For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

### Re: New p17 and other billiard tables

Thanks...
It seems that the p12 is close to minimal population for a p12. EDIT: unmodified it's the smallest bounding box p12.
And putting the same constituent parts together also seems to work.
`x = 48, y = 9, rule = B3/S234b2ob2o12b2ob2o12b2ob2o\$5bobo14bobo12bobobo\$3bo3bobo10bo3bobo2bo6bo4bobo\$b3obobob3o6b3obobob6o4bob2obob3o\$o11bo4bo14bo4bo8bo\$b6obob2obo4b6obobob3o6b3obob2obo\$3bo2bobo4bo6bo2bobo3bo10bobo4bo\$8bobobo12bobo14bobobo\$7b2ob2o12b2ob2o12b2ob2o!`

I returned to this thread because I found this p14 in a RandomAgar search that uses a pretty interesting mechanism.
`x = 62, y = 38, rule = B3/S2317b2o\$3b2o10bo2bo12b2o\$3bo4b2ob2o2b2o6bo6bo2bo\$5bo3bobobobo3bob5obo3bo2bo10bo11bo\$4b5o2bobo2b5o5b5ob2o9b3o2b2o3b2o2b3o\$b2o5bobobobobo5b3o5bobo9bo5bobobobo5bo\$bob3o2bobo3bobo2b3obob3o2bobo10b5o2bobo2b5o\$3bo2b2o2bo3bo2b2o2bo3bo2b2o2bob2o11bobobobobo\$3bo2b2o2bo3bo2b2o2bo3bo2b2o2bobo8b2o2bobo3bobo2b2o\$2b2obo2b3obob3o2bobo3bobo2b3o2bo6bo2b2o2bo3bo2b2o2bo\$3bobo5b3o5bobobobobo5b3o6bo2b2o2bo3bo2b2o2bo\$2bo2b5o5b5o2bobo2b5o9b2obo2b3obob4obob2o\$2bobo5b5o5bobobobo5b2o10bo5b3o5bo\$b2ob2o3bo5bo3b2obobob2o3bo2bo9b5o5b5o\$2bobo5b5o5bobobobo5b3o14b5o\$2bo2b5o5b5o2bobo2b5o14b2obo3bob2o\$3bobo5b3o5bobobobobo5b2o11bobo3bo2b2o\$2b2obo2b3obob3o2bobo3bobo2b3obo17b2o\$3bo2b2o2bo3bo2b2o2bo3bo2b2o2bo\$3bo2b2o2bo3bo2b2o2bo3bo2b2o2bo\$bob3o2bobo3bobo2b3obob3o2bob2o\$b2o5bobobobobo5b3o5bobo\$4b5o2bobo2b5o5b5o2bo\$b3o5bobobobo5b5o5bobo\$bo2bo3b2obobob2o3bo5bo3b2ob2o\$2b2o5bobobobo5b5o5bobo\$4b5o2bobo2b5o5b5o2bo\$3o5bobobobobo5b3o5bobo\$o2b3o2bobo3bobo2b3obob3o2bob2o\$bobo2b2o2bo3bo2b2o2bo3bo2b2o2bo\$2obo2b2o2bo3bo2b2o2bo3bo2b2o2bo\$3bobo2b3obob3o2bobo3bobo2b3obo\$3bobo5b3o5bobobobobo5b2o\$2b2ob5o5b5o2bobo2b5o\$bo2bo3bob5obo3bobobobo3bo\$2bo2bo6bo6b2o2b2ob2o4bo\$3b2o12bo2bo10b2o\$17b2o!`

The main part is hassled by 2 p4s on the side, which has a phase shift of 2 gens.
Maybe a p34 could be built based on this mechanism?
Last edited by Scorbie on January 11th, 2015, 9:43 pm, edited 3 times in total.
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Scorbie wrote:putting the same constituent parts together also seems to work.

