## Soup search results

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

### Re: Soup search results

This is as close as I know how to get:
x = 11, y = 12, rule = B3/S237b2o$o7b2o$2o7bo$2bo3bo$2o3b3o$o3bo$4bob2obo$5bobo2$8b3o2$8b3o! EDIT: Eureka! (kinda): x = 16, y = 15, rule = B3/S2310bo$8b2o$9b2o$3o$2bo$3o3b3o$5bo2bo$5bob2o$6bo5bo$7bo2b2o$11b2o2$13b3o$13bo$14bo!

EDIT 2: Assembled; 10 gliders:
x = 28, y = 24, rule = B3/S2321bo$21bobo$21b2o$5bo6bo$6bo6bo$4b3o4b3o3$23bo$23bobo$3o20b2o$2bo$bo$10b2o$11b2o$10bo3$17b2o$8b2o6b2o$9b2o7bo7b2o$8bo3b3o10b2o$12bo14bo13bo! Last edited by BlinkerSpawn on January 10th, 2017, 7:31 pm, edited 1 time in total. LifeWiki: Like Wikipedia but with more spaceships. [citation needed] BlinkerSpawn Posts: 1717 Joined: November 8th, 2014, 8:48 pm Location: Getting a snacker from R-Bee's ### Re: Soup search results A recent soup produced a 26-bit P6 oscillator http://catagolue.appspot.com/object/xp6_45a2zw66w7bcczy366w4o68/b3s23. This made me think about clocks as rocks, and it occurred to me that I had previously overlooked one 21-bit P6 (one half of this one), plus one 20-bit P8 (the only 20-bit P8 of which I am aware). These two can be easily synthesized from 12 and 14 respectively, although the one from this soup forms too quickly to yield a viable predecessor, and an attempt to synthesize it by prute force is missing two steps (adding two close blocks). I think inserters exist to do this; I seem to recall somebody posting some syntheses that do something like this, but I can't find any examples. A way to add an adjacent clock would also prove useful, although the only one I know of does so with the stator cells aligned the other way. x = 189, y = 88, rule = B3/S23128bo127bo$91bo35b3o12bo$91bobo46boo$91boo48boo$123bobo10bobo$91bo18boo12boo4boo4boo$90boo17bobbo11bo4bobbo4bo$90bobo16bobbo16bobbo$110boo18boo$135bo$3bobo38bo89bo22boo$3boo39bobo16boo18boo18boo18boo9b3o16boobobboboo$4bo39boo17boobboo14boobboo14boobboo14boobboo24bo4bobboo$47b3o17boo18boo18boo18boo28bo$o46bo108bo$boo19bo19bo5bo13bo19bo19bo19bo10boo17bo$oo20bobo17bobo17bobo17bobo17bobo17bobo7boo18bobo$4boo15bobo17bobo17bobo17bobo17bobo17bobo10bo16bobo$3boo18bo19bo19bo19bo19bo19bo29bo$5bo$$bobooobo6164bo162bobo5bo163boo4bo169b3o377bo99bobbo78bo3bo18boo13bo4boo18boo18boo17bo76b3oboo18bobbo10bobo3bobbo12boobbobbo12boobbobbo12bo4bo81boo17bobbo11boo3bobbo12boobbobbo12boobbobbo12boobbobo101boo9boo7boo18boo18boo18boboo111boboo6bobo31bo71boboo4boo17bo12bobo4bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14bo4booo6bo18boo11boo5boo12boo4boo12boo4boo12boo4boo12boo4boo12boo4boo12boo4boo12boo4boo5bo6boo11boo10boo6boo18boo18boo18boo18boo18boo18boo18boo5boo4boo14bo8bobo8bo19bo19bo19bo19bo19bo19bo19bo4bobo6bo24bo1543bo41boo42boo$$29bobo$30boo$30bo$$144bo142bobo5bo56bo19bo19bo39bo6boo4bo16bo54bobo17bobo3bo13bobo37bobo12b3o12bobo55bobo17bobobbobo12bobo37bobo27bobo55bo19bo4boo13bo39bo29bo170bo81bo19boo38boo27bo30b3o48boo17bobbo32boobbobbo22bo4bo32bo5bo41bobo17bobbo11bobobo16boobbobbo22boobbobo31bo4bobo62boo38boo28boboo37boobbooo6bobo32booboo4boo17bo14bo4bo19bo19bo19bo34boo3bo24bo4booo6bo18boo18boo18boo18boo18boo32boo4boo22boo4boo5bo6boo11boo18boo18boo18boo18boo38boo28boo5boo4boo14bo19bo19bo19bo19bo39bo29bo4bobo6bo! EDIT: BlinkerSpawn wrote:This is as close as I know how to get: ... Eureka! (kinda): ... This yields a 10-glider synthesis. Unfortunately, replacing the house by an attached beehive or loaf isn't as simple as I had previously thought. (A beehive could be turned into the others). x = 109, y = 24, rule = B3/S2321bobo21boo22bo4bo6bo5boo5boo4boo5boo39boo20bo19bo18boo39bobo18bobo17bobo16bobbo23bobo15bo18bobo16bobbo17bobo23boo14boboboo16boboo15booboo16boboooo22bo14boobbobb3o14bobb3o14bobb3o14bobb3oboo40bo19bo19bo19boo43boobo16boobo16boobo16boobo10boo36bo19bo19bo19bo9bobo35boo18boo18boo18boo11bo317boo8boo7bobo7bobo7bo8boo9bo3boo11bobo12boo12bo14bo! (EDIT: Apparently, you solved it exactly the same way!) Last edited by mniemiec on January 10th, 2017, 7:57 pm, edited 1 time in total. mniemiec Posts: 905 Joined: June 1st, 2013, 12:00 am ### Re: Soup search results This was my far more expensive approach: x = 23, y = 16, rule = B3/S238bo5bobo6bobo6b2o7b2o6bo5bo20bo20b3o11b2ob2o11bo3boo11b3o7bob2o17b2o2o19b2o4b2o6b3o5b2o4bo3bo4bo6bob2obo12bobo2bo15bobo16bo! I also found a way to get there from one of the other variants: x = 21, y = 18, rule = B3/S239bobo9b2o10bo8bo2o16boo3b2o12b3obobobo6bo5bob2o3bobo2bo3ob2obobo2b2o2b2o7bobo6bobo7b2o46b2o7b2o6bo5bo11b2o11bobo! I Like My Heisenburps! (and others) Extrementhusiast Posts: 1696 Joined: June 16th, 2009, 11:24 pm Location: USA ### Re: Soup search results Can anyone use any of these reductions of symmetric soups for a better synthesis of french kiss?: x = 26, y = 21, rule = B3/S23obob2obo47bo9bo7b2o6bobo5b3o8b2o6bo18bo7b2o8b3o7bobo6b2o7bo9bo423bo22b2o22bobo! x = 34, y = 30, rule = B3/S2323b3o87bo6bobo5bo2bo9b2o6b2o3b2o4bobo11bobo2b2o13b2o2bobo11bobo4b2o3b2o11b2o9bo2bo22bobo23bo825b3o! x = 34, y = 24, rule = B3/S2333bo2bobo2bobo3bo326bo5b2o20bo4bo2bo4bo2bo17b2o4b2o17bo2bo23bo2bo3bo20b2o4bo327bo26bobo26bobo27bo! x = 61, y = 34, rule = B3/S23231b2o32bo7b2o19b2ob2o6b3o20bobo5b5o20bo4b2o3b2o5b2obo3bobo6b2o7bob2o2bob3o11b3obo2b2o21bo19b2obo16bo4b2o24b2o16b2o24b2o4bo42bob2o43bo45b2o2bob3o47b3obo2b2obo57b2o50bobo3bob2o54b2o3b2o34bo20b5o33bobo20b3o32b2ob2o19b2o32bo32b2o! x = 29, y = 19, rule = B3/S23419b2o11b2o5bo2bo10bo2bo4bo2b2o3b2o5bo2bo3bo2b2o2bo2bo5b2o4b4o3b2o24b2o8b4o4b2o5bo2bo7b2o2bo3bo2bo5b2o6b2o2bo4bo2bo7bo2bo5b2o8b2o! Goldtiger997 Posts: 392 Joined: June 21st, 2016, 8:00 am Location: 11.329903°N 142.199305°E ### Re: Soup search results Sure, 18G: x = 110, y = 90, rule = B3/S2340bo38b2o39b2o2512boobo7b2ob2o8b2obo311bo9b2o10b2o23bo9bo4b2o6bo3b2o7b3o72bo20b2o73bo19bo14bo15bo40b3o16b2obo15bo13bo45b2o12bo2bo13b3o13b3o42bo2bo11bo14b2o9b3o13b3o47b2o14bo11bo2bo11bo13bo62bo2bo12b2o10bo15bo60bob2o16b3o87bo19bo86b2o20bo26b3o7b2o28bo6b2o27bo9bo229b2o30b2o29bo339bo28b2o8b2o29b2o7bobo28bo252ob2oo! LifeWiki: Like Wikipedia but with more spaceships. [citation needed] BlinkerSpawn Posts: 1717 Joined: November 8th, 2014, 8:48 pm Location: Getting a snacker from R-Bee's ### Re: Soup search results 10G: x = 57, y = 46, rule = B3/S2355bo54bo4bo49b3o2bobo3b2o237bo16bo36bo15b2o36b3o14b2o237bo36b2o36bobo2118bobo19b2o19bo22b2o14b3o3b2o15bo2bo16bo252b2o52bobo3o49bo2bobo! Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) : 965808 is period 336 (max = 207085118608). AbhpzTa Posts: 429 Joined: April 13th, 2016, 9:40 am Location: Ishikawa Prefecture, Japan ### Re: Soup search results Goldtiger997 wrote:Can anyone use any of these reductions of symmetric soups for a better synthesis of french kiss?: ... BlinkerSpawn wrote:Sure, 18G: ... From 16, based on predecessor #3: x = 126, y = 30, rule = B3/S2339bo37boo38boo77bo78bo76b3o50boo28boo9bobo21bo15bobbo26bobbo3bo5boo20boo17boo28boo4boo4bo21boo3boo52boo28boo28boo11bo46bo29bo29bo12bo16bobo9boo15boboo26boboo26boboo10b3o17boo8boo17bobbo26bobbo26bobbo30bo11bo19bo29bo29boo11bo47bo29bo29boboo8boo17b3o27bobbo26bobbo26bobbooo9bobo16bo30boobo26boobo26boobo31bo32bo29bo29bo38boo24boo28boo28boo9boo21bo4boo10boo20boo5bo31boo28boo9bo21bobo36bobbo26bobbo71boo28boo104b3o104bo105bo3boo4boo3bo! EDIT: AbhpzTa wrote:10G: ... (oops!) Nice! This also reduces 1 20- and the 2 21-bit variants to < 1 glider/bit. mniemiec Posts: 905 Joined: June 1st, 2013, 12:00 am ### Re: Soup search results AbhpzTa wrote:10G: x = 57, y = 46, rule = B3/S2355bo54bo4bo49b3o2bobo3b2o237bo16bo36bo15b2o36b3o14b2o237bo36b2o36bobo2118bobo19b2o19bo22b2o14b3o3b2o15bo2bo16bo252b2o52bobo3o49bo2bobo! Very nice! I'm reposting something I already posted in the birthdays thread because I did not think it was actually a suitable thread. Here is an 18-20 glider synthesis of trans-skewed poles which I think previously had no synthesis: x = 106, y = 96, rule = B3/S2314bo12bobo13b2o92boobob2o1567bo65b2o56bo9b2o57b2o56b2o60bo60bobo46bo13b2o47bo45b3o2bo49bobo49bobo50bo554bo54bo54bo51bo51bo51bo555bo54bobo54bobo55bo2b3o58bo44b2o13bo43bobo45bo48b2o47b2o38b2o9bo39b2o38bo15103b2o103bobo103bo991b2o91bobo91bo! Goldtiger997 Posts: 392 Joined: June 21st, 2016, 8:00 am Location: 11.329903°N 142.199305°E ### Re: Soup search results Goldtiger997 wrote:Here is an 18-20 glider synthesis of trans-skewed poles which I think previously had no synthesis: ... Extrementhusiast had previously posted this 20-glider synthesis on 2015-08-06. Either yours or his would be cheaper if there were appropriate 3-glider syntheses of the beehive+blinker constellations. x = 235, y = 32, rule = B3/S23112bobo113boo8bo113bo10bo122b3o126bo47bo78bobo48boo76boo6bo47boo83boo121bo11boo45bo36bo29bo9bo45boo35bo29bo7b3o4bo39bobo35bo29bo40boo38boo28boo5bo19bo29bo29bo29bo37bo32bo6bo29bo3b3o18bobo27bobo27bobo27bobo37bobo27bobo7bobo27bobo16bo7bobo27bobo27bobo27bobo32boo5boo11boo14boobboo5boo11boo15boo3o12bo9bo29bo29bo29bo34bo6bobbo9bo19bo6bobbo9bo16bobbobbo12b3o14bo29bo29bo29bo24bo9bobbo6bo19bo9bobbo6bo19bobbobo29bobo27bobo27bobo27bobo23boo11boo5boo18boo11boo5boobboo17boo12b3o16bobo27bobo27bobo27bobo37bobo37bobo7bobo17bobo12bo19bo29bo29bo29bo41bo39bo6bo22bo13bo57bobo21bo29bo37boo38boo28boo71boo22bo19b3o7bo72bo22bo19bo9bo103boo11bo69boo33boo68boo33bo6boo70bo38bobo111bo113b3o113bo10bo114bo8boo123bobo! EDIT: FYI, the only known period 3+ oscillators up to 21 bits lacking syntheses are these 5 P3s and 1 P4: x = 112, y = 10, rule = B3/S23o19booboo15boo5boo11boo18boo18boo8boo3o4booboo8bo4booboo10bo5bobo11bo19bo19bobo4boobbo3boboo4bo9boo6bo11boboobboo12bobo17bobo17b3obobbo6boo13bobobo14bo26bo32bo3b3obboobobo16bo4b3o16bobo11bobo3b3o11bobo22bo7bo23bo11bobo3boo11bo4bo14bo4boo15bobo44bo19bobobo15bobobo17bo63boobboo14boobbo88b3o90bo! mniemiec Posts: 905 Joined: June 1st, 2013, 12:00 am ### Re: Soup search results mniemiec wrote: Goldtiger997 wrote:Here is an 18-20 glider synthesis of trans-skewed poles which I think previously had no synthesis: ... Extrementhusiast had previously posted this 20-glider synthesis on 2015-08-06. Either yours or his would be cheaper if there were appropriate 3-glider syntheses of the beehive+blinker constellations. Extrementhusiast's synthesis ... I wrote:...Here is an 18-20 glider synthesis of trans-skewed poles which I think previously had no synthesis: x = 106, y = 96, rule = B3/S2314bo12bobo13b2o92boobob2o1567bo65b2o56bo9b2o57b2o56b2o60bo60bobo46bo13b2o47bo45b3o2bo49bobo49bobo50bo554bo54bo54bo51bo51bo51bo555bo54bobo54bobo55bo2b3o58bo44b2o13bo43bobo45bo48b2o47b2o38b2o9bo39b2o38bo15103b2o103bobo103bo991b2o91bobo91bo! However, the beehives in my synthesis are not necessary because they are made just to create r-pentominos. Possibly one of the other "still-life + glider = r-pentomino" collisions could be used such that the constellation with that still life and the blinker could be made in 3-gliders. P.S. It bothers me that currently the hexapole can be synthesised in 8 gliders whereas the pentapole takes 10 gliders. Goldtiger997 Posts: 392 Joined: June 21st, 2016, 8:00 am Location: 11.329903°N 142.199305°E ### Re: Soup search results Goldtiger997 wrote:However, the beehives in my synthesis are not necessary because they are made just to create r-pentominos. Possibly one of the other "still-life + glider = r-pentomino" collisions could be used such that the constellation with that still life and the blinker could be made in 3-gliders. I only know of 3 within the budget - one loaf+glider, your beehive+glider, and another beehive+glider that fails because the glider hits the blinker, and no way to make either+blinker from 3 gliders. Others may have more extensive R-pentomino or 3-glider-to-constellation libraries. Goldtiger997 wrote:P.S. It bothers me that currently the hexapole can be synthesised in 8 gliders whereas the pentapole takes 10 gliders. Bob Shemyakin found a 5-glider quadpole synthesis on 2015-03-28, making pentapole 9 gliders: x = 67, y = 22, rule = B3/S23boboboboo$$bo$bbo4bo11boo18boo18boo$3o4bobo9bobo17bobo17bobo$7boo$21bobo17bobo17bobo$$23bobo17bobo17bobo3o21boo18boo20bobbo5b3o54boobo6bo42bobo9bo41boo52bo$$37b3o12boo$39bo12bobo$38bo9bo3bo$48boo$47bobo! mniemiec Posts: 905 Joined: June 1st, 2013, 12:00 am ### Re: Soup search results Extrementhusiast wrote:I also found a way to get there from one of the other variants: ... This made me think about other ways to make the remaining 19-bit variant (that can be turned into the 20-bit loaf ones that yield the missing 25-bit molds and 26-bit jams). From the "close but no cigar" department. Maybe somebody can finish/rescue this: x = 239, y = 24, rule = B3/S2314bo$bbo12boo$obo11boo3bo48bobo$boo8bo7bobo47boo$9bobo7boo48bo57bo$10boo114bo66bo$73b4o49b3o64bobo$69bo3bo3bo25boo18boo22bobobo41boo26bobobo$17bo51bobobo29boo18boo21bo5bo67bo5bo$17bobo20boo18boo7boo3bobbo12boo6boo10boo6boo10boo6boo20boo6boo10boo6boo10boo11boo15boo$17boo21bo19bo29bo6bobo10bo6bobo10bo6bobo12bo7bo6bobo10bo6bobo10bo6boo4boo11bo3bo$28bo12boboo16boboo26boboobbo13boboobbo13boboobbo11bobo9boboobbo13boboobbo13boboo18bobo5boboo$26boo17bo19bo29boboo16boboo16boboo26boboo16boboo4boo10bo29bo$4bo22boo11b3obbobboo10b3obbobboo20b3obbo14b3obbo14b3obbo13bo10b3obbo14b3obbo7bobo4b3obbo17bo6b3obbo$4boo38boobobo14boobobo24boo18boo18boo28boo18boo7bo10boo28boobo$3bobo41bo19bo98boo18boo18bobo27bobo$47bobo17bobo79bo16bobo17bobo17bobo14bo12bobo$48boo18boo97bo19bo3boo14bo29bo$16boo5boo165boo$15boo5boo162boo4bo$17bo6bo48boo110bobo$6bo65boo113bo$6boo66bo$5bobo!
mniemiec

