For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

### Re: New p17 and other billiard tables

Here's a p4 double signal injector based on a known p4 billiard table.
I expected it to be a single signal. I'm not sure why it's a double signal.
x = 23, y = 23, rule = B3/S2319bo$19b3o$17b2o3bo$16bobob2o$12bo2bobo2bo$12b4o4bo$17b3o$10b6o$9bo6bob2o$9b5o2bob2o$6bo7bobo$6b6o2bobo$3bo8bobob2o$3b7o2bobo$10bobobo$b7o2bob2o$o7bobo$b5o2bobo$6bobob2o$b3o2bobo$bo2bobobo$2bobob2o$3bo!
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

For fun

That's compatible with the diagonal thumb reaction. Additionally, it allows two 2c/3 diagonal elbows to merge into the same Herschel track:

x = 384, y = 501, rule = B3/S23129b2o$129bo2bob2o$130b3ob2o2$130b6o$129bo6bo$129b5o2bo$126bo7bobobo$126b6o2bo2b2o$132bobo$124b6o2bob2o$123bo6bobo$123b5o2bobo$120bo7bob2o$120b6o2bo$126bobo$118b6o2bob2o$117bo6bobo$117b5o2bobo$114bo7bob2o$114b6o2bo$120bobo$112b6o2bob2o$111bo6bobo$111b5o2bobo$108bo7bob2o$108b6o2bo$114bobo$106b6o2bob2o$105bo6bobo$105b5o2bobo$102bo7bob2o$102b6o2bo$108bobo$100b6o2bob2o$99bo6bobo$99b5o2bobo$96bo7bob2o$96b6o2bo$102bobo$94b6o2bob2o$93bo6bobo$93b5o2bobo$90bo7bob2o$90b6o2bo$96bobo$88b6o2bob2o$87bo6bobo$87b5o2bobo$84bo7bob2o$84b6o2bo$90bobo$82b6o2bob2o$81bo6bobo$81b5o2bobo$78bo7bob2o$78b6o2bo$84bobo$76b6o2bob2o$75bo6bobo$75b5o2bobo48bo$72bo7bob2o48bobo$72b6o2bo52bo$78bobo$70b6o2bob2o$69bo6bobo48b2o$69b5o2bobo48b2o23b2o$66bo7bob2o41b2o31bo$66b6o2bo45bo29bobo$72bobo45bobo27b2o$64b6o2bob2o45b2o4b2o$63bo6bobo54b2o$63b5o2bobo$60bo7bob2o89b2o$60b6o2bo50b2o40bo$66bobo50bo39bobo$58b6o2bob2o51bob2o34b2o$57bo6bobo53b2ob2o$57b5o2bobo74b2o$54bo7bob2o54b2ob2o16b2o$54b6o2bo58bobo$60bobo58bobo$52b6o2bob2o58bo$51bo6bobo$51b5o2bobo$48bo7bob2o$48b6o2bo$54bobo$46b6o2bob2o$45bo6bobo$45b5o2bobo93b2o$42bo7bob2o94b2o$42b6o2bo$48bobo$40b6o2bob2o$39bo6bobo$39b5o2bobo$36bo7bob2o$36b6o2bo$42bobo$34b6o2bob2o$33bo6bobo$33b5o2bobo$30bo7bob2o$30b6o2bo$36bobo$28b6o2bob2o$27bo6bobo$27b5o2bobo$24bo7bob2o$24b6o2bo$30bobo$22b6o2bob2o$21bo6bobo$21b5o2bobo$18bo7bob2o$18b6o2bo$24bobo$16b6o2bob2o$10b2o3bo6bobo$9bo2bo2b5o2bobo$8bob3o7bob2o$4b2obobo3b5o2bo$5bobo3bo6bobo$5bobo2b6o2bob2o$3bobobobo6bobo234bo$2bob2o2bob4o2bobo197b2o7b2o24b3o$2bo3bobobo3bob2o198b2o7bobo22bo$2ob2obobo3bobo208bobob3o20b2o$bobo2bob4obob3o165bo39b2o5bo$o2bobo7bo3bo163b3o45b2o$b3o2b8o151bo14bo103b2o14bo$4bobo158b3o12b2o77b2o24bo14b3o$3b2obo2b7o152bo91bo13b2o6b3o18bo23b2o$2bo2b2obo7bo150b2o91bobo11b2o6bo19b2o23bo$2b2o4bo2b6o244b2o62bobo$8bobo310b2o2b2o5b2o$7b2obo2b6o149b2o151b2o10bo$10bobo6bo148b2o17b2o143bo$10bobo2b5o167b2o143b2o$11b2obo7bo$14bo2b6o269b2o$14bobo275b2o$13b2obo2b6o$16bobo6bo224b2o$16bobo2b5o158b2o51b2o11b2o$17b2obo7bo155bo53bo$20bo2b6o157bo48b3o$20bobo162b2o48bo53b2o$19b2obo2b6o150b2o106bo51b2o$22bobo6bo149bo32b2o54b2o3b2o13b3o48bobo$22bobo2b5o150b3o30bo55bo3bo16bo50bo$23b2obo7bo149bo27b3o53b3o5b3o9bo54b2o$26bo2b6o177bo55bo9bo9b3o$26bobo262bo$25b2obo2b6o244b2o7b2o$28bobo6bo127b2o115bo$28bobo2b5o126bobo23bo91bobo36b2o15b2obo$29b2obo7bo123bo23b3o92b2o36b2o15b2ob3o$32bo2b6o122b2o22bo156bo$32bobo136b2o14b2o64b2o75b2o6b2ob3o$31b2obo2b6o128b2o80b2o75bo8bobo$34bobo6bo214bo72b3o5bobo$34bobo2b5o212b3o51bo3b2o17bo6bo$35b2obo7bo208bo53bobo3bo8b2o$38bo2b6o196bo11b2o22bo23b2o3bobo3bo10bo$38bobo192b2o7bobo33bobo22bo4bo4bo10bo$37b2obo2b6o184b2o7bobo34bo14b2o8b3obo5b3o7b2o$40bobo6bo193bo50bo11b2o8bo$40bobo2b5o245b3o$41b2obo7bo244bo25b2o6bo$44bo2b6o266bobo2bo4b3o$44bobo234b2o34b3ob2o5bo$43b2obo2b6o115b2o73b2o33bobo33bo11b2o$46bobo6bo113bobo73b2o33bo36b3ob2o$46bobo2b5o113bo89b2o18b2o38bob2o$47b2obo7bo109b2o89b2o34b2obo$50bo2b6o204b2o30bob2o$50bobo210b2o62b2o3b2o$49b2obo2b6o227b2o37b2o3b2o$52bobo6bo226b2o$52bobo2b5o124b2o$53b2obo7bo121bobo$56bo2b6o123bo52b2o94bo$56bobo129b2o50bo2bo92bobo$55b2obo2b6o174bobo93bo$58bobo6bo174bo$58bobo2b5o210b2o$59b2obo7bo208bo$62bo2b6o208bobo$62bobo215b2o$61b2obo2b6o105b2o$64bobo6bo104b2o139b2o$64bobo2b5o245b2o$65b2obo7bo92b2obo126bo$68bo2b6o92bob2o124b3o$68bobo117b2o106bo$67b2obo2b6o109b2o106b2o$70bobo6bo118b2o$70bobo2b5o118bo108b2o$71b2obo7bo113bobo102b2o4b2o$74bo2b6o113b2o103b2o26b2o$74bobo159bo92bo$73b2obo2b6o151b3o91b3o$76bobo6bo153bo92bo$76bobo2b5o152bobo$77b2obo7bo150bo$80bo2b6o168b2o$80bobo174bo14b2o$79b2obo2b6o149b2o13bobo13bobo$82bobo6bo100b2o46b2o13b2o14bo50b2o$82bobo2b5o100bobo75b2o50bo$83b2obo7bo99bo128b3o$86bo2b6o99b2o86b2o41bo$86bobo193b2o$85b2obo2b6o$88bobo6bo$88bobo2b5o$89b2obo7bo$92bo2b6o76b2o$92bobo82b2o$91b2obo2b6o82b2o100b2o$94bobo6bo81bo51b2o15b2o30bobo$94bobo2b5o82b3o47bobo15b2o30bo$95b2obo7bo81bo47bo25b2o21b2o$98bo2b6o128b2o25bo$98bobo159bobo$97b2obo2b6o151b2o$100bobo6bo$100bobo2b5o$101b2obo7bo$104bo2b6o$104bobo135b2o$103b2obo2b6o128bo$106bobo6bo127bobo$106bobo2b5o128b2o$107b2obo7bo$110bo2b6o$110bobo128bo$109b2obo2b6o119bobo$112bobo6bo53b2o63bobo$112bobo2b5o53b2o61b3ob2o$113b2obo7bo112bo$116bo2b6o41b2obo68b3ob2o$116bobo47bob2o70bob2o$115b2obo2b6o$118bobo6bo$118bobo2b5o54b2obo69b2o$119b2obo7bo51bob2o69bobo$122bo2b6o126bo$122bobo132b2o$121b2obo2b6o$124bobo6bo$124bobo2b5o102b2o$125b2obo7bo72b2o24bobo$128bo2b6o72b2o24bo$128bobo103b2o$127b2obo2b6o$130bobo6bo75b2o30bo$130bobo2b5o26b2o47b2o29bobo$131b2obo7bo22bobo43b2o33bobo$134bo2b6o22bo45b2o34bo$134bobo27b2o76b2o$133b2obo2b6o45b2o49bobo$136bobo6bo44b2o49bo$136bobo2b5o70b2o22b2o$137b2obo7bo67b2o47b2o$140bo2b6o116bobo$140bobo124bo$139b2obo2b6o15b2o99b2o$142bobo6bo14b2o$142bobo2b5o$143b2obo7bo37b2o$146bo2b6o37bo$146bobo17b2o25b3o$145b2obo2b6o9b2o27bo18bo$148bobo6bo22b2o32b3o$148bobo2b5o22bobo34bo$149b2obo7bo21bo33b2o$152bo2b6o11b2o8b2o29b2o$152bobo18bo39bob5o$151b2obo2b6o7b3o23b2o21bo$154bobo6bo6bo24bobo16b2obo$154bobo2b5o31bo18b2ob2o$155b2obo7bo27b2o$158bo2b6o35b2o$158bobo41b2o$157b2obo2b6o$160bobo6bo48b2o$160bobo2b5o48b2o$161b2obo7bo$164bo2b6o$94b2o68bobo$95bo67b2obo2b6o$92b3o71bobo6bo$88b2obo5bo68bobo2b5o$88b2obo2b4o69b2obo7bo$91bobo76bo2b6o$88b2obobo2b4o70bobo28b2o$89bobobobo4bo68b2obo2b6o19bobo$87bobobobobo2b3o71bobo6bo18bo$87b2o3b2obobo5bo68bobo2b5o17b2o$95bobo2b4o69b2obo7bo$95bobobo76bo2b6o$94b2obobo2b4o70bobo$97bobobo4bo68b2obo2b6o$97bobobo2b3o71bobo6bo$98b2obobo5bo68bobo2b5o9b2o$101bobo2b4o69b2obo7bo6b2o$101bobobo76bo2b6o$100b2obobo2b4o70bobo$103bobobo4bo68b2obo2b6o$103bobobo2b3o71bobo6bob2o$104b2obobo5bo68bobo2b5ob2o$107bobo2b4o67b2obobo28bo$107bobobo74bobo2b6o19bobo$106b2obobo2b4o68bobobo5bo20b2o$109bobobo4bo64b2obobobo2b3o$109bobobo2b3o64b2obobobobo5b2o$110b2obobo5bo64bobobo2bo4b2o4b2o$113bobo2b4o64bobo2b2o12bo$113bobobo65b2obobo9b2o2b3o$112b2obobo2b4o58bobobo2b4o5b2o2bo$115bobobo4bo57bobobo5bo$115bobobo2b3o54b2obobo2b5o22b2o$116b2obobo5bo52bobobo29bobo$119bobo2b4o52bobo2b5o26bo$119bobobo53b2obobo7bo25b2o$118b2obobo2b4o46bobobo2b3o2bobo$121bobobo4bo45bobobo4bo2b2o$121bobobo2b3o42b2obobo2b4o$122b2obobo5bo40bobobo$125bobo2b4o40bobo2b4o$125bobobo41b2obobo5bo$124b2obobo2b4o34bobobo2b3o$127bobobo4bo33bobobo4bo$127bobobo2b3o30b2obobo2b4o$128b2obobo5bo28bobobo$131bobo2b4o28bobo2b4o$131bobobo29b2obobo5bo$130b2obobo2b4o22bobobo2b3o$133bobobo4bo21bobobo4bo$133bobobo2b3o18b2obobo2b4o$134b2obobo5bo16bobobo$137bobo2b4o16bobo2b4o$137bobobo17b2obobo5bo$136b2obobo2b4o10bobobo2b3o$139bobobo4bob2o6bobobo4bo$139bobobo2b3obo4b2obobo2b4o$140b2obobo4bo3bobobobo$143bobo2b2o4bobobo2b4o$143bobobo2b3obobobo5bo$141b2o2bobobo2bobobo2b3o$140bobob2obo2bobobobo4bo$140bobo2bob2obobobo2b4o$141bobo2bo3bobobo$142bo4b4obo2b4o$143b4o5bo5bo$148b3ob4o$143b5o3bo3bo$143bo3bobo3b2o$146bo2b4obobo$147b2o3bo2b2o$149b2obo$149bobo19$349bo$349b3o$352bo23b2o$341b2o8b2o23bo$342bo31bobo$332bo6b3o28b2o2b2o$306bo9bo15b3o4bo30b2o$306b3o5b3o18bo$309bo3bo20b2o11b2o$308b2o3b2o32b2o8$322b2o52b2o$322b2o34b2o16bobo$310b2o45bobo18bo$309bo2bo44bo20b2o$304b2o4b2o44b2o4b2o$303bobo55bobo$303bo57bo$302b2o56b2o7b2o$312b2o33b2o20b2o$312bo34bo$313b3o32b3o$315bo34bo$320b2o$321bo$318b3o$318bo60b2o$379bo$377bobo$377b2o3$278bo$277bobo7bo$278bo6b3o71b2o$267bo16bo75bo$267b3o14b2o34b2o38bobo$270bo49b2o39b2o$269b2o4$264b2o25b2o$265bo25b2o$265bobo$266b2o50b2o$318b2o2$279b2o$279bobo6b2o72b2o15b2o$281bo6bo19b2o52b2o15bobo$281b2o6bo17bobo18b2o51bo$288b2o17bo20bobo50b2o$306b2o22bo$330b2o3$277b2o$277bobo40b2o$279bo40b2o$279b2o$378b2o$378bo$376bobo$376b2ob2o$261b2o116bobo$260bobo116bobo$254bo2bo2bo95b2o20b2ob2o$254b7o96bo24bo$357bobo18b2obo$254b5o99b2o18b2obobo$249b2o2bo4bo123b2o$249bo2bo2bo$250bobob2o$249b2obo5bo67b2o7b2o21b2o$252bo4bobo9b2o54bobo7b2o20bo2bo$252b2o2bo2bo9b2o52b3obobo28bobo$257b2o63bo5b2o29bo$276bob2o42b2o$276b2obo$299bo$299b3o$302bo$301b2o3$364b2o$256b2o106b2o$256b2o$373b2o$373bo$292b2o80b3o$292b2o82bo$315b2o50b2o$315bobo50bo$317bo49bo$305b2o10b2o48b2o$305bo$257b2o36b2o9b3o28b2o$256bobo37bo11bo28bo$256bo38bo42b3o$255b2o38b2o43bo5$260b2o3b2obo$261bo3b2ob3o$258b3o10bo$258bo6b2ob3o$264bo2b2o$264b2o!