This reaction doubles the period of these p3 and p4 oscillators. Both the p6 and the p8 oscillators were previously found by Dean Hickerson, but I'm not sure if he noticed their period-doubling nature. By phase shifting the p3 or p4 oscillators it is possible to build some high-period billiard tables. Here are periods 20, 32, 42, and 44 respectively:
`x = 143, y = 35, rule = B3/S23137bo\$137b3o\$140bo\$95b2o3b2o33b4o2bo\$58bo3b2o31bobo2bo33bo4b3o\$57bobobo2bo32bo4bo26bobo2b5o\$21b2o33bo2bobobo2bo29bo4b2o25bob4o6b2o\$21bo34b3o2bo2b3o26bo2b2o2bo27bo5bo3bobobo\$18b2obo39bobo29b3o2bo2b2o22b2obob2obo2bo5bo\$12b2o4bobob2o32b4o3b4o29b2obobo24bo2bobobob2ob4o\$12bo2b2obo3bobo30bo11bo20b2o5bo3bobo24bo4bobo3bo\$9b2obob2o2b2o2bobo24b2o3bob4o3b4o21bobo3bob2o2bo22b2ob2o2bo3b3o2bo\$9bobobo3bo4bobob2o22bo3bo4bobo28bo3bobob2o23bobo3bo4bobob2o\$13bob2obobobobob2o20bobob2ob4o2bo2b3o22b2ob2o4bo26bob2ob5obobo\$12bobobobo4bo23bobobobobo3bobobo2bo21bo2bobobobo2bo23bobobobo4bo2bo\$9bo2bobo5b3o20b2obo2bobo3bobobobo2b2o23bobo3bobob2o18bobo2bo3bo3bo2bobo\$5bob6obob4o22bobob4o3bob2obo2bo19b2o3b4obobobobobo18bob5ob2ob3obob2o\$5b2o14b2o18bobo6b2o6bobo21bo2bo10bo2bo18bo6b2o6bo\$8b4obob6obo17bo2bob2obo3b4obobo22bobobobobob4o3b2o14b2obob3ob2ob5obo\$5b3o5bobo2bo17b2o2bobobobo3bobo2bob2o22b2obobo3bobo21bobo2bo3bo3bo2bobo\$4bo4bobobobo19bo2bobobo3bobobobobo26bo2bobobobo2bo19bo2bo4bobobobo\$2obobobobob2obo20b3o2bo2b4ob2obobo29bo4b2ob2o20bobob5ob2obo\$2obobo4bo3bobobo21bobo4bo3bo30b2obobo3bo20b2obobo4bo3bobo\$3bobo2b2o2b2obob2o16b4o3b4obo3b2o28bo2b2obo3bobo18bo2b3o3bo2b2ob2o\$3bobo3bob2o2bo18bo11bo33bobo3bo5b2o20bo3bobo4bo\$4b2obobo4b2o19b4o3b4o34bobob2o24b4ob2obobobo2bo\$6bob2o28bobo38b2o2bo2b3o20bo5bo2bob2obob2o\$6bo28b3o2bo2b3o35bo2b2o2bo20bobobo3bo5bo\$5b2o28bo2bobobo2bo33b2o4bo24b2o6b4obo\$37bo2bobobo34bo4bo28b5o2bobo\$38b2o3bo37bo2bobo23b3o4bo\$80b2o3b2o23bo2b4o\$111bo\$112b3o\$114bo!`

Scorbie wrote:I found this p14 in a RandomAgar search...

Nice one! Here is a reduced stator/p2 part:
`x = 19, y = 12, rule = B3/S237bo3bo\$6bobobobo\$5bo2bobo2bo\$b2o2bobobobobo2b2o\$o2bobobo3bobobo2bo\$b2o2b2o5b2o2b2o\$7bo3bo\$b2ob4o3b4ob2o\$o2b2o3b3o3b2o2bo\$b2o2b2o5b2o2b2o\$3bo2bob3obo2bo\$3b2o2bobobo2b2o!`

Scorbie wrote:The main part is hassled by 2 p4s on the side, which has a phase shift of 2 gens.
Maybe a p34 could be built based on this mechanism?

Unfortunately, I don't see a way to make a p34 from any of the known p17s using this mechanism (as always, I could have missed something).

Edit: Even smaller:
`x = 19, y = 13, rule = B3/S236b2o\$6bobo\$8bo\$7bob2o3bo\$4bo2bobobobobo\$3bobobo3bobobo\$2bo2b2o5b2o2b2o\$bo5bo3bo6bo\$b2ob4o3b4ob2o\$3b2o3b3o3b2o\$b2o2b2o5b2o2b2o\$obo2bob5obo2bobo\$bo7bo7bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1479
Joined: July 9th, 2009, 2:44 pm

### Re: New p17 and other billiard tables

Whoa, didn't think that there was another p2 with the same functionality! I'll make that my avatar as soon as I get the giffer.pl working!
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Based on Scorbie's success I tried running an asymmetric search for oscillators, and it just recently found this p16:
`x = 13, y = 18, rule = B3/S235bo\$5b3o\$8bo\$3b6o\$2bo6b2o\$bobob2obo2bo\$bobo2bo2bobo\$2o2bob4ob2o\$2bobo6bo\$2bob2o2b2obo\$3bo6bo\$4b5o\$8b5o\$2obobo6bo\$ob2ob5o\$9bo\$7bo\$7b2o!`

It also found this fairly boring p7:
`x = 13, y = 16, rule = B3/S238bo\$7bobo\$5b3obo\$4bo4b2o\$4bob2o3bo\$2ob2obob2o2bo\$bobo2bobob2o\$bo2bo\$2bobo2bo2b2o\$b2obobo4bo\$bo2bob5o\$3bo\$4b5o\$9bo\$6b3o\$6bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1479
Joined: July 9th, 2009, 2:44 pm

### Re: New p17 and other billiard tables

Sokwe wrote:it just recently found this p16
That's the first of its period in this thread! (Even though there are already two p17s) Maybe you could find another p17 or even go for a p19.
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

And based on Sokwe's success, I tried to find something with symmetry options. Nothing much, but it rediscovered Jason's p11 -- Here it is with a slightly optimized stabilization.
`x = 25, y = 25, rule = B3/S2310b2ob2o\$10bo3bo\$11b3o\$8b3o3b3o\$7bo3bobo3bo\$8b2obobob2o\$9bobobobo\$4bo3bo2bobo2bo3bo\$3bobobob2o3b2obobobo\$3bob2obo7bob2obo\$2obo4bo3bo3bo4bob2o\$obob4o3bobo3b4obobo\$2bo7bo3bo7bo\$obob4o3bobo3b4obobo\$2obo4bo3bo3bo4bob2o\$3bob2obo7bob2obo\$3bobobob2o3b2obobobo\$4bo3bo2bobo2bo3bo\$9bobobobo\$8b2obobob2o\$7bo3bobo3bo\$8b3o3b3o\$11b3o\$10bo3bo\$10b2ob2o!`
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Surprisingly, here's another p16:
`x = 15, y = 15, rule = B3/S237bo\$6bobo\$6bobo\$4b2obob2o\$3bobobo3bo\$3bobobo3bo\$2obobobo4b2o\$2obobobob3o2bo\$3bobo3bo2b2o\$3bobo4b2o\$4bo2bo3bo\$5b6o2\$7b2o\$7b2o!`

