ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Soup search results

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

Re: Soup search results

Postby HartmutHolzwart » November 24th, 2014, 3:32 pm

It really is impressive!

It makes one think what could be out there unreachable by wls
HartmutHolzwart
 
Posts: 398
Joined: June 27th, 2009, 10:58 am
Location: Germany

Re: Soup search results

Postby dvgrn » November 24th, 2014, 3:47 pm

flipper77 wrote:This symmetrical soup produces something I haven't seen before...

Yes, it looks as if no one else has ever seen it before, either! Theoretically I could have missed some prior art somewhere, but there are no 6c/12 puffers based on an unescorted pair of B-heptominoes on the twin-B puffer section of pentadecathlon.com, the LifeWiki, Jason Summers' puffer collections, or my email archives.

Seems to me it would be in jslife-20121230.zip/jslife/c2-extended/c2-0012.lif if this was a known puffer mechanism. In standard B-pair puffers right back to Bill Gosper's 1971 "puffer 1", the escorted B-heptominos are always two cells closer together.

#C 12x13, two 10x13, and 8x15 minimal 6c/12 block pair puffers
x = 22, y = 73, rule = B3/S23
4bo$2b4o$b2o3bo$2o3bobo$bobo5bo2b2o$2bob2o3bo3bo$4b2obo2$4b2obo$2bob2o
3bo3bo$bobo5bo2b2o$2o3bobo$b2o3bo$2b4o$4bo5$2b3o$2o3bo$o2b2obo$o5b3o2b
2o$b2ob2obo2bobo$4b3o2$4b3o$b2ob2obo2bobo$o5b3o2b2o$o2b2obo$2o3bo$2b3o
6$4b3o$2bob2obo$bo5bo$2o5bo$b3obo$2b2o$4b2ob2o2$4b2ob2o$2b2o$b3obo$2o
5bo$bo5bo$2bob2obo$4b3o2$16b2o$6bo8b2ob4o$5bobo8b6o$2bo14b4o$bo4b2o$2o
4bobo$b2o2bo2b2o$2bo2bo2bo$6b2o2$6b2o$2bo2bo2bo$b2o2bo2b2o$2o4bobo$bo
4b2o$2bo$5bobo8b2o$6bo8b2ob3o$16b5o$17b3o!

In standard escorted B-pair puffers you can generally truncate the trailing junk anywhere beyond five or six cells back from the front edge without destroying the leading Bs, which will usually find their way back to a stable orbit.

By contrast, the above mechanism is fairly delicately balanced. The active reaction following the B-heptominos almost catches up every 12 ticks, in a way that suppresses growth at the outside edges and keeps the Bs from destroying themselves. Changes to this trailing reaction will usually destroy the puffer.

Can anyone find a way to add *WSSes to turn this into a rake? It doesn't look as if it would end up small enough to compete with backrake 2 -- the side sparks turn into blocks, which are easy to clean up but hard to hassle into anything more interesting. Similarly, does anyone see any hope of getting that wick to burn? There's a way to hit it with a glider that generates a new glider to continue on the other side, but generally it seems painfully non-flammable.
User avatar
dvgrn
Moderator
 
Posts: 4984
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Soup search results

Postby Sokwe » November 24th, 2014, 4:36 pm

flipper77 wrote:This symmetrical soup produces something I haven't seen before

Wow! That's definitely new! I think its the first c/2 object that doesn't have any parts that are p2 or p4.

I wanted to combine two to cancel out some of their debris and maybe make a spaceship similar in style to the early Corderships, but I could only find two reactions that really did anything:
x = 52, y = 71, rule = B3/S23
13b2o$7b2o4b2o$6bo2b2o$5b2o2b2o$6b2o3bob2ob2o4b2o$7b4obo4bo4b2o$9bo2bo
3bo2$9bo2bo3bo$7b4obo4bo4b2o$6b2o3bob2ob2o4b2o$5b2o2b2o$6bo2b2o$7b2o2$
15bo$23bo$8b2o7b2o3bobo$2b3o3b2o5bobo5bo$2o3bo9bo$o2b2obo8bo2bo$o5b3o
2b2o$b2ob2obo2bobo4b2o$4b3o2$4b3o$b2ob2obo2bobo4b2o4b2o$o5b3o2b2o4b2o
4b2o$o2b2obo$2o3bo$2b3o3b2o$8b2o12$7b2o$b2o5bo$o2bo$o2b2o$2obo6b2o4b2o
4b2o4b2o4b2o4b2o4b2o$2b3ob5o5b2o4b2o4b2o4b2o4b2o4b2o$7b3o2$7b3o$2b3ob
5o5b2o4b2o4b2o4b2o4b2o$2obo6b2o4b2o4b2o4b2o4b2o4b2o4b4o$o2b2o41bob2o$o
2bo$b2o5bo$7b2o32b2o$40bo2bo$40bo2b2o$40b2obo6b2o$42b3ob5o$47b3o2$47b
3o$42b3ob5o$40b2obo6b2o$40bo2b2o$40bo2bo$41b2o5bo$47b2o!

I wasn't very thorough with my search, so there very well may be some other interesting combinations.

dvgrn wrote:does anyone see any hope of getting that wick to burn? There's a way to hit it with a glider that generates a new glider to continue on the other side, but generally it seems painfully non-flammable.

The line of tubs can burn like so:
x = 146, y = 32, rule = B3/S23
13b2o$7b2o4b2o$6bo2b2o$5b2o2b2o$6b2o3bob2ob2o4b2o4b2o4b2o4b2o4b2o4b2o
4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o$7b4obo4bo
4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b
2o4b2o4b2o4b2o$9bo2bo3bo2$9bo2bo3bo$7b4obo4bo4b2o4b2o4b2o4b2o4b2o4b2o
4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o$6b2o3bob
2ob2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o
4b2o4b2o4b2o4b2o4b2o$5b2o2b2o$6bo2b2o$7b2o2$15bo$23bo5bo5bo5bo5bo5bo5b
o5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5b3o$8b2o7b2o3bobo3bobo3bobo3b
obo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3b
obo3bobo3bobo3bo$2b3o3b2o5bobo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5b3o$2o3bo9bo$o2b2obo8bo2bo$o5b3o2b2o$b2ob2obo2bo
bo4b2o$4b3o2$4b3o$b2ob2obo2bobo4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b
2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o$o5b3o2b2o4b2o4b2o4b
2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o
4b2o4b2o$o2b2obo$2o3bo$2b3o3b2o$8b2o!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1334
Joined: July 9th, 2009, 2:44 pm

Re: Soup search results

Postby flipper77 » November 24th, 2014, 5:04 pm

WOW! I've only run < 15 million symmetrical soups, and I stumble upon something that's new, from what I've been told here. Now I'm going to run nothing but symmetrical soups for a while in hopes to find something else that's interesting, but I'm glad I found this. I really hope this inspires more people using apgsearch to use symmetrical soups so they can find gems like this.

EDIT:
Fixed a typo that should be corrected for what it's worth.
Last edited by flipper77 on November 24th, 2014, 5:07 pm, edited 1 time in total.
User avatar
flipper77
 
Posts: 197
Joined: October 24th, 2010, 3:25 am
Location: Spokane, WA

Re: Soup search results

Postby simsim314 » November 24th, 2014, 5:06 pm

This one is just awesome! Makes you think what else out there to be found with soup search.
User avatar
simsim314
 
Posts: 1539
Joined: February 10th, 2014, 1:27 pm

Re: Soup search results

Postby codeholic » November 24th, 2014, 6:39 pm

Sokwe wrote:I wanted to combine two to cancel out some of their debris and maybe make a spaceship similar in style to the early Corderships, but I could only find two reactions that really did anything:

Here are other two:
x = 32, y = 19, rule = B3/S23
20bo7bo$19b3o5b3o$18b2o2bo3bo2b2o$20b3o3b3o2$21bo5bo$2b3o5b3o6bo2bo3bo
2bo$2bo2bo3bo2bo4bo5bobo5bo$bo3bo3bo3bo3b2o4bobo4b2o$bobo7bobo9bobo$bo
bob2ob2obobo6bobo3bobo$2bo2b2ob2o2bo8bo5bo$3b2obobob2o$4b2o3b2o$2o2bo
5bo2b2o$2o11b2o$5bo3bo$4bo5bo$4b2o3b2o!

x = 31, y = 19, rule = B3/S23
20bo7bo$19b3o5b3o$18b2o2bo3bo2b2o$20b3o3b3o2$3bo7bo9bo5bo$2b3o5b3o9bo
3bo$b2o2bo3bo2b2o9bobo$bo2bo5bo2bo9bobo$2o3b2ob2o3b2o8bobo$bobob2ob2ob
obo6bobo3bobo$2bo9bo8bo5bo$3bo2bobo2bo2$4b2o3b2o3$4bo5bo$4b2o3b2o!