Your diagonal thumb can also be glider-activated (which gives a 32-gen eater, possibly the maximum known), but you probably already knew that:

x = 37, y = 20, rule = B3/S232obo6b2obo11bo$ob2o6bob2o12bob2ob2obo$4b2o8b2o8b3o2bobob2o$4bo9bo14bobo$5bo9bo14b2o$4b2o8b2o6b2o$2obo6b2obo8bo2bob2o6b2o$ob2o6bob2o10b2obo8bo$4b2o2b2o15bobo5b3o$4bo3bo15bo2b3o3bo$5bo3bo15b2o3bo$4b2o2b2o17b4o$2obo6b2obo13bo$ob2o6bob2o10b2obob2o$24bo2bobo$25b2o4bo$27b5o$27bo$29bo$28b2o! Here's a p4 double signal injector based on a known p4 billiard table. By which you mean p8. What do you do with ill crystallographers? Take them to the mono-clinic! calcyman Posts: 2072 Joined: June 1st, 2009, 4:32 pm ### Re: New p17 and other billiard tables calcyman wrote:Additionally, it allows two 2c/3 diagonal elbows to merge into the same Herschel track: Nice! The longer one is still single signal compatible! calcyman wrote:Your diagonal thumb can also be glider-activated (which gives a 32-gen eater, possibly the maximum known), but you probably already knew that: Didn't know that! I'm pretty much into signals these days, but a newcomer in fizzlers in general. calcyman wrote:By which you mean p8. Yeah, I was mistaken because I coaxed a p4 to make it. Are p4 signal injectors impossible? Last edited by Scorbie on January 25th, 2015, 6:33 pm, edited 1 time in total. Best wishes to you, Scorbie Scorbie Posts: 1380 Joined: December 7th, 2013, 1:05 am ### Re: New p17 and other billiard tables EDIT: I'm pretty sure somebody thought of this. There's a p5 osc whose end resembles a p3 in the period tripler, and it can easily be made into a period quintupler. x = 67, y = 120, rule = B3/S2312b2obo13bo19b2obo2bo$12bob2o11b3o19b2ob4o$16b2o8bo3b2o$16bo8bob3o2bo16b5o$17bo8bo2b3obo14bo5bo$16b2o9b2o3bo16b2o2b2o$12b2obo13b3o15bobobo3b2o$12bob2o13bo16bobo2b4o2bo$16b2o28bo2b2o3b3obo$16bo28b2o4b3o3bo$17bo33bo2b3o$16b2o36bo$12b2obo$12bob2o7$12bob2o16b2o$12b2obo15bo2bo19b2o$10b2o19b2obo19bo$11bo17bobo2b3o12b2obobo$10bo16b3o3bo3bo11b2ob2o3b2o$10b2o14bo3b3ob4o2bo15bo2bo$12bob2o9bob2o5bo2bobobo7b5o2b2obo$12b2obo10bo3b2o2bobo2b2o7bo5bobo2b3o$16b2o9b2o5bobobo10b2o2b2o3bo3bo$17bo11b4ob2o2bo8bobobo3b3ob4o2bo$16bo12bo3bo4b2o6bobo2b3o5bo2bobobo$16b2o13bobo12bo2b2o4b2o2bobo2b2o$12bob2o14b2ob2o10b2o4b3o5bobobo$12b2obo35bo2b4ob2o2bo$54bo3bo4b2o$56bobo$55b2ob2o12$34bo3b2o$2b2obo7b2obo18b2ob2o$2bob2o7bob2o16bobo8b2o$2o4b2o3b2o4b2o15bo9bo$o5bo4bo5bo10b2o2b3o4b2obobo$bo5bo4bo5bo9b2o9b2ob2o3b2o$2o4b2o3b2o4b2o27bo2bo$2b2obo5bo5bo21b5o2b2obo$2bob2o6bo5bo19bo5bobo2b3o$2o4b2o3b2o4b2o20b2o2b2o3bo3bo$o5bo4bo5bo19bobobo3b3obob2o2bo$bo5bo4bo5bo17bobo2b4o4bo2bobobo$2o4b2o3b2o4b2o17bo2b2o3b4obobo2b2o$2b2obo7b2obo18b2o4b3o5bobobo$2bob2o7bob2o24bo2b4ob2o2bo$44bo3bo4b2o$46bobo$45b2ob2o5$34b3o2$34bo$33b2o$35bo$32bo$2b2obo7bob2o15bo3bo$2bob2o7b2obo13b2o$2o9b2o15bo5b3o2b2o$o11bo12bob2o4bo5b2o$bo9bo13bo3bo3bo11b2o$2o9b2o12bo5bobo11bo$2b2obo7bob2o24bobobo$2bob2o7b2obo24b4o3b2o$2o4b2o9b2o14b2o5bo6bo2bo$o5bo11bo14b2o5bob3o2b2obo$bo5bo9bo21bo5bobo2b3o$2o4b2o9b2o21b2o2b2o3bo3bo$2b2obo7bob2o21bobobo3b3ob2obo2bo$2bob2o7b2obo20bobo2b4o2bo4bobobo$37bo2b2o3bo2bobobo2b2o$36b2o4b3o3bo3bobo$42bo2b4ob2o2bo$45bo3bo4b2o$47bobo$46b2ob2o7$43b2o3bo$43bo4b3o$45bo5bo$b2obo7bob2o28b7obo$bob2o7b2obo23b2o11bo$5b2o3b2o24bo2bo3b4o2b2ob2o$5bo5bo23bobobo7bo2bo$6bo3bo25b2ob2ob3o2b2obo$5b2o3b2o26bo6bobo2b3o$b2obo7bob2o22bob2o2b2o3bo3bo$bob2o7b2obo23b2obo3b3ob4o2bo$5b2o9b2o24b3o5bo2bobobo$5bo11bo21b3o4b2o2bobo2b2o$6bo9bo22bo2b3o5bobobo$5b2o9b2o24bo2b4ob2o2bo$b2obo7bob2o29bo3bo4b2o$bob2o7b2obo31bobo$46b2ob2o!

Here it is with a p3 and a p4, making p15 and p5 oscs.
x = 29, y = 19, rule = B3/S236bo14bo$5bobo12bobo$2bo2b2o10bo2b2o$2b3o12b3o$6b3o12b3o$4b2o3bo9b2o3bo$3bobo3bo8bobo3bo$3b2ob2ob3o6b2ob2ob3o$b2o5bo3bo3b2o5bo3bo$o2b5o2bobo2bo2b5o2bobo$2obobobob3o3b2obobobob3o$bobo3bo8bobo3bo$bobob2ob2o6bobob2ob2o$2bobobobobo6bobobobobo$4bobobobo8bobobobo$4bob4o9bobo2b2ob2o$5bo14bo5bobo$6b6o9b5o$8bo2bo11bo!

I think this would work too.
x = 17, y = 14, rule = B3/S233$3b2obo$bo2bob3o$b2o6bo2b2o$6b3obo2bo$8bob2o4bo$2b2obobo4b5o$bo2b2obobobo$b2o3bobo2b4o$6bo2b2o3bo$5b2o4b3o$11bo! EDIT: Gotcha. x = 61, y = 49, rule = B3/S232o3b2o5b2obo20bo3b2o$bo4bo5bob2o21b2ob2o$o4bo10b2o17bobo$2o3b2o9bo19bo$17bo12b2o2b3o5bobo2bo$2o3b2o9b2o12b2o9bob5o$bo4bo5b2obo$o4bo6bob2o24bob4o$2o3b2o3b2o28bo5bo$10bo30b2o2b2o4b2o$2o3b2o4bo27bobobo3b2o2bo$bo4bo3b2o26bobo2b4o2bobo3b2o$o4bo6b2obo22bo2b2o3bobobob2o2bo$2o3b2o5bob2o21b2o4b3o4bobob2o$41b2o3b2obo$42bobo2bob3o$40bobob2o2bo6b2o$40b2o7b3obo2bo$51bob2o4$39b3o2$39bo$38b2o$40bo$37bo$37bo3bo$35b2o$2b2obo5b2o20bo5b3o2b2o$2bob2o6bo17bob2o4bo5b2o$2o4b2o3bo18bo3bo3bo$o5bo4b2o17bo5bobo$bo5bo38bobo2bo$2o4b2o3b2o33b6o$2b2obo6bo25b2o5bo$2bob2o5bo26b2o5bob3o$6b2o3b2o31bo5bo$6bo38b2o2b2o4b2o$7bo3b2o30bobobo3b2o2bo$6b2o4bo29bobo2b3o3bobo3b2o$2b2obo5bo30bo2b2o4b2obob2o2bo$2bob2o5b2o28b2o4b3o2bobobob2o$45b2o3b2o3bo$46bobo2bob2o$44bobob2o2bo3bo2b2o$44b2o7b3obo2bo$55bob2o! EDIT: Bad news. My computer went off for an unknown reason, so the search was aborted incomplete. Haven't found any more unknown fizzles. Oh, it says hash table overflow. not sure what that means. is it theoretically possible to add a save-load feature in dr? Best wishes to you, Scorbie Scorbie Posts: 1380 Joined: December 7th, 2013, 1:05 am ### Re: New p17 and other billiard tables Here's a p18 oscillator that has no good reason not to be p19: x = 17, y = 13, rule = B3/S235b2o$5bobo$2bo4b3o3bo$bobo2bo3bobobo$obo2bob2obobo2bo$obob2o4bob2obo$b2o2bobob2o4b2o$3b2o2bo3bob2o$3bo4b3o3bo$4b4o3b3o$7bobobo$6bo2b2o$6b2o! Scorbie wrote:Oh, it says hash table overflow. not sure what that means. is it theoretically possible to add a save-load feature in dr? This is a normal way for a search to end. dr uses a hash table to keep a record of the "history" of a pattern so as to avoid duplicate outputs with slightly different backgrounds (I'm not exactly sure how he defines two histories as equivalent since I haven't much looked into this part of the program). If dr finds enough unique life histories, it fills up the hash table and so it stops the program. When this happens for me, I sometimes restart the search with a new random seed. You can also control the size of the hashtable with the internal variable HASHTBLSIZE (you need to change it in the source code and recompile). I'm not sure how easy it would be to implement a save-load feature. -Matthias Merzenich Sokwe Moderator Posts: 1479 Joined: July 9th, 2009, 2:44 pm ### Re: New p17 and other billiard tables Sokwe wrote:Here's a p18 oscillator that has no good reason not to be p19: That's the largest period asymmetric billiard table from scratch that I've ever seen! Very convincing that a p19 may be found with dr and a lot of patience. Sokwe wrote:You can also control the size of the hashtable with the internal variable HASHTBLSIZE It's too bad that I didn't know the HASHTBLSIZE wasn't enough before the search ended. Best wishes to you, Scorbie Scorbie Posts: 1380 Joined: December 7th, 2013, 1:05 am ### Re: New p17 and other billiard tables I don't have anything interesting. I'm just posting some of the low-period (7-10) oscillators that I found a while back: x = 114, y = 142, rule = B3/S2332bo37bo$6bob2o21bobo14b2o19bobo13bo18bo$6b2obo19b3obo13bo2bo16b3o2bo10b3o16b3o$10b2o16bo4b2o31bo3b2o10bo3b2o13bo3b2o$11bo16bob2o3bo27b2o2b2o12bo2b2o2bo11bo2b2o2bo$10bo13b2ob2obob2o2bo9bobo13bo2b2o2b3o10b2obobobo11b2obobobo$10b2o13bobo2bobob2o10bo3bo11bobo2bo4bo6b3o5bobo8b3o5bobo$8b2o15bo2bo13b2o3bobo11b2obo2bo2b3o6bo2b2o5bob2o5bo2b2o5bob2o$9bo16bobo2bo2b2o6bo2bobobobo2b2o8bo15b2o8bobo6bo9bobo$8bo16b2obobo4bo8b2obobo2bo2bo8bobo2b3obo8b3o3bobo7b2ob3o3bobo$8b2o15bo2bob5o12bo4bobo8b2obo5b2o8bo3bo3bo9bo4bo3bo$6b2o18b2o19b4obob2o9bob2obo12b4ob2o10bob4ob2o$7bo20b2ob4o16bo13bo3b2ob2o13bo13bo4bo$6bo21bobobo2bo13bo16b2o3bobo11bobo14b3obo$6b2o21b2o3bo14b2o17b3o14b2o17b2o$31b3o34bo$31bo6$32b2o14bo2bo$25b2ob2o3bo12b6o$24bobobo2bo13bo6b2o$24bo3bob3o2b2o8bo2b4o2bo$25b3obo3bo2bo7b2obo3bob2o$27bobo2bob2o9bobo2bo2bo$29bobobo2b3o5bo2bobobobo$28bo2bo3bo2bo6b2obo2bob2o$28b2o6b2o8bobo6bo$29bob5o10bo4b2obo$27bo2bo4bo11b3o2bob2o$27b2obob3o15b2o$30bobo16bo$30b2o18bobo$51b2o14$52b2o31b2o$6b2obo42bobo30bo$6bob2o23b2o19bo2b2o9b2o17bo$4b2o4b2o17b2o2bo19b2obobo9bo17b2o$4bo5bo17bo2bobo17bo4bo13bo9b2ob2o3b2o$5bo5bo15bo2bobob2o15b3o2bo9b4obo9bobob2obo$4b2o4b2o15b4obobobob2o16bob2o5bo3bobo8bo4bobo2bo$6b2obo20bobo3bob2o11b4obob2o5b4o2bob2o6b4o2bob2o$6bob2o15b3o2bo5bo8bob2obobobobo12bobobo11bobo$4b2o4b2o12bobobo2bo4bo8b2obobo3bobo8b2o4bobo7b2o4bob2o$4bo5bo13bo3b3o2b3o14bo3b2o9bo2bo4b2o6bo2bo4bo$5bo5bo13b3o3b2o16bo2bo13bob4o2bo7bob4o2bo$4b2o4b2o15bo2bo2bo15b2obob2o9b2obo3b2o7b2obo3b2o$6b2obo21b2o17bob2obo12bob2o12bob2o$6bob2o40bo17b2obo12b2obo$49b2o16$6b2obo21b2o34bo2bo$6bob2o17b2o2bo16b2o17b6o15bo11b2o4bo$4b2o4b2o14bo2bobo17b3o21bo11bo2b3o10bo2b3o2bo$4bo5bo14bo2bobob2o13bo4bo14b3o2b2o9b5o3bo9bobo3b5o$5bo5bo13bob2obobobo11bob4o3bo5bob2obobobo11bo5b4o8b2obobo6bo$4b2o4b2o12b2obo6bo11bobo3b4o5b2obobo3bob2o8b4o2bo3b2o6bo6b3o2bo$6b2obo14bo3b2obo2bob2o5b2obobobo15b2o2bobobo10bo3bobo2bo7b2obo4bob2o$6bob2o15b2obo3bobobo7bobobo3b4o9bo2bobo3bo9bo4bobobo9bob4obobo$10b2o14bobobobobobo7bobobobobo2bo9b2obo5b2o8b4obo2bo9bo7bobo$10bo15bobo4bobo9bobo4bobo11bobob4o2bo11bob2o10bob2obo3bo$11bo15bo3bobo13bob2ob2o10bo2bo7bo8b2o2bo12b2obo3b3o$10b2o16b4obo13bo2bo13b2obob2ob3o9bobobo16b3o$6b2obo22bo15bobo16bo2bobo14bo20bo$6bob2o20bo18bo17b2o38b2o$30b2o6$32b2o$32b2o$36b2o$30b4o2bo$30bo3bobo$24b2o7b2ob2o$24bo2bo7bo2bo$25b3o4b2obob2o$30bo2bobo$25b3o2b2obobo$24bo2bo3bob2o$24b2o5bo$30b2o15$2o4b2obo16b2o7b2o$bo4bob2o17bo7bo$o3b2o4b2o14bo9bo$2o2bo5bo15b2o7b2o$5bo5bo17b2ob2o$2o2b2o4b2o14b3obobob3o$bo2bo5bo14bo4bobo4bo$o4bo5bo13bo4bobob2obo$2o2b2o4b2o14bobobo3bobo$4bo5bo13bobobo2b2obobobo$2o3bo5bo12b2obobo3bobobobo$bo2b2o4b2o15bobob2o2bobobo$o5b2obo17bo2bobobo3bo$2o4bob2o18b2o3bo!

