ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Herschel conduits and other stable circuits

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

Herschel conduits and other stable circuits

Postby PM 2Ring » July 6th, 2009, 5:54 am

After seeing Calcyman's intriguing patterns, I've finally started playing with Herschel based patterns. Here are a couple of my first efforts, cobbled together from parts scavanged from various places. Also see the scripts sub-forum for a Golly script that simplifies the construction of Herschel conduits. It's derived from the track.py script that comes with Golly, but it has a few enhancements, including the ability to construct variable sized Herschel transceivers.

This pattern illustrates Herschel synthesis from a pair of gliders colliding head-on in the well-known B-heptomino reaction. This reaction also produces a block and a glider. This pattern uses the stable glider reflector from Calcyman's Rectifier to reflect the glider back to delete the block. The incoming gliders are generated by a pair of Herschel tracks.

x = 285, y = 257, rule = B3/S23
206b2ob2obo$205bobobob2o6bo$206bo12b3o$222bo14bo$221b2o12b3o$181bo52bo
$181b3o50b2o$169bob2ob2o8bo$169b2obobobo6b2o$175bo57b2o$214b2o17b2o$
214b2o6$217b2o$172bo23b2o20bo$171bobo22bo19bo$172bo14b2o8b3o16b2o$187b
o11bo20b2o$188b3o30bo$190bo27b3o$218bo$174b2o$173bobo$173bo$172b2o$
180b2o6b2obo$179b2obo5bob2o$179b2obo$181bo2$161bob2ob2o$161b2obobobo
74bo37b2obo$167bo74bobobob2o31bob2o$243b2ob2obo2$229bo$228bob2o$219b2o
bo5bob2o$219bob2o6b2o$237b2o$237bo$235bobo$235b2o$192bo$190b3o27bo$
189bo30b3o$189b2o20bo11bo$193b2o16b3o8b2o14bo$194bo19bo22bobo$192bo20b
2o23bo$192b2o6$8bob2o183b2o$8b2obo164b2o17b2o$176b2o$226b2o10bob2o$
226bo11b2obo$175b2o50b3o$176bo52bo$173b3o12b2o$173bo14bo$189b3o$191bo
12$190bo$190bobo$190b2o18$102b2obo$102bob2o2$103b5o$98b2o2bo4bo20b2o$
98bo2bo2bo23bo$99bobob2o21bobo$98b2obo5bo18b2o$101bo4bobo$101b2o2bo2bo
93b2o$106b2o95b2o$137b2o63bo$137bo$135bobo$135b2o2$117b2o$117b2o10$
141b2o$141b2o$127bo$126bobo$126bobo$127bo8b3o$136bo$137bo3$153b2o$153b
o$151bobo$151b2o8$141b3o$139b3ob2o$139bo3b2o$139bo2bo6bo$133b2o5b3o5bo
b2o$108b2o22bobo13bobo$108bobo21bo16bo$108bo22b2o7$138b2o$139bo$139bob
o$140b2o7$92b3o$94bo$93bo3$141b2o15b2o$141b2o15bobo$160bo$160b2o3$37bo
b2ob2o$30bo6b2obobobo$28b3o12bo$12bo14bo$12b3o12b2o$15bo52bo$14b2o50b
3o$65bo$65b2o$15b2o$15b2o17b2o$34b2o4$146b2o$145bo2bo$31b2o113b2o$31bo
20b2o23bo$33bo19bo22bobo$18b3o11b2o16b3o8b2o14bo$19bo8b2o20bo11bo$19b
3o6bo30b3o$29b3o27bo$31bo$74b2o$74bobo$76bo$76b2o$58bob2o$58b2obo2$67b
2o$67b2o$82b2ob2obo$6bo74bobobob2o$2obobobo74bo$ob2ob2o$20b2o$20b2o2$
27bob2o$27b2obo$11b2o$12bo$12bobo$13b2o$57bo$29bo27b3o$27b3o30bo6b3o$
26bo11bo20b2o8bo$11bo14b2o8b3o16b2o11b3o$10bobo22bo19bo$11bo23b2o20bo$
56b2o6$53b2o$53b2o17b2o$14bo57b2o$8b2obobobo6b2o$8bob2ob2o8bo$20b3o50b
2o$20bo52bo$60b2o12b3o$61bo14bo$45bo12b3o$44bobobob2o6bo$45b2ob2obo!


Herschel generation from a single input glider.
#C A glider gun feeds a glider replicator, using stable Herschel conduits.
#C Built by PM 2Ring, July 2009.
#C
#C The p633 glider gun uses David Buckingham's p112 Herschel conduit and a
#C p521 Herschel transceiver built from DJB's R-to-Herschel converter and
#C the transmitter found by Paul Callahan.
#C The p630 glider to Herschel converter is taken from p103079214841.rle
#C by Dave Greene, which is itself based on previous oscillators by Gabriel
#C Nivasch. The glider replicator section uses DJB's p77 conduits, and is
#C indefinitely extensible.
#C
x = 285, y = 244, rule = B3/S23
131b2o24bo$131b2o24b3o$160bo$159b2o$129b2o$129b2o$116b2o$117bo$117bobo
$118b2o$114b2o$114b2o77b2o$193bo$191bobo$187b2o2b2o$187b2o2$177bo$127b
2o46bobo$127b2o29b2o17bo$120b2o36b2o15bo$119bo2bo$120b2o$147bo$146bobo
$146b2o$155b2o36b2o$155bo19b2o16bobo$156bo17bobo18bo$155b2o17bo20b2o$
120b2o51b2o4b2o$120b2o55bo2bo$177b2o$17b2o167b2o$16bo2bo166b2o$17b2o6$
196b2o$196bo$194bobo$194b2o4$176bo$176b3o$159bo19bo6b3o$157b3o18b2o8bo
$156bo17b2o11b3o$3b2o151b2o16bo$4bo28bob2o139bo$4bobo15b2o9b2obo138b2o
$5b2o15b2o$105b2o34bob2o$105b2o34b2obo3$107b2o47bo15b2o$107b2o45bo17b
2o17b2o$120b2o21b2ob2o6bobo34b2o$120bo22bo3bo6bo$118bobo23b3o$118b2o
26bobo43b2o$122b2o23b2o43bo$13b3o7b2o97b2o55b2o12b3o$23bobo154bo14bo$
14bobo8bo151b3o$25b2o26b2o122bo$52bobo$50b3o$49bo3bo6bo$49b2ob2o6b3o
46b2o$60bobo15b2o29b2o$62bo15b2o36b2o$32b2o81bo2bo$2obo28bo83b2o$ob2o
9b2o15bobo14b2obo39bo$13b2o15b2o15bob2o38bobo$90b2o$81b2o$82bo$62b2o
17bo$62bo18b2o$63b3o50b2o$65bo50b2o5$12b2o7b3o$11bobo$11bo8bobo$10b2o
7$3b2o$4bo28bob2o$4bobo15b2o9b2obo$5b2o15b2o$214b2o50bo$214b2o50b3o$
249b2o18bo$250bo17b2o$249bo$249b2o$240b2o$240bobo38b2obo$241bo39bob2o$
214b2o$213bo2bo$23b2o189b2o36b2o15bo$23bobo195b2o29b2o15bobo$25bo195b
2o46b3o6b2ob2o$25b2o244bo6bo3bo$279b3o$277bobo$154bo122b2o$152b3o$136b
o14bo$136b3o12b2o55b2o$32b2o105bo43b2o23b2o$2obo28bo105b2o43bobo26b2o$
ob2o9b2o15bobo152b3o23bobo$13b2o15b2o145bo6bo3bo22bo$139b2o34bobo6b2ob
2o21b2o$139b2o17b2o17bo45b2o$158b2o15bo47b2o3$187bob2o34b2o$187b2obo
34b2o2$155b2o$155bo$157bo16b2o$12b2o7b3o3b2o113b3o11b2o17bo$11bobo13b
2o114bo8b2o18b3o$11bo8bobo120b3o6bo19bo$10b2o141b3o$29bo125bo$28bobo$
29bo$30b3o$32bo4$22b2o$22b2o3$13b2o$13b2o$48b2o94b2o$48b2o94b2o$153b2o
$151bo2bo55b2o$14b2o135b2o4b2o51b2o$15bo119b2o20bo17b2o$12b3o3b2o116bo
18bobo17bo$12bo4bobo116bobo16b2o19bo$17bo119b2o36b2o$16b2o166b2o$15bo
167bobo$15b3o25b2o139bo$18bo24bo166b2o$17b2o25b3o162bo2bo$46bo109bo15b
2o36b2o$154bo17b2o29b2o$18b2o19b2o113bobo46b2o$18b2o19b2o113bo2$143b2o
$139b2o2b2o$138bobo$138bo$137b2o77b2o$216b2o$212b2o$212bobo$21b3o190bo
$31b2o181b2o$22bobo6bo169b2o$32b3o166b2o$34bo136b2o$171bo$172b3o24b2o$
174bo24b2o$10b2o3b2o$11bo2bobo$10bo3bo$10b5o2$8b5o$7bo4bo$6bo2bo$3bo2b
ob2o$2bobobo5bo$3bo2bo4bobo9b2o$6b2o2bo2bo9b2o$11b2o19b2o37b2o$30bo2bo
37b2o$30b2o$35b2o$35bo$33bobo$32bobo$28b2o3bo20bo$28b2o23bobo$52bo2bo$
10b2o41b2o$10b2o$28bo35b2o$28bobo33b2o$28bo$30bo5$77b2o$11b2o64b2o$10b
obo60b2o$10bo62bobo$9b2o64bo$75b2o$62b2o$62b2o2$14b2o3b2obo$15bo3b2ob
3o35b2o$12b3o10bo34b2o$12bo6b2ob3o$20bobo$20bobo$21bo!
User avatar
PM 2Ring
 