Posts: 905
Joined: June 1st, 2013, 12:00 am

### Re: Soup search results

Another "sparse" p2 has appeared: https://twitter.com/conwaylifebot/statu ... 5856801793

If Mark's site is correct, this is one of the 13 unsynthesized 16-bit oscillators. Proof of concept synthesis, but not a practical one:

x = 18, y = 23, rule = B3/S234bo$4bo$4bo4$16bo$15bo$6bo8b3o$5bobo5bo$5bobo4bobo$6bo5bobo$obo10bo$b2o$bo4$8bo$7b2o$2b2o3bobo$3b2o$2bo!

If there is a component to shorten a barberpole, it also solves one of the three remaining 15-bit oscillators (again according to Mark's site).

EDIT: It's not up-to-date with regards to the 15-bit oscillators, but I still can't tell if this one has been checked off.
Tanner Jacobi

Kazyan

Posts: 747
Joined: February 6th, 2014, 11:02 pm

### Re: Soup search results

Kayzan wrote:Another "sparse" p2 has appeared: ... If Mark's site is correct, this is one of the 13 unsynthesized 16-bit oscillators.
Proof of concept synthesis, but not a practical one: ...

When there is no synthesis yet, even a ludicrously expensive one is good!
Kayzan wrote:If there is a component to shorten a barberpole, it also solves one of the three remaining 15-bit oscillators (again according to Mark's site).

Sadly, there is no such component known yet, and it would likely be very difficult. When I discussed this topic with Dave Buckinhgam years ago, he said that lengthening a barber pole was relatively easy (he had several converters to do so, and I found several other related ones), but that I would not likely find a way to shorten one.
Kayzan wrote:It's not up-to-date with regards to the 15-bit oscillators, but I still can't tell if this one has been checked off.

FYI, here is my current list of unsynthesized P2s up to 18 bits: 1 14, 2 15s, 6 16s, 24 17s, and 52 18s. Of these, the last 16, 6 of the 17s, and the last 22 18s are trivial, applying grow-barberpole converter to a smaller unsynthethesized one.
x = 149, y = 114, rule = B3/S23bb3o11boo13boo13boo13boo4boo7boo16bo13bobo10boo$16bobob3o8boboboo9bobobb3o7bobo4bo7bobob3o9bobobo11bobboo8bobobo$boobbobo28bo28bobo24bo5bo7bobboo14bo$6bo9bobbobo10bobbo10bobboobo8bobbo11bobbobo9bobo4bobo11boo9bobbo$bbo4boo8bo4bo10bo13bo5bo8bo3b3o8bo15bo5bo6boo14bo$4bo12bo3boo10bobobo9bo4boo8bo14bo3bobo11bobobo12bo9boobobo$4bobo29boo44boo13bo10bobo17bo$110bo16boo6$boo5boo6boo5boo6boo4bo8boo3b3o7boobboo9boobboo10bobb3o8boo13boo13boo$bobo3bobo6bobo3bobo6bobobobboo6bo14bobbobo9bobobbo10bo13bo6boo6bobo12bobobb3o$35bo11boboobo9bo17bo10bobbobboo8bobo4bo12b3o$3bobobo8bobboobo10bo3bo27bo11bo33bobo9bobo10bobboobo$17bo14bo13b3o3bobo6bobo12bobbobo9bobobobbo8bobbo15bobo8bo$bb3ob3o8bo3b3o8boob3o15boo6bobobboo8boo4bo8boo3bo11bo3b3o7b3o4bo7bo4bobo$61bo3bo15boo13bo11bo19boo13boo7$boo13boobb3o8b3o12b3o12boo13boobb3o11bo11boo13boo13boo$bobobo10bo36boo6bobbobo9bo17boboboo6bobo12bobo3bo8bobob3o$5bobo9bobobboo8boboob3o7boboobobo8bobbobo8bobobboo8bo6bo27bo$3bo5bo21bo14bo21bo29bo7bobboob3o8bobobbo7bobbobo$bbo6bo8bobbobbo6boo3bobo7boo3bobbo7boo4bo9bo3bo8boo14bo29bo$bboobobobo9bo3bo15bo13bo11boo13bo16bobo7bo3bobo8b3obobo8bo3bobo$7bo11bo3bo14boo13bo9boo11boobbo12bobobboo14bo14bo14bo$65bo12bo16bo17boo13boo13boo6$bboo13boo12boo13boo13boo4boo7boo3bo9boo5bo7boo3bobo8bo3bo9boo$bbobo12bobo11bo3boo9bobo12bobo4bo7bo4bo9bo6bo7bo4bo10bobobboo7bobobboo$21bo10bobobo13bo14bobo9bobobbo9bobobobbo7bobo4boo6bobo15bobo$bbobboo10bo3bo26bobboo10bo49bo12bo11bo$7bo14bo9boobbo29bo10bo3bobo8bobbobobo7bo3bo11bo17bo$boo13boo16bo13bobobo9bobobbo8bobbobobo9bo6bo5bobbobo13bobo9bobo$7bobo12bobo11bobo9boo12boobboo8boo5bo9bo5boo5boo13boobbobo9boobbobo$3bobobboo8bobobboo14bo12bobo68bo3bo14boo$5bo14bo17boo13boo5$boo4bo10bo12boo4bo9bo14bo14bo3bo9boo13boo3bo9bo3bo14bo$bobo3bo10bo4boo6bo5bo9bo6boo6bobo12bo3bobo7bobo5boo5bo4bobo7bo3bobo12bobo$5bobbo7bobbo4bo7bobobobbo6bobbo3bobo6bobobo9bobbo20bo6bobo10bobbo14bo5bobo$3bo17bobo44bo15boo5bobboobobo14boo12boo6boo6bo$6boo8boobbo11bobbobboo6boboboobo9bo4bobo6boo13bo15bo12boo17bo6boo$bbobo17b3o8bo12boo14bo6bo14bo7bo3bobbo7bo6bo12bobbo7bobo5bo$bboobb3o8b3o13bobb3o13b3o7boobobobo6b3obobo15bo8boobobo10bobo3bo12bobo$67bo14bo15bo13bo12bo3bo14bo6$bboo12boo13boobo13boo12bo14boo12boo13boo15bobo$bbobo11bobobobo8bo3boo12bo12bo14bobo11bobo12bobo16bo12bobo$6bo13bo11bo15bo3bo8bobbo16bobo37boo4bo12bo$bbobbobo10bo4boo9bo3boo10bobobo14boo6bo3bo9bobboo3bo6bobboo3boo7bo4boo6boo4bo$7bo14bo11bo4bo6boo6bo6boboboobobo13boo6bo6bo7bo7bo22bo4boo$boo15boobobo11boobo14bobo5boo13boo5bo8bo3boobbo6bo3boobo9boo4bo9bo$7bobo37bo5bo13bobbo11bobo41bo4boo7bo4bo$3bobobboo7b3o17b3o9bobo17bo8bobo17bobo12b3o12bo12bo4boo$5bo43bo19bo10bo18boo27bobo12bo$143bobo4$bbobo14bo14bo14bo11boo6boo5boobboo9boo13boo13boo13boo$4bo14bobo12bobo12bobo9bobo6bo5bobobbo9bobo12bobo12bobo5bo6bobo5bo$oo4bo10bo14bo5bo8bo5bo13bobo10bo18boo11b3o14bo10bobobo$bbo19boo14bo14bo9bobo11bo15bobo4bo7bobo12bobobobbo7bo3bobo$6boo8boo6bo6boo6bo6boo6bo11bobbo6bobbobo15bobo11bobo$3boo57b3o3bo7boo15bobbo10b3o13bobbobobo7bobobbo$8bo9bo6boo6bo6boo6bo6boo11bo12bobo10bo3b3o12bobo8bo4boo7boobbo$4bo4boo8boo13bo14boo31boo10bo19boo8bo17bo$6bo18bo8bo5bo14bo$6bobo12bobo12bobo12bobo$23bo14bo14bo3$boo13boo13boo13boo4bo8boo4bo8boo4bo8boo13boo4bo8boo13boo$bobo5boo5bobo5boo5bobo4bo7bo5bo8bo5bo8bobo3bo8bobo12bo5bo8bobo12bobo$10bo14bo12bo8bobobobbo7boboobbo11bobbo11bobo9bobobobbo$3bobobobo8bobobobo8boboobbo36bobbo13bo3bo25bobo3boo5bobboob3o$49bo3boo6b3obbobo8bo3bobo15bo9bo3boo15bo6bo$3bobbob3o6b3obobbo7b3obbobo37bo15bobo4boo20b3oboobo7bo3bobo$4bo18bo16bo8b3ob3o12bobo12bobo7boobbo10bobobo$4bo18bo15boo28boo13boo11bobo8bobo17b3o12bobo$108bo35boo5$boo13boo3bo9boo3bo9boo3bo9boo13boo$bobo3bo8bo4bo9bo4bobo7bo4bobo7bobo12boboboo$7bo9bobobbo9bobo12bobo15bo15bo$3bobobbo30boo13boo7bobboo9bobbo$16b3obobo11bo14bo28bo$bb3obobo26bo3bo10boobbo8bobobo10bobobo$22bobo10bo27boo$8bobo14bo11bobo12bobo12bobo12bobo$9boo13boo12boo13boo15bo14bo$69boo13boo! mniemiec Posts: 905 Joined: June 1st, 2013, 12:00 am ### Re: Soup search results That one other P2 variant mentioned recently: x = 194, y = 38, rule = B3/S23142bo$64bo76bo$65bo75b3o$63b3o73bo$67bo72bo$67bobo68b3o$67b2o$114bo$113bo26bobo$2o53b2o44b2o6b2o2b3o14b2o8b2o15b2o26b2o$o17b2o35bo17b3o25bo6bo2bo18bo10bo15bo27bo$bob2o3b2o4b2ob2o37bob2o3b2o8bo28bob2o2bob2o19bob2o23bob2o24bob2o$5bobobo3bobo3bo40bobobo9bo31bobo26bo7bo18bo27bo$3o2bobo5b2o40b3o2bobo38b3o2bobo21b3o2bo7bobo11b3o2bo22b3o2bo$4b2ob2o20bo29b2ob2o41b2ob2o24b2ob2o4b2o16b2obo24b2obo$29bobo29bo2bo42bo2bo25bo2bo23bobo25bobo$13b2o14b2o30bobo43bobo26bobo24bo2bo24bobo$b2o9bo2bo46bo45bo28bo16bo9bobo25bo$o2bo8bo2bo139b2o8bo$o2bo3b2o4b2o139b2o$b2o4bobo103bo28bo$7bo105bo28bo27bo$14b2o97bo28bo27bo$4bo9bobo153bo$4b2o8bo45b3o46b3o3b3o20b3o3b3o10bo$3bobo151b2o7b3o3b3o$64b2o47bo28bo13bobo4b2o$63bo2bo46bo28bo21b2o4bo$63bo2bo46bo28bo20bo6bo$64b2o104bo2$62bo$62b2o$61bobo2$76b3o$76bo$77bo!