The first one looks especially promising.
Ivan Fomichev
User avatar
codeholic
Moderator
 
Posts: 1140
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

Re: Soup search results

Postby codeholic » November 24th, 2014, 6:55 pm

I've got a cool idea for the name: pufferfish. It refers to alternative names of *WSS (as it's also almost natural), and it has the 'puffer' part. Does anyone mind?
Ivan Fomichev
User avatar
codeholic
Moderator
 
Posts: 1140
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

Re: Soup search results

Postby Kazyan » November 24th, 2014, 7:17 pm

Congratulations to flipper77! And I think this is apgsearch's first "major" breakthrough.

Someone please run a pair of those through gencols and see if we can get a rake or something. (gencols can do that, right?)
Tanner Jacobi
User avatar
Kazyan
 
Posts: 771
Joined: February 6th, 2014, 11:02 pm

Re: Soup search results

Postby dvgrn » November 24th, 2014, 8:26 pm

codeholic wrote:Here are other two... The first one looks especially promising.

Yes, that one can certainly be adapted into any number of p12N puffers. Here's an inefficient rake to get people started -- not that there's really any shortage of p12N forerakes or backrakes [download link to jslife.zip/c2-extended]:

#C p48 backrake based on 6c/12 pufferfish
x = 52, y = 114, rule = B3/S23
37bo7bo$36b3o5b3o$35b2o2bo3bo2b2o$37b3o3b3o2$38bo5bo$19b3o5b3o6bo2bo3b
o2bo$19bo2bo3bo2bo4bo5bobo5bo$18bo3bo3bo3bo3b2o4bobo4b2o$18bobo7bobo9b
obo$18bobob2ob2obobo6bobo3bobo$19bo2b2ob2o2bo8bo5bo$20b2obobob2o4bobo$
21b2o3b2o5bobo$17b2o2bo5bo7b2o$17b2o16bo$22bo3bo7bo3b2o3b2o$21bo5bo10b
2o3b2o$21b2o3b2o$34bo13b3o$33b4o10bo2bo$15b3o14b2ob2o13bo$14bo2bo13b2o
2bobo12bo$17bo2bobo3b2o8b3o5bobo3bo$13bo3bo2bobo3b2o16bo2bobo$17bo3bo$
14bobo22bo$36bobo$37bobo$20b3o3b2o9b2o$19bo2bo3b2o10bo$22bo$18bo3bo$
22bo$19bobo17b2o$37b2o2bo$37b2ob2o$37b2ob2o$39bo9$29bobo$29bobo2$31b3o
$21b3o5bo2bo$21bo10bo8bo$21bobo7bob2o5bobo4bo$22b2o3bo2b3ob2o5b2o3b3o$
28bo4bo11b2obo$45b3o$45b3o$45b3o$46b2o$30b2o$30bobo$31bo4$3o$o2bo$o7b
2o$o6b3ob2o34b3o$bobo2b2o3b2o34bo2bo$5bo2bobo36bo$4b2o2b3o36bo3bo$5b2o
bobo36bo3bo$6bo21b3o16bo$16bo31bobo$17bo7b2o$15b3o7b2o6$34b3o$34bo2bo$
34bo$34bo3bo$34bo3bo$34bo$35bobo3$30b3o$30bo2bo$30bo$30bo3bo$30bo3bo$
30bo$31bobo13$28bo$29bo$27b3o!

... I think this might be the first time I've actually tried to construct one of these kinds of rakes, though I've done a few projects using already-optimized pieces -- so please expect serious suboptimality here. Same (EDIT 3) for this attempt at a forerake:

#C p48 forekrake based on 6c/12 pufferfish
x = 73, y = 163, rule = B3/S23
56b3o5b3o$56bo2bo3bo2bo$55bo3bo3bo3bo$55bobo7bobo$55bobob2ob2obobo$40b
o7bo7bo2b2ob2o2bo$39b3o5b3o7b2obobob2o$38bo2b2o3b2o2bo7b2o3b2o$41b2o3b
2o6b2o2bo5bo2b2o$37b2o4bobo4b2o2b2o11b2o$37b2o2bobobobo2b2o7bo3bo$37bo
13bo6bo5bo$38b3o2bobo2b3o7b2o3b2o$43bobo$55b2o$37b2o15bo2bo10b3o$37b2o
16bob2o9bo2bo$56b3o4bobo2bo$41b2o3b2o15bobo2bo3bo$41b2o3b2o16bo3bo$36b
o32bobo$35b3o$34b2obo$34b3o$34b3o9b2o$35b2o3bo5b2o$40bo$48bo2bo$47bo3b
o$47bo4bo$47bo4bo4b2o$48b2obo5bo2bo$50bo3b2ob2o4bo$36bo18bo3b2o2bo$35b
3o18b3o$34b2obo19b2o3b3o$34b3o9b2o12bo$34b3o9b2o10b3o$34b3o20bobobobo$
35b2o15bo3bo2bo$51b2o6bo7b2o$40b3o7b2obo4bo8b2o$40bo2bo2b2o3b3o10bobo$
40bo5b2o5b3o8bo$40bo3bo19bo$40bo$41bobo3$59b2o$58bo2bo$58bobo$59bo9$
50bo$49bobo$50bo2$42bo$38bo3b2o$36b2o5b2o$36bo5b2o$36b3o3b2o$36bo5b2o
6b3o$37b2o$37b2o4b2o3bo5bo$39b2ob2obo2bo5bo4b2o$40bob3ob3o5bo3bo2bo$
40bo4b2o11bobo$50b3o6bo7$40b2o$40b2o$50bo$35b2o12bobo$33bob2o13bo$31b
3o3bo$32b2o$33b5o$34b3o5bo$35bo5bobo$44bo3bo$44bo2bobo6bo4bo$37bo3bobo
3bobo4bo2bo2b3o$42b2o4bo5bo2b2ob2obo$36bobo14bo6bo$36bo5bo9b4obob2o$
36bo14b2ob2obob2o$42bo9b3obob3ob2o$38bob2o12bo$38b2o13bo$46bo6bo$45b6o
$45bob4o$46b2ob2o$45b3o2$36bo5b2obobo$34b2obo4bob4o$34bo2b2o3b2o3bo$
38bo4b3o$34b2o3b2o3bo$29b3ob2obobo$24b3o4bo3bo$24bo4bo2bob2o$25bo5b2o$
44b2o5bo$43bo2bo3bobo$43bobo3bobo$44bo4b2o2$64b2o$58bo5b2o$57bob2o$56b
6o$12b3o40b3ob2ob2o$12bo43b2o3bobo$13bo47bobo$61b3o$61b2o3$38b3o5$3o$o
46b2o$bo45b2o2$38b2o$37bob2o$37bobobo$38bo2b2o$41bo$40bo$36bo$36bobo4$
52b3o$52bo2bo$32b3o17bo$32bo2bo16bo3bo$32bo5b3o11bo$32bo3bo16bobo$32bo
3bo$32bo$33bobo!

EDIT:
Sokwe wrote:That's definitely new! I think its the first c/2 object that doesn't have any parts that are p2 or p4.

I guess the first two rows of the puffer don't count as "parts"? You could say that the first row is p2, the second row is p4, and the rest is p12 -- but it's kind of hard to focus on pieces that small...!