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Herschel conduits and other stable circuits

Postby calcyman » July 6th, 2009, 11:04 am

After seeing Calcyman's intriguing patterns, I've finally started playing with Herschel based patterns.


I'm glad to have inspired you. My most recent, and most impressive, stable configuration is this:

http://www.conwaylife.com/wiki/index.php?title=Spartan_universal_computer-constructor




Firstly, can I ask you why you are using snakes, rather than eaters, to consume gliders? Are you trying to minimise cell count / bounding box?


This pattern uses the stable glider reflector from Calcyman's Rectifier


The reflector itself is called 'The Rectifier'; thanks for crediting me.


...but it has a few enhancements, including the ability to construct variable sized Herschel transceivers.


Excellent! That's a feature that was never included in Karel's brilliant Hersrch program.


The p630 glider to Herschel converter is taken from p103079214841.rle



p629, I think you'll find...



It's by Stephen Silver (click the link below).

http://www.radicaleye.com/lifepage/patterns/ssrefl/ssrefl.html




Since then, there have been numerous improvements:


p575, by Paul Callahan:

x = 69, y = 81, rule = B3/S23
58bo$56b3o$32bo22bo$20bo11b3o20boo$18b3o14bo$bbo14bo16boo$bb3o12boo$5b
o$4boo3$5boo$5boo17boo$24boo4$66bo$66bo$21boo32boo9b3o$21bo20boo11boo
11bo$23bo19bo$22boo16b3o$18boo20bo$18bo$19b3o$21bo4$bboo$bobo$bo25boo$
oo25bo$8boo15bobo$8boo15boo12$7boo$6bobo$6bo$5boo9$17boo$17boo$29boo$
29bobo$31bo$31boo$$6boo$7bo19boo$7bobo17bo$8boo15bobo$20bo4boo$19bobo$
19bobo$8boo10bo$7bobo$7bo4b3o$6boo6bo$13bo7boo$21bo$22b3o$24bo!



p497, by Stephen Silver and Dave Greene:

x = 74, y = 91, rule = B3/S23
42bo$42b3o6boo19bo$45bo5boo18bobo$31bo12boo25bobo$31b3o38bo$34bo26bo$
33boo10boo14bo$45boo3boo9b3o$50boo11bo4$32bo$20bo11b3o$18b3o14bo$bbo
14bo16boo$bb3o12boo$5bo$4boo3$5boo$5boo17boo$24boo6$21boo$21bo$22b3o$
24bo$18boo$18bo$19b3o9boo$21bo8bobo$30bo$29boo$$bboo$bobo$bo25boo$oo
25bo$8boo15bobo$8boo15boo12$7boo$6bobo$6bo$5boo9$17boo$17boo$29boo$29b
obo$31bo$31boo$$6boo$7bo19boo$7bobo17bo$8boo15bobo$20bo4boo$19bobo$19b
obo$8boo10bo$7bobo$7bo4b3o$6boo6bo$13bo7boo$21bo$22b3o$24bo!



p466, by myself:

x = 131, y = 81, rule = B3/S23
95boo$48boo14bo31bo6boo$23boo24bo14b3o29bobo4boo$24bo13boo6b3o18bo23b
oo4boo$24bobo11boo6bo19boo23bobo35bo$10boo13boo62bobob3o32bobo$10boo
73boobboo5bo31bobo$85boo8boo32bo$118bo$4boo112bo$4boo101boo9b3o$8boo
46boo49boo11bo$8boo46boo3$119boo$3boo110bo3boo$3boo109bobo$53boo58bobo
$53bo19boo38bo$34boo3boo13b3o15bobo37boo$35bo3bo16bo15bo$32b3o5b3o13bo
bo12boo$32bo9bo14boo8bo$67b3o$70bo$69boo$50bo34boo$10boo38b3o32boo$11b
o41bo$8b3o41bo$8bo43boo36boo$23boo23boo39bobo$23bobo23bo29boo8bo$25bo
23bobo27bobo6boo$25boo23boo29bo$27bo53boo18boo$25b3o33boo14boo22boo$
24bo36boo15bo$24boo51bo$78b3o$80bo$60boo$60bo$61b3o$26boo35bo19bo$26b
oo53b3o$bboo76bo$bobo76boo$bo84bo$oo84b3o$89bo$88boo$98boo$98bo$96bobo
$51bo38boo4boo$51b3o35bobbo$54bo35boo$53boo23boo$78boo5$96boo$96bobo$
44boo50bo$44boo41boo3boo$67boo19bo3bo$67bobo15b3o5b3o$69bo15bo9bo$7boo
21boo25boo10boo$7boo21bobo24bo$13boo17bo14boo9b3o$13boo17boo14bo11bo$
47bo$47boo$11boo$11boo5boo$18boo!







I've made a stable Cordership -> glider converter, which operates at p487:

x = 215, y = 156, rule = S23/B3
37boo$33bobobbo$31b3oboo$30bo$31b3oboo$33boboo$56boo$55bobo$56bo6$64b
oo60boo$63bobo39bo20boo$64bo40b3o$108bo$107boo4$72boo60boo$71bobo60boo
$13bo58bo$13b3o$16bo$15boo26bo$42bobo$42boo$80boo$79bobo15bo$80bo16b3o
$6bo93bo$6b3o90boo$9bo41bo$8boo40bobo$30boo18boo$30boo56boo$87bobo$88b
o3$59bo$18boo38bobo$18boo38boo$4boo135bo$4boo135bo$oo139bo$oo142boo$
144boo12boo$67bo71bo3b3o11boo$66bobo71b3o15bo$66boo73bo15b3o$22boo116b
oo15b3o$21bobbo115b3o16bo$21bobo118bo14bobbo$22bo117bo16b3o5boo$142bo
15bo6boo$60bo79b3o$58b3o5bo5boo$35boo20bo6b3o5boo$36bo20boo4bo$36bobo
24boo$37boo$156boo$46boo107bobboo13b3o$46boo6boo99b5o16bo$54boo24boo
73b4o9boobbo3bo$70boo8boo65b4o9boo8boboobbo$58boo10boo61b3o10bo5boo4bo
bbo$57bobo86bo4bo10bo10boo$58bo78boo7boob4obo5boo$45boo92bo11bo3bo3boo
$45bo87b4obo16boboo$46b3o84b5o18boo$48bo9boo51bo49bo$59bo17bo6boo25bo
49bo$56b3o17bobo5boo25bo21bobo$56bo20bo36boo17bobo$114boo12boo4bo$109b
o3b3o11boo4bobo$110b3o15bo5boo$18boo73boo16bo15b3o4bo$18boo73boo15boo
15b3o$110b3o16bo$112bo14bobbo$71boo37bo16b3o$72bo39bo15bo52bo$69b3o38b
3o67bobo$35boo32bo109bo3bo$35bo144bobo$33bobo145bo14b3o$33boo160bo3bo$
181b4o10b3obbo$90boo33bobo52bo4bo9bo3bo$90bo34bobbo53bo13b3o$91b3o31bo
bbo50bo3bobbo9boo7boo$93bo31bo3bo49bob3obo19boo$115boo9bobo51b3obo$
115boo10bo$$37boo159bo$37bobo155b5o$39bo154bo$39boo169bo$10boo17boo49b
oo4boo107bo3bo9boboo$10bo18boo49boo4boo35boo71b3o12b3o$11b3o109boo77b
oo4b3o3bo$13bo171boo14bobbo4b5o$185boo3bo9bo5bo5bo$19boo60boo91bo14boo
8bobboo$19boo60boobboo86b3o13bo4bo3booboob3o$85bobo84booboo16boo3bobbo
$87bo85b3o17bobobboboo$35boo50boo85bo18boo4boo$36bo137bobo14bobo$33b3o
138b4o13b3o$33bo117bo25bo14bo$29boo119bobo$29bo119bo3bo19booboo$27bobo
49boo69bobo19bo5bo$27boo44boo4bo71bo14b3o4bo3bo$12bo60bobo4b3o82bo3bo
4bo$12b3o37boo21bo6bo68b4o10b3obbo$15bo35bobo21boo73bo4bo9bo3bo$14boo
35bo100bo13b3o$50boo97bo3bobbo9boo$149bob3obo$150b3obo$46boo$46bo$44bo
bo18boo101bo$44boo10boo7boo98b5o$57bo106bo$57bobo$52boo4boo105bo3bo$7b
oo44bo20boo90b3o$7boo44bobo18bo$54boo16bobo80boo$72boo81boo$$12boo$12b
oo$8boo$8boo$$163boo$14boo27boo118boo$14boo14boo11boo$31bo$28b3o35boo$
28bo37boobboo$70bobo$72bo$72boo!



which can be paired with my gargantuan glider -> Cordership converter:

http://b3s23life.blogspot.com/2009/02/first-complete-glider-to-cordership.html



Finally, here's my new highway robber (the opposite to an edge-shooter):


x = 113, y = 117, rule = B3/S23
64bo$62b3o$38bo22bo$26bo11b3o20boo$24b3o14bo$8bo14bo16boo39boo$8b3o12b
oo56boo5boo$11bo76boo$10boo$$67boo17boo$11boo55bo17boo$11boo17boo36bob
o21boo$30boo37boo21boo4$72bo$72bo$27boo32boo9b3o$27bo20boo11boo11bo$
29bo19bo$28boo16b3o$24boo20bo$24bo$25b3o68bo$27bo66b3o$84b3o6bo$84bo8b
oo$83boo$8boo$7bobo$7bo25boo$6boo25bo$14boo15bobo$14boo15boo65boo$98bo
$96bobo$96boo3$64boo16boo$65bo15bobo$65bobo13bo$66boo12boo3$13boo83boo
bo$12bobo83boboo$12bo$11boo78boo$91boo8$23boo$23boo$35boo$35bobo$37bo$
37boo$$12boo$13bo19boo55b3o$13bobo17bo56bo14boo$14boo15bobo55boo14bo$
26bo4boo70bobo$25bobo75booboo$25bobo78bo$14boo10bo79bobo$13bobo67boo
20boob3o$13bo70bo26bo$7bo4boo70bobo18booboobbo$7b3o17boo56boo18boobob
oo$10bo16bo82bo$o8boo17b3o79bo$3o27bo77boboo$3bo104boobbo$bboo15boo65b
oo23boo$19boo66bo$84b3o$47bo36bo$45b3o$44bo$44boo62boo$50boo56bo$9boo
39boo7bo49b3o$8bobbo45b3o51bo$8bobo45bo26bo$9bo46boo25b3o$86bo6b3o$64b
oo19boo8bo$64bo16boo12boo$62bobo16bo$62boo19bo$82boo6$63bo15boo$63bo
15boo17boo$61b3o34boo$19b3o18boo19bo$19bo20bo$20bo20b3o6boo47boo$43bo
bboobboo47bo$43bobobo38boo12b3o$42boobo23boo16bo14bo$42bobbo23bo14b3o$
43boo25b3o11bo$72bo!




(Excuse me if I over-contribute to this thread, since aperiodic circuitry is my speciality.)
What do you do with ill crystallographers? Take them to the mono-clinic!
User avatar
calcyman
 
Posts: 1349
Joined: June 1st, 2009, 4:32 pm

Re: Herschel conduits and other stable circuits

Postby PM 2Ring » July 8th, 2009, 2:49 am

calcyman wrote:
After seeing Calcyman's intriguing patterns, I've finally started playing with Herschel based patterns.

I'm glad to have inspired you. My most recent, and most impressive, stable configuration is this:

http://www.conwaylife.com/wiki/index.php?title=Spartan_universal_computer-constructor

Now that is seriously scary. :)

Firstly, can I ask you why you are using snakes, rather than eaters, to consume gliders? Are you trying to minimise cell count / bounding box?
Part of the reason is to minimize the bounding box. The other part is that I use eaters to kill unwanted or "stray" gliders and snakes to "capture" a pattern's glider output streams, i.e. gliders that may be of use in a larger construction. I also like the "boat bit" reaction, as it records the fact that a snake has captured a glider.

In the glider replicator pattern above, some of those snakes are being used to block stray gliders that would cause damage to the glider generating loop, but I used snakes to emphasize the symmetry of the output track, and make it clear that that track can be easily extended.

This pattern uses the stable glider reflector from Calcyman's Rectifier


The reflector itself is called 'The Rectifier'; thanks for crediting me.
Ah. No worries.

...but it has a few enhancements, including the ability to construct variable sized Herschel transceivers.


Excellent! That's a feature that was never included in Karel's brilliant Hersrch program.

Cool, glad you like it. And I'd be very interested in any suggestions you have to improve & enhance my script. However, the patterns above were constructed by hand, not by using the Htrack script, FWIW.

The p630 glider to Herschel converter is taken from p103079214841.rle


p629, I think you'll find...
Really? Oops! I guess I marked it as p630 as I originally intended to feed it with gliders from one of my p30 memory loops. But p629 is better because I can reduce the glider generating loop to match that exactly.

It's by Stephen Silver (click the link below).

http://www.radicaleye.com/lifepage/patterns/ssrefl/ssrefl.html
Since then, there have been numerous improvements:
I'll check it all out when I get home.

(Excuse me if I over-contribute to this thread, since aperiodic circuitry is my speciality.)
Please do! I only started this thread because you hadn't started a thread dedicated to such patterns. :)
User avatar
PM 2Ring
 
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Herschel conduits and other stable circuits

Postby PM 2Ring » August 3rd, 2009, 10:46 am

Here's an adjustable Herschel-based LWSS gun, built from a pattern posted here back in early June. Sorry, I can't remember who posted the original.

The input Herschel is generated by a glider to Herschel converter. The glider comes from an adjustable Herschel track loop, with period 774 +4n. To adjust the period, move the top left half of the track north-west. It's currently set to n=36, IIRC.