I also found this p10 which uses a period-doubling mechanism that I haven't seen before:
`x = 14, y = 11, rule = B3/S238bo\$4bob3o2bo\$4b2o3b3o\$2b2o3b2o\$bo2b3obob4o\$obo7bo2bo\$ob2ob2o2bo\$bo4bo\$2b3obo\$4bobobo\$7b2o!`

Here is a period-12 variant (the p6 part can probably be reduced):
`x = 26, y = 16, rule = B3/S238b2o\$9bo9b2o\$7bo6b2o3bo\$7b2o6bo5bo\$5b2o3b2obo2b2o2b2o\$4bo3b2obob2obobo\$3bob3obobo4bobob2o\$3bo7b6o4bo2bo\$2ob2ob2o3b2o3bo4bobobo\$obo4bo12b2o2bo\$3b3obo9b2o2bo\$5bobobo5bo3b2o\$8b2o5b4o\$18bo\$17bo\$17b2o!`

I found several other oscillators, but they all have periods < 11. I'll post them (and the rotor descriptors) when I finish minimizing them.

Scorbie wrote:It rediscovered Jason's p11 -- Here it is with a slightly optimized stabilization.

Wow, I never realized that no one had properly minimized that oscillator.

Scorbie wrote:Maybe you could find another p17 or even go for a p19.

Finding a p19 was my main hope from the beginning of this project.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1479
Joined: July 9th, 2009, 2:44 pm

### Re: New p17 and other billiard tables

Sokwe wrote:Surprisingly, here's another p16:
Wow, a glide-symmetric one! Did you find it from a symmetric background?
Sokwe wrote:I also found this p10 which uses a period-doubling mechanism that I haven't seen before:

Wow, that's unique! that left part reminds me of the treater reaction and your period tripler(in your p48).
Wish if a p34 could have been built by a similar mechanism.
EDIT:
Sokwe wrote:I found several other oscillators, but they all have periods < 11. I'll post them (and the rotor descriptors) when I finish minimizing them.
Looking forward to new2015s.
Last edited by Scorbie on January 12th, 2015, 9:35 am, edited 2 times in total.
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Sokwe wrote:Surprisingly, here's another p16:

A diagonal flipper! Nice!
Ivan Fomichev

codeholic
Moderator

Posts: 1142
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

### Re: New p17 and other billiard tables

Scorbie wrote:Wow, a glide-symmetric one! Did you find it from a symmetric background?

No, it was just a simple asymmetric search. It's interesting that I couldn't find any p16s back in September or October, but now I find two in one weekend. It gives me hope that a p19 is possible from a search like this.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1479
Joined: July 9th, 2009, 2:44 pm

### Re: New p17 and other billiard tables

Sokwe wrote:No, it was just a simple asymmetric search.
Wow, that's like finding MWSS on MWSS on a asymmetric soup!
Sokwe wrote: It's interesting that I couldn't find any p16s back in September or October, but now I find two in one weekend.
And that constitutes about half of the "unique" p16 billiard tables. Oh, by the way, your latter p16 share with Achim's p16 as the smallest bounding box.
Sokwe wrote: It gives me hope that a p19 is possible from a search like this.
I wish you luck! I'm hoping for building a p34.
Sokwe wrote:Here is a period-12 variant (the p6 part can probably be reduced):
Did you find that part from ofind? Pretty small.
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Now look at that p12. On its left is a component that changes between two states every time a spark from the p6 component comes along. We need to find more of such "counters" if we are going to have any hopes of finding a p34 or indeee any of the other unknown periods.
Princess of Science, Parcly Taxel

Freywa

Posts: 567
Joined: June 23rd, 2011, 3:20 am
Location: Singapore

### Re: New p17 and other billiard tables

Scorbie wrote:Did you find that part from ofind?

I used JLS to find the p6 part. This was mostly to show that the period-doubler could work at other periods. I don't think ofind would be very good for this kind of search. As I recall, to use ofind I would have to start with two complete p6 rows (including stator), so I would have to run a bunch of different searches (one for each potential pair of starting p6 rows).

Scorbie wrote:your latter p16 share with Achim's p16 as the smallest bounding box.

Actually, one of Dean Hickerson's billiard tables has a smaller bounding box of 13x11:
`x = 13, y = 11, rule = B3/S232o9b2o\$obo7bobo\$2bo7bo\$2b2o2bo2b2o\$5bo\$2b3o3b3o\$bo9bo\$b2ob2ob2ob2o\$5bobo\$5bobo\$6bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1479
Joined: July 9th, 2009, 2:44 pm

### Re: New p17 and other billiard tables

Sokwe wrote:Actually, one of Dean Hickerson's billiard tables has a smaller bounding box of 13x11:
Yeah, you're right. Didn't see that one.
Sokwe wrote:This was mostly to show that the period-doubler could work at other periods.
Yep, but I was quite impressed about that small size.