EDIT 2:Here's a trial pattern to give the new rake some exercise. Light travels slower through glass, and apparently gliders travel slower through lines of blocks:

#C glider chain reaction passing through block trails
x = 158, y = 123, rule = B3/S23
38bo7bo$37b3o5b3o$36bo2b2o3b2o2bo3$35bo3b2o3b2o3bo$20b3o5b3o3bo2b2o2bo
bo2b2o2bo$19bo2bo5bo2bo3bobo3bobo3bobo$19bo3bo3bo3bo6b3o3b3o$20b4o3b4o
8bo5bo$21bobo3bobo$35bo$23bo3bo6b2o12bo$18bo4b2ob2o7bo12bo$18b2o3b2ob
2o6b2o$23b2ob2o6b2o8b2o$22b2o3b2o15b2o$22bo5bo7b3o$35b5o$34bob3ob2o7b
3o$34b2o4b2o7bo2bo$16b3o16b2o7bobo2bo$16bo2bo2b2o3b2o7bo7bobo2bo3bo$
16bo5b2o3b2o16bo3bo$16bo3bo29bobo$16bo$17bobo2$27b2o$21b3o3b2o$21bo2bo
$21bo$21bo3bo$21bo$22bobo3$34b2o$33bo2bo$34b3o5bo$34b2o5bobo$42b2o3$
37b2o$35b4o$33b4o$32b2ob3o$33b2o$42b2o$44bo$42b2o2$48bo$47b3o$47bob2o$
48b3o$33bo14b3o$33bo14b3o$33bo14b2o2$14b4o11b3o3b3o$13bo$12bo4bo8b2o6b
o3bo$13bob2o9b2o5bo5bo$14bo25bo$b3o33bo3bo$o2bo29bo2bobo2bo$3bo29bo3bo
3bo$3bo30bo5bo7b3o$obo32bo3bo7bo2bo$31b2o3b3o11bo$31bobo12bo3bo$32bo
13bo3bo$50bo$47bobo4$13b2o$7b3o3b2o$6b5o$5bo5bo$6b4obo23b3o$7b4o23bo2b
o$29b3o5bo$33bo3bo$26b2o5bo3bo$26b2o9bo$34bobo3$23bo7b3o$21bobo6bo2bo$
22b2o9bo$29bo3bo$29bo3bo$33bo$30bobo3$37bo7bo9bo7bo9bo7bo9bo7bo9bo7bo
9bo7bo9bo7bo$36b3o5b3o7b3o5b3o7b3o5b3o7b3o5b3o7b3o5b3o7b3o5b3o7b3o5b3o
$35b2obo5bob2o5bo2b2o3b2o2bo5b2o2bo3bo2b2o5bo2b2o3b2o2bo5b2o2bo3bo2b2o
5bo2b2o3b2o2bo5b2obo5bob2o$36b2obo3bob2o9b2o3b2o8bo2bo5bo2bo5bo3bo3bo
3bo7b3o3b3o26b2obo3bob2o$34bob2o7b2obo3b2o4bobo4b2o3b2o3b2ob2o3b2o5b2o
b2ob2ob2o41bob2o7b2obo$33bobo2bobobobo2bobo2b2o2bobobobo2b2o4bobob2ob
2obobo6b2obo3bob2o9bo5bo7bo3b2o3b2o3bo2bobo2bobobobo2bobo$33bobo3b2ob
2o3bobo2bo13bo5bo9bo9bo5bo12bo3bo2bo5bob2o2bobo2b2o2b3obo3b2ob2o3bobo$
34b3obo5bob3o4b3o2bobo2b3o7bo2bobo2bo11b2ob2o5b2obo5bobo5b3o3bo3bobo3b
obobob3obo5bob3o$35b3o7b3o10bobo31bo5bo2bo5bo4bobo4bo7b3o3b3o7b3o7b3o$
35b2o9b2o26b2o3b2o4bo6bo5bo2bobo8bobo13bo5bo8b2o9b2o$35bo49bo23bobo3bo
bo25bo11bo$34b2o56bobobobo11bo5bo25b2o11b2o$34b2o38bo5bo11b2o3b2o26bo
11bo4b2o11b2o$56b2o3b2o11b2o3b2o44bo11bo$38b2o3b2o11b2o3b2o83b2o3b2o$
38b2o3b2o83b2o3b2o11b2o3b2o$110b2o3b2o11b2o3b2o$92b2o3b2o11b2o3b2o$74b
2o3b2o11b2o3b2o$56b2o3b2o11b2o3b2o$38b2o3b2o11b2o3b2o$38b2o3b2o!

#C useless perpendicular burn of Sokwe's modified fuse
#C (need a p96 forward rake to generate the gliders -- anyone?)
x = 450, y = 543, rule = B3/S23
bo$b2o$obo58$bo$b2o$obo58$bo$b2o$obo58$bo$b2o$obo58$bo$b2o$obo28$321b
3o5b3o28b3o5b3o28b3o5b3o28b3o5b3o$321bo2bo3bo2bo28bo2bo3bo2bo28bo2bo3b
o2bo28bo2bo3bo2bo$320bo3bo3bo3bo26bo3bo3bo3bo26bo3bo3bo3bo26bo3bo3bo3b
o$320bobo7bobo26bobo7bobo26bobo7bobo26bobo7bobo$320bobob2ob2obobo26bob
ob2ob2obobo26bobob2ob2obobo26bobob2ob2obobo$321bo2b2ob2o2bo28bo2b2ob2o
2bo28bo2b2ob2o2bo28bo2b2ob2o2bo$322b2obobob2o30b2obobob2o30b2obobob2o
30b2obobob2o$323b2o3b2o32b2o3b2o32b2o3b2o32b2o3b2o$323bo5bo32bo5bo32bo
5bo32bo5bo8$308b3o5b3o28b3o5b3o28b3o5b3o28b3o5b3o$308bo2bo3bo2bo28bo2b
o3bo2bo28bo2bo3bo2bo28bo2bo3bo2bo$307bo3bo3bo3bo26bo3bo3bo3bo26bo3bo3b
o3bo26bo3bo3bo3bo$307bobo7bobo26bobo7bobo26bobo7bobo26bobo7bobo$307bob
ob2ob2obobo26bobob2ob2obobo26bobob2ob2obobo26bobob2ob2obobo$308bo2b2ob
2o2bo28bo2b2ob2o2bo28bo2b2ob2o2bo28bo2b2ob2o2bo$309b2obobob2o30b2obobo
b2o30b2obobob2o30b2obobob2o$310b2o3b2o32b2o3b2o32b2o3b2o32b2o3b2o$310b
o5bo32bo5bo32bo5bo32bo5bo6$bo$b2o$obo58$bo$b2o$obo58$bo$b2o$obo58$bo$b
2o$obo58$bo$b2o$obo!
User avatar
dvgrn
Moderator
 
Posts: 4984
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Soup search results

Postby Tropylium » November 24th, 2014, 9:03 pm

Flyby conversions:
x = 22, y = 21, rule = B3/S23
18bo$17bobo$14bo$13bo4b2o$12b2o4bobo$13b2o2bo2b2o$14bo2bo2bo$18b2o2$
18b2o$14bo2bo2bo$13b2o2bo2b2o$12b2o4bobo$13bo4b2o$14bo$17bobo$18bo2$b
2o4b2o4b2o$o2bo2bobo4bobo$b2o4bo6bo!
User avatar
Tropylium
 
Posts: 406
Joined: May 31st, 2011, 7:12 pm
Location: Finland

Re: Soup search results

Postby calcyman » November 24th, 2014, 9:33 pm

@flipper77: Congrats on the new yl12_1_8_c7310da81295b6611e6e4e34a80a5523! This is really exciting! :D

(If, 12 hours ago, someone asked me to bet on the first moving object to crawl out of a symmetrical soup other than switch engines, standard spaceships and combinations thereof, I would have speculated that the lightweight Schick engine would win. This has changed my entire outlook on Life.)

In fact, this is the only known semi-natural non-c/12 puffer (everything else being a switch-engine or symmetrical ark). Why has no-one posted a glider synthesis for this remarkable contraption yet?!

So... at least two people have independently produced bootleg versions of apgsearch with in-built symmetry options. This is something I've been meaning to do for a while, although at the moment I've been working on catagolue (the online cloud-hosted server where apgsearch will ultimately dump its results). It will have separate censuses for ordered pairs of the form (rule, symmetry) for self-consistency (otherwise diagonally-symmetric soups would skew unix frequencies by several orders of magnitude, and suchlike).

Only now it looks as though more people will be running symmetrical soups than anything else, since it promises such exciting results.

Anyway, flipper77, you said you've only ran 15 000 000 soups with symmetry. How many soups has Lewis Patterson simulated? (I'm trying to get a confidence interval for the frequency of this object in symmetric soups, although it's difficult to extrapolate meaningful information from a single event.)

codeholic wrote:Wow! This is VERY impressive! Congrats! I think this puffer deserves a personal name!


Seconded. I definitely like codeholic's suggestion of pufferfish, but of course the discoverer deserves the honour of naming the beast.

flipper77 wrote:I really hope this inspires more people using apgsearch to use symmetrical soups so they can find gems like this.


Agreed!

Kazyan wrote:And I think this is apgsearch's first "major" breakthrough.