HerschToLWSSgunB5.rle
x = 503, y = 294, rule = B3/S23
380b2o$380b2o5$392bo$391bobo$391bobo$390b2ob3o$396bo$370b2o18b2ob3o$
371bo18b2obo$371bobo$372b2o3$473bo$473b3o$346bo4b2o123bo$345bobo2bobo
7b2o113b2o$344bo2b4o9bo$329bo14bobo4bo6bobo$327b3o13b2ob2o2b2o6b2o$
303bo22bo14bo50b2o$291bo11b3o20b2o10bo2b4ob2o44b2o$289b3o14bo31b3o3bob
2o$273bo14bo16b2o34bo$273b3o12b2o50b2o$276bo$275b2o186b2o$445b2o17bo$
446bo17bobo$276b2o127bo27bo11bo19b2o$276b2o17b2o106b3o27b3o9b2o$295b2o
105bo33bo$402b2o19b2o10b2o$406b2o16bo61b2o$407bo16bobo59b2o$405bo19b2o
$405b2o41b2o$292b2o32b2o120b2o$292bo20b2o11b2o56b2o$293b3o18bo45b2o22b
2o$295bo15b3o38b2o5bobo16b2o$289b2o20bo34b2o4bobo4bo18b2o$289bo57bo6bo
3b2o48b2o$290b3o51b3o7b2o33b2o17b2o$292bo51bo35b2o7b2o67b2o$373b2o5b2o
57b2o18bo$373b2o64bo16b3o$388b2o50b3o13bo17b2o$273b2o114bo52bo32bo$
272bobo111b3o12b2o69b3o$272bo25b2o86bo14bo16b2o52bo$271b2o25bo103b3o
14bo$279b2o15bobo105bo11b3o47bo$279b2o15b2o118bo49b3o$469bo$468b2o$
393bo15bo9bo$393b3o13b3o5b3o29bo$396bo15bo3bo13b2o17b3o$395b2o14b2o3b
2o13bo20bo$430bo20b2o11b2o$376bo53b2o32b2o$357b2o17b3o$358bo20bo$345bo
11bo20b2o11b2o$278b2o7b3o55b3o9b2o32b2o$277bobo68bo$277bo8bobo46b2o10b
2o84b2o$276b2o58bo96b2o$336bobo$322b2o13b2o136b2o$322b2o36b2o112bobo$
360b2o112bo$473b2o$316b2o84b2o$316b2o83bobo11b2o6bo19b2o$320b2o79bo13b
2o6b3o18bo20b2o$288b2o30b2o78b2o24bo14b3o21bobo$288b2o135b2o14bo25bo$
467b2o$351b2o$302b2o11b2o34bo39b2o$302bobo10b2o35b3o36bo$304bo49bo37b
3o$277b2o25b2o88bo$278bo19b2o$278bobo17bo$279b2o15bobo$291bo4b2o$290bo
bo$290bobo$279b2o10bo$278bobo$278bo42b2o$95b2o180b2o41bobo$96bo195b2o
26bo$95bo5b2o189bo26b2o$95b2o4bobo189b3o$103bo191bo$101bob2o$101b2o2bo
$104b2o6$100b3o224b2o$101bo225b2o$90b2o7b3o318b2o$89bobo226b2obo34b2o
62b2o5b2o$89bo228bob2o34b2o69b2o35b2o$88b2o213bo87b2o67bo3b2o$301b3o
88bo13bo52bobo$256bo20bo22bo90bo14b3o16b2o31bobo$248bo6bobo19b3o20b2o
89b2o16bo15b2o31bo$248b3o5bo23bo101b2o24b2o21b2o24b2o$244b2o5bo27b2o
38bo23bo38bobo46b2o$245bo4b2o67b3o19b3o39bo$245bobo62bo11bo17bo15b2o$
246b2o62b3o8b2o17b2o13bo2bo$313bo42b2o36b2o$312b2o49b2o29b2o$337b2o24b
2o$242b2o25b2o65bo2bo$99b2o142bo25b2o66b2o$99b2o142bobo$244b2o$49b2o
39b2obo$50bo39bob2o217bo92b2o$49bo25bo32b2o147b2o54bo36b2o53bo$49b2o
22b3o32bo148bobo6b2o32b2o9bobo36b2o50b3o$18b2o8bo43bo33bobo150bo6bo20b
2o11b2o11bo11b2o27b2o46bo$19bo7bobo7bo34b2o32b2o151b2o6bo20bo36bo27bob
o$18bo9bo6b3o228b2o17b3o38b3o24bo$18b2o14bo56bo193bo42bo23b2o$34b2o55b
3o271b2o$82bo11bo209b2o33b2o24b2o$82b3o8b2o14bo195bo33bo$85bo22bobo
134b3o7b2o45b3o35b3o58b2o$60bo23b2o23bo145bobo44bo39bo24b2o32bobo32b2o
$58bobo185bobo8bo109b2o34b3o30b2o$14b2o25b2o17bo196b2o143bo3bo$15bo25b
2o15bo343b2ob2o$15bobo$16b2o413b2o$431b2o$83bo351b2o$29b2o54bo317bo31b
2o$29bobo6b2o32b2o9bobo178b2o135b3o$31bo6bo20b2o11b2o11bo11b2o165bo
135bo$31b2o6bo20bo36bo147b2o15bobo135b2o27b2o$38b2o17b3o38b3o144b2o15b
2o165b2o$57bo42bo314b2o$415bo$416b3o$70b2obo344bo$17b3o7b2o41bob2o$27b
obo$18bobo8bo$29b2o3$167b2o$167b2o75b2o$172bo70bobo$170b3o70bo$169bo
72b2o$157bo11b2o$10b2o135b2o7bobo$10bo136b2o7bobo$11bo145bo$10b2o248b
2o$199bo60bobo$199b3o60bo$19b2o181bo59b2o$19b2o138b2o40b2o$159b2o$26bo
b2o143b2o$26b2obo143b2o23bo34bo$177b2o17b3o32b3o$177b2o16bo34bo$195b2o
33b2o20b2o$185b2o56b2o7b2o$186bo57bo$28b2o156bobo55bobo$24bo4bo157b2o
4b2o44b2o4b2o$23bobo2bo163bo2bo44bo20b2o$24b2o2b2o163b2o45bobo18bo$
205b2o11bo22b2o16bobo$205b2o9bobo40b2o$218bo$216bo3$149b2o2b2o$150bo2b
obo$149bo4bo$149b2o40b2o3b2o32b2o$192bo3bo20b2o11b2o$189b3o5b3o18bo$
189bo9bo15b3o35b2o$2o213bo37b2o2b2o$2o255bobo$4b2o143bob2o81b2o23bo$4b
2o143b2obo82bo23b2o$18b2o212b3o$18b2o138b2o72bo$158b2o4$21bo$20bobo7b
2o$20bobo7b2o$8b2o11bo$9bo$6b3o$6bo$10b2o$10b2o3$148b2o$149bo8bobo$
149bobo$105b2obo41b2o7b3o$105bob2o3$78bo42bo$78b3o38b3o17b2o$81bo36bo
20bo6b2o$80b2o11bo11b2o11b2o20bo6bo$93bobo9b2o32b2o6bobo$93bo54b2o$95b
o2$161b2o$161bobo$120bo15b2o25bo$118bo17b2o25b2o$118bobo$69bo23b2o23bo
$68bobo22bo$69bo14b2o8b3o$84bo11bo$85b3o55b2o$87bo56bo14b2o$141b3o6bo
9bo$71b2o32b2o34bo7bobo7bo$70bobo33bo43bo8b2o$70bo32b3o22b2o$69b2o32bo
25bo$85b2obo39bo$85bob2o39b2o2$78b2o$78b2o13$89b2o$89bo$87bobo$77b3o7b
2o$77bo$76b3o4$499b2o$499bo$73b2o425b3o$73bo2b2o424bo$74b2obo$75bo$75b
obo4b2o$76b2o5bo$82bo$82b2o!
User avatar
PM 2Ring
 
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Herschel conduits and other stable circuits

Postby calcyman » August 3rd, 2009, 11:25 am

Sorry, I can't remember who posted the original.