Here are the rotor descriptors (including periods 2-6):
p5 r16 5x7 ...3.3. ....1.. ....AA1 .A11AAA AA..A1.   new2015p4 r12 6x6 ...3.. ...1.. 31AA.. ..AA13 ..A... ..3...   new2015p4 r12 6x6 ...3.. ...1.. 31AA.. ..AAA3 ..A... ..3...   new2015p4 r13 4x5 ..1.. .A0A1 20@AA .0@1.   new2015p4 r14 6x7 ....3.. 3...A.. .1AAA.. 3..AAA3 ...A... ...3...   new2015p12 r17 7x7 .....3. .1...A. .AAA11. 1B..11A ....A.. ....1.. ...C.C.   new2015p4 r12 5x6 ...1.. 31AA.3 ..AA1. ..1..3 ..3...   new2015p12 r15 6x7 .....3. .1...A. .AAA11. 1B..11A ....A.. ....3..   new2015p12 r14 5x7 .....3. .1...A. .AAA11. 1B..11A ....A..   new2015p4 r13 5x7 ...3... ...1... 31AA..C ..AA11. ..1...C   new2015p4 r16 7x7 ....3.. 3...A.. .1AAA.. 3..AAA3 ...A... ...1... ..3.3..   new2015p12 r14 5x7 ....3.. ....1.. A2..AA1 .11AAA. .A...1.   new2015p4 r15 6x7 ..1...3 ..AAA1. 3AAA..3 ...A... ...1... ..3.3..   new2015p4 r14 5x7 ...3... ...1..3 C..AA1. .11AA.3 C...1..   new2015p4 r14 6x6 ...1.. 3..AA1 .1AAA. 3...A. ....1. ...3.3   new2015p12 r16 6x7 ...3.3. ....1.. ....A.. A2..AA1 .11AAA. .A...1.   new2015p6 r19 5x7 ..1.B.. .A0@@.. 100.01A .AAA11. .B...A.   new2015p4 r15 6x7 ...1... 3..AAA3 .1AAA.. 3...A.. ....1.. ...3.3.   new2015p4 r12 4x5 ..1A. .A011 .10A. 2A.A.   new2015p4 r14 5x6 .....2 .1.A1A .A@A.. 1A0A.. .A1...   new2015p16 r34 7x9 ....21A.. ...1@@1A. ...@.0@@3 2A.@@0@@. .@0@.0.A. AA0@.A... ..1A0A...   new2015p3 r11 4x6 ....2. ...1@2 1A..1. .A0A.3   new2015p3 r12 4x7 ....1A. 3.A@01. .A..2.C .AB....   new2015p3 r11 4x6 ....1A 3.A@02 .A..2. .AB...   new2015p4 r13 5x5 ....3 ..1@. .A10@ .111A C..1.   new2015p5 r13 5x6 ....2. ....A2 .A.1.. 1@.0B. 1A@1..   new2015p5 r13 5x5 ...11 .A@@A .A..@ 3.101 ...B.   new2015p4 r11 5x5 ....3 ..1A. .A11. .11.B C..2.   new2015p5 r15 5x6 ...1.. .1AAA. 3.100. ..1@02 ..C.3.   new2015p4 r10 4x5 ..2.. .A00A 1@01. ..B..   new2015p7 r16 5x6 ....2. ..200B .A.@0. 3@@00A .2..2.   new2015p4 r13 5x6 ...3.. .1A... A11... 1.1B.3 .A..2A   new2015p4 r13 6x6 .....3 .1..21 A.AB.. 1AA... .A1... ...3..   new2015p4 r13 4x6 ...21. C.A.0A .@AA11 .B...3   new2015p4 r14 5x6 .....3 ...20. C.A.0A .@AA11 .B...3   new2015p4 r15 4x8 ...12... 2@.0.A.C .1@1AA@. ..2...B.   new2015p4 r14 4x6 ..1A13 .AA1.. .1AAA3 3..B..   new2015p4 r13 4x6 ..1A13 .AA1.. .1AAA. 3..B..   new2015p3 r12 6x6 .....2 ..2@1A ...1.. .AB... C@A... ..C...   new2015p3 r11 4x6 ....3. AAA.1. A..A.3 .AAA..   new2015p3 r13 5x6 ...2A. ....2. AAA.1. A..A.3 .AAA..   new2015p6 r19 6x6 .....3 .2.A0. .00.01 1A00@2 ..@.A. .B0B..   new2015p3 r12 6x6 .....1 ....AA ....0. ..1.A. A1@1.. 2.2...   new2015p3 r11 4x7 ...2A.. ....1.C .A0A.1. 1A...C.   new2015p3 r15 6x7 ....1B. ....A.. ..1A1.. C.A.... .A.1@A. .C...AA   new2015p4 r13 4x7 .....1. ...1@0A AA1.@.. .A0AA..   new2015p4 r10 5x6 ....2. ...A.2 .B..1. C00A.. .B....   new2015p9 r15 5x7 .....2. ..A@0@3 A@0@.1. .A.0A.. ...B...   new2015p3 r13 6x6 .....1 ....AA 12A.0. 3.1.A. ..A1.. ....3.   new2015p9 r14 6x6 ....3. ....0. ...2@2 A2A2A. 3.A... ..AB..   new2015p6 r21 6x7 ..2...3 .2@@@0. ..@@@0. .A00... .10011. 3...B..   new2015p9 r17 5x6 ...3.. .1@01. A0.0A. 10@0@A B..2..   new2015p3 r16 5x6 ...1B. .B.A.. 2@@0.. .A.A.B BA.1A1   new2015p3 r15 5x5 ...1B .B.A. 2@@01 .A.A. BA.1B   new2015p3 r14 5x6 ...1A1 .B.A.B 2@@0.. .B.A.. ...1B.   new2015p3 r13 5x5 ...1B .B.A. 2@@01 .B.A. ...1B   new2015p3 r16 5x6 ...1A1 .B.A.B 2@@0.. .A.A.. BA.1B.   new2015p6 r19 5x6 ...2.2 ..1@1A .A10.. .0001A B1A2.B   new2015p6 r21 6x7 .....1B 2A1B.A. .@0@11. .110... ..A@AA. ...2.2.   new2015p4 r13 4x5 ..2.B .A10@ ..11A C1A1.   new2015p3 r9 4x5 ...2A .C..1 C00A. .C...   new2015p3 r14 6x6 .....3 ...30. ....02 ..AA@. B.A..C AAA...   new2015p3 r12 5x6 .....2 ...A1A .C.1.. .00@.. C.B.3.   new2015p4 r14 5x5 ....3 .1@0. AA@0. 1AA.3 .A1..   new2015p7 r23 6x9 ......1B. 1..011.@B B0.0A.A0. B000B.... 1.0A..... ...1.....   new2015p10 r13 4x6 ....2. 3..1@2 1@@.@1 .2A1..   new2015p3 r13 6x6 ....1A ...B.2 31AB.. ..A... ..1A1. ....B.   new2015p4 r14 4x5 ..2.B 3A10@ ..11A C1A1.   new2015p4 r13 6x6 ....1. ....@A ...1A1 B..A.. AAA1.. .1....   new2015p3 r9 4x5 ...2. .2.B2 B@A.. .A.3.   new2015p6 r17 4x8 ....012. 2@..0@@2 .1@0@01. ...2.A..   new2015p3 r12 5x6 ...1.. ...AA1 ..2..B A111.. .2..3.   new2015p6 r18 5x8 .....2.2 ...1.@01 .A1@@11. .1.1@... 1B..1...   new2015p6 r19 5x8 .....2.2 3..1.@01 .A1@@11. .1.1@... 1B..1...   new2015p4 r9 5x6 .....3 ....1. ...BB. A2.B.. .22...   new2015p4 r12 4x5 ..11. 000A. BA.AA ..22.   new2015p3 r7 4x4 ...3 ..1. B.22 1A..   new2015p6 r18 6x6 ....3. ..1@@. .A.00. 2@00@. .1@1A3 ..A...   new2015p3 r11 4x5 ...2@ .B.11 A@0@. .B.A.   new2015p4 r16 6x6 .....1 ....B1 ..21@0 .A01A. .00... C.A3..   new2015p6 r12 5x6 ....1B B..B0. AA1.1. ..1A.. ...2..   new2015p3 r10 4x6 ....1A ..A@02 .A..2. BA....   new2015p3 r11 4x7 .....1B 3.B..A. .1@@1.. .AA....   new2015p6 r16 6x7 ...2... ..A001A ..2.02. ..1A2.. C.2.... .1.C...   new2015p6 r15 6x7 .....2. .....02 ....10. ..3.A0B 2@@0A.. .2.....   new2015p6 r19 6x9 .......2. .1A..0@@2 A1.A.00@. ...B00... ....B1... .....1...   