boo18boo17bobo15boo3b3o4bobo17bobo$5bo36boo20bobo17bobo19bo15boo12bo
19bo$5boo34bo23boo18boo18boo14bo4bo8boo18boo$4bobo9boo11boo18boo18boo
18boo18boo15boo11boo18boo$16bobo6boo3bo14boo3bo14boo3bo14boo3bo14boo3b
o14bobo7boo3bo14boo3bo$16bo9bobbo16bobbo16bobbo16bobbo16bobbo26bobbo
16bobbo$26bobo17bobo17bobo17bobo17bobo27bobo17bobo$27bo19bo19bo19bo19b
o29bo19bo$$bbo$bboo$bobo4$172bo$173bo$135bobo33b3o$135boo$130bo5bo29bo
$128boo37boo5bo$129boo35boo6bobo$133boo39boo$132boo$134bo30bo$87bobo
75boo$44bo43boo3bo56boo12bobo3boo$6bo7bo27bobo43bobboo58bo19bo17boo$4b
obo5boo29boobbo44boo54bobo17bobo3bo13bobo$5boo6boo31bo126bo$46b3o17bo
19bo19boo18boo18bobo17bobo4b3o3boo5bobo$5bo35b3o21bobo17bobo17bobo17bo
bo17bo19bo12boo5bo$5boo36bo21boo18boo18boo18boo18boo18boo8bo4bo4boo$4b
obo9boo11boo11bo6boo18boo18boo18boo18boo18boo18boo3boo13boo$16bobo6boo
3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo3bobo8boo3b
o$16bo9bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo$
26bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo$27bo19bo19bo19b
o19bo19bo19bo19bo3boo14bo$172boo$bbo168bo4boo$bboo171boo$bobo173bo!

Reduced the fourth by 1 (trivially):
x = 84, y = 13, rule = B3/S23
75bobo$bo10b2o57bo3b2o$2bo7bobobo57b2o2bo$3o5bobobo58b2o$9b2o$4b2o50bo
bo19bo$5b2o50b2o18bobo$4bo52bo20b2o$12b2o48b2o18b2o$8b2o3bo44b2o3bo14b
2o3bo$9bo2bo46bo2bo16bo2bo$9bobo47bobo17bobo$10bo49bo19bo!
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa
 
Posts: 313
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

PreviousNext

Return to Patterns

Who is online

Users browsing this forum: Google [Bot] and 12 guests