Dave Greene posted that edge-shooting glider-to-LWSS transformer.
What do you do with ill crystallographers? Take them to the mono-clinic!
User avatar
calcyman
 
Posts: 1349
Joined: June 1st, 2009, 4:32 pm

Re: Herschel conduits and other stable circuits

Postby PM 2Ring » August 3rd, 2009, 1:54 pm

Thanks, calcyman. And thanks Dave!

Here's an almost-conduit. (Is there a proper name for such patterns?) The Herschel deletes the first snake it encounters as it passes through, and leaves a blinker in its wake. Unfortunately, snakes aren't easy to rebuild. A straight glider synthesis takes 5 gliders, TTBOMK. Two to build an eater1, 3 more to transform the eater into a snake. The conduit has a step length of 139, which is annotated using the Snakial font. A beehive has been added to catch the Herschel at the end of the conduit.

SnakeKillerConduit.rle
x = 39, y = 52, rule = B3/S23
6b2o$5bo2bo$6b2o8$10b3o2$9bobo10$18b2o3b2obo6b2obo$19bo3bob2o6bob2o$
18bo8b2o2b2o4b2o$18b2o7bo3bo5bo$28bo3bo5bo$18b2o7b2o2b2o4b2o$9b2o8bo3b
2obo6b2obo$9b2o7bo4bob2o6bob2o$18b2o7b2o8b2o$2obo23bo9bo$ob2o14b2o8bo
9bo$19bo7b2o8b2o$18bo4b2obo6b2obo$18b2o3bob2o6bob2o11$10b2o$10bo$11bo$
5b3o2b2o$6bo$4b3o!
User avatar
PM 2Ring
 
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Herschel conduits and other stable circuits

Postby knightlife » August 7th, 2009, 4:38 am

PM 2Ring wrote:Here's an almost-conduit. (Is there a proper name for such patterns?)


Probably "one-time conduit" is appropriate. I found several of these, but the following one-time conduit is unique among all I have seen because each track piece releases enough gliders to rebuild itself!

x = 56, y = 95, rule = B3/S23
b3o$bo$3o13b3ob3o$18bobobo$18bob3o$18bo3bo$18bo3bo$18bo2$8bo$7bobo$7bo
bo$8bo11$6b3o$6bo44bo$5b2o42bobo$50b2o$53bo$53bobo$53b2o3$13bo$12bobo$
12bobo$13bo11$11b3o$11bo$10b2o7$18bo$17bobo$17bobo$18bo11$16b3o$16bo$
15b2o7$23bo$22bobo$22bobo$23bo11$21b3o$21bo$20b2o!


This track is a single beehive but it generates 2 gliders cleanly! It uses 79 tics to generate a new Herschel in the same orientation.
The first thought is to simply reflect the gliders and send them right back to where they came from (to rebuild the track), but as you can see the two glider synthesis of a beehive produces the beehive in the wrong orientation in this case. The two gliders will need to come from the same side of the track. This can be done but will take some stable Hershel conduits to complete.

I challenge ANY simple (30 x 30 bounding box) clean collision reaction to produce enough gliders to rebuild the components it consumes, assuming there is a moving component and a still life component that it collides with and consumes. This H-beehive collision may be unique in this (more general) respect. Edit: so far!
knightlife
 
Posts: 564
Joined: May 31st, 2009, 12:08 am

Re: Herschel conduits and other stable circuits

Postby PM 2Ring » August 7th, 2009, 12:34 pm

Probably "one-time conduit" is appropriate. I found several of these, but the following one-time conduit is unique among all I have seen because each track piece releases enough gliders to rebuild itself!
Wow! A compact stable 90° glider reflector would be so useful.

I just noticed earlier today that by extending a snake by one cell, it creates two Herschels, plus a pile of debris. I tried triggering this reaction using the spark from a MWSS, but that just made a mess. :) (I know almost nothing about the art of spark utilization).
User avatar
PM 2Ring
 
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Herschel conduits and other stable circuits

Postby calcyman » August 7th, 2009, 3:04 pm

Wow! A compact stable 90° glider reflector would be so useful.


That's why Dave Greene is offering $50 USD for a 90° stable reflector that fits in a 50*50 box, and a further $50 USD for one that fits in a 35*35 box.
What do you do with ill crystallographers? Take them to the mono-clinic!
User avatar
calcyman
 
Posts: 1349
Joined: June 1st, 2009, 4:32 pm

Re: Herschel conduits and other stable circuits

Postby knightlife » August 10th, 2009, 3:16 am

A stable H to 2G salvo with just a pond?

x = 32, y = 39, rule = B3/S23
b2o$o2bo$o2bo$b2o7$7b3o$8bo$6b3o23$30bo$29bobo$29bobo$30bo!


It works except the pond moves 1 x 4 (rats!).
The pond can be moved back to where it started bu using another equal and opposite Herschel. This leads to a dual salvo gun...

Also, it just happens that the 2G salvo will move a beehive by 6 x 7 cells, as shown.
knightlife
 
Posts: 564
Joined: May 31st, 2009, 12:08 am

Re: Herschel conduits and other stable circuits

Postby knightlife » September 12th, 2009, 12:24 pm

Category: "other stable circuits"

Omniperiodic stable diverter:

...........**
...........**
.
.
.
.
.
.
.
.*
..*...........*
***..........*
.............***


A glider (stream) collision produces a diverted glider (stream) in a stable (non-Herschel) reaction.

This reaction can be thought of in two ways:
The glider on the left is shifted to a different track if the glider on the right is present.
The glider on the right is reflected 90 degrees if the glider on the left is present.

Unfortunately the reaction is too slow for p60 glider streams, but is fine for p120.

Edit:
The minimum period is 94 but an interesting kickback result happens at p92:
x = 154, y = 73, rule = B3/S23
bo$2bo149bo$3o148bo$151b3o20$24bo$25bo103bo$23b3o102bo$128b3o20$47bo$
48bo57bo$46b3o56bo$105b3o11$80b2o$80b2o8$70bo$71bo11bo$69b3o10bo$82b3o
!


A 3-glider gap is created because the kickback takes out two additional gliders.
knightlife
 
Posts: 564
Joined: May 31st, 2009, 12:08 am

Re: Herschel conduits and other stable circuits

Postby Extrementhusiast » September 16th, 2009, 8:36 pm

H to 2G converter:
x = 25, y = 25, rule = B3/S23
16b2o$16b2o9$2o$2o9$11b3o$12bo8b2o$12b3o6bo$22b3o$24bo!


Found it while looking for a conduit.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1645
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Herschel conduits and other stable circuits

Postby dvgrn » September 17th, 2009, 12:07 am

Extrementhusiast wrote:H to 2G converter:

Yup, that's H-to-G number 1 -- here's a link to the latest version of Stephen Silver's Herschel-to-glider converter collection. Can't believe it's going on three years already since the last update -- there must be some new technology I've forgotten to add. (?)

#C H-to-G #1 -- Herschel in standard Hersrch "forward" orientation
x = 25, y = 24, rule = B3/S23
2o$bo$bobo$2b2o4$23b2o$23b2o2$2bo$2bobo$2b3o$4bo9$13b2o$13b2o!