The search found this p8 that strongly resembles a p16. These three are the ones that dr2 found, but I'm pretty sure other stabilizers(in JS collection p16) would work as well. Sadly it doesn't work with Noam Elkies' 7n-1 (or 6n+1?) reaction.
`x = 106, y = 66, rule = B3/S2330b2o3b2o\$29bobo3bobo\$29bo7bo\$26b2ob2o5b2ob2o\$2b2obo19bobobo7bobobo\$2bob2o19b2o2bob2ob2obo2b2o\$2o27b2obobob2o\$o22b6o2b2ob2o2b6o\$bo20bo2bo2bo9bo2bo2bo\$2o20b2o3bobo7bobo3b2o\$2b2obo21b3o7b3o\$2bob2o\$2o4b2o19b3o7b3o\$o5bo15b2o3bobo7bobo3b2o\$bo5bo14bo2bo2bo9bo2bo2bo\$2o4b2o15b6o2b2ob2o2b6o\$2b2obo23b2obobob2o\$2bob2o19b2o2bob2ob2obo2b2o\$25bobobo7bobobo\$26b2ob2o5b2ob2o\$29bo7bo\$29bobo3bobo\$30b2o3b2o13\$88b2ob2o\$84b2obobobobob2o\$33bo51bobo5bobo\$31b5o20b2o5b2o20bobo5bobo\$30bo5bo19bo3bo3bo21bo3bo3bo\$30b7o20b7o23b7o\$33bo26bo29bo\$28b4o3b4o16b4o3b4o19b4o3b4o\$27bo3bo3bo3bo14bo3bo3bo3bo17bo3bo3bo3bo\$2b2obo20bo2b2o5b2o2bo12bo2b2o5b2o2bo8bo6bo2b2o5b2o2bo6bo\$2bob2o19bo4bo5bo4bo10bo4bo5bo4bo7b3o3bo4bo5bo4bo3b3o\$2o4b2o17bobo11bobo6b2o2bobo11bobo2b2o6bo2bobo11bobo2bo\$o5bo15b2obob2o9b2obob2o3bobobob2o9b2obobobo3b3obobob2o9b2obobob3o\$bo5bo13bobob2o13b2obobo4bob2o13b2obo4bo4bob2o13b2obo4bo\$2o4b2o13bobo19bobo4bo19bo4b2o3bo19bo3b2o\$2b2obo14b2ob2o17b2ob2o2b3o17b3o7b3o17b3o\$2bob2o15bobo19bobo4bo19bo4b2o3bo19bo3b2o\$2o4b2o13bobob2o13b2obobo4bob2o13b2obo4bo4bob2o13b2obo4bo\$o5bo15b2obob2o9b2obob2o3bobobob2o9b2obobobo3b3obobob2o9b2obobob3o\$bo5bo17bobo11bobo6b2o2bobo11bobo2b2o6bo2bobo11bobo2bo\$2o4b2o17bo4bo5bo4bo10bo4bo5bo4bo7b3o3bo4bo5bo4bo3b3o\$2b2obo20bo2b2o5b2o2bo12bo2b2o5b2o2bo8bo6bo2b2o5b2o2bo6bo\$2bob2o21bo3bo3bo3bo14bo3bo3bo3bo17bo3bo3bo3bo\$28b4o3b4o16b4o3b4o19b4o3b4o\$33bo26bo29bo\$30b7o20b7o23b7o\$30bo5bo19bo3bo3bo21bo3bo3bo\$31b5o20b2o5b2o20bobo5bobo\$33bo51bobo5bobo\$84b2obobobobob2o\$88b2ob2o!`

EDIT: This shows the search I did in 2014 -- before you optimized the p14, so I don't think the stator optimizations are really necessary. (I'm just posting it in case something good comes along.)
`x = 73, y = 37, rule = B3/S232b2obo18bo2bo9bo2bo9bo\$2bob2o18b4o9b4o9b3o11bo2bo\$2o20b2o11b2o11b2o3bo10b4o\$o20bobo2b2o6bobo2b2o6bobo2b2o8b2o\$bo19bo2b2o2bo5bo2b2o2bo5bo2b2o2b2o5bobo2b2o\$2o18b2o2b2o2bo4b2o2b2o2bo4b2o2b2o2bo6bo2b2o2bob2o\$2b2obo16b2o2bob2o5b2o2bob2o5b2o2bobo5b2o2b2o2bobo\$2bob2o14b2o4bobo4b2o4bo3bo2b2o4bob2o6b3obobobo\$2o4b2o13bob2obo2bo4bob2obob2o4bob2obo3bo3b2o4bobob2o\$o5bo14bobobobobo4bobobobo6bobobobobo5bobo2bobo3bo\$bo5bo12b2obobobob2o2b2obo3bo5b2obobobob2o4bobobobob3o\$2o4b2o12bo2bobobobo4bo2b3o6bo2bobobo6b2obo3bobo\$2b2obo16bo4bobo4bo13bo4bo7bobo3bobo\$2bob2o17b2obobo6b3o11b3obob2o2bo2bo2bobo\$24bobo10bo16bobo2b2obob2obo\$24bobo21bob4o8bobo2bobo\$25bo22b2obo10bo2bo2b2o\$63b2o3\$2o4b2obo14bo2bo\$bo4bob2o14b4o\$o9b2o10b2o\$2o8bo10bobo2b2o\$11bo9bo2b2o2bob2o\$2o8b2o8b2o2b2o2bob2o\$bo4b2obo12b2o2bobo\$o5bob2o10b2o4bobo\$2o2b2o15bob2obobobo\$4bo16bobobobob2o\$2o3bo14b2obo3bo\$bo2b2o13bo3b5ob2o\$o5b2obo10bobo5bobo\$2o4bob2o9b2ob2ob2obo\$23bobo2bo\$23bobo2b2o\$24bo!`
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