Indeed. Not to belittle those impressive glider synthesis reductions, but this is certainly in a league of its own... for now.
What do you do with ill crystallographers? Take them to the mono-clinic!
User avatar
calcyman
 
Posts: 1773
Joined: June 1st, 2009, 4:32 pm

Re: Soup search results

Postby Tropylium » November 24th, 2014, 9:45 pm

codeholic wrote:
Sokwe wrote:I wanted to combine two to cancel out some of their debris and maybe make a spaceship similar in style to the early Corderships, but I could only find two reactions that really did anything:

Here are other two:

And for completeness, a fifth reaction is:
x = 33, y = 18, rule = B3/S23
20bo7bo$19b3o5b3o$18bo2b2o3b2o2bo3$17bo3b2o3b2o3bo$3bo7bo4bo2b2o2bobo
2b2o2bo$2b3o5b3o4bobo3bobo3bobo$b2o2bo3bo2b2o6b3o3b3o$3b3o3b3o9bo5bo2$
4bo5bo$2bo2bo3bo2bo$o5bobo5bo$2o4bobo4b2o$6bobo$3bobo3bobo$4bo5bo!
User avatar
Tropylium
 
Posts: 406
Joined: May 31st, 2011, 7:12 pm
Location: Finland

Re: Soup search results

Postby Extrementhusiast » November 24th, 2014, 10:02 pm

calcyman wrote:Why has no-one posted a glider synthesis for this remarkable contraption yet?!


Here you go:
x = 43, y = 65, rule = B3/S23
41bo$40bo$40b3o15$15bo$13b2o$14b2o2$12bo$13bo$11b3o2$20bobo$obo18b2o$b
2o3bo3b2o9bo$bo3bobo2bo$6b2o3bo3b2o4b2o$10b2o2bo2bo3b2o$15b2o2$15b2o$
10b2o2bo2bo3b2o$6b2o3bo3b2o4b2o$bo3bobo2bo$b2o3bo3b2o9bo$obo18b2o$20bo
bo2$11b3o$13bo$12bo2$14b2o$13b2o$15bo15$40b3o$40bo$41bo!

I was busy doing something different with Life at the time.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1723
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Soup search results

Postby flipper77 » November 25th, 2014, 12:14 am

calcyman wrote:
codeholic wrote:Wow! This is VERY impressive! Congrats! I think this puffer deserves a personal name!


Seconded. I definitely like codeholic's suggestion of pufferfish, but of course the discoverer deserves the honour of naming the beast.


I'm not to good when it comes to names, and Pufferfish sounds like a good name to me, so Pufferfish it is!

calcyman wrote:Anyway, flipper77, you said you've only ran 15 000 000 soups with symmetry. How many soups has Lewis Patterson simulated? (I'm trying to get a confidence interval for the frequency of this object in symmetric soups, although it's difficult to extrapolate meaningful information from a single event.)


Btw, I checked some numbers, and it turns out that it was only my 4th symmetrical soup search. 1st search I only went through 100 000 soups, just to test it out. 2nd and 3rd searches were both 1 000 000 soups just to see what I'd get. 4th search I ran through 2 500 000 soups, and the Pufferfish showed up about halfway through. For those wondering, the root is "2014-11-24T03:28:19.988000_Flipper77" (without quotes) and soup number is 1107936, even reflection across x, odd reflection across y. 15 000 000 was only an estimate since I just started symmetrical soups less than a week, so the real number is actually between 3 000 000 and 3 500 000 soups, so I really couldn't tell you how it was me instead of someone else.
User avatar
flipper77
 
Posts: 197
Joined: October 24th, 2010, 3:25 am
Location: Spokane, WA

Re: Soup search results

Postby Lewis » November 25th, 2014, 4:08 am

calcyman wrote:Anyway, flipper77, you said you've only ran 15 000 000 soups with symmetry. How many soups has Lewis Patterson simulated? (I'm trying to get a confidence interval for the frequency of this object in symmetric soups, although it's difficult to extrapolate meaningful information from a single event.)

Nowhere near 15 million. And I spent a lot of time switching between different symmetries and odd and even widths etc. For a symmetry type that could've had a chance of producing the Pufferfish I maybe ran maybe 2,000,000 at most.
User avatar
Lewis
 
Posts: 316
Joined: March 17th, 2009, 5:26 pm
Location: UK

Re: Soup search results

Postby calcyman » November 25th, 2014, 9:31 am

Well I've done an overnight run of roughly 13 000 000 soups with the same symmetry as flipper77, and not found anything like a pufferfish. A few of the more interesting DRH oscillators have appeared in the soups, though:

p30 pre-pulsar shuttle:

x = 31, y = 32, rule = B3/S23
ob3obo2b2ob2obob2ob2o2bob3obo$2b7o4bo3bo4b7o$6ob2obobob3obobob2ob6o$ob
ob2obo2b3obobob3o2bob2obobo$b2ob2ob3ob2obobob2ob3ob2ob2o$obob2o3bo2bo
2bo2bo2bo3b2obobo$3o2b2obob2obo3bob2obob2o2b3o$b2obo2bob3ob2ob2ob3obo
2bob2o$o4bob3obo7bob3obo4bo$b6obob2o2b3o2b2obob6o$obob6ob3o3b3ob6obobo
$4ob3obo2bobobobo2bob3ob4o$b6obob2o7b2obob6o$obo2b2obobob2obob2obobob
2o2bobo$2b2obo2bob5ob5obo2bob2o$obo3bo2bobob5obobo2bo3bobo$obo3bo2bobo
b5obobo2bo3bobo$2b2obo2bob5ob5obo2bob2o$obo2b2obobob2obob2obobob2o2bob
o$b6obob2o7b2obob6o$4ob3obo2bobobobo2bob3ob4o$obob6ob3o3b3ob6obobo$b6o
bob2o2b3o2b2obob6o$o4bob3obo7bob3obo4bo$b2obo2bob3ob2ob2ob3obo2bob2o$
3o2b2obob2obo3bob2obob2o2b3o$obob2o3bo2bo2bo2bo2bo3b2obobo$b2ob2ob3ob
2obobob2ob3ob2ob2o$obob2obo2b3obobob3o2bob2obobo$6ob2obobob3obobob2ob
6o$2b7o4bo3bo4b7o$ob3obo2b2ob2obob2ob2o2bob3obo!


Two double queen bee shuttles:

x = 31, y = 32, rule = B3/S23
2b2o2bo3b2o2b3o2b2o3bo2b2o$b3obo8b3o8bob3o$o2b4ob4o2b3o2b4ob4o2bo$bo2b
o2b2o3b2o3b2o3b2o2bo2bo$ob4obo2b2obo3bob2o2bob4obo$ob3obo2bo11bo2bob3o
bo$b2o2bo4bo3bobo3bo4bo2b2o$3o2b2o5bo2bo2bo5b2o2b3o$2b5obo2bo2bobo2bo
2bob5o$b4obo4b3o3b3o4bob4o$2b3o2bo5b2ob2o5bo2b3o$4o3b2obo2b5o2bob2o3b
4o$4o2bo2bob4ob4obo2bo2b4o$obobo5bobob3obobo5bobobo$bob2ob4obo3bo3bob
4ob2obo$b2o3b4o3bo3bo3b4o3b2o$b2o3b4o3bo3bo3b4o3b2o$bob2ob4obo3bo3bob
4ob2obo$obobo5bobob3obobo5bobobo$4o2bo2bob4ob4obo2bo2b4o$4o3b2obo2b5o
2bob2o3b4o$2b3o2bo5b2ob2o5bo2b3o$b4obo4b3o3b3o4bob4o$2b5obo2bo2bobo2bo
2bob5o$3o2b2o5bo2bo2bo5b2o2b3o$b2o2bo4bo3bobo3bo4bo2b2o$ob3obo2bo11bo
2bob3obo$ob4obo2b2obo3bob2o2bob4obo$bo2bo2b2o3b2o3b2o3b2o2bo2bo$o2b4ob
4o2b3o2b4ob4o2bo$b3obo8b3o8bob3o$2b2o2bo3b2o2b3o2b2o3bo2b2o!