It's probably possible to get to the traffic light with only two cleanup gliders, although that would probably require a computer search.

mniemiec wrote:
Kayzan wrote:If there is a component to shorten a barberpole, it also solves one of the three remaining 15-bit oscillators (again according to Mark's site).

Sadly, there is no such component known yet, and it would likely be very difficult. When I discussed this topic with Dave Buckinhgam years ago, he said that lengthening a barber pole was relatively easy (he had several converters to do so, and I found several other related ones), but that I would not likely find a way to shorten one.

I found a way, although it isn't applicable here:
x = 15, y = 27, rule = B3/S235bo$5bobo$5b2o2$o$b2o$2o3$10b2o$9bobo$b2o$obo4bobo4bo$2bo3bo5b2o$6b2o5b2o6$3o9bo$2bo8b2o$bo9bobo2$6b2o$6bobo$6bo! However, based off of the predecessor, here is a final step for the 15-bit version: x = 32, y = 29, rule = B3/S2331bo$29b2o$30b2o$7bo$8b2o13bo$7b2o3bobo6b2o$12b2o8b2o$13bo2$6bo$4bobo10b2o$b2o2b2o9bobo$obo8bo4bo$2bo7bobob2obo$10bob2obobo5b2o$8b2obo4bo5b2o$8bo2bo12bo$2bo6b2o$2b2o$bobo$14b2o$13bobo$15bo4b2o$20bobo$20bo2$13b2o$12bobo$14bo! EDIT: The prior steps: x = 184, y = 34, rule = B3/S23125bobo$125b2o$126bo$110bo$111b2o15bobo$110b2o16b2o$129bo4$83bo29bo$18bo65b2o28bo42bo$18bobo62b2o27b3o40b2o$18b2o136b2o$83bo26b2o$9bobo71b2o24bobo40b2o$10b2o10b2o38b2o18bobo6b2o18bo7b3o5b2o24bo5b2o21b2o$10bo10bobo20bo16bobo26bobo33bobo18b2o3bo5bobo20bobo$21bo23b2o14bo28bo35bo19bobo3b2o4bo17bo4bo$obo14bob2obo21b2o11bob2obo23bob2obo30bob2obo20bo5bob2obo15bobob2obo$b2o2b2o10b2obobo34b2obobo23b2obobo30b2obobo26b2obobo15bob2obobo$bo2bobo14bo33b2o4bo22b2o4bo29b2o4bo25b2o4bo14b2obo4bo$6bo47bobo26bobo33bobo29bobo19bo2bo$55bo26bobo33bobo29bobo21b2o$82b2o34b2o30b2o$10b3o$12bo133bo5b2o$11bo134b2o4bobo$18b3o124bobo4bo$18bo29bo$19bo27b2o$43bo3bobo$44b2o$43b2o! I Like My Heisenburps! (and others) Extrementhusiast Posts: 1696 Joined: June 16th, 2009, 11:24 pm Location: USA ### Re: Soup search results mniemiec wrote:... FYI, here is my current list of unsynthesized P2s up to 18 bits: 1 14, 2 15s, 6 16s, 24 17s, and 52 18s. Of these, the last 16, 6 of the 17s, and the last 22 18s are trivial, applying grow-barberpole converter to a smaller unsynthethesized one. x = 149, y = 114, rule = B3/S23bb3o11boo13boo13boo13boo4boo7boo16bo13bobo10boo$16bobob3o8boboboo9bobobb3o7bobo4bo7bobob3o9bobobo11bobboo8bobobo$boobbobo28bo28bobo24bo5bo7bobboo14bo$6bo9bobbobo10bobbo10bobboobo8bobbo11bobbobo9bobo4bobo11boo9bobbo$bbo4boo8bo4bo10bo13bo5bo8bo3b3o8bo15bo5bo6boo14bo$4bo12bo3boo10bobobo9bo4boo8bo14bo3bobo11bobobo12bo9boobobo$4bobo29boo44boo13bo10bobo17bo$110bo16boo6$boo5boo6boo5boo6boo4bo8boo3b3o7boobboo9boobboo10bobb3o8boo13boo13boo$bobo3bobo6bobo3bobo6bobobobboo6bo14bobbobo9bobobbo10bo13bo6boo6bobo12bobobb3o$35bo11boboobo9bo17bo10bobbobboo8bobo4bo12b3o$3bobobo8bobboobo10bo3bo27bo11bo33bobo9bobo10bobboobo$17bo14bo13b3o3bobo6bobo12bobbobo9bobobobbo8bobbo15bobo8bo$bb3ob3o8bo3b3o8boob3o15boo6bobobboo8boo4bo8boo3bo11bo3b3o7b3o4bo7bo4bobo$61bo3bo15boo13bo11bo19boo13boo7$boo13boobb3o8b3o12b3o12boo13boobb3o11bo11boo13boo13boo$bobobo10bo36boo6bobbobo9bo17boboboo6bobo12bobo3bo8bobob3o$5bobo9bobobboo8boboob3o7boboobobo8bobbobo8bobobboo8bo6bo27bo$3bo5bo21bo14bo21bo29bo7bobboob3o8bobobbo7bobbobo$bbo6bo8bobbobbo6boo3bobo7boo3bobbo7boo4bo9bo3bo8boo14bo29bo$bboobobobo9bo3bo15bo13bo11boo13bo16bobo7bo3bobo8b3obobo8bo3bobo$7bo11bo3bo14boo13bo9boo11boobbo12bobobboo14bo14bo14bo$65bo12bo16bo17boo13boo13boo6$bboo13boo12boo13boo13boo4boo7boo3bo9boo5bo7boo3bobo8bo3bo9boo$bbobo12bobo11bo3boo9bobo12bobo4bo7bo4bo9bo6bo7bo4bo10bobobboo7bobobboo$21bo10bobobo13bo14bobo9bobobbo9bobobobbo7bobo4boo6bobo15bobo$bbobboo10bo3bo26bobboo10bo49bo12bo11bo$7bo14bo9boobbo29bo10bo3bobo8bobbobobo7bo3bo11bo17bo$boo13boo16bo13bobobo9bobobbo8bobbobobo9bo6bo5bobbobo13bobo9bobo$7bobo12bobo11bobo9boo12boobboo8boo5bo9bo5boo5boo13boobbobo9boobbobo$3bobobboo8bobobboo14bo12bobo68bo3bo14boo$5bo14bo17boo13boo5$boo4bo10bo12boo4bo9bo14bo14bo3bo9boo13boo3bo9bo3bo14bo$bobo3bo10bo4boo6bo5bo9bo6boo6bobo12bo3bobo7bobo5boo5bo4bobo7bo3bobo12bobo$5bobbo7bobbo4bo7bobobobbo6bobbo3bobo6bobobo9bobbo20bo6bobo10bobbo14bo5bobo$3bo17bobo44bo15boo5bobboobobo14boo12boo6boo6bo$6boo8boobbo11bobbobboo6boboboobo9bo4bobo6boo13bo15bo12boo17bo6boo$bbobo17b3o8bo12boo14bo6bo14bo7bo3bobbo7bo6bo12bobbo7bobo5bo$bboobb3o8b3o13bobb3o13b3o7boobobobo6b3obobo15bo8boobobo10bobo3bo12bobo$67bo14bo15bo13bo12bo3bo14bo6$bboo12boo13boobo13boo12bo14boo12boo13boo15bobo$bbobo11bobobobo8bo3boo12bo12bo14bobo11bobo12bobo16bo12bobo$6bo13bo11bo15bo3bo8bobbo16bobo37boo4bo12bo$bbobbobo10bo4boo9bo3boo10bobobo14boo6bo3bo9bobboo3bo6bobboo3boo7bo4boo6boo4bo$7bo14bo11bo4bo6boo6bo6boboboobobo13boo6bo6bo7bo7bo22bo4boo$boo15boobobo11boobo14bobo5boo13boo5bo8bo3boobbo6bo3boobo9boo4bo9bo$7bobo37bo5bo13bobbo11bobo41bo4boo7bo4bo$3bobobboo7b3o17b3o9bobo17bo8bobo17bobo12b3o12bo12bo4boo$5bo43bo19bo10bo18boo27bobo12bo$143bobo4$bbobo14bo14bo14bo11boo6boo5boobboo9boo13boo13boo13boo$4bo14bobo12bobo12bobo9bobo6bo5bobobbo9bobo12bobo12bobo5bo6bobo5bo$oo4bo10bo14bo5bo8bo5bo13bobo10bo18boo11b3o14bo10bobobo$bbo19boo14bo14bo9bobo11bo15bobo4bo7bobo12bobobobbo7bo3bobo$6boo8boo6bo6boo6bo6boo6bo11bobbo6bobbobo15bobo11bobo$3boo57b3o3bo7boo15bobbo10b3o13bobbobobo7bobobbo$8bo9bo6boo6bo6boo6bo6boo11bo12bobo10bo3b3o12bobo8bo4boo7boobbo$4bo4boo8boo13bo14boo31boo10bo19boo8bo17bo$6bo18bo8bo5bo14bo$6bobo12bobo12bobo12bobo$23bo14bo14bo3$boo13boo13boo13boo4bo8boo4bo8boo4bo8boo13boo4bo8boo13boo$bobo5boo5bobo5boo5bobo4bo7bo5bo8bo5bo8bobo3bo8bobo12bo5bo8bobo12bobo$10bo14bo12bo8bobobobbo7boboobbo11bobbo11bobo9bobobobbo$3bobobobo8bobobobo8boboobbo36bobbo13bo3bo25bobo3boo5bobboob3o$49bo3boo6b3obbobo8bo3bobo15bo9bo3boo15bo6bo$3bobbob3o6b3obobbo7b3obbobo37bo15bobo4boo20b3oboobo7bo3bobo$4bo18bo16bo8b3ob3o12bobo12bobo7boobbo10bobobo$4bo18bo15boo28boo13boo11bobo8bobo17b3o12bobo$108bo35boo5$boo13boo3bo9boo3bo9boo3bo9boo13boo$bobo3bo8bo4bo9bo4bobo7bo4bobo7bobo12boboboo$7bo9bobobbo9bobo12bobo15bo15bo$3bobobbo30boo13boo7bobboo9bobbo$16b3obobo11bo14bo28bo$bb3obobo26bo3bo10boobbo8bobobo10bobobo$22bobo10bo27boo$8bobo14bo11bobo12bobo12bobo12bobo$9boo13boo12boo13boo15bo14bo$69boo13boo!