oscillators of periods 10, 11, and 14 respectively:
`x = 69, y = 14, rule = B3/S2332b2o\$32b2o26b2o2b2o\$11bo48b2o2bo\$10bobo17b4o32bo\$11bobo15bo3bo3b2o21b6obo\$2o6bo4bo15b2o7bo17b2obo7bo\$o2bo4bob3o14b2o9bob2o13bobob2o3b2ob2o\$b5o21bo2b2o3b2obo2bo13bobo8bo\$5bob8o13b2o6bob2o14b2obob6obo\$ob2obo5bo2bo14bobobo2bo20bo7bo\$2obobobobo18bo2b2obobo20bob6o\$6b2ob2o18b2o3bob2o20bo\$31b3o26bo2b2o\$31bo27b2o2b2o!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1479
Joined: July 9th, 2009, 2:44 pm

### Re: New p17 and other billiard tables

Cool! The p10 can be made into a tiny p10 signal injector.
`x = 19, y = 18, rule = B3/S2311bo\$10bobo\$11bobo\$2o6bo4bo\$o2bo4bob3o\$b5o\$5bob8o\$ob2obo9bo\$2obobobo2b6o\$5bobobo\$5bobobo2b6o\$6b2obobo6bo\$9bobo2b4o\$9bobobo\$8b2obo2bob2o\$11bobobo2bo\$11bobobobo\$12b2ob2o!`
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Scorbie wrote:The p10 can be made into a tiny p10 signal injector.

Wow, that's great! I think this is the first p10 signal injector of this type (the only other known one is for the 5c/9 signal).
-Matthias Merzenich
Sokwe
Moderator

Posts: 1479
Joined: July 9th, 2009, 2:44 pm

### Re: New p17 and other billiard tables

Freywa wrote:We need to find more of such "counters" if we are going to have any hopes of finding a p34 or indeee any of the other unknown periods.

Another option is still to dig up a small chainable traveling signal -- just a straight-ahead extensible component plus a single 90-degree turn would probably be enough, as long as the recovery time is below 34 ticks (or 19 ticks if possible).

The old 2c/3 wire would work fine, if we just had a 90-degree elbow. Or even if we just had a double-length to single-length signal converter, for that matter, since we do very nearly have an elbow, since late in the previous millennium (August 1997). Anyone not familiar with it, see Golly's Patterns/Life/Signal-Circuitry/signal-turn.rle.

Or here's an old demonstration pattern from my email archives -- just ignore the stable stuff, we could do much better nowadays. The only interesting part is that the sensor mechanism will happily accept either a single-length or a double-length signal -- Calcyman noticed this in 2008. Maybe that output signal could be shunted somehow into a new 2c/3 wire, as a single-length signal?