p10 traffic light hassler:

x = 31, y = 32, rule = B3/S23
2obo4b2o3bo3bo3b2o4bob2o$o5bob2o3b5o3b2obo5bo$obo3b2o2b11o2b2o3bobo$2b
o2b2ob2ob3obob3ob2ob2o2bo$2obob2ob2o2bobobobo2b2ob2obob2o$b7o7bo7b7o$
2o2b2o2bo2bo7bo2bo2b2o2b2o$5b3obob2ob3ob2obob3o$ob2o6bob7obo6b2obo$5b
2ob2o4b3o4b2ob2o$3b3o2b7ob7o2b3o$2ob3ob3obob2ob2obob3ob3ob2o$b3o3bob2o
4bo4b2obo3b3o$4b3o3b2o3bo3b2o3b3o$3bob5o2b3ob3o2b5obo$o2b2ob2ob6ob6ob
2ob2o2bo$o2b2ob2ob6ob6ob2ob2o2bo$3bob5o2b3ob3o2b5obo$4b3o3b2o3bo3b2o3b
3o$b3o3bob2o4bo4b2obo3b3o$2ob3ob3obob2ob2obob3ob3ob2o$3b3o2b7ob7o2b3o$
5b2ob2o4b3o4b2ob2o$ob2o6bob7obo6b2obo$5b3obob2ob3ob2obob3o$2o2b2o2bo2b
o7bo2bo2b2o2b2o$b7o7bo7b7o$2obob2ob2o2bobobobo2b2ob2obob2o$2bo2b2ob2ob
3obob3ob2ob2o2bo$obo3b2o2b11o2b2o3bobo$o5bob2o3b5o3b2obo5bo$2obo4b2o3b
o3bo3b2o4bob2o!


This produces a couple of weird p4s by a simple mechanism, probably amenable to glider synthesis:

x = 31, y = 32, rule = B3/S23
4obo3bob9obo3bob4o$o2bo2bo5bob3obo5bo2bo2bo$bobo2b3o2b2o5b2o2b3o2bobo$
bo2bo2bo3b3o3b3o3bo2bo2bo$2bo4b3ob4ob4ob3o4bo$o6b3o3bobobo3b3o6bo$3o2b
3o3b9o3b3o2b3o$2obobob5o7b5obobob2o$4obo2b5obobob5o2bob4o$2obo3bobob3o
bob3obobo3bob2o$bo3b5obo3bo3bob5o3bo$o2bob2o4b2o5b2o4b2obo2bo$bo2bob6o
b5ob6obo2bo$2b2o6b2o7b2o6b2o$b4o4bobobo3bobobo4b4o$2b2obob2ob11ob2obob
2o$2b2obob2ob11ob2obob2o$b4o4bobobo3bobobo4b4o$2b2o6b2o7b2o6b2o$bo2bob
6ob5ob6obo2bo$o2bob2o4b2o5b2o4b2obo2bo$bo3b5obo3bo3bob5o3bo$2obo3bobob
3obob3obobo3bob2o$4obo2b5obobob5o2bob4o$2obobob5o7b5obobob2o$3o2b3o3b
9o3b3o2b3o$o6b3o3bobobo3b3o6bo$2bo4b3ob4ob4ob3o4bo$bo2bo2bo3b3o3b3o3bo
2bo2bo$bobo2b3o2b2o5b2o2b3o2bobo$o2bo2bo5bob3obo5bo2bo2bo$4obo3bob9obo
3bob4o!


I haven't seen these weird p3 billiard tables before (produced in generation 1060 (!)):

x = 31, y = 32, rule = B3/S23
bo2b2ob2o2b3o3b3o2b2ob2o2bo$o2bob2o2bo2bo2bo2bo2bo2b2obo2bo$o2b4o2b3ob
5ob3o2b4o2bo$2b2ob3obobo2bobo2bobob3ob2o$o4b2ob4obobobob4ob2o4bo$2bo2b
ob4o2b5o2b4obo2bo$3b2o3b3obobobobob3o3b2o$2ob3o3bo2b2o3b2o2bo3b3ob2o$
3o3b2o2bob3ob3obo2b2o3b3o$2bo3b3o2bo2b3o2bo2b3o3bo$o2bo3b2o3bo2bo2bo3b
2o3bo2bo$ob2o2b3ob2ob2ob2ob2ob3o2b2obo$8bob2o3bo3b2obo$obo4b2obob3ob3o
bob2o4bobo$5obobo3b7o3bobob5o$o2b2o3b2obob5obob2o3b2o2bo$o2b2o3b2obob
5obob2o3b2o2bo$5obobo3b7o3bobob5o$obo4b2obob3ob3obob2o4bobo$8bob2o3bo
3b2obo$ob2o2b3ob2ob2ob2ob2ob3o2b2obo$o2bo3b2o3bo2bo2bo3b2o3bo2bo$2bo3b
3o2bo2b3o2bo2b3o3bo$3o3b2o2bob3ob3obo2b2o3b3o$2ob3o3bo2b2o3b2o2bo3b3ob
2o$3b2o3b3obobobobob3o3b2o$2bo2bob4o2b5o2b4obo2bo$o4b2ob4obobobob4ob2o
4bo$2b2ob3obobo2bobo2bobob3ob2o$o2b4o2b3ob5ob3o2b4o2bo$o2bob2o2bo2bo2b
o2bo2bo2b2obo2bo$bo2b2ob2o2b3o3b3o2b2ob2o2bo!


Then this one just produces a stupidly large (xs76) still-life:

x = 31, y = 32, rule = B3/S23
o2bob3o2bob3ob3obo2b3obo2bo$ob2o2b2o2bo3bobo3bo2b2o2b2obo$o3b2obo3bobo
3bobo3bob2o3bo$4o2b2obobobo3bobobob2o2b4o$bobobobo2b2ob5ob2o2bobobobo$
4b2obob2ob3ob3ob2obob2o$4bo3bobobobobobobobo3bo$4bobobo2bo7bo2bobobo$
2obo3b2obo2b2ob2o2bob2o3bob2o$6bo2bo2bo2bo2bo2bo2bo$bobo2bobob3o2bo2b
3obobo2bobo$3o3bob2o2bo2bo2bo2b2obo3b3o$3b4o2b2obobobobob2o2b4o$ob2obo
bob3ob2ob2ob3obobob2obo$3o2bo5bobobobobo5bo2b3o$bo4bob2obobo3bobob2obo
4bo$bo4bob2obobo3bobob2obo4bo$3o2bo5bobobobobo5bo2b3o$ob2obobob3ob2ob
2ob3obobob2obo$3b4o2b2obobobobob2o2b4o$3o3bob2o2bo2bo2bo2b2obo3b3o$bob
o2bobob3o2bo2b3obobo2bobo$6bo2bo2bo2bo2bo2bo2bo$2obo3b2obo2b2ob2o2bob
2o3bob2o$4bobobo2bo7bo2bobobo$4bo3bobobobobobobobo3bo$4b2obob2ob3ob3ob
2obob2o$bobobobo2b2ob5ob2o2bobobobo$4o2b2obobobo3bobobob2o2b4o$o3b2obo
3bobo3bobo3bob2o3bo$ob2o2b2o2bo3bobo3bo2b2o2b2obo$o2bob3o2bob3ob3obo2b
3obo2bo!


There have been 112 soups which produce (two copies of) MWSS-on-MWSS, and a further 14 soups producing (two copies of) HWSS-on-HWSS.

So it appears that pufferfish is maybe 100-200 times rarer than MWSS-on-MWSS in symmetrical soups, so it's probably about 10000-40000 times rarer in asymmetric soups.