The secondary block is offset one cell in your version, but it does the same suppression job. You can replace it with an eater (in a slightly different location) and produce an H-to-3G -- see H-to-G #2.
dvgrn
Moderator
 
Posts: 3991
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Herschel conduits and other stable circuits

Postby calcyman » September 18th, 2009, 12:12 pm

This is the closest configuration so far towards a fast stable merge circuit:

x = 147, y = 127, rule = B3/S23
4b2obo$4bob2o2$5b5o$2o2bo4bo$o2bo2bo$bobob2o$2obo5bo$3bo4bobo$3b2o2bo
2bo$8b2o9$16b2o$16b2o8$6b2o22b2o$7bo21bo2bo$4b3o23b2o$4bo2$61b2o$61bob
o$51bo11bo$51b3o9b2o$13b2o39bo$14bo26b2o10b2o39bo$11b3o28bo50bobo$11bo
30bobo48bobo$43b2o49bo$66b2o15bo$66b2o15bo$83b3o$85bo3$24bo$24b2o$23b
2o51b2o$57b2o18bo$57bo16b3o$58b3o13bo$20bo39bo$19bobo$18bo2bo$19b2o2$
11bo$11b3o$14bo$13b2o6$4bo$4b3o23b2o$7bo21bo2bo$6b2o22b2o8$16b2o$16b2o
9$8b2o$3b2o2bo2bo$3bo4bobo$2obo5bo53b2o$bobob2o57bo$o2bo2bo57bobo$2o2b
o4bo55b2o$5b5o101bo$109b3o$4bob2o100bo$4b2obo78b2o20b2o$86b2o8bo$96b3o
$65bo33bo$65bo32b2o$65b3o$67bo$112b2o11bo$112b2o11b3o$128bo$127b2o$58b
2o$59bo$56b3o$56bo$136bo$134b3o$117b2o15bo$74b2o13b2o26b2o15bo$69b2o3b
2o13b2o54bo$69b2o73bobo$144bobo$145bo$68b2o$69bo5b2o37b2o$66b3o6b2o37b
o$66bo45bobo$112b2o!


It's the result of a collaborative effort between myself and Dave Greene.


The problem is getting the R-pentomino into the initial location.
What do you do with ill crystallographers? Take them to the mono-clinic!
User avatar
calcyman
 
Posts: 1349
Joined: June 1st, 2009, 4:32 pm

Re: Herschel conduits and other stable circuits

Postby Extrementhusiast » September 18th, 2009, 9:54 pm

H = 2G + BlOBh:
x = 27, y = 21, rule = B3/S23
25b2o$25bo$2o21bobo$bo21b2o$bobo$2b2o12$7b3o7b2o$8bo8bobo$8b3o8bo$19b
2o!


Interestingly enough, a glider can be used to both invert the second glider and delete the BlOBh:
x = 76, y = 41, rule = B3/S23
74bo$73bo$73b3o15$15bo$14bo$14b3o$25b2o36b2o$25bo37bo$2o21bobo12b2o21b
obo$bo21b2o14bo21b2o$bobo35bobo$2b2o36b2o12$7b3o7b2o26b3o7b2o$8bo8bobo
26bo8bobo$8b3o8bo26b3o8bo$19b2o36b2o!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1645
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Herschel conduits and other stable circuits

Postby knightlife » September 19th, 2009, 5:49 pm

calcyman wrote:This is the closest configuration so far towards a fast stable merge circuit:


I found two different sets of sneak paths that can merge without disturbing what is already in place. This could be made into a 3-way stable merge circuit if herschel tracks were made to produce the synchonized pairs of spaceships. Just a thought.

x = 249, y = 255, rule = B3/S23
bo$2bo$3o75$96b2obo$96bob2o2$97b5o$92b2o2bo4bo$92bo2bo2bo$93bobob2o$
92b2obo5bo$95bo4bobo$95b2o2bo2bo$100b2o9$108b2o$108b2o8$98b2o22b2o$99b
o21bo2bo$96b3o23b2o$96bo2$153b2o$153bobo$143bo11bo$143b3o9b2o$105b2o
39bo$106bo26b2o10b2o39bo$103b3o28bo50bobo$103bo30bobo48bobo$135b2o49bo
$158b2o15bo$158b2o15bo$175b3o$177bo2$37bo2bo$41bo$37bo3bo$38b4o126b2o$
149b2o18bo$149bo16b3o$150b3o13bo$112bo39bo$111bobo$110bo2bo$111b2o2$
103bo$103b3o$106bo$105b2o6$96bo$96b3o23b2o$99bo21bo2bo$98b2o22b2o8$
108b2o$108b2o9$100b2o$95b2o2bo2bo$84bo10bo4bobo$84b2o6b2obo5bo53b2o$
83bobo7bobob2o57bo$92bo2bo2bo57bobo$92b2o2bo4bo55b2o$97b5o101bo$201b3o
$96bob2o100bo$96b2obo78b2o20b2o$178b2o8bo$188b3o$157bo33bo$157bo32b2o$
157b3o$159bo$204b2o11bo$204b2o11b3o$220bo$219b2o$150b2o$151bo$148b3o$
148bo$228bo$226b3o$209b2o15bo$166b2o13b2o26b2o15bo$161b2o3b2o13b2o54bo
$161b2o73bobo$236bobo$237bo$160b2o$161bo5b2o37b2o$158b3o6b2o37bo$158bo
45bobo$204b2o49$246b2o$246bobo$246bo!


I did try to make the R-pentomino. No luck yet.
knightlife
 
Posts: 564
Joined: May 31st, 2009, 12:08 am

Re: Herschel conduits and other stable circuits

Postby Extrementhusiast » September 19th, 2009, 11:01 pm

H-to-G that only emits a glider from every other Herschel:
x = 261, y = 61, rule = B3/S23
3$31bo49bo49bo49bo49bo$29b3o47b3o47b3o47b3o47b3o$4b2o22bo25b2o22bo25b
2o22bo25b2o22bo25b2o22bo$5bo22b2o25bo22b2o25bo22b2o25bo22b2o25bo22b2o$
5bobo47bobo47bobo47bobo47bobo37b2o$6b2o48b2o48b2o48b2o48b2o37b2o2$38bo
49bo49bo49bo48b2o$38b3o47b3o47b3o47b3o47bo$41bo49bo49bo49bo46bobo$16bo
23b2o11b2o11bo23b2o11b2o11bo23b2o11b2o11bo23b2o11b2o11bo22b2o$14b3o36b
2o9b3o36b2o9b3o36b2o9b3o36b2o9b3o$14bobo47bobo47bobo47bobo47bobo$14bo
49bo49bo49bo49bo2$254b2o$254b2o$39bo49bo49bo49bo49bo$39bobo47bobo47bob
o47bobo47bobo$28b2o9b3o36b2o9b3o36b2o9b3o36b2o9b3o36b2o9b3o$15b2o11b2o
11bo23b2o11b2o11bo23b2o11b2o11bo23b2o11b2o11bo23b2o11b2o11bo$16bo49bo
49bo49bo49bo$13b3o47b3o47b3o47b3o47b3o$13bo49bo49bo49bo49bo2$31b2o48b
2o48b2o48b2o$30bobo47bobo47bobo47bobo$30bo22b2o25bo22b2o25bo22b2o25bo
22b2o$29b2o22bo25b2o22bo25b2o22bo25b2o22bo$54b3o47b3o47b3o47b3o$56bo
49bo49bo49bo!

It is preceded by several 77-length conduits.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1645
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Herschel conduits and other stable circuits

Postby knightlife » September 20th, 2009, 1:31 pm

Extrementhusiast wrote:H-to-G that only emits a glider from every other Herschel


Nice one. A true flip-flop and/or divide-by-2 circuit that is very compact!