new2015p4 r12 6x6 .....2 ....1A ..AA1. .A.... B@@3.. ..3...   new2015p9 r19 6x8 ......1. ......1B .1..2A0. .0@@@.1B .AA0..1. 3.1.....   new2015p8 r14 5x6 ...1.. .A10@A B0@0.B ...1.. ...A2.   new2015p8 r15 5x6 ...1B. ...A.. B0@@.B .A1@0A 3..A..   new2015p6 r11 5x6 ....2. ..20@2 .A..2. 30A... ..C...   new2015p5 r19 6x6 ....2. ..A0@2 3.10.A @@00.. .A@00. ...B1.   new2015p6 r16 4x7 ....1.. .B00A.. 21.0@@A .A11B.2   new2015p4 r10 4x6 ....2. ..101A C.22.. 1B....   new2015p7 r19 6x6 .....2 .A..1@ .100.1 A00002 .101A. ..B...   new2015p7 r21 6x7 ......2 ..A..1@ 2.100.1 A@00002 ..101A. ...B...   new2015p5 r16 4x8 ......13 B..B.A.. 00@@11AB B..B...1   new2015p5 r14 5x5 ..3.. ..1.B 3.A@A 1@@0. .B.1B   new2015p3 r19 6x7 .....1. .....AB ..1@00. .A1.0@1 3.1@00B .....B.   new2015p3 r19 6x7 .....1. .....AB 3.1@00. .A1.0@1 ..1@00B .....B.   new2015p5 r13 4x6 ...2.. .100.. A@001A B.2.2.   new2015p5 r17 5x6 .....2 ..C.1@ .1.A.1 B000@A 1.00A.   new2015p5 r18 5x6 ..3..B ..2.A0 .A.A.1 B00@@A 1.00A.   new2015p6 r19 5x6 ..1A.. .000@A 1.00@2 .1A002 C...3.   new2015p6 r20 6x6 ....3. ..1A.. .00@@A 1.0@@2 .A100B C...C.   new2015p5 r11 4x5 ..11. .1B11 .@..3 B0C..   new2015p7 r15 5x6 ...1.B B1A00@ .A.1.A .1.A1. ..3...   new2015p3 r11 6x6 .....2 ...A1A .3.1.. ..1A.. 2@.... .2....   new2015p7 r20 5x7 ...2A.. .A..1.. B1AA01A ..0@@.1 .B@00A.   new2015p6 r17 6x7 ....2.. ...1A.. ..A01.. 1A.01A3 .A@@... .1.B...   new2015p6 r18 6x8 .....2.. ....1A.. ...A01.. 31A.01A3 ..A@@... ..1.B...   new2015p3 r12 5x6 ....1A 2@@@1. .0.... 1@2... .2....   new2015p9 r15 4x6 ...1@2 A@@00. B.@00B ..B.1.   new2015p3 r10 5x6 ....1B ....A. ..1A1. .A.... B0B...   new2015p4 r15 5x7 .....2. ....1@. ...A0@A A11.0.. .1@1A..   new2015p4 r17 6x7 ....2A. .....1. ....1@. ...A0@A A11.0.. .1@1A..   new2015p4 r17 6x7 ....2A. .....0. ....A@. ...A0@1 AA1.@.. .A@AA..   new2015p4 r15 5x7 .....1. ....A@. ...A0@1 AA1.@.. .A@AA..   new2015p3 r7 3x5 ...2. A1.1A 2.A..   new2015p6 r13 5x6 .....3 2..11. A@@0@. ..101. ...A..   new2015p4 r15 5x6 ....1. .B@@0A 11.@.. A111.. .1A...   new2015p4 r15 5x5 ....2 .A0@1 110@. A111. .1A..   new2015p4 r17 6x6 ....1. ....AB .1@0A. AA@0.. 1AAA.. .A1...   new2015p4 r16 5x5 ....2 .A0@1 11.@. A10@B .1@0.   new2015p4 r16 6x7 .....12 ...A@@. ...1.0. .A1.1A. .1.A1.. 1B.....   new2015p4 r12 4x6 .....2 1B.A0@ AAA..2 .11...   new2015p7 r20 5x8 ......2. ....200B .B.A.@0. B00@@00A .B.2..2.   new2015p6 r15 7x7 .....2. ....2@1 .....1. ..A0A.3 A0A.... 1...... 1B.....   new2015p6 r13 6x7 .....1B .....A. ..A@1.C 1@A.... A...... 1B.....   new2015p3 r12 4x7 .....1B 3.B..A. .1@@1.C .AA....   new2015p6 r15 7x7 .....2. ....1@2 .....1. ..A0A.3 A0A.... 1...... 1B.....   new2015p3 r14 5x7 .....2. ....1@2 C.B..1. .A00A.3 .1A....   new2015p4 r8 4x4 ..1B .2A. 2.@1 .3..   new2015p10 r26 4x11 ....1@A.... ..1.0.@.A.. 3A0@0@@0@A3 .322A.A223.   new2015p4 r11 3x7 ..2..B. A@.0@@2 2.2..B.   new2015p6 r16 6x8 .......2 ....1@1A C..A.1.. .A11.... 100A.... .3......   new2015p6 r16 5x8 ......3. ....A001 ....11A. 2.1.A..C A1@1....   new2015p6 r14 6x7 ....13. ....2.. ....A1A 2..3..2 AA@A... ..B....   new2015p8 r17 4x8 .2...A2. .@1A.0.. 3@0.A1@A .3B....3   new2015p5 r13 4x8 .....1.. .....A02 B01AA@0. .A...B..   new2015p3 r16 5x8 ......1. ....1.1B A1..A@0. .1@@AA1. ...2....   new2015p3 r10 5x5 ...1. ...AB B@01. .@... .AB..   new2015p6 r19 5x8 ....1.2. 1...0@@3 B21AA.2. .100A... ..33....   new2015p7 r20 6x7 ...1..3 2AA0A1. A.A100B ...101. ...1.1. ...C...   new2015p3 r11 5x6 .....2 ....1@ .1AB.2 .A.B.. BA....   new2015p3 r16 5x8 .......2 ......1@ .A00AB.2 1A.A@B.. ...3A...   new2015p9 r15 7x7 ......2 ...1@1A .A@1... .1..... .@1.... 2@..... .2A....   new2015p9 r15 6x7 ....1B. .....@B ....A0. .....1. B..A0A. 1A0A...   new2015p2 r8 4x5 ....1 ...BB A2.B. .22..   new2015p16 r29 7x7 ...1.B. .A10@02 .@@0@0. 3@@00@A .A.@01. ..A0@A. ...3...   new2015p3 r13 5x7 ....1A1 ....A.B ..1A1.. C.A.... 1B1....   new2015p4 r10 6x6 .....2 ...B22 ..0B.. .1B... .1.... C.....   new2015p4 r20 5x7 ...1A.. ..@.01. A@0000B .@00@@. .1.A.1.   new2015p4 r12 4x7 ......2 ....A0@ .B.A..2 11AAA..   new2015p2 r9 5x5 ....3 .C.2. CB.2A ..2.. .3...   new2015p5 r16 5x7 ......2 ..1.A1A 1A@0A.. .0@@1.. ..12...   new2015p4 r19 7x7 .....3. ...2.A2 ...11AA .B1.0.. BA.0.B. ..1A1.. ...2...   new2015p6 r14 6x7 ....1A. ...A.1. ...0.A2 ..AA... 2.@.... A1A....   new2015p4 r11 4x6 ....2A ...10. ...212 3A1B..   new2015p6 r10 5x6 .....2 ...1@A .A@1.. .2.... 3A....   new2015p6 r12 6x6 .....3 ...A21 ...0.. ..AA.. 2.@... A1A...   new2015p3 r11 4x6 ....2A C.B..1 .A00A. .1A...   new2015p7 r18 6x7 ....1.. ....@A. .A0@@0. .1.@.13 B00@... .1.B...   new2015p4 r13 4x7 ....2.. ...201. 1AA.12A .A0A...   new2015p3 r9 4x4 ...1 ..B1 B.A1 AA.1   new2015p3 r9 4x5 ...3. BA..2 .A.2. .AAA.   new2015p3 r12 6x7 ......2 ....A1A ....1.. ..A1A.. .1..... 2@2....   new2015p8 r16 5x8 ......2. ....20@A .A.A..1. 2@0@@B.. .3.3....   new2015p6 r15 5x6 ....1. ..A.@A 1A@0A1 .@1... AAA...   new2015p4 r11 5x7 .....1. ....2.3 .1.A.1. C.@@... .1.B...   new2015p4 r12 5x6 ....0. ...@00 ..@.AB .102.. 2A....   new2015