I mistakenly thought I found this p2 16-bit oscillator in the list above and found a synthesis for it:

x = 5, y = 8, rule = B3/S23o2b2o$obobo$o$2bo$2bo$o$obobo$o2b2o! It is quite a cheap synthesis so I'll post it anyway. What was the previously known synthesis? Here it is 12 gliders: x = 34, y = 61, rule = B3/S234$11bo$10bo$10b3o3$11bo$12b2o$11b2o$15b2o$14bobo$16bo4$17bo$17bobo$17b2o$8bobo$9b2o$9bo3$6bo$7bo$5b3o2$2b3o$4bo$3bo2$15bo$14b2o$14bobo$6b2o$5bobo$7bo3$20bo$19bo$19b3o$15b3o$15bo$16bo4$10b3o$10bo$11bo! It kind of looks like the gliders would collide when rewound but in fact they don't: EDIT: Extrementhusiast wrote:... EDIT: The prior steps: prior steps that I had no luck constructing myself Great! That makes 42 gliders in total: (EDIT 4: replaced this with a 37 glider version using a better converter from Extrementhusiast and chris_c) x = 447, y = 30, rule = B3/S2349bo$47bobo381bo$48b2o7bo371b2o$57bobo4bo280bo84b2o$57b2o4bo279bobo61bo$63b3o110bo3bo163b2o3bo58b2o13bo$177bobo53bo115bobo55b2o3bobo6b2o$175b3ob3o51bobo113b2o61b2o8b2o$67b2o164b2o178bo$57bo8b2o276bo3bo$56bo11bo19bo29bo29bo29bo45bobo118bo3b2o55bo$56b3o28bobo27bobo27bobo27bobo27b2o16b2o10b2o28b2o28b2o28b2o14b3o2b2o7b2o28b2o15bobo10b2o$86bobo3b2o22bobo3b2o22bobo27bobo27bobo16bo10bobo27bobo10bo16bobo27bobo27bobo27bobo12b2o2b2o9bobo21b2o$54b2o30bo5b2o22bo5b2o22bo29bo29bo29bo29bo13b2o14bo29bo29bo24bo4bo13bobo8bo4bo23bobob3o$31b2o20bobo5b2o19bob2obo24bob2obo24bob2obo24bob2obo24bob2obo7bobo14bob2obo24bob2obo11b2o11bob2obo24bob2obo24bob2obo22bobob2obo14bo7bobob2obo$3o28b2o22bo5b2o19b2obobo24b2obobo6b2o16b2obobo24b2obobo24b2obobo8b2o2b2o10b2obobo24b2obobo24b2obobo24b2obobo24b2obobo22bob2obobo22bob2obobo5b2o15bo2bobo$2bo83bo29bo7bobo19bo29bo29bo9bo2bobo14bo23b2o4bo23b2o4bo23b2o4bo23b2o4bo21b2obo4bo21b2obo4bo5b2o17bo4bo$bo122bo96bo37bobo27bobo27bobo27bobo26bo2bo26bo2bo12bo16bo3b2o$3b3o254bo29bo27bobo27bobo28b2o21bo6b2o$3bo314b2o28b2o52b2o$4bo220b3o173bobo$227bo116bo5b2o62b2o$226bo117b2o4bobo60bobo$233b3o107bobo4bo64bo4b2o$233bo49bo136bobo$234bo47b2o136bo$278bo3bobo$279b2o132b2o$278b2o132bobo$414bo!

Only one 15-bit oscillator left; muttering moat 1.

EDIT 2:

Here's one of the unsolved 17-bit p2s in 15 gliders:

x = 34, y = 55, rule = B3/S2331bo$31bobo$31b2o8$10bobo$11b2o$11bo$19bobo$10bo8b2o$9bo10bo$9b3o$obo$b2o10bobo$bo11b2o$14bo5$16bobo$16b2o$17bo$19b2o$19bobo$19bo4$14bo$bo11b2o4b3o$b2o10bobo3bo$obo17bo$9b3o$9bo$10bo3$24bo$23b2o$23bobo$7bo$7b2o$6bobo4$31b2o$31bobo$31bo! EDIT 3: Here's one of the unsolved 18-bit p2s in 16 gliders: x = 49, y = 58, rule = B3/S2311bo$12bo$10b3o4$15bo$13bobo$14b2o4$2bo$obo$b2o3$23bo$22bobo$22bo2bo$23b2o6$36bo$15b2o19bobo$14bo2bo14b2o2b2o$11b2o2b2o14bo2bo$10bobo19b2o$12bo6$24b2o$23bo2bo$24bobo$25bo3$46b2o$46bobo$46bo4$33b2o$33bobo$33bo4$36b3o$36bo$37bo!
Last edited by Goldtiger997 on January 17th, 2017, 7:07 pm, edited 1 time in total.