Several ways to "reset" the flip-flop (clear the boat/block):
x = 302, y = 162, rule = B3/S23
95bo$93b3o$92bo$92b2o$109b2o11bo$109b2o11bobo$122b2o$101b2o$102bo$102b
obo$103b2o3$110b2o$110bobo$111bo6b2o$118b2o$114b2o$114b2o$92b2o$92b2o
10$123b2o$123bobo$123bo18$95bo$93b3o$92bo$92b2o$109b2o11bo$109b2o11bob
o$122b2o$101b2o$102bo$102bobo$103b2o5$118b2o$118b2o3$92b2o$92b2o10$
123b2o$123bobo$123bo8$299bo$299bobo$299b2o39$27bo49bo49bo49bo49bo$25b
3o47b3o47b3o47b3o47b3o29bo$2o22bo25b2o22bo25b2o22bo25b2o22bo25b2o22bo
32bobo$bo22b2o25bo22b2o25bo22b2o25bo22b2o25bo22b2o31b2o$bobo47bobo47bo
bo47bobo47bobo37b2o$2b2o48b2o48b2o48b2o48b2o37b2o2$34bo49bo49bo49bo48b
2o$34b3o47b3o47b3o47b3o47bo$37bo49bo49bo49bo46bobo$12bo23b2o11b2o11bo
23b2o11b2o11bo23b2o11b2o11bo23b2o11b2o11bo22b2o$10b3o36b2o9b3o36b2o9b
3o36b2o9b3o36b2o9b3o$10bobo47bobo47bobo47bobo47bobo$10bo49bo49bo49bo
49bo2$250b2o$250b2o$35bo49bo49bo49bo$35bobo47bobo47bobo47bobo$24b2o9b
3o36b2o9b3o36b2o9b3o36b2o9b3o36b2o$11b2o11b2o11bo23b2o11b2o11bo23b2o
11b2o11bo23b2o11b2o11bo23b2o11b2o$12bo49bo49bo49bo49bo$9b3o47b3o47b3o
47b3o47b3o$9bo49bo49bo49bo49bo2$27b2o48b2o48b2o48b2o$26bobo47bobo47bob
o47bobo$26bo22b2o25bo22b2o25bo22b2o25bo22b2o$25b2o22bo25b2o22bo25b2o
22bo25b2o22bo$50b3o47b3o47b3o47b3o$52bo49bo49bo49bo!


The glider from the NE is on the same track in all cases.
The two glider reset will work regardless of the current state of the flip-flop.
A single glider solution is only for inverting the phase at a known point.
If building a binary counter from this, "reset" may end up being a "one" since the glider could be the "carry bit".
knightlife
 
Posts: 564
Joined: May 31st, 2009, 12:08 am

Re: Herschel conduits and other stable circuits

Postby PM 2Ring » October 25th, 2009, 6:55 am

A herschel loop / replicator using the herschel duplicator that Calcyman posted recently. The 8 output herschels are in various orientations. They are currently "caught" by beehives, which send the "natural" B-heptomino glider back into the pattern, so when replacing these beehives with herschel conduits, use conduits which also allow this, like hc77.

x = 363, y = 321, rule = B3/S23
83b2o$84bo$71bo11bo$71b3o9b2o$74bo$61b2o10b2o39bo$62bo50bobo$62bobo48b
obo$48b2o13b2o49bo$48b2o36b2o15bo$86b2o17bo$103bobo$42b2o61bo$42b2o$
46b2o$46b2o15bo$65bo$63bobo$65bo11b2o$41b2o34bo$41b2o35b3o$80bo6$54b3o
2$53bobo2$48b2o$49bo$46b3o$46bo21b2o$68b2o$127bo$36b2o66b2o19b3o$37bo
67bo18bo$37bobo15b2o48bobo16b2o$38b2o15b2o49bobo$86bo20bo3b2o31b2o$85b
obo23b2o31b2o5b2o$85bo2bo62b2o$86b2o2$75b2o35bo17b2o17b2o$75b2o33b3o
18bo17b2o$110bobo18bobo21b2o$6b2o102bo21b2o21b2o$5bo2bo$6b2o$41b2o3b3o
7b2o$41b2o4bo8bobo76bo$47b3o8bo3b2o73bo$58b2o2b2o60b2o9bobo$40bo25b2o
43b2o11b2o11bo$39bobo23bobo44bo$40bo24bo43b3o$10b3o24b3o24b2o43bo$37bo
39b2o$9bobo65b2o80bo$109b2o46b3o$109b2o36bobo6bo$79b2o24bo50b2o$79b2o
24b3o38b3o$108bo$107b2o$129b2o$129b2o2$161b2o$161bo$159bobo$159b2o$
117b2o$43bo73b2o$9b2o31bobo58b2o40b2o$9b2o30bo2bo58b2o39bobo$42b2o55b
2o43bo$2obo95b2o42b2o$ob2o2$161b2obo$20b2o42b2o95bob2o$20bo43b2o55b2o$
18bobo39b2o58bo2bo30b2o$18b2o40b2o58bobo31b2o$46b2o73bo$46b2o$4b2o$3bo
bo$3bo181b2o$2b2o181b2o2$34b2o$34b2o147b2o$56b2o125b2o$56bo113b2o$16b
3o38b3o24b2o85bo$7b2o50bo24b2o85bobo$8bo6bobo36b2o116b2o$5b3o46b2o108b
2o2b2o$5bo80b2o65bobo8bo3b2o$86b2o39bo34bobo62bo$55bo43b2o24b3o24b3o7b
2o62bobo$53b3o43bo24bo101bobo$52bo44bobo23bobo101bo$27bo11b2o11b2o43b
2o25bo91bo$27bobo9b2o60b2o2b2o111bo$27bo73b2o3bo8b3o63b2o33bobo$29bo
76bobo8bo4b2o57b2o35bo$107b2o7b3o3b2o$192b2o$191bo2bo$8b2o21b2o21bo
136bobo23b2o$8b2o21bobo18bobo137bo20bo3b2o$14b2o17bo18b3o33b2o54b2o15b
2o49bobo$14b2o17b2o17bo35b2o53bobo15b2o48bobo$143bo67bo$77b2o63b2o66b
2o$12b2o62bo2bo$12b2o5b2o31b2o23bobo94b2o$19b2o31b2o3bo20bo73bo21b2o$
56bobo49b2o15b2o25b3o$39b2o16bobo48b2o15bobo27bo$40bo18bo67bo26b2o$37b
3o19b2o66b2o$37bo121bobo$95b2o$95b2o21bo41b3o$116b3o$115bo$115b2o2$
109bobo114bo$186bo37b3o$108b3o36b2o35b3o36bo$147b2o34bo39b2o$171bo11b
2o$169bobo71b2o$171bo71b2o5b2o$152b2o15bo80b2o$84bo67b2o$84b3o35b2o24b
2o$87bo34b2o24b2o61bo17b2o17b2o$86b2o11bo109bobo18bo17b2o$99bobo90b2o
17bo18bobo21b2o$99bo54b2o36b2o15bo21b2o21b2o$101bo15b2o35b2o13b2o$117b
2o49bobo$121b2o45bo$59bo61b2o44b2o10b2o53bo$59bobo118bo55bo$59bo17b2o
98b3o9b2o32b2o9bobo$61bo15b2o36b2o60bo11bo20b2o11b2o11bo$50bo49b2o13b
2o73bo20bo$49bobo48bobo86b2o17b3o$49bobo50bo105bo$50bo39b2o10b2o$90bo
167bo$80b2o9b3o114b2o46b3o$81bo11bo114b2o36bobo6bo$80bo123bo50b2o$80b
2o122b3o38b3o$207bo$206b2o$228b2o$228b2o2$260b2o$260bo$258bobo$258b2o$
216b2o$216b2o$202b2o40b2o$202b2o39bobo$198b2o43bo$198b2o42b2o3$260b2ob
o$260bob2o$220b2o$219bo2bo30b2o$219bobo31b2o$220bo4$284b2o$284b2o3$
282b2o$282b2o$269b2o$270bo$270bobo$271b2o$263b2o2b2o$252bobo8bo3b2o$
226bo34bobo62bo$224b3o24b3o7b2o62bobo$223bo101bobo$222bobo101bo$223bo
91bo$317bo$214bobo63b2o33bobo$221b2o57b2o35bo$215b3o3b2o$291b2o$290bo
2bo$290bobo23b2o$291bo20bo3b2o$243b2o15b2o49bobo$242bobo15b2o48bobo$
242bo67bo$211b2o28b2o66b2o$210bo2bo$211b2o60b2o$251bo21b2o$251b3o$254b
o$253b2o2$258bobo2$259b3o5$325bo$285bo37b3o$246b2o35b3o36bo$246b2o34bo
39b2o$270bo11b2o$268bobo71b2o$270bo71b2o5b2o$251b2o15bo80b2o$251b2o$
247b2o$247b2o61bo17b2o17b2o$308bobo18bo17b2o$291b2o17bo18bobo21b2o$
253b2o36b2o15bo21b2o21b2o$253b2o13b2o$267bobo$267bo$266b2o10b2o53bo$
279bo55bo$276b3o9b2o32b2o9bobo$276bo11bo20b2o11b2o11bo$289bo20bo$288b
2o17b3o$307bo2$357bo$307b2o46b3o$307b2o36bobo6bo$303bo50b2o$303b3o38b
3o$306bo$305b2o$327b2o$327b2o2$359b2o$359bo$357bobo$357b2o$315b2o$315b
2o$301b2o40b2o$301b2o39bobo$297b2o43bo$297b2o42b2o3$359b2obo$359bob2o$
319b2o$318bo2bo30b2o$318bobo31b2o$319bo15$351bobo$325bo$323b3o24b3o$
322bo$321bobo$322bo2$313bobo$320b2o$314b3o3b2o$355b2o$354bo2bo$355b2o
5$310b2o$309bo2bo$310b2o!
User avatar
PM 2Ring
 