`#C 2c/3 signal receiver, including a 90-degree turn in the wirex = 384, y = 528, rule = B3/S23140b2o\$140b3o\$139bob2o\$139b3o\$140bo11\$136bobo5bobo2bo\$136b2o6b2o3bobo\$137bo7bo3b2o5\$133bo2bo\$131bobo2bobo\$132b2o2b2o3\$129b2o\$129bo2bob2o\$130b3ob2o2\$130b6o\$129bo6bo\$129b5o2bo\$126bo7bobobo\$126b6o2bo2b2o\$132bobo\$124b6o2bob2o14bo4b2o\$123bo6bobo16b2o3b2o\$123b5o2bobo16bobo4bo\$120bo7bob2o\$120b6o2bo\$126bobo\$118b6o2bob2o22b2o\$117bo6bobo25bobo\$117b5o2bobo25bo\$114bo7bob2o\$114b6o2bo\$120bobo\$112b6o2bob2o\$111bo6bobo\$111b5o2bobo\$108bo7bob2o\$108b6o2bo\$114bobo\$106b6o2bob2o\$105bo6bobo\$105b5o2bobo\$102bo7bob2o\$102b6o2bo\$108bobo\$100b6o2bob2o\$99bo6bobo\$99b5o2bobo\$96bo7bob2o\$96b6o2bo\$102bobo\$94b6o2bob2o\$93bo6bobo\$93b5o2bobo\$90bo7bob2o\$90b6o2bo\$96bobo\$88b6o2bob2o\$87bo6bobo\$87b5o2bobo\$84bo7bob2o\$84b6o2bo\$90bobo\$82b6o2bob2o\$81bo6bobo\$81b5o2bobo\$78bo7bob2o\$78b6o2bo\$84bobo\$76b6o2bob2o\$75bo6bobo\$75b5o2bobo48bo\$72bo7bob2o48bobo\$72b6o2bo52bo\$78bobo\$70b6o2bob2o\$69bo6bobo48b2o\$69b5o2bobo48b2o23b2o\$66bo7bob2o41b2o31bo\$66b6o2bo45bo29bobo\$72bobo45bobo27b2o\$64b6o2bob2o45b2o4b2o\$63bo6bobo54b2o\$63b5o2bobo\$60bo7bob2o89b2o\$60b6o2bo50b2o40bo\$66bobo50bo39bobo\$58b6o2bob2o51bob2o34b2o\$57bo6bobo53b2ob2o\$57b5o2bobo74b2o\$54bo7bob2o54b2ob2o16b2o\$54b6o2bo58bobo\$60bobo58bobo\$52b6o2bob2o58bo\$51bo6bobo\$51b5o2bobo\$48bo7bob2o\$48b6o2bo\$54bobo\$46b6o2bob2o\$45bo6bobo\$45b5o2bobo93b2o\$42bo7bob2o94b2o\$42b6o2bo\$48bobo\$40b6o2bob2o\$39bo6bobo\$39b5o2bobo\$36bo7bob2o\$36b6o2bo\$42bobo\$34b6o2bob2o\$33bo6bobo\$33b5o2bobo\$30bo7bob2o\$30b6o2bo\$36bobo\$28b6o2bob2o\$27bo6bobo\$27b5o2bobo\$24bo7bob2o\$24b6o2bo\$30bobo\$22b6o2bob2o\$21bo6bobo\$21b5o2bobo\$18bo7bob2o\$18b6o2bo\$24bobo\$16b6o2bob2o\$10b2o3bo6bobo\$9bo2bo2b5o2bobo\$8bob3o7bob2o\$4b2obobo3b5o2bo\$5bobo3bo6bobo\$5bobo2b6o2bob2o\$3bobobobo6bobo234bo\$2bob2o2bob4o2bobo197b2o7b2o24b3o\$2bo3bobobo3bob2o198b2o7bobo22bo\$2ob2obobo3bobo208bobob3o20b2o\$bobo2bob4obob3o165bo39b2o5bo\$o2bobo7bo3bo163b3o45b2o\$b3o2b8o151bo14bo103b2o14bo\$4bobo158b3o12b2o77b2o24bo14b3o\$3b2obo2b7o152bo91bo13b2o6b3o18bo23b2o\$2bo2b2obo7bo150b2o91bobo11b2o6bo19b2o23bo\$2b2o4bo2b6o244b2o62bobo\$8bobo310b2o2b2o5b2o\$7b2obo2b6o149b2o151b2o10bo\$10bobo6bo148b2o17b2o143bo\$10bobo2b5o167b2o143b2o\$11b2obo7bo\$14bo2b6o269b2o\$14bobo275b2o\$13b2obo2b6o\$16bobo6bo224b2o\$16bobo2b5o158b2o51b2o11b2o\$17b2obo7bo155bo53bo\$20bo2b6o157bo48b3o\$20bobo162b2o48bo53b2o\$19b2obo2b6o150b2o106bo51b2o\$22bobo6bo149bo32b2o54b2o3b2o13b3o48bobo\$22bobo2b5o150b3o30bo55bo3bo16bo50bo\$23b2obo7bo149bo27b3o53b3o5b3o9bo54b2o\$26bo2b6o177bo55bo9bo9b3o\$26bobo262bo\$25b2obo2b6o244b2o7b2o\$28bobo6bo127b2o115bo\$28bobo2b5o126bobo23bo91bobo36b2o15b2obo\$29b2obo7bo123bo23b3o92b2o36b2o15b2ob3o\$32bo2b6o122b2o22bo156bo\$32bobo136b2o14b2o64b2o75b2o6b2ob3o\$31b2obo2b6o128b2o80b2o75bo8bobo\$34bobo6bo214bo72b3o5bobo\$34bobo2b5o212b3o51bo3b2o17bo6bo\$35b2obo7bo208bo53bobo3bo8b2o\$38bo2b6o196bo11b2o22bo23b2o3bobo3bo10bo\$38bobo192b2o7bobo33bobo22bo4bo4bo10bo\$37b2obo2b6o184b2o7bobo34bo14b2o8b3obo5b3o7b2o\$40bobo6bo193bo50bo11b2o8bo\$40bobo2b5o245b3o\$41b2obo7bo244bo25b2o6bo\$44bo2b6o266bobo2bo4b3o\$44bobo234b2o34b3ob2o5bo\$43b2obo2b6o115b2o73b2o33bobo33bo11b2o\$46bobo6bo113bobo73b2o33bo36b3ob2o\$46bobo2b5o113bo89b2o18b2o38bob2o\$47b2obo7bo109b2o89b2o34b2obo\$50bo2b6o204b2o30bob2o\$50bobo210b2o62b2o3b2o\$49b2obo2b6o227b2o37b2o3b2o\$52bobo6bo226b2o\$52bobo2b5o124b2o\$53b2obo7bo121bobo\$56bo2b6o123bo52b2o94bo\$56bobo129b2o50bo2bo92bobo\$55b2obo2b6o174bobo93bo\$58bobo6bo174bo\$58bobo2b5o210b2o\$59b2obo7bo208bo\$62bo2b6o208bobo\$62bobo215b2o\$61b2obo2b6o105b2o\$64bobo6bo104b2o139b2o\$64bobo2b5o245b2o\$65b2obo7bo92b2obo126bo\$68bo2b6o92bob2o124b3o\$68bobo117b2o106bo\$67b2obo2b6