Goldtiger997

Posts: 392
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

### Re: Soup search results

Extrementhusiast wrote:The prior steps

This gives a 5 glider reduction and yields 16.897 and 16.1086 in 14 and 13 gliders respectively:

x = 35, y = 44, rule = LifeHistory29.A$23.A5.A.A$21.2A6.2A$15.A6.2A$13.A.A$14.2A10$3A$2.A$.A4$22.E.2E$22.2E.E$20.2E$19.E.E$18.E.E$18.2E15$.2A30.2A$A.A29.2A$2.A31.A! chris_c Posts: 804 Joined: June 28th, 2014, 7:15 am ### Re: Soup search results Goldtiger997 wrote:Here it is 12 gliders: x = 34, y = 61, rule = B3/S234$11bo$10bo$10b3o3$11bo$12b2o$11b2o$15b2o$14bobo$16bo4$17bo$17bobo$17b2o$8bobo$9b2o$9bo3$6bo$7bo$5b3o2$2b3o$4bo$3bo2$15bo$14b2o$14bobo$6b2o$5bobo$7bo3$20bo$19bo$19b3o$15b3o$15bo$16bo4$10b3o$10bo$11bo! It kind of looks like the gliders would collide when rewound but in fact they don't: 10G: x = 23, y = 50, rule = B3/S2312bo$11bo$11b3o3$12bo$13b2o$12b2o$16b2o$15bobo$17bo8$o$b2o$2o$14bo$12b2o$13b2o3$13b2o$12b2o$3b2o9bo$4b2o$3bo8$21bo$20bo$20b3o$16b3o$16bo$17bo4$11b3o$11bo$12bo! Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) : 965808 is period 336 (max = 207085118608). AbhpzTa Posts: 429 Joined: April 13th, 2016, 9:40 am Location: Ishikawa Prefecture, Japan ### Re: Soup search results chris_c wrote: Extrementhusiast wrote:The prior steps This gives a 5 glider reduction and yields 16.897 and 16.1086 in 14 and 13 gliders respectively: RLE Oh yeah, forgot about that component. Here's a better version (same cost, but much cleaner): x = 13, y = 21, rule = LifeHistory2.A$A.A$.2A3.A$6.A.A$6.2A2$.A3.A$2.A3.2A$3A2.2A3$9.E.2E$9.2E.E$7.2E$6.E.E$5.E.E$5.2E2$.A5.2A$.2A4.A.A$A.A4.A! I Like My Heisenburps! (and others) Extrementhusiast Posts: 1696 Joined: June 16th, 2009, 11:24 pm Location: USA ### Re: Soup search results A 41-cell SL that also implies a simpler synthesis of a 40-cell pseudo-SL: x = 16, y = 16, rule = B3/S23booboobobooboooo$obooobbbobobboob$obbboooboobbbobo$obboobbbobbobbbb$oooboooboobbooob$ooooboobbbbbbobo$obbbbbbobbbobbbo$booooboobboboboo$bboooobobooobobo$oobbobbbbbbobobo$ooboobooobbobbbo$bbbbbooboooobobo$bbooobbbbbboboob$oobobbbobbbbbbob$bobbbboobbboobob$bobooooooobobbbb!

What I'm calling a "two-leaf clover":
x = 16, y = 16, rule = B3/S23obobbbbobobbooob$obbobboooboobobo$boobobbbooboobbo$obbbobbbbooboooo$boboooobbboboooo$bobobooobooooobo$bbboboobboobobbo$boboobobooooobbo$oobbobbooobboboo$obbbboboooboobbb$bbboobbobbbbooob$obboooobboooobbo$obooobooobboooob$obooobbooobbbobo$bbbbbooobbbbboob$oooboobbbbobbbbb! (Although I definitely don't have naming rights.) x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt) $$x_1=\eta x$$ $$V^*_\eta=c^2\sqrt{\Lambda\eta}$$ $$K=\frac{\Lambda u^2}2$$ $$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$ http://conwaylife.com/wiki/A_for_all Aidan F. Pierce A for awesome Posts: 1616 Joined: September 13th, 2014, 5:36 pm Location: 0x-1 ### Re: Soup search results The 41-cell SL and the two variants: x = 104, y = 24, rule = B3/S2313bo39bo39bo$12bo39bo39bo$12b3o37b3o37b3o2$5bobo37bobo14bo15bo6bobo14bo$6b2o38b2o13bo17bo6b2o13bo$6bo39bo14b3o13b3o6bo14b3o$16bo39bo39bo$14b2o38b2o38b2o$15b2o38b2o38b2o$8bo39bo39bo$bo4bobo10bo21bo4bobo10bo21bo4bobo10bo$2bo4b2o9bo23bo4b2o9bo23bo4b2o9bo$3o15b3o19b3o15b3o19b3o15b3o8$3b3o9b3o25b3o9b3o25b3o9b3o$5bo9bo29bo9bo29bo9bo$4bo11bo27bo11bo27bo11bo!

The two-leaf's reaction, and another found while experimenting, both in 5 gliders:
x = 67, y = 25, rule = B3/S2327bo37bo$26bo31bo5bo$26b3o28bo6b3o$10bo46b3o$11b2o$10b2o3$59bo$2b2o3b2o33b2o3b2o8b2o$bo2bobo2bo31bo2bobo2bo8b2o$bob2ob2obo10bo20bob2ob2obo$2o2bobo2b2o8bo20b2o2bobo2b2o$2b2o3b2o10b3o20b2o3b2o$2o2bobo2b2o4b3o22b2o2bobo2b2o$bob2ob2obo5bo25bob2ob2obo$bo2bobo2bo6bo24bo2bobo2bo$2b2o3b2o33b2o3b2o$56b3o$18b3o35bo$18bo38bo$19bo$48b2o$49b2o$48bo!43bo$44bo! LifeWiki: Like Wikipedia but with more spaceships. [citation needed] BlinkerSpawn Posts: 1717 Joined: November 8th, 2014, 8:48 pm Location: Getting a snacker from R-Bee's ### Re: Soup search results The 41-cell SL in 8G: x = 51, y = 59, rule = B3/S2349bo$48bo$48b3o19$o$b2o$2o15$17bo$18b2o$17b2o$30b2o$26bo3b2o$25b2o$25bobo8$17bobo$18b2o$18bo2$18b3o$20bo$19bo! Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) : 965808 is period 336 (max = 207085118608). AbhpzTa Posts: 429 Joined: April 13th, 2016, 9:40 am Location: Ishikawa Prefecture, Japan ### Re: Soup search results "22-bit p4 oscillator #2" in 14 gliders: x = 34, y = 26, rule = B3/S2315bo$16bo$14b3o$22bo$21bo$21b3o7bo$30bo$16bo13b3o$15bo$15b3o$bo8bo17bo$2bo8b2o14bo$3o7b2o15b3o$4b3o15b2o7b3o$6bo14b2o8bo$5bo17bo8bo$16b3o$18bo$b3o13bo$3bo$2bo7b3o$12bo$11bo$17b3o$17bo$18bo!