Hence, we're looking at about 10^13 asymmetric soups before a pufferfish magically appears. (This is a really crude estimate, and may be an order of magnitude out in either direction.) Catagolue should be able to census the data from about 10^14 to 10^15 soups before exceeding memory quotas, so a sufficiently distributed search will probably start seeing a few of these pufferfish (and other rare objects such as loafers).
What do you do with ill crystallographers? Take them to the mono-clinic!
User avatar
calcyman
 
Posts: 1773
Joined: June 1st, 2009, 4:32 pm

Re: Soup search results

Postby A for awesome » November 26th, 2014, 10:01 am

An octagon II and two unlisted 20+ cell still lives:
x = 16, y = 16, rule = B3/S23
4ob2o3bo3b2o$o3b4o2bobob2o$b3o2b2ob3o2b2o$2bo2bob2ob3ob2o$2b2o2bo3b2o$
bob6obo$6bo3b3ob2o$2o2b2o2bob2o$3b3o3bob3obo$3o4bo2bob2obo$o2b3ob2o5bo
$2ob7ob3obo$o4b2obob2o2b2o$o2b3obo3bobobo$2b2o2b3obobob2o$2b3ob2ob2ob
3o!

x = 16, y = 16, rule = B3/S23
b7ob5o$5b3obobo$2bob8obobo$2ob4obo3b4o$3o5b4o2bo$2ob6o2b5o$2bob2obobo
2bob2o$2o3b2o4bo2b2o$o2b2o7bo$bob2ob3ob2o3bo$2o3b3o4bo2bo$2bo3bo2bo2b
4o$obobo3b2ob2o$3b2o3bo5bo$2o6bob3o2bo$o2bob2ob2o3b3o!

x = 16, y = 16, rule = B3/S23
3bobo4b4obo$o3b5obo2b2o$5ob2o2bo2bo$obob3o2b2o2bobo$2b3ob2o2b3o$b3o3bo
bob2ob2o$3bo3b4o2bobo$3o2bo2bo4b2o$bo2b2obob3ob2o$4obobo2bo2bobo$o9b2o
3bo$4o3bob2ob2obo$o2b2o3b2ob2o2bo$2bob2obo5b3o$obo3b2o2b3o2bo$b7o4bobo
!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1660
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Soup search results

Postby Kazyan » November 26th, 2014, 2:01 pm

There might be a cheap (5-6 glider) way to make ?10?005.

x = 7, y = 6, rule = B3/S23
bo$obo$obo$bo2bo$5bo$3b4o!
Tanner Jacobi
User avatar
Kazyan
 
Posts: 771
Joined: February 6th, 2014, 11:02 pm

Re: Soup search results

Postby Extrementhusiast » November 26th, 2014, 7:25 pm

Ship to long canoe component:
x = 12, y = 20, rule = B3/S23
9bobo$9b2o$10bo2$3b2o$2bo2bo$2bobo$3bo2$6bobo$6b2o$7bo2$6b2o$6bobo$6bo
2$b2o$obo$2o!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1723
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Soup search results

Postby flipper77 » November 27th, 2014, 6:27 am

Here's a medley of objects from lots of symmetrical soups, first of all, an 88-bit still life!:
x = 31, y = 31, rule = B3/S23
3b2o3b3o2b2ob2o2b3o3b2o$bo3b2o3b5ob5o3b2o3bo$b2o4bob2ob2obob2ob2obo4b
2o$2ob3o2bo2b3o3b3o2bo2b3ob2o$3bob3o2bo2b5o2bo2b3obo$bobo2bo3bo3b3o3bo
3bo2bobo$b2ob4ob2obob3obob2ob4ob2o$bob2ob3o4b2ob2o4b3ob2obo$2o2b3ob3ob
3ob3ob3ob3o2b2o$3obob3o5bobo5b3obob3o$o3bobob2o2bo2bo2bo2b2obobo3bo$3o
2b2o4bob5obo4b2o2b3o$bo2bo3bo3b3ob3o3bo3bo2bo$bo3b2o2bo2b3ob3o2bo2b2o
3bo$2b2o2bo2bo5bo5bo2bo2b2o$bo3bobobobobobobobobobobo3bo$2b2o2bo2bo5bo
5bo2bo2b2o$bo3b2o2bo2b3ob3o2bo2b2o3bo$bo2bo3bo3b3ob3o3bo3bo2bo$3o2b2o
4bob5obo4b2o2b3o$o3bobob2o2bo2bo2bo2b2obobo3bo$3obob3o5bobo5b3obob3o$
2o2b3ob3ob3ob3ob3ob3o2b2o$bob2ob3o4b2ob2o4b3ob2obo$b2ob4ob2obob3obob2o
b4ob2o$bobo2bo3bo3b3o3bo3bo2bobo$3bob3o2bo2b5o2bo2b3obo$2ob3o2bo2b3o3b
3o2bo2b3ob2o$b2o4bob2ob2obob2ob2obo4b2o$bo3b2o3b5ob5o3b2o3bo$3b2o3b3o
2b2ob2o2b3o3b2o!


Some p3 oscillators:
x = 31, y = 31, rule = B3/S23
2o4bob2o2bo5bo2b2obo4b2o$2b4o3b3obobobob3o3b4o$4obobobob2obobob2obobob
ob4o$o2b2ob5obobobobob5ob2o2bo$b3obo4b5ob5o4bob3o$b4obo2bobob2ob2obobo
2bob4o$o4b2o2b4ob3ob4o2b2o4bo$b3o6b3obobob3o6b3o$obob2o4bo2b2ob2o2bo4b
2obobo$b6o2bob3obob3obo2b6o$bo3bo2bobob2o3b2obobo2bo3bo$obo2b2obob3o5b
3obob2o2bobo$o2bobo2b2o3bo3bo3b2o2bobo2bo$2o3bo4bo2b2ob2o2bo4bo3b2o$2o
b2ob5obo2bo2bob5ob2ob2o$o3bob3o5b3o5b3obo3bo$2ob2ob5obo2bo2bob5ob2ob2o
$2o3bo4bo2b2ob2o2bo4bo3b2o$o2bobo2b2o3bo3bo3b2o2bobo2bo$obo2b2obob3o5b
3obob2o2bobo$bo3bo2bobob2o3b2obobo2bo3bo$b6o2bob3obob3obo2b6o$obob2o4b
o2b2ob2o2bo4b2obobo$b3o6b3obobob3o6b3o$o4b2o2b4ob3ob4o2b2o4bo$b4obo2bo
bob2ob2obobo2bob4o$b3obo4b5ob5o4bob3o$o2b2ob5obobobobob5ob2o2bo$4obobo
bob2obobob2obobobob4o$2b4o3b3obobobob3o3b4o$2o4bob2o2bo5bo2b2obo4b2o!

x = 31, y = 32, rule = B3/S23
obob9obobob9obobo$o2b2o3b2o2b2o3b2o2b2o3b2o2bo$ob3ob6obo3bob6ob3obo$ob
o2b3o2bobob3obobo2b3o2bobo$5obob3o2bo3bo2b3obob5o$obobo4b3ob5ob3o4bobo
bo$bo2bo2b5ob5ob5o2bo2bo$10obo7bob10o$2b2o6bo9bo6b2o$b3o3b2o6bo6b2o3b
3o$2o4b3o3b3ob3o3b3o4b2o$obo4bo2b2o7b2o2bo4bobo$2bobo4bobobobobobobo4b
obo$2bo2bo2b2o2bobobobo2b2o2bo2bo$obo2b3ob3obo3bob3ob3o2bobo$2bo2b2o6b
2ob2o6b2o2bo$obob9obobob9obobo$o2b2o3b2o2b2o3b2o2b2o3b2o2bo$ob3ob6obo
3bob6ob3obo$obo2b3o2bobob3obobo2b3o2bobo$5obob3o2bo3bo2b3obob5o$obobo
4b3ob5ob3o4bobobo$bo2bo2b5ob5ob5o2bo2bo$10obo7bob10o$2b2o6bo9bo6b2o$b
3o3b2o6bo6b2o3b3o$2o4b3o3b3ob3o3b3o4b2o$obo4bo2b2o7b2o2bo4bobo$2bobo4b
obobobobobobo4bobo$2bo2bo2b2o2bobobobo2b2o2bo2bo$obo2b3ob3obo3bob3ob3o
2bobo$2bo2b2o6b2ob2o6b2o2bo!

x = 31, y = 31, rule = B3/S23
ob2o3bobo2b2obob2o2bobo3b2obo$5o2bobobo2b3o2bobobo2b5o$bob4o3b2ob2ob2o
b2o3b4obo$5bo5bo2b3o2bo5bo$2ob3o2b2ob4ob4ob2o2b3ob2o$b3obo2b4obo3bob4o
2bob3o$bo2bobob2obobo3bobob2obobo2bo$bob2obob3obobobobob3obob2obo$o3bo
bo2bo4bobo4bo2bobo3bo$2b2obob3o2b3ob3o2b3obob2o$b4o2bob2o2bobobo2b2obo
2b4o$obo2b3o4b7o4b3o2bobo$5o2b2o3b3ob3o3b2o2b5o$3o3bob2o4bobo4b2obo3b
3o$2obo5b2o2b2ob2o2b2o5bob2o$bobobo4b4obob4o4bobobo$2obo5b2o2b2ob2o2b
2o5bob2o$3o3bob2o4bobo4b2obo3b3o$5o2b2o3b3ob3o3b2o2b5o$obo2b3o4b7o4b3o
2bobo$b4o2bob2o2bobobo2b2obo2b4o$2b2obob3o2b3ob3o2b3obob2o$o3bobo2bo4b
obo4bo2bobo3bo$bob2obob3obobobobob3obob2obo$bo2bobob2obobo3bobob2obobo
2bo$b3obo2b4obo3bob4o2bob3o$2ob3o2b2ob4ob4ob2o2b3ob2o$5bo5bo2b3o2bo5bo
$bob4o3b2ob2ob2ob2o3b4obo$5o2bobobo2b3o2bobobo2b5o$ob2o3bobo2b2obob2o
2bobo3b2obo!