This does not include the recent period 10, 11, 14, and 18 oscillators as those were found in a separate search, and I haven't yet gone through all the results.

I also constructed and minimized all of the remaining p7+ oscillators posted by Scorbie:
x = 91, y = 66, rule = B3/S232bob2o$2b2obo20b2o32bo23bo$6b2o14b2o3bo14bo3b2o11bobo2bobo15b3o$7bo15bo2bo14bobobo2bo11b2o2b2obo9bo3bo3b2o2b2o$6bo16bobob3o11bobob2obo13b2o3bo9b3o2b2o3bo2bo$6b2o14b2obobo2bo9b2obo2bob2o10b2o2b3ob2o10b2o2b3ob2o$4b2o14bo5bo2bobo6bo5bo2bo11bo2bo5bo10bo2bo5bo$5bo14b3o3bo3bobo5b3o3bo3b2o6bo2bo2bo2b2o2bo6bo2bo2bo2b2o2bo$4bo23bobobo13bobo6bobobo7b2o6bobobo7b2o$4b2o14b9ob2o6b9obo7bo2bobo2b3o9bo2bobo2b3o$2b2o16bo17bo8bo11bobo4bo12bobo4bo$3bo19b4o14b2o2bo14b2ob2o15b2ob2o$2bo20bo2bo14b2o2b2o16bo19bo$2b2o59bobo17bobo$64b2o18b2o12$2b2obo23bo$2bob2o22bobo$2o4b2o21bo$o5bo19bo$bo5bo16b8o$2o4b2o15bo8bo$2b2obo17bob4o3bo$2bob2o14b2obobo4bobobo$2o4b2o12bo2bo4bobob2obo$o5bo15bo2b2obob2o3bo$bo5bo15b2o3b2o3b2o$2o4b2o17b3o3b2o$2b2obo19bo2b3obo$2bob2o22bo13$2b2obo$2bob2o21b2o$2o4b2o14b2obo2bo$o5bo15b2ob2obob2o$bo5bo20bobo$2o4b2o14b4obo3bo$2b2obo15bo7b3o$2bob2o15bobobobo$6b2o12b2ob2obobob2o$6bo15bo3bobob2o$7bo14bob2obo$6b2o15bo2bo$2b2obo18b2o$2bob2o!
-Matthias Merzenich
Sokwe
Moderator

Posts: 1479
Joined: July 9th, 2009, 2:44 pm

### Re: New p17 and other billiard tables

Nothing much, just three more 2c/3 double fizzles.
Code: Select all
#C [[ THUMBNAIL AUTOSTART GPS 10 LOOP 40 ]]x = 92, y = 20, rule = B3/S232bo67b2o$2b3o29bo35bo$5bo26b3o37bo$4bo2b2o13b2o7bo22b2o9b2ob4obo15b2o$3bob2ob3o12bo8b5o18bo9b2obo4bo16bo$b3o2bo4bo6bo2bo14bo3b2o8bo2bo14bob3o4b2o6bo2bo$o3bobob3o5b7o9b2o6bo7b7o10b4obo5bobo4b7o$obobobobo6bo7bo7bobo7bo5bo7bo9bo10bo5bo7bo$b3o3bo7b5obobo7bo8b2o5b5obobo10bo8b2o5b5obobo$21bob2o5b2o21bob2o7bobo21bob2o$b3o9b5obobobo7bob2o10b5obobobo6b3obob2o10b5obobobo$obobob2o5bo5bobobo7bobo2bob2o5bo5bobobo5bo4bobo2bob2o5bo5bobobo$o3bobobo5b3o2bob2o7b2obob2obobo5b3o2bob2o7b3obobob2obobo5b3o2bob2o$b3o2bobo2bo5bobo13bo4bobo2bo5bobo12b2o2bo4bobo2bo5bobo$4b3ob4o4bo2bo13bob4ob4o4bo2bo16bob4ob4o4bo2bo$3bo3bo9b2o15bo4bo9b2o18bo4bo9b2o$3b2o2bob3o24bo2bob3o27bo2bob3o$8bobo24b2o3bobo27b2o3bobo$12bo31bo34bo$11b2o30b2o33b2o! Best wishes to you, Scorbie Scorbie Posts: 1380 Joined: December 7th, 2013, 1:05 am ### Re: New p17 and other billiard tables Here's one from randomagar but it's really cute: Four p4s hassle each other to form a p5: x = 16, y = 16, rule = B3/S237bo$6bobo$6bobo$5b2obob2o$3bo2bobobo$3b2o3bobobo$6bob7o$b5o2bo6bo$o6bo2b5o$b7obo$3bobobo3b2o$5bobobo2bo$4b2obob2o$7bobo$7bobo$8bo!

Some more from randomagar(Nothing exciting):
A seemingly new p6:
x = 15, y = 15, rule = B3/S235b2o4b2o$4bobo4b2o$2obo2bobo$2obobo2b5o$3bobobo5bo$3bobobob3o2bo$2b2o8b3o$4b2o3b2o$3o8b2o$o2b3obobobo$bo5bobobo$2b5o2bobob2o$6bobo2bob2o$2b2o4bobo$2b2o4b2o!