Tight predecessor for "22-bit p4 oscillator #3":
x = 9, y = 22, rule = B3/S23bo$obo$obo5bo$bo4b2o$8bo3$6b3o$8bo$5b3o3$5b3o$8bo$6b3o3$8bo$bo4b2o$obo5bo$obo$bo! LifeWiki: Like Wikipedia but with more spaceships. [citation needed] BlinkerSpawn Posts: 1717 Joined: November 8th, 2014, 8:48 pm Location: Getting a snacker from R-Bee's ### Re: Soup search results Kayzan wrote:If there is a component to shorten a barberpole ... Extrementhusiast wrote:I found a way, although it isn't applicable here: ... Wow! Very impressive! I would not have expected such a converter to have been found for a long time (and certainly not this cheaply). One of the gliders can be moved to make this less obtrusive, and allow its use in many situations where one side the modified pattern protrudes beyond the lane the barber-pole is in on one side, but not the other. While there are few cases I can think of where this converter is advantageous, it IS useful for adding tripoles, because that takes around 20 gliders, while adding a quadpole takes only 7, and shorting it another 7, saving 6 gliders. (This does not help with bipoles, because adding a bipole is cheaper than shortening a quadpole twice.) I have tried applying this to all my syntheses involving tripoles. This improves 5 oscillator syntheses. It also improves 5 pseudo-oscillator syntheses; the last one requires a slight alteration of this method, but it could not previously be done this way at all, so this dramatically reduces the cost from 41 to 20 gliders. I currently have 5 syntheses that cannot currently be improved because they protrude on both sides; 3 of these are pseudo-objects, formed from the 3 still-lifes that I originally found most challenging when first investingating pseudo-object syntheses. There are 133 other syntheses where this improves an alternate synthesis, but not the minimal one. The 5 improved oscillator syntheses: x = 227, y = 209, rule = B3/S2393bo$92bo$38bobo51b3o$39boo$39bo5bo53bo$46boo43bo5boo$11bo33boo42bobo6boo$9boo30boo47boo$10boo30boo$41bo58bo$99boo$64boo28boo3bobo$64bo29bo20boo$bbo62bobo23bo3bobo17bobo$obo89bo$boo25boo18boo17bobo15boo3b3o4bobo17bobo$13b3o12bobo17bobo19bo15boo12bo19bo$13bo15boo18boo18boo14bo4bo8boo18boo$4bobo7bo16boo18boo18boo17boo9boo18boo$5boo24bo19bo19bo17bobo9bo19bo$5bo26bobo17bobo17bobo27bobo17bobo$35bo19bo19bo29bo19bo$6b3o11boo12boo18boo18boo28boo18boo$8bo11bobo$7bo12bo3$19boo$19bobo$19bo$$8boo9boo8bo610bo8bobo9boo138bo88bobo57bo33bo55boo57b3o13bobo17bobo53bo5bo14boo17boo61boo14bo80boo41bo12bo91boo46boo5bobobbobo92boo44boo7boobboo91bo42bo12bo56bobo75boo23bo28bo3boo56boo17bobo8boo24bo28boobbo56bo29bo20boo22b3o27boo61bobo27bobo17bobo26bo26bobo10bo19bo18boo18boo17bobo17b3o7bobo17bobo26boo10boboboo14boboboo14boboboo14boboboo16boboo15bo3boo5boboo16boboo17bo21boobobo14boobobo14boobobo14boobobo14boobobo13bo4bobo3boobobo14boobobo18boo21bobbo16bobbo16bobbo16bobbo16bobbo18bo7bobbo16bobbo17boo22bobo17bobo17bobo17bobo17bobo27bobo17bobo42bo19bo19bo19bo19bo29bo19bo1019bo19boo18bobo37boo16bo8boo14boo7bo16bobo139bo10bo178bo8b3o117bobo57bo19bo109boo57b3o18bo110bo5bo18b3o115boo135boo41bo12bo131boo46boo5bobobbobo10bobo119boo44boo7boobboo11boo118bo42bo12bo11bo10bo73bobo75boo21bo70bo3boo56boo17bobo8boo21b3o69boobbo56bo29bo20boo92boo61bobo27bobo17bobo24boo24bobo12bobboo15bobboo15bobboo15bobboo14boobboo14boobboo13bobobboo13b3o7bobobboo13bobobboo24bo13bobobbo14bobobbo14bobobbo14bobobbo14bobobbo14bobobbo16bobbo15bo3boo5bobbo16bobbo8bo30boobo16boobo16boobo16boobo16boobo16boobo16boobo15bo4bobo3boobo16boobo8boo4b3o24bo19bo19bo19bo19bo19bo19bo21bo7bo19bo7bobo6bo15bo8bobo17bobo17bobo17bobo17bobo17bobo17bobo27bobo17bobo15bo15bo10boo18boo18boo18boo18boo18boo18boo28boo18boo31b3o42boo18boo42boo18boo17bo4b3o17boo5bo39b3o16bobo4bo40bo65bo811bo12boo11boo37bo36bo36b3o154bo192bo138bobo51b3o139boo139bo5bo53bo16bo129boo43bo5boo14bobo27bo100boo42bobo6boo15boo22bobobbobo94boo47boo39boo3boo96boo40bo100bo58bo106bobo90boo102bo3boo56boo28boo3bobo78bo24boobbo56bo29bo20boo78bobo21boo61bobo23bo3bobo17bobo78boo112bo49bo19bo19bo19bo18boo18boo17bobo15boo3b3o4bobo17bobo8bo3bo35bobo5boo10bobo5boo10bobo17bobo17bobo17bobo19bo15boo12bo19bo9boobobo34boo5boo11boo5boo11boo18boo18boo18boo18boo14bo4bo8boo18boo8boobboo37boo18boo18boo18boo18boo18boo18boo17boo9boo18boo51bo19bo19bo19bo19bo19bo19bo17bobo9bo19bo52bobo17bobo17bobo17bobo17bobo17bobo17bobo27bobo17bobo$$54bobo17bobo17bobo17bobo17bobo17bobo17bobo27bobo17bobo$55boo18boo18boo18boo18boo18boo18boo28boo18boo13$3boo30bo$4boo28boo$3bo30bobo3$6b3o$8bo$7bo7$3boo28boo18boo28boo18boo28boo28boo38boo$3bo29bo19bo29bo19bo29bo29bo39bo$5boo28boo18boo28boo18boo28boo28boo38boo$$6bobo27bobo17bobo27bobo17bobo27bobo27bobo37bobo$$8bobo27bobo17bobo27bobo17bobo27bobo27bobo37bobo$$10bobo27bobo17bobo27bobo17bobo27bobo27bobo37bobo12bo8bo20bo19bo29bo19bo29bo29bo39bo14bo4boo23bo19bo29bo19bo29bo29bo39bo13boo5boo21boo18boo28boo18boo28boo28boo7bo30boo45boo18boo28boo18boo28boo28boo3bobo4bo27boo5bobbo9bo26bobo17bobo27bobo17bobo27bo29bo5boo3bo28bo9bobbo4boo27bo19bo29boo18boo28bobo27bobo7b3o27bobo5bo3bobboo3bobo6b4obobo58boo74bobo27bobo37bobo68bobboo78bo29bo37boo15boo51boo3bo76boo28boo8bobo15bobo49bobo120boo15bo108bo53bo12bo122boo49boobboo7boo123boo47bobobbobo5boo119boo53bo12bo118boo120bo5bo125boo48b3o125bobo49bo176bo! The 5 improved pseudo-oscillator syntheses: x = 227, y = 167, rule = B3/S23199bo198bo154bobo41b3o155boo155bo5bo43bo162boo33bo5boo161boo32bobo6boo157boo37boo158boo157bo48bo122bobo80boo118bo3boo56boo18boo3bobo46bobo70boobbo56bo19bo20boo47boo69boo61bobo13bo3bobo17bobo47bo36bo113bo85bo19bo19bo18boo18boo17bobo5boo3b3o4bobo17bobo29boo18boo32b3o18bobo17bobo17bobo17bobo19bo5boo12bo19bo29boo18boo54boo18boo18boo18boo18boo4bo4bo8boo18boo196boo25boo18boo18boo18boo18boo18boo18boo18boo18boo8bobo7boo18boo26bo19bo19bo19bo19bo19bo19bo19bo19bo19bo19bo23bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo4bo17bo19bo19bo19bo19bo19bo19bo19bo19bo19bo19bo5bobbobo11boo18boo18boo18boo18boo18boo18boo18boo18boo18boo18boo3b3obboo7boo9bo6boo18bo4boo3boo5bo12179bo148bobo29bo148boo28b3o143bo5bo3bo137boobobo138boo33bo12bobboo142boo27bobobbobo5boo12bobo130boo29boobboo7boo12boo88bobo42bo33bo12bo13bo88boo89boo103bo59boo18boo8bobo31boo18boo18boo18boo18boo18boo18boo11bo6boo11bo16boo9boo31bobo17bobo17bobo17bobo10boo5bobo17bobo17bobo7bobo7bobo7bobo17bobo7bobo60bo42boo33bobo17bobobboo13bobo3bo13bobo3bo5bo7bobo3boo12bobo3boo12bobo3bobo11bobo3bobo7b3o11bobo3bobo36bo19bobboo15bobobo15bobobo15bobobo15bobobo15bobo17bobo5boo3bo16bobo35boo18boo18booboo15booboo15booboo15booboo15booboo15booboo3bobo4bo14booboo3o182bobbobo13b3o11boobbo12boobbo11bo24boo24bobo24bo93bobobobboo12bobo12boo13bo63bo31boo18boo11bo6boo18boo18boo18boo18boo18boo28boo31bobo17bobo8b3o6bobo17bobo17bobo17bobo17bobo17bobo27bobo$$33bobo17bobo5b3o9bobo17bobo17bobo17bobo17bobo17bobo9bo17bobo$36bo19bo4bo14boboo16boboo16boboo16boboo16boboo16boboo3bobo4bo15boboo$35boo18boo5bo12boobobo14boobobo14boobobo14boobobo14boobo16boobo5boo3bo15boobo$3o76bo19bo5bo13boo18boo18bobo17bobo7b3o17bobo$bbo56bo43boo$bo13b3o41boo43boo55bobo17bobo27bobo$11boobbo42bobo103bo19bo27boo$12boobbo86bo59boo18boo8bobo$11bo90boo89boo$24boo76bobo42bo33bo12bo$24bobo118boo29boobboo7boo$24bo121boo27bobobbobo5boo$142boo33bo12bo$141boo$143bo5bo$148boo28b3o$148bobo29bo$179bo8$129bo$128bo$74bobo51b3o$75boo$75bo5bo53bo$82boo43bo5boo$81boo42bobo6boo$77boo47boo$78boo$77bo58bo$135boo$38bo10boo49boo28boo3bobo$6bo7bo24bo7bobobo48bo29bo20boo$4bobo5boo23b3o5bobobo51bobo23bo3bobo17bobo$5boo6boo31boo80bo$41boo21boo18boo17bobo15boo3b3o4bobo17bobo$5bo36boo20bobo17bobo19bo15boo12bo19bo$5boo34bo23boo18boo18boo14bo4bo8boo18boo$4bobo9boo11boo18boo18boo18boo18boo15boo11boo18boo$16bobo6boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14bobo7boo3bo14boo3bo$16bo9bobbo16bobbo16bobbo16bobbo16bobbo26bobbo16bobbo$26bobo17bobo17bobo17bobo17bobo27bobo17bobo$27bo19bo19bo19bo19bo29bo19bo$$bbobboobobo4172bo173bo135bobo33b3o135boo130bo5bo29bo128boo37boo5bo129boo35boo6bobo133boo39boo132boo134bo30bo87bobo75boo44bo43boo3bo56boo12bobo3boo6bo7bo27bobo43bobboo58bo19bo17boo4bobo5boo29boobbo44boo54bobo17bobo3bo13bobo5boo6boo31bo126bo46b3o17bo19bo19boo18boo18bobo17bobo4b3o3boo5bobo5bo35b3o21bobo17bobo17bobo17bobo17bo19bo12boo5bo5boo36bo21boo18boo18boo18boo18boo18boo8bo4bo4boo4bobo9boo11boo11bo6boo18boo18boo18boo18boo18boo18boo3boo13boo16bobo6boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo3bobo8boo3bo16bo9bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo26bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo27bo19bo19bo19bo19bo19bo19bo19bo3boo14bo172boobbo168bo4boobboo171boobobo173bo! The 5 syntheses that could not be improved: x = 86, y = 14, rule = B3/S2380boo39boo17boobo17bobbo38bobo17boboo16bobboo37bo18boo19bo36bo19bo19booo18boo14boboboo16boboo14bobobooobo17bobo14boobobo14boobobo14boobobo$$bbobo17bobobboo13bobo17bobo17bobo$5boboo16bobbo16bo19bo19bo$4boobo16boobo16boo18boo18boo$7bo18bo$4b3o16bobo$4bo18boo! mniemiec Posts: 905 Joined: June 1st, 2013, 12:00 am ### Re: Soup search results BlinkerSpawn wrote:"22-bit p4 oscillator #2" in 14 gliders: x = 34, y = 26, rule = B3/S2315bo$16bo$14b3o$22bo$21bo$21b3o7bo$30bo$16bo13b3o$15bo$15b3o$bo8bo17bo$2bo8b2o14bo$3o7b2o15b3o$4b3o15b2o7b3o$6bo14b2o8bo$5bo17bo8bo$16b3o$18bo$b3o13bo$3bo$2bo7b3o$12bo$11bo$17b3o$17bo$18bo!