x = 31, y = 31, rule = B3/S23
2o3bob3o5bo5b3obo3b2o$3bobobo3b3o3b3o3bobobo$5o3bobob3ob3obobo3b5o$o2b
2obobo4b2ob2o4bobob2o2bo$ob5ob2ob9ob2ob5obo$o2b2ob3obo3b3o3bob3ob2o2bo
$b2o3bo2b2ob3ob3ob2o2bo3b2o$2ob2obobob2obo3bob2obobob2ob2o$ob4ob2obo3b
3o3bob2ob4obo$o6b4obo2bo2bob4o6bo$2o2b3ob2o2bo5bo2b2ob3o2b2o$2b8o2b2ob
ob2o2b8o$2bobob2ob4obobob4ob2obobo$2o6b3o4bo4b3o6b2o$2o3bobo6bobo6bobo
3b2o$b4o2bo2b3ob3ob3o2bo2b4o$2o3bobo6bobo6bobo3b2o$2o6b3o4bo4b3o6b2o$
2bobob2ob4obobob4ob2obobo$2b8o2b2obob2o2b8o$2o2b3ob2o2bo5bo2b2ob3o2b2o
$o6b4obo2bo2bob4o6bo$ob4ob2obo3b3o3bob2ob4obo$2ob2obobob2obo3bob2obobo
b2ob2o$b2o3bo2b2ob3ob3ob2o2bo3b2o$o2b2ob3obo3b3o3bob3ob2o2bo$ob5ob2ob
9ob2ob5obo$o2b2obobo4b2ob2o4bobob2o2bo$5o3bobob3ob3obobo3b5o$3bobobo3b
3o3b3o3bobobo$2o3bob3o5bo5b3obo3b2o!

A variation of the cloverleaf:
x = 31, y = 31, rule = B3/S23
o2bobob4obobobobob4obobo2bo$6ob2o3b2o3b2o3b2ob6o$3b6o3b2o3b2o3b6o$b2o
2bobob2o4bo4b2obobo2b2o$2o2bo3b2o2bob3obo2b2o3bo2b2o$4ob5o2b2obob2o2b
5ob4o$b5o2b3ob7ob3o2b5o$4bo2bob3o2bobo2b3obo2bo$3b2obo3bo3b3o3bo3bob2o
$2bob2o3b2o4bo4b2o3b2obo$2o2bo2bo2bobo2bo2bobo2bo2bo2b2o$2bobob4obo3bo
3bob4obobo$2o2b3ob4ob2ob2ob4ob3o2b2o$b2obo2b3ob4ob4ob3o2bob2o$bo2b6obo
7bob6o2bo$o3bo3b4ob2ob2ob4o3bo3bo$bo2b6obo7bob6o2bo$b2obo2b3ob4ob4ob3o
2bob2o$2o2b3ob4ob2ob2ob4ob3o2b2o$2bobob4obo3bo3bob4obobo$2o2bo2bo2bobo
2bo2bobo2bo2bo2b2o$2bob2o3b2o4bo4b2o3b2obo$3b2obo3bo3b3o3bo3bob2o$4bo
2bob3o2bobo2b3obo2bo$b5o2b3ob7ob3o2b5o$4ob5o2b2obob2o2b5ob4o$2o2bo3b2o
2bob3obo2b2o3bo2b2o$b2o2bobob2o4bo4b2obobo2b2o$3b6o3b2o3b2o3b6o$6ob2o
3b2o3b2o3b2ob6o$o2bobob4obobobobob4obobo2bo!

A period 5 oscillator:
x = 31, y = 31, rule = B3/S23
2b2obo2bo3b2o3b2o3bo2bob2o$b2o4b2o2b2ob3ob2o2b2o4b2o$2b2o4bob2o2b3o2b
2obo4b2o$2obo3b5obobobob5o3bob2o$2o2b4o2bobo5bobo2b4o2b2o$2o4bobo2b2ob
3ob2o2bobo4b2o$2o4bobobobo2bo2bobobobo4b2o$b3o3b3ob4ob4ob3o3b3o$3o2b2o
4bob2ob2obo4b2o2b3o$o2b4o2bo2b2o3b2o2bo2b4o2bo$obo3bo7bobo7bo3bobo$2bo
b4o2b2obobobob2o2b4obo$2o2b2obo4b3ob3o4bob2o2b2o$2b3ob4o3b5o3b4ob3o$bo
bo2bo2b2o2b2ob2o2b2o2bo2bobo$4b2o4b2o2b3o2b2o4b2o$bobo2bo2b2o2b2ob2o2b
2o2bo2bobo$2b3ob4o3b5o3b4ob3o$2o2b2obo4b3ob3o4bob2o2b2o$2bob4o2b2obobo
bob2o2b4obo$obo3bo7bobo7bo3bobo$o2b4o2bo2b2o3b2o2bo2b4o2bo$3o2b2o4bob
2ob2obo4b2o2b3o$b3o3b3ob4ob4ob3o3b3o$2o4bobobobo2bo2bobobobo4b2o$2o4bo
bo2b2ob3ob2o2bobo4b2o$2o2b4o2bobo5bobo2b4o2b2o$2obo3b5obobobob5o3bob2o
$2b2o4bob2o2b3o2b2obo4b2o$b2o4b2o2b2ob3ob2o2b2o4b2o$2b2obo2bo3b2o3b2o
3bo2bob2o!


Finally, a second pufferfish soup:
x = 31, y = 32, rule = B3/S23
bobo2bob4o3bo3b4obo2bobo$o2b2obobobob7obobobob2o2bo$2ob3ob2o2b3obob3o
2b2ob3ob2o$4b2ob2o2b3obob3o2b2ob2o$o2bo2bo4b2obobob2o4bo2bo2bo$bobo5b
4o2bo2b4o5bobo$2b3ob2o4bob3obo4b2ob3o$2b4o3b2o2b5o2b2o3b4o$b2o4b4o3b3o
3b4o4b2o$b2obo2bob2ob2o3b2ob2obo2bob2o$ob7o2b2ob3ob2o2b7obo$2o2bobobob
o3bobo3bobobobo2b2o$2bobobo3bo2b5o2bo3bobobo$2b2o3bo2b2obobobob2o2bo3b
2o$2b2ob2o2b4o5b4o2b2ob2o$3b3obobobo7bobobob3o$bobo2bob4o3bo3b4obo2bob
o$o2b2obobobob7obobobob2o2bo$2ob3ob2o2b3obob3o2b2ob3ob2o$4b2ob2o2b3obo
b3o2b2ob2o$o2bo2bo4b2obobob2o4bo2bo2bo$bobo5b4o2bo2b4o5bobo$2b3ob2o4bo
b3obo4b2ob3o$2b4o3b2o2b5o2b2o3b4o$b2o4b4o3b3o3b4o4b2o$b2obo2bob2ob2o3b
2ob2obo2bob2o$ob7o2b2ob3ob2o2b7obo$2o2bobobobo3bobo3bobobobo2b2o$2bobo
bo3bo2b5o2bo3bobobo$2b2o3bo2b2obobobob2o2bo3b2o$2b2ob2o2b4o5b4o2b2ob2o
$3b3obobobo7bobobob3o!

The natural synthesis can be reduced to this:
x = 37, y = 17, rule = B3/S23
6bo23bo$6b2o21b2o$b2o4b2o19b2o4b2o$o2bo2b2o21b2o2bo2bo$b2o10bo9bo10b2o
$13bo9bo$13bo9bo2$15b3ob3o6$11bo13bo$10bobo11bobo$11b2o11b2o!