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Herschel conduits and other stable circuits

Postby knightlife » November 9th, 2009, 10:48 pm

The B-heptomino becomes a Herschel at generation 20 but it leaves behind a block that many times is not wanted. A glider can destroy the block but a repositioned glider can push the Herschel a full 20 cells further forward in the same orientation and take out the block at the same time!

x = 18, y = 31, rule = B3/S23
2o$bo$b3o18$3b2o$4bo11b2o$4b3o8b2o$17bo5$4bo$3b3o$2b2obo!


The "chaotic blob" move backwards to take ou the block then moves forward. The block is actually necessary for this reaction to work. This B/glider combo is a way to inject a Hershel into a conduit across an open space of more than twenty cells.
knightlife
 
Posts: 564
Joined: May 31st, 2009, 12:08 am

Re: Herschel conduits and other stable circuits

Postby Awesomeness » November 17th, 2009, 10:08 pm

Is this important?

I accidentally found this thing...
x = 26, y = 20, rule = B3/S23
4$15b2o$15bo$13bobo$13b2o3$14b2o$14b2o2$9bo$9b2o$8b2o!


It turns an R-Pentomino into a Herschel. I am the worst at Herschel tracks, so if this is important, (which it probably either isn't, or has already been discovered) I'll leave it to you guys to figure out how to move the block back. I have discovered many block pulling glider salvos, but none that correspond to the movement of this block. Maybe it should just be destroyed and a new one created.
Awesomeness
 
Posts: 126
Joined: April 5th, 2009, 7:30 am

Re: Herschel conduits and other stable circuits

Postby Extrementhusiast » January 11th, 2010, 12:56 am

No, there is a mover: it's just two modified elbow ladders.

x = 90, y = 85, rule = B3/S23
7b2o$7bo$5bobo$5b2o3$6b2o$6b2o2$bo$b2o$2o37$54b2o$54bobo$54bo5$51b3o$
51bo$52bo5$67b2o$67bobo$67bo4$74b2o$74bobo$74bo5$71b3o$71bo$72bo5$87b
2o$87bobo$87bo!


Are you going to smack your forehead with the bottom half of the palm of your hand?

NEW: Anyway, I have found a promising candidate for a new Herschel conduit:
x = 18, y = 21, rule = B3/S23
2o$2o15$4b3o$5bo8b2o$5b3o6bo$15b3o$17bo!


NEW: Another VERY promising candidate:
x = 19, y = 19, rule = B3/S23
2o$bo$bobo$2b2o3$15b2o$15bobo$17bo$17b2o6$3b3o7b2o$4bo8bobo$4b3o8bo$
15b2o!


Oops! This is the front of the 156 conduit!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1645
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Herschel conduits and other stable circuits

Postby AbhpzTa » August 28th, 2017, 3:07 pm

Stable glider reflector and Herschel tracks
A period-945 gun, which I believe to be the minimum odd period that can be realized using a single Herschel:
x = 81, y = 124, rule = B3/S23
36bo$35bobo$35bobo$34b2ob3o$40bo$34b2ob4o2bo$34b2obo3b3o$40bo$12b2o26b
2o$13bo$13bobo47b2o$14b2o47bo$64bo$63b2o$72bo$70b3o$8bob2o57bo$8b2obo
57b2o2$17b2o41b2o$17b2o41b2o5$29b2o3b2o$30bo3bo$27b3o5b3o12b2o$27bo9bo
12bo$25bobo23b3o$25b2o26bo$53bobo$54b2o3$7b2o$8bo45b2o18b2obo$8bobo42b
obo18b2ob3o$9b2o42bo26bo$52b2o20b2ob3o$75bobo$75bobo$72b2ob2o$72bobo$
74bo$74b2o5$10b2o15b2o$10b2o15bobo$29bo$29b2o$77b2o$77bo$58b2o15bobo$
58b2o15b2o3$22b2o$11b3o8bo21b2o$11bo8bobo22bo$10b3o7b2o20b3o$42bo4$36b
o$34b3o20b2o$33bo22bobo$33b2o21bo$55b2o3$2b2o15b2o$bobo15b2o$bo$2o$8bo
$8b3o$11bo$10b2o5$65b2o$56b2o7b2o$57bo$57bobo$34bo17b2o4b2o$34b3o7b2o
7bo20b2o$37bo6bo8bobo18bo$36b2o4bobo9b2o16bobo$5b2o35b2o28b2o$5b2o4$
10b2o$10b2o$6b2o$6b2o3$12b2o52b2o$12b2o52b2o2b2o$70bobo$72bo$72b2o$30b
2o$31bo$28b3o3bob2o$28bo2b4ob2o$31bo$32b3ob2o2b2o$34bobo4bo6b2o$34bo2b
4o7bo$35b2o12b3o$37b2o12bo$37bo$38bo$37b2o!

p785 (F117 + L156_1 + L112 + F176 + L112 + L112) :
x = 108, y = 79, rule = B3/S23
38bo$38b3o$41bo$40b2o45bo$47b2o38b3o$35bo7b2o3bo41bo14bo$35b3o4bobo3bo
bo38b2o12b3o$38bo3b2o5b2o2b2o47bo$37b2o14b2o47b2o3$101b2o$28bo53b2o17b
2o$27bobo52b2o$27bobo$26b2obobo$26bo3b2o$24bobo$2b2o19bobo$3bo15b2o3bo
60b2o$3bobo13b2o44b2o19bo$4b2o2b2o55bobo16bo$8b2o57bo16b2o$67b2o19b2o$
31b2o56bo$31b2o26b2o25b3o$59bo26bo$60b3o$43b2o8b2o7bo$43bo9b2o$44b3o$
46bo$41b2o$2b2o31b2o4bobo$bobo16b2o13b2o6bo$bo18bobo20b2o$2o20bo$16b2o
4b2o$16bo2bo$18b2o$9b2o85b2o$9b2o85b2o2$87b2obo$87bob2o$105b2o$105bo$
103bobo$103b2o2$88bo$88b3o$79bo11bo$60b2o17b3o8b2o14bo$61bo20bo22bobo$
20bo27bo11bo20b2o23bo$18b3o27b3o9b2o$17bo33bo$17b2o19b2o10b2o$21b2o16b
o$22bo16bobo$20bo19b2o$20b2o41b2o$63b2o2$94b2o$94bo$95b3o$23b2o15bo56b
o$4b2o17b2o15bobo$4b2o34b3o$42bo11b2o$54bo$3b2o50b3o$4bo52bo$b3o12b2o$
bo14bo$17b3o$19bo!
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa
 
Posts: 336
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan


Return to Patterns

Who is online

Users browsing this forum: Kazyan and 8 guests