And a relative of pentoads that hassle a block:
x = 94, y = 24, rule = B3/S233b2o$4bo84b2o$4bobo83bo$5b2o16bo60b4o$8b3o10b3o44b2o14bob3o$8bo11bo48bo16b3o$10bo9b2o14b2o25b4o$8b3o25bo26bob3o$12b2o2bob2o19b4o22b3o17b2o$12b2o2bo2bo18b3obo42b2o$8b2o6b2obo18b3o6b2o$8b2o37bo16b2o21b3o$14b2o32bo15b2o21bo$4bob2o6b2o24b2o5b2o39bobob2o$4bo2bo2b2o28b2o3bo20b2obo16bobob2obo$4b2obo2b2o33bob2o17bo2bo16b2o$13b3o20bob2o5b2o2bo16bob2o$2b2o9bo22bo2bo2b2o4b2o$3bo11bo20b2obo2b2o26b2o$3o10b3o54bo$o16b2o15b2o35b3o$17bobo15bo37bo$19bo12b3o$19b2o11bo! EDIT: and more: Diamond rings phase-shift a p3. but I'm doubtful whether other oscs can do this: x = 38, y = 19, rule = B3/S2328bo$27bobo$26bobobo$6bo19bobobo$5bobo15b2ob2ob2ob2o$4bobobo14b2obobobob2o$4bo3bo17bo3bo$2b2o2bo2b2o10b5o2bo2b5o$bo4bo4bo8bo2bo4bo4bo2bo$obob2ob2obobo6bob2obob2ob2obob2obo$bo4bo4bo8bo2bo4bo4bo2bo$2b2o2bo2b2o10b5o2bo2b5o$4bo3bo17bo3bo$4bobobo14b2obobobob2o$5bobo15b2ob2ob2ob2o$6bo19bobobo$26bobobo$27bobo$28bo! Best wishes to you, Scorbie Scorbie Posts: 1380 Joined: December 7th, 2013, 1:05 am ### Re: New p17 and other billiard tables Here's a cute p12 that flips a hook back and forth: x = 14, y = 14, rule = B3/S233b2o$3bo$4b3o$6bo$6bobo$7b2o2$3bob2o3b2o$b3ob2o4bo$o10bobo$b3ob2o5b2o$3bobo$3bobo$4bo! By minimum population, it's the second-smallest known p12. Here are some boring p7, p8, and p9 oscillators: x = 54, y = 75, rule = B3/S2329bo$2bob2o22bobo15b2o$2b2obo20b3o2bo7b2ob2o3bo$6b2o17bo3b2o7bobobo2bo$7bo14b2o2bobo9bo3bob3o2b2o$6bo14bo2b2o3b2o8b3obo3bo2bo$6b2o13bobo2b2o3bo9bobob2ob2o$4b2o14b2ob2o3b4o11bobo4b3o$5bo17bo18bo2bob3o2bo$4bo18bo4b4o10b2obobo2b2o$4b2o16b2obobo4bo10bob2ob2o$2b2o20bob2obobo9bo2bo4bo$3bo20bo3b2ob2o8b2obob3o$2bo22b2o3bo13bobo$2b2o23b2obo13b2o$27bobo15$26bo$2b2obo19bobob2o$2bob2o18bobo3bo15bobo2bo$2o4b2o16bo2b2o16bob5o$o5bo13bob2obobob4o12bo$bo5bo12b2obobobo5bo9b2obob2o$2o4b2o17bo2bob3o2bo6bobobo3bob2o$2b2obo18bo3b2o2bob2o5bo4bobobob2o$2bob2o18b2o8bo6b3obo2bobo$2o4b2o24bobo10bobo2bo$o5bo25b2o7b4o2b3o$bo5bo21bo11bo3b2o$2o4b2o21b5o10bo2bo$2b2obo27bo11b2o$2bob2o25bo$31b2o16$2b2obo$2bob2o21bo16b2o$2o4b2o19b3o10b2obob3o$o5bo23bo7bo2bobo4bo$bo5bo17b4obo7b2o3bob2obo$2o4b2o16bo3bob2o10bo3bob2o$2b2obo18b3obo13b3obo$2bob2o16b2o2bobob2o8b2o2bobob2o$6b2o13bo3b4obobo6bo3b4obobo$6bo13bob2o5bo2bo5bob2o5bo2bo$7bo13bo3b3obobo7bo3b3obobo$6b2o14b3o2bob2o9b3o2bob2o$2b2obo18bo17bo$2bob2o!

New rotors:
p4 r13 5x5 ....3 ..1@. .A10@ .111A C..1.   new2015p6 r18 6x6 ....3. ..1@@. .A.00. 2@00@. .1@1A3 ..A...   new2015p5 r12 4x6 ....2A ..B.1. C00@@2 .2..2.   new2015p4 r12 4x5 ..11. 000A. BA.AA ..22.   new2015p4 r13 5x5 ...1. ..1@. A1.@A .1@@0 .AA..   new2015p3 r11 5x6 ....2. ..A11A ...2.. 1B1... B..C..   new2015p6 r16 4x7 ....1.. .B00A.. 21.0@@A .A11B.2   new2015p5 r13 4x6 ...2.. .100.. A@001A B.2.2.   new2015p5 r11 5x6 ....2. ..3013 ...@.. .A.A.. B01...   new2015p7 r20 6x7 ...1..3 2AA0A1. A.A100B ...101. ...1.1. ...C...   new2015p8 r19 6x7 .....1. .....1B ...0011 ..0@0.. 200@@B. .122...   new2015p5 r15 5x6 ...1.. 3.00.. .110B. ..A0.1 .1B11.   new2015p12 r19 6x6 ....2. ..000B 1.0@@. B1100. A.1... .121..   new2015p8 r15 5x7 ....23. AA1.003 .A.A10. .....A. ....2A.   new2015p9 r16 6x7 .....1. ....2A. ..B000B ...0.A. .A0@A.. 1A.....   new2015p9 r17 6x7 .....1A ..A@@1. .1.0... 2@0@B.. .11.... .A.C...   new2015p6 r13 5x7 .....1A ..A@@1. .1.1... 2@0A... .2.....   new2015p7 r15 5x6 ...1.B B1A00@ .A.1.A .1.A1. ..3...   new2015p3 r11 4x6 ....3. AAA.1. A..A.3 .AAA..   new2015p3 r13 5x6 ...2A. ....2. AAA.1. A..A.3 .AAA..   new2015p9 r15 5x7 .....2. ..A@0@3 A@0@.1. .A.0A.. ...B...   new2015p6 r15 6x7 .....1. ...3.AB .1@@1A. A..B... 01..... B.C....   new2015p6 r16 6x7 .....1. 3..3.AB .1@@1A. A..B... 01..... B.C....   new2015p4 r14 4x5 ..2.B 3A10@ ..11A C1A1.   new2015p4 r13 4x5 ..2.B .A10@ ..11A C1A1.   new2015p6 r18 5x8 .....00. .0000@@B B@A2..B. 3.A..... .A3.....   new2015
-Matthias Merzenich
Sokwe
Moderator

Posts: 1479
Joined: July 9th, 2009, 2:44 pm

### Re: New p17 and other billiard tables

Sokwe wrote:Here's a cute p12 that flips a hook back and forth:
x = 14, y = 14, rule = B3/S233b2o$3bo$4b3o$6bo$6bobo$7b2o2$3bob2o3b2o$b3ob2o4bo$o10bobo$b3ob2o5b2o$3bobo$3bobo$4bo!

By minimum population, it's the second-smallest known p12.

Wow! I can't believe no one has found this before!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

A for awesome

Posts: 1862
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

### Re: New p17 and other billiard tables

Sokwe wrote:Here's a cute p12 that flips a hook back and forth:
x = 14, y = 14, rule = B3/S233b2o$3bo$4b3o$6bo$6bobo$7b2o2$3bob2o3b2o$b3ob2o4bo$o10bobo$b3ob2o5b2o$3bobo$3bobo$4bo!

Very nice! It's also interesting that the way it works uses exactly the same mechanisms normally used to turn an eater into an elevener, and vice versa. Sadly, due to the close proximity of the active pieces, synthesis doesn't appear easy (even though all the pieces themselves are easy to make).
Sokwe wrote:By minimum population, it's the second-smallest known p12.

I presume you mean non-trivial P12s. There are many trivial smaller ones: 4 24-cell mold/candelfrobras, 1 25-cell mold/jam, 6 26-cell mold/cuphooks, 4 27-cell mold on long bookend eating eater, plus many larger versions of these.
mniemiec

Posts: 1038
Joined: June 1st, 2013, 12:00 am

### Re: New p17 and other billiard tables

Wow! So you restarted the search again?? Good to know that! Nice to see that cute p12!
A for awesome wrote:Wow! I can't believe no one has found this before!
Seconded. The osc itself looks so simple that it looks as if it could have been found by a lucky newcomer.

BTW, have you tried saving your search time by making the program faster? I once profiled dr and the bottleneck seems to be somewhere around the beginning. (I think it was set(r, c) but not too sure.) Wonder if it could be faster.

mniemiec wrote:Very nice! It's also interesting that the way it works uses exactly the same mechanisms normally used to turn an eater into an elevener, and vice versa. Sadly, due to the close proximity of the active pieces, synthesis doesn't appear easy (even though all the pieces themselves are easy to make).
Hmm... Sokwe found this with dr, so maybe the configuration at gen 0 might help.
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

One of the "boring P8s" can be extended a bit:
x = 16, y = 26, rule = LifeHistory8.A.A2.A$7.A.5A$7.A$5.2E.A.2A$4.E.E.A.A.A.2A$3.E2.E2.A2.A.2A$3.4E4.2A$7.E2.A.A$3.4E2.3A$3.E3.2A$6.A2.A$7.2A2$2.2A$3.A4.A.A2.A$2.A4.A.5A$2.2A3.A$5.2E.A.2A$2.3E.E.A.A.A.2A$.E4.E2.A2.A.2A$E.E2.2E4.2A$.E5.E2.A.A$2.5E2.3A$7.2A$2.2A2.A2.A$2.2A3.2A!