So out of about 21 000 000 soups with at least one line of odd symmetry, I've documented 2 occurrences of the pufferfish, so if enough people run similar searches, it will show up sooner or later.
User avatar
flipper77
 
Posts: 197
Joined: October 24th, 2010, 3:25 am
Location: Spokane, WA

Re: Soup search results

Postby chris_c » November 27th, 2014, 9:47 am

flipper77 wrote:The natural synthesis can be reduced to this:
x = 37, y = 17, rule = B3/S23
6bo23bo$6b2o21b2o$b2o4b2o19b2o4b2o$o2bo2b2o21b2o2bo2bo$b2o10bo9bo10b2o
$13bo9bo$13bo9bo2$15b3ob3o6$11bo13bo$10bobo11bobo$11b2o11b2o!

Congratulations on the find. Coincidentally the B-heptomino + beehive + blinker decays into exactly the piece of junk that I was messing around with the other day:

x = 23, y = 10, rule = B3/S23
9bo3bo$2o7bo3bo7b2o$bobo5bo3bo5bobo$bobo15bobo$2b2o15b2o3$4bo13bo$3bob
o11bobo$4b2o11b2o!


So I managed to make the following 15 glider synthesis:

x = 82, y = 74, rule = B3/S23
31bobo$32b2o$32bo46bo$77b2o$16bo61b2o$17bo$15b3o6$60bo$60bobo10bo$60b
2o10bo$72b3o17$34b3o$36bo$35bo7$66b3o$66bo$67bo6$18b2o59b2o$12b2o3bobo
59bobo$11bobo5bo59bo$13bo23b2o$38b2o$19b2o16bo$20b2o$19bo2$62bo$61b2o$
17b2o42bobo$18b2o$17bo9$3o$2bo$bo!
chris_c
 
Posts: 862
Joined: June 28th, 2014, 7:15 am

Re: Soup search results

Postby Kazyan » November 28th, 2014, 12:08 am

Any chance that this would work, with a more creative lower section?

x = 22, y = 15, rule = LifeHistory
D.D.2D.D.D2.4D$5.2A8.D$D4.2A2.D5.D$12.4D$D8.D5.D$4.3A8.D$D3.3A2.D2.4D
$2.D.2D.D$D6.A.D2.4D2.3D$6.2A7.D.D3.D$D5.A.AD5.D5.D$.2A9.4D3.2D$D2.2A
4.D2.D6.D$4.A7.D$D.D.2D.D.D2.4D3.D!


EDIT: The 26-cell still life that drops out of this is the strangest I've seen yet.

x = 16, y = 16, rule = B3/S23
2ob4obobobobo$bo3b2o4b4o$2b4obo$3bob4obob2obo$o3bo2b2ob3ob2o$o2bo4bo5b
2o$5b3o2b2obobo$b2obo3bo3bob2o$3bo4b3obo2bo$b3o2b6obobo$o3b2o2bob2ob3o
$o2bo3bobo2bo$bo4bo2bobo3bo$3o2b4obob3o$2b2o2b7ob2o$2b5obob4obo!
Tanner Jacobi
User avatar
Kazyan
 
Posts: 771
Joined: February 6th, 2014, 11:02 pm

Re: Soup search results

Postby codeholic » November 28th, 2014, 6:19 pm

pre-pulsar + 2 TL predecessors + blinker -> smiley
x = 31, y = 16, rule = B3/S23
o3bo2bobo2b3ob3o2bobo2bo3bo$ob4o2bobo3b3o3bobo2b4obo$b2ob2o5bobo3bobo
5b2ob2o$ob2o2bobobo2b2ob2o2bobobo2b2obo$5o3b3o2bobobo2b3o3b5o$2bo2bob
4o4bo4b4obo2bo$bo3bo2b2o2b7o2b2o2bo3bo$4ob3ob2obobobobob2ob3ob4o$o2bob
ob4o4bo4b4obobo2bo$bobob2obobo3b3o3bobob2obobo$4b2o3b13o3b2o$bob2o5b
11o5b2obo$ob2o2bob2o4bobo4b2obo2b2obo$2o3b3o3bobobobobo3b3o3b2o$b4obo
2bob2o2bo2b2obo2bob4o$b3o2bo2b5obob5o2bo2b3o!

It promises a much simpler glider synthesis (9 gliders?) than the one documented on the wiki (28 gliders).

A p3 I've never seen before
x = 31, y = 16, rule = B3/S23
3b2o2bo3b9o3bo2b2o$2b2o2bo3b2o3bo3b2o3bo2b2o$4b3o2b2o4bo4b2o2b3o$bo2bo
2b2o2b2obobob2o2b2o2bo2bo$o2bob5o3bobobo3b5obo2bo$obobobob2ob4ob4ob2ob
obobobo$7b2ob2obobobob2ob2o$3ob2ob2obobo2bo2bobob2ob2ob3o$2bobobob3o3b
3o3b3obobobo$3bobobobobo7bobobobobo$o2bob3o2b4o3b4o2b3obo2bo$b3obob2o
2bo3bo3bo2b2obob3o$5ob5o2b2ob2o2b5ob5o$4bo2bo4b3ob3o4bo2bo$4bobo2bo3bo
bobo3bo2bobo$2ob3o2b4o7b4o2b3ob2o!
Ivan Fomichev
User avatar
codeholic
Moderator
 
Posts: 1140
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

Re: Soup search results

Postby Extrementhusiast » November 28th, 2014, 7:21 pm

codeholic wrote:pre-pulsar + 2 TL predecessors + blinker -> smiley
RLE

It promises a much simpler glider synthesis (9 gliders?) than the one documented on the wiki (28 gliders).


Actually, eleven gliders:
x = 49, y = 29, rule = B3/S23
12bobo$13b2o$13bo2$11b2o$10bobo$12bo2$2bo25bo$obo14b2o9bobo$b2o13b2o
10b2o$18bo23b2obob2o$45bo$42bo5bo$43b5o3$42b3ob3o3$5b3o15b3o$7bo15bo$
6bo17bo$2o27b2o$b2o5b2o18b2o$o8b2o19bo$8bo9bo$17b2o$17bobo!

The two traffic lights not part of the pre-pulsar can't both be synthesized with two gliders. (I haven't checked yet if one could be done with two and the other with three.)
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1723
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Soup search results

Postby Kazyan » November 28th, 2014, 8:29 pm

Whoa! That quasi-natural smiley is something, alright. Great find.

Considering its size, perhaps Elkies' p5 will eventually show up? Or, almost as good, has this object been found yet?

x = 7, y = 7, rule = B3/S23
b2o$o2bo$bobo2bo$2ob4o$2bo$2bobo$3b2o!


If it has, it could simplify the synthesis for Elkies' p5.

EDIT:
1 beacon [8 -> 7]
21P2 [9 -> 8]

x = 112, y = 17, rule = B3/S23
42bobo$43b2o$43bo6bo$48b2o$49b2o$67b2o18b2o18b2o$67b2o18b2o18b2o$69b2o
18b2o18b2o$25b2o18b2o4bobo11b5obo13b5obo13b5obo$5b2o18bobo17bobo3b2o
12bo5bo13bo5bo13bo5bo$3ob2o20b2o18b2o4bo13bob3o15bob3o17b3o$2bo3bo60b
2o18b2o19bo$bo50b3o29b2o$54bo28bobo$2b2o49bo31bo$2bobo$2bo!


I think our list is this now, excluding the stuff Bob has already come up with, but his objects that have pages need to be updated as well.

1 beacon [10 -> 7]
21P2 [11 -> 8]
4 boats [10 -> 7]
Cis-fuse with two tails [8 -> 6]
Eater2 [9 -> 6]
Fore and Back [20 -> 6!]
Griddle and Beehive [16 -> 8]
Griddle and Block [14 -> 6!]
Jam [7 -> 7, natural]
Loaf siamese barge [9 -> 7]
Odd test tube baby [11 -> 9]
Pufferfish [Unknown -> 15!]
Pulsar quadrant [12 -> 10]
Smiley [28 -> 11!]
Super beehive [11 -> 9]
Tripole [7 -> 6]
Tub test tube baby [14 -> 7]
Tumbler [6 -> 6, natural]

Loaf siamese barge in "I finally got around to uncrossing the glider trajectories" form:
x = 37, y = 21, rule = B3/S23
2bo$obo$b2o2$9bobo$10b2o$10bo3$3bobo$4b2o8b2o$4bo8b2o5bo$15bo4bobo11bo
$5b2o13b2o11bobo$4b2o26bobobo$6bo26bo2bo$34b2o2$11b3o$13bo$12bo!
Tanner Jacobi
User avatar
Kazyan
 
Posts: 771
Joined: February 6th, 2014, 11:02 pm

PreviousNext

Return to Patterns

Who is online

Users browsing this forum: No registered users and 3 guests