10 gliders:
x = 24, y = 24, rule = B3/S2311bo$12bo$10b3o$16bo$15bo$15b3o2$10bo$9bo$9b3o$6bo14bobo$bo5b2o7b2o3b2o$b2o3b2o7b2o5bo$obo14bo$12b3o$14bo$13bo2$6b3o$8bo$7bo$11b3o$11bo$12bo! mniemiec wrote:The 5 improved pseudo-oscillator syntheses: x = 227, y = 167, rule = B3/S23199bo$198bo$154bobo41b3o$155boo$155bo5bo43bo$162boo33bo5boo$161boo32bobo6boo$157boo37boo$158boo$157bo48bo$122bobo80boo$118bo3boo56boo18boo3bobo$46bobo70boobbo56bo19bo20boo$47boo69boo61bobo13bo3bobo17bobo$47bo36bo113bo$85bo19bo19bo18boo18boo17bobo5boo3b3o4bobo17bobo$29boo18boo32b3o18bobo17bobo17bobo17bobo19bo5boo12bo19bo$29boo18boo54boo18boo18boo18boo18boo4bo4bo8boo18boo$196boo$25boo18boo18boo18boo18boo18boo18boo18boo18boo8bobo7boo18boo$26bo19bo19bo19bo19bo19bo19bo19bo19bo19bo19bo$23bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo$4bo17bo19bo19bo19bo19bo19bo19bo19bo19bo19bo19bo$5bobbobo11boo18boo18boo18boo18boo18boo18boo18boo18boo18boo18boo$3b3obboo7boo$9bo6boo$18bo$4boo$3boo$5bo12$179bo$148bobo29bo$148boo28b3o$143bo5bo$3bo137boo$bobo138boo33bo12bo$bboo142boo27bobobbobo5boo$12bobo130boo29boobboo7boo$12boo88bobo42bo33bo12bo$13bo88boo89boo$103bo59boo18boo8bobo$31boo18boo18boo18boo18boo18boo18boo11bo6boo11bo16boo9boo$31bobo17bobo17bobo17bobo10boo5bobo17bobo17bobo7bobo7bobo7bobo17bobo7bobo$60bo42boo$33bobo17bobobboo13bobo3bo13bobo3bo5bo7bobo3boo12bobo3boo12bobo3bobo11bobo3bobo7b3o11bobo3bobo$36bo19bobboo15bobobo15bobobo15bobobo15bobobo15bobo17bobo5boo3bo16bobo$35boo18boo18booboo15booboo15booboo15booboo15booboo15booboo3bobo4bo14booboo$3o182bo$bbo$bo13b3o$11boobbo$12boobbo$11bo$24boo$24bobo$24bo9$3bo$bobo$bboo$12bobo$12boo$13bo$63bo$31boo18boo11bo6boo18boo18boo18boo18boo18boo28boo$31bobo17bobo8b3o6bobo17bobo17bobo17bobo17bobo17bobo27bobo$$33bobo17bobo5b3o9bobo17bobo17bobo17bobo17bobo17bobo9bo17bobo36bo19bo4bo14boboo16boboo16boboo16boboo16boboo16boboo3bobo4bo15boboo35boo18boo5bo12boobobo14boobobo14boobobo14boobobo14boobo16boobo5boo3bo15boobo3o76bo19bo5bo13boo18boo18bobo17bobo7b3o17bobobbo56bo43boobo13b3o41boo43boo55bobo17bobo27bobo11boobbo42bobo103bo19bo27boo12boobbo86bo59boo18boo8bobo11bo90boo89boo24boo76bobo42bo33bo12bo24bobo118boo29boobboo7boo24bo121boo27bobobbobo5boo142boo33bo12bo141boo143bo5bo148boo28b3o148bobo29bo179bo8129bo128bo74bobo51b3o75boo75bo5bo53bo82boo43bo5boo81boo42bobo6boo77boo47boo78boo77bo58bo135boo38bo10boo49boo28boo3bobo6bo7bo24bo7bobobo48bo29bo20boo4bobo5boo23b3o5bobobo51bobo23bo3bobo17bobo5boo6boo31boo80bo41boo21boo18boo17bobo15boo3b3o4bobo17bobo5bo36boo20bobo17bobo19bo15boo12bo19bo5boo34bo23boo18boo18boo14bo4bo8boo18boo4bobo9boo11boo18boo18boo18boo18boo15boo11boo18boo16bobo6boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14bobo7boo3bo14boo3bo16bo9bobbo16bobbo16bobbo16bobbo16bobbo26bobbo16bobbo26bobo17bobo17bobo17bobo17bobo27bobo17bobo27bo19bo19bo19bo19bo29bo19bo$$bbo$bboo$bobo4$172bo$173bo$135bobo33b3o$135boo$130bo5bo29bo$128boo37boo5bo$129boo35boo6bobo$133boo39boo$132boo$134bo30bo$87bobo75boo$44bo43boo3bo56boo12bobo3boo$6bo7bo27bobo43bobboo58bo19bo17boo$4bobo5boo29boobbo44boo54bobo17bobo3bo13bobo$5boo6boo31bo126bo$46b3o17bo19bo19boo18boo18bobo17bobo4b3o3boo5bobo$5bo35b3o21bobo17bobo17bobo17bobo17bo19bo12boo5bo$5boo36bo21boo18boo18boo18boo18boo18boo8bo4bo4boo$4bobo9boo11boo11bo6boo18boo18boo18boo18boo18boo18boo3boo13boo$16bobo6boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo3bobo8boo3bo$16bo9bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo$26bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo$27bo19bo19bo19bo19bo19bo19bo19bo3boo14bo$172boo$bbo168bo4boo$bboo171boo$bobo173bo!

Reduced the fourth by 1 (trivially):
x = 84, y = 13, rule = B3/S2375bobo$bo10b2o57bo3b2o$2bo7bobobo57b2o2bo$3o5bobobo58b2o$9b2o$4b2o50bobo19bo$5b2o50b2o18bobo$4bo52bo20b2o$12b2o48b2o18b2o$8b2o3bo44b2o3bo14b2o3bo$9bo2bo46bo2bo16bo2bo$9bobo47bobo17bobo$10bo49bo19bo!
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa

Posts: 429
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

PreviousNext