o109b2o106b2o\$70bobo6bo118b2o\$70bobo2b5o118bo108b2o\$71b2obo7bo113bobo102b2o4b2o\$74bo2b6o113b2o103b2o26b2o\$74bobo159bo92bo\$73b2obo2b6o151b3o91b3o\$76bobo6bo153bo92bo\$76bobo2b5o152bobo\$77b2obo7bo150bo\$80bo2b6o168b2o\$80bobo174bo14b2o\$79b2obo2b6o149b2o13bobo13bobo\$82bobo6bo100b2o46b2o13b2o14bo50b2o\$82bobo2b5o100bobo75b2o50bo\$83b2obo7bo99bo128b3o\$86bo2b6o99b2o86b2o41bo\$86bobo193b2o\$85b2obo2b6o\$88bobo6bo\$88bobo2b5o\$89b2obo7bo\$92bo2b6o76b2o\$92bobo82b2o\$91b2obo2b6o82b2o100b2o\$94bobo6bo81bo51b2o15b2o30bobo\$94bobo2b5o82b3o47bobo15b2o30bo\$95b2obo7bo81bo47bo25b2o21b2o\$98bo2b6o128b2o25bo\$98bobo159bobo\$97b2obo2b6o151b2o\$100bobo6bo\$100bobo2b5o\$101b2obo7bo\$104bo2b6o\$104bobo135b2o\$103b2obo2b6o128bo\$106bobo6bo127bobo\$106bobo2b5o128b2o\$107b2obo7bo\$110bo2b6o\$110bobo128bo\$109b2obo2b6o119bobo\$112bobo6bo53b2o63bobo\$112bobo2b5o53b2o61b3ob2o\$113b2obo7bo112bo\$116bo2b6o41b2obo68b3ob2o\$116bobo47bob2o70bob2o\$115b2obo2b6o\$118bobo6bo\$118bobo2b5o54b2obo69b2o\$119b2obo7bo51bob2o69bobo\$122bo2b6o126bo\$122bobo132b2o\$121b2obo2b6o\$124bobo6bo\$124bobo2b5o102b2o\$125b2obo7bo72b2o24bobo\$128bo2b6o72b2o24bo\$128bobo103b2o\$127b2obo2b6o\$130bobo6bo75b2o30bo\$130bobo2b5o26b2o47b2o29bobo\$131b2obo7bo22bobo43b2o33bobo\$134bo2b6o22bo45b2o34bo\$134bobo27b2o76b2o\$133b2obo2b6o45b2o49bobo\$136bobo6bo44b2o49bo\$136bobo2b5o70b2o22b2o\$137b2obo7bo67b2o47b2o\$140bo2b6o116bobo\$140bobo124bo\$139b2obo2b6o15b2o99b2o\$142bobo6bo14b2o\$142bobo2b5o\$143b2obo7bo37b2o\$146bo2b6o37bo\$146bobo17b2o25b3o\$145b2obo2b6o9b2o27bo18bo\$148bobo6bo22b2o32b3o\$148bobo2b5o22bobo34bo\$149b2obo7bo21bo33b2o\$152bo2b6o11b2o8b2o29b2o\$152bobo18bo39bob5o\$151b2obo2b6o7b3o23b2o21bo22bo\$154bobo6bo6bo24bobo16b2obo23bo\$154bobo2b5o31bo18b2ob2o22b3o\$155b2obo7bo27b2o\$158bo2b6o35b2o\$158bobo41b2o\$157b2obo2b6o\$160bobo6bo48b2o\$160bobo2b5o48b2o\$161b2obo7bo\$164bo2b6o\$164bobo\$163b2obo2b6o\$166bobo6bo\$166bobo2b5o\$167b2obo7bo\$170bo2b6o\$170bobo28b2o15bobo\$169b2obo2b6o19bobo15b2o\$172bobo6bo18bo18bo\$172bobo2b5o17b2o\$173b2obo7bo\$176bo2b6o\$176bobo\$175b2obo2b6o\$178bobo6bo27bo\$178bobo2b5o9b2o16bobo\$179b2obo7bo6b2o16b2o\$182bo2b6o\$182bobo26b2o\$181b2obo2b6o18b2o\$184bobo6bob2o\$184bobo2b5ob2o\$185b2obo28bo\$188bo2b6o19bobo\$188bobo5bo20b2o\$187b2obo2b3o\$190bobo\$190bo2bo\$191b2o4\$214b2o\$214bobo\$216bo\$216b2o13\$219bo\$218b2o\$218bobo13\$240bo\$239b2o\$239bobo26\$349bo\$349b3o\$352bo23b2o\$341b2o8b2o23bo\$342bo31bobo\$332bo6b3o28b2o2b2o\$306bo9bo15b3o4bo30b2o\$306b3o5b3o18bo\$309bo3bo20b2o11b2o\$308b2o3b2o32b2o8\$322b2o52b2o\$322b2o34b2o16bobo\$310b2o45bobo18bo\$309bo2bo44bo20b2o\$304b2o4b2o44b2o4b2o\$303bobo55bobo\$303bo57bo\$302b2o56b2o7b2o\$312b2o33b2o20b2o\$312bo34bo\$313b3o32b3o\$315bo34bo\$320b2o\$321bo\$318b3o\$318bo60b2o\$379bo\$377bobo\$377b2o3\$278bo\$277bobo7bo\$278bo6b3o71b2o\$267bo16bo75bo\$267b3o14b2o34b2o38bobo\$270bo49b2o39b2o\$269b2o4\$264b2o25b2o\$265bo25b2o\$265bobo\$266b2o50b2o\$318b2o2\$279b2o\$279bobo6b2o72b2o15b2o\$281bo6bo19b2o52b2o15bobo\$281b2o6bo17bobo18b2o51bo\$288b2o17bo20bobo50b2o\$306b2o22bo\$330b2o3\$277b2o\$277bobo40b2o\$279bo40b2o\$279b2o\$378b2o\$378bo\$376bobo\$376b2ob2o\$261b2o116bobo\$260bobo116bobo\$254bo2bo2bo95b2o20b2ob2o\$254b7o96bo24bo\$357bobo18b2obo\$254b5o99b2o18b2obobo\$249b2o2bo4bo123b2o\$249bo2bo2bo\$250bobob2o\$249b2obo5bo67b2o7b2o21b2o\$252bo4bobo9b2o54bobo7b2o20bo2bo\$252b2o2bo2bo9b2o52b3obobo28bobo\$257b2o63bo5b2o29bo\$276bob2o42b2o\$276b2obo\$299bo\$299b3o\$302bo\$301b2o3\$364b2o\$256b2o106b2o\$256b2o\$373b2o\$373bo\$292b2o80b3o\$292b2o82bo\$315b2o50b2o\$315bobo50bo\$317bo49bo\$305b2o10b2o48b2o\$305bo\$257b2o36b2o9b3o28b2o\$256bobo37bo11bo28bo\$256bo38bo42b3o\$255b2o38b2o43bo5\$260b2o3b2obo\$261bo3b2ob3o\$258b3o10bo\$258bo6b2ob3o\$264bo2b2o\$264b2o!`