Maybe this one can participate in other interactions...
Sphenocorona

Posts: 480
Joined: April 9th, 2013, 11:03 pm

### Re: New p17 and other billiard tables

How do I compile dr? Do I do it with Cygwin? How do I compile it?
If you're the person that uploaded to Sakagolue illegally, please PM me.
x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo! (Check gen 2) Saka Posts: 3077 Joined: June 19th, 2015, 8:50 pm Location: In the kingdom of Sultan Hamengkubuwono X ### Re: New p17 and other billiard tables Saka wrote:How do I compile dr? Do I do it with Cygwin? How do I compile it? Just in case you want your questions to be answered, please try to follow this guide occasionally. Ivan Fomichev codeholic Moderator Posts: 1142 Joined: September 13th, 2011, 8:23 am Location: Hamburg, Germany ### Re: New p17 and other billiard tables codeholic wrote: Saka wrote:How do I compile dr? Do I do it with Cygwin? How do I compile it? Just in case you want your questions to be answered, please try to follow this guide occasionally. Good guide. That would help me a lot when I have to ask questions on places like SO later on. I agree that the forums tend to be ignorant on vague questions, but I don't think we "should" be ignorant. Note: not that you said that, just pointing out my subtle perspective. I have seen members in ConwayLife kindly answering questions and I think it's a good thing. Along these lines, although I see that most experienced Life Enthusiasts have wide and deep experience in programming, like Codeholic(JAPH?), both Chrises, simsim, dvgrn, Alexey, calcyman and many others, I think the attitude on code questions is not totally equivalent to those of a Hacker community. Partly because most users are not experienced programmers. A place where this SHOULD BE a rule, IMHO, would be the bugs and errors forum. Thinking about it, I think this can be applied to Life questions as well. I don't think it's a must to search previous links first before asking a new discovery but I'm pretty sure it's Greatly Greatly Greatly recommended. Kind responses, again, are a good thing in my opinion, it's just hard. Personally it's never easy to reply courteously to every instance of a new "methuselah" or a new still life discovery. Saka wrote:How do I compile dr? Do I do it with Cygwin? How do I compile it? If I have enough time to write all this I must have enough time to respond to your question. Yes, pretty much every Life Searching Program written in C is compiled with a compiler, Cygwin being one of them. Go to the source directory and run: gcc -O3 dr.c -o your_binary_name #g++ instead of gcc for a c++ file And you're done. What the flags mean would be a good thing to search on Google. Using dr is pretty hard itself. The manual has all the information, so please read that before asking questions here. You may have to compile multiple sources at once in compiling other projects. In that case, read the README file (analagous to the RTFM in the guide) to find which sources to compile, and if there isn't any manual then ask here. Best wishes to you, Scorbie Scorbie Posts: 1380 Joined: December 7th, 2013, 1:05 am ### Re: New p17 and other billiard tables I'm surprised there's no dedicated topic for new oscillator discoveries in general while there is a topic for new billiard tables. Sokwe, should I make a new thread or is it okay to use this thread? (In the case of the later, I think it's a good idea to change the thread title. Anyway, here's one that Sokwe would like; p21 and p30 oscs I haven't seen. Are they new? x = 59, y = 56, rule = B3/S232b2obo5b2o9b2o$2bob2o6bo10bo12bo$6b2o3bo10bo12bobo$6bo4b2o9b2o2b2o8bo$7bo17bobo$6b2o3b2o7b4obo16b2o$2b2obo6bo7bo2bob2o14bo2bo$2bob2o5bo29b3o$2o9b2o29bo$o28bo$bo9b2o15b3o$2o10bo14bo2bo14b2obo2bo$2b2obo5bo16b2o16bob4o$2bob2o5b2o31bobo$35bo8b2o2b2o$34bobo12bo$35bo12bo$48b2o13$2obo6b2obo33b2o$ob2o6bob2o33bobo$4b2o2b2o4b2o33bo$4bo3bo5bo30b4ob2o$5bo3bo5bo11bo17bo2bobobo$4b2o2b2o4b2o11b3o20bobo$2obo4bo5bo15bo19bo2b2o$ob2o5bo5bo13b2o18b2o4bo$4b2o2b2o4b2o35b5o$4bo3bo5bo36bo4b2o$5bo3bo5bo38b2o2bo$4b2o2b2o4b2o17bo11bo2bo6bob2o$2obo6b2obo9b2o5bo3bo10bo2bo6bo$ob2o6bob2o9bo6bo2bo10bo3bo5b2o$20b2obo6bo2bo11bo$20bo2b2o$21b2o4bo$23b5o$23bo4b2o18b2o$24b2o2bo19bo$26bobo20b3o$26bobobo2bo17bo$27b2ob4o$29bo$29bobo$30b2o!

The p21 is pretty sparky that one may even make a p42 or p63 gun.
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

Scorbie wrote:here's one that Sokwe would like

Those are beautiful! Can you give any details on how you found them?

Scorbie wrote:I'm surprised there's no dedicated topic for new oscillator discoveries in general while there is a topic for new billiard tables. Sokwe, should I make a new thread or is it okay to use this thread? (In the case of the later, I think it's a good idea to change the thread title.

Done.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1479
Joined: July 9th, 2009, 2:44 pm

Sokwe wrote:Those are beautiful! Can you give any details on how you found them?
Sure I found it just as I found the p22 HF hassler. I used Chris Cain's hack of ptbsearch with custom catalysts. Actually, you came in here just in time, as I recently fixed a bug in the script and now it seems pretty usable.
Uploaded to Github right now. Here: https://github.com/Scorbie/ptbsearch-sym_hack
To compile it yourself:
1) The mirror symmetry version can be compiled by setting FLIP_X to true and FLIP_Y to false. (1, 0)
2) The survive from Chris's symmhack repo is renamed as 'filter' and I copied the original (unmodified, not symmetrical) survive here.
3) I tweak and use runmir.sh and runrot.sh. I bet you can figure out what I am doing just by looking at it.
4) The syntax of each python script I made would be on the top of the script as a comment. (There may be a typo or something may be outdated...)
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

I haven't done much with Life for a few years, but recently I've been letting some drifter searches run. Nothing particularly useful has turned up, but here's a nice p18 that it found; like the one posted by Sokwe on 1/26/2015, it could just as easily have been p19:

#C p18 2015/12/18x = 17, y = 15, rule = B3/S233b2o$4bo$2bobob2o$bobobobo3b2o$bobo8bo$2obo8bob2o$3bo7b2obo$3bob2o7bo$2obobo5b3ob2o$o2bobobo2bo2bobo$2bo2bob4obo2bo$3b2obo4b2obo$6bo2bo3bo$6bobob3o$7b2obo!

Here's the rotor descriptor in case anyone wants to update their knownrotors file:

p18 r26 6x8 .....2.. ....0003 .1..000. .1000@@. A00000@. .B..B.A3   p18 2015/12/18
Dean Hickerson

Posts: 87
Joined: December 19th, 2015, 1:15 pm

Dean Hickerson wrote:I haven't done much with Life for a few years, but recently I've been letting some drifter searches run.
Welcome to the forums! Glad to see former members here!
Dean Hickerson wrote:Nothing particularly useful has turned up, but here's a nice p18 that it found; like the one posted by Sokwe on 1/26/2015, it could just as easily have been p19:
That's a nice p18 that looked a little famliar... Thought it was because of the chamagne glass until I saw this: Merzenich_p18... I guess Sokwe silently found this before.

Anyway many thanks for the drifter searcher. Without it it would have been impossible for this thread to be made.
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

Dean Hickerson wrote:... it could just as easily have been p19...

Not quite as easily, right? Is there some kind of power law governing how likely it is that a period-N oscillator will show up in a drifter search -- similar to the law governing the appearance of N-bit still lifes on Catagolue?

Maybe more interesting, is there an even-odd bias like the one for N-bit still lifes, that would make p19 relatively less likely? Offhand I don't see a reason why that would be, unless there's a small, simple and versatile period-doubling mechanism that shows up naturally in a lot of oscillators.

Anyway, even if a p19 showed up, there would still be periods 23, 34, 38, and 41 to deal with, and the upper end of that range looks like a tough nut to crack. Maybe if the new faster apgsearch/apgnano were running symmetrical soups instead of asymmetric ones, it might have hit a RandomAgar-like result for one of those periods by now... but I doubt it would be more than that.

So it still seems as if the most likely way to finally prove that B3/S23 is omniperiodic, is to recruit some newcomers who don't know what has already been tried, and have them run some ambitious drifter searches on things like converting a double 2c/3 signal back into a single signal.

Are drifter searches starting with double 2c/3 signals feasible at all? And/or have they already been done? 'dr' is one of the search programs that I've used very seldom -- have really only ever run a couple of successful searches, and that was two or three computers ago.

--------------------------------------

Also, as Scorbie has already said: welcome to the forums!

dvgrn
Moderator

Posts: 5749
Joined: May 17th, 2009, 11:00 pm

dvgrn wrote:Are drifter searches starting with double 2c/3 signals feasible at all? And/or have they already been done? 'dr' is one of the search programs that I've used very seldom -- have really only ever run a couple of successful searches, and that was two or three computers ago.
EDIT: I think it's similar to finding stable glider reflectors. There isn't a thorough search setting.

I'm not sure what you mean by 'feasible', but if you mean setting the search rather than finding good results then yes, of course. When I was into dr, I did some searching and found the double-signal-to-thumb. Well, but covering all the search space is a very different matter, as the search space is really big, with probably most of them fruitless. And currently I'm not sure how to set the params well to prune the search space to look for mostly fruitful things.

I wonder how the single signal to double signal turner was found. (By Dean Hickerson, right?) I'm pretty sure one let the signals to split through. What searches have you conducted starting from the single signal?

Another question: A typical dr search I did outputs few (one or two) new/distinct oscillators multiple times. Why is it like that? It's not looking at the same search space over and over, is it?

EDIT: Regarding the HF hasslers, I think it would be *way* more effective to find more of those by running a script that places two HFs symmetrically and run that with Bellman, with symmetry.
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

Scorbie wrote:That's a nice p18 that looked a little famliar... Thought it was because of the chamagne glass until I saw this: Merzenich_p18... I guess Sokwe silently found this before.

Thanks; I'll update my knownrotors file. And I'll look through the LifeWiki from now on before announcing any 'new' oscillators.

Anyway many thanks for the drifter searcher. Without it it would have been impossible for this thread to be made.

I'm glad that it's been useful.
Dean Hickerson

Posts: 87
Joined: December 19th, 2015, 1:15 pm

PreviousNext