dvgrn
Moderator

Posts: 5742
Joined: May 17th, 2009, 11:00 pm

### Re: New p17 and other billiard tables

Okay, here's my current search results on 2c/3 double inputs. I'll organize it into unknown fizzles when I get back from real life... which is about 8 hours later.

Edit: sorry for not keeping my word... Real life took more than i thought. I will upload the stator tomorrow..

Urgh... the the file is too large to attatch... I'll upload the stator version a while later.

here are the unknown rotors file -- with 2c/3 double fizzles (labeled as sep-3)
"false positives" are the ones that I failed to stabilize(because no value of , cells in dr's output file can stabilize it)

`p4 r20 7x7 ......3 ..21@00 .2.0@0A .10.... .@@.... .00.... 30A....   <- new2014p5 r14 5x6 ....1. 3.1A0. .11@0C ..A00. ....C.   <- new2014p2 r15 5x7 ..1A1.. .@...@. 00...00 @@...@@ .1...1.   <- new2014p4 r24 6x7 .2...2. 2@@.@@2 .00.00. .@0.0@. .@000@. .B.1.B.   <- new2014p6 r18 6x6 .....3 ..1@@. .A.00. 2@00@. .1@1A3 ..A...   <- new2014p3 r13 5x6 ...1A1 .B..A. .@A.B. B@11.. ...2..   <- new2014p4 r13 5x6 .....2 ...A1A ..10.. B.1@A. AA1...   <- new2014p8 r20 6x7 ......3 30A.A@@ .0A.11A .AA00.. ..1@A.. ....B..   <- new2014p5 r15 5x5 ....2 .C.1@ 2.A.1 100@A .00A.   <- new2014p7 r19 6x7 ....2.. ...A1.B C111@@A ..001.. .110A.. ...B...   <- new2014p7 r21 7x7 ...1B.. ....1.. ...A1.B C111@@A ..001.. .110A.. ...B...   <- new2014p5 r20 7x7 .....2. ....201 .1...@0 .AAA1@A 1B.1.1. ...1A.. ...B...   <- new2014p5 r15 5x5 ....2 .C.1@ 2.A.1 100@A .00A.   <- new2014p6 r12 6x6 ....1B ....B. ...... ...32. 1B.202 B...2.   <- new2014p4 r11 4x8 ......1. .....B0. ...3.B0C C1A...1.   <- new2014p2 r7 4x5 ...33 ..... 3..CC .3.C.   new2014p6 r15 5x7 ....2.. 3A.@003 .3.100. ...11A. ...C...   <- new2014p2 r10 6x6 ....3. ...2.3 .CB.2. ...B.. 3..C.. .3....   <- new2014p6 r18 4x10 ....1...A. .B..AAA11. B001B..11A ..3....A..   <- new2014p6 r22 6x10 .......2.. ......2@2. ..A....0.. A11..2A@@B .11A1A..B. .A...A....   <- new2014p6 r14 4x8 .....1.. 3A2..AA1 ..11AAA. ..A...1.   <- new2014p12 r18 4x10 ....1...A. .B..AAA11. 2@01B..11A .B.....A..   <- new2014p6 r25 7x10 ......3.A. .......1.B ......B@A. ..A....0.. A11..2A@0B .11AAA..2. .A...A....   <- new2014p4 r96 15x15 .....1...1..... .....B000B..... .....1@@@1..... ....2A@@@A2.... ...2.@@@@@.2... 1B1A@.....@A1B1 .0@@@.....@@@0. .0@@@.....@@@0. .0@@@.....@@@0. 1B1A@.....@A1B1 ...2.@@@@@.2... ....2A@@@A2.... .....1@@@1..... .....B000B..... .....1...1.....   <- UNKNOWNp2 r32 11x11 ..1A1A1A1.. .A.......A. 1.........1 A.........A 1.........1 A.........A 1.........1 A.........A 1.........1 .A.......A. ..1A1A1A1..   <- UNKNOWNp4 r112 15x15 .......0....... ....2.000.2.... ..A@0000000@A.. ..@.@@@@@@@.@.. .20@.@@@@@.@02. ..0@@.....@@0.. .00@@.....@@00. 000@@.....@@000 .00@@.....@@00. ..0@@.....@@0.. .20@.@@@@@.@02. ..@.@@@@@@@.@.. ..A@0000000@A.. ....2.000.2.... .......0.......   <- UNKNOWNp6 r96 17x17 .....3.....3..... ......00.00...... ......@@.@@...... .....2.@.@.2..... .....10@.@01..... 3..21.0@.@0.12..3 .0@.00.....00.@0. .0@@@@.....@@@@0. ................. .0@@@@.....@@@@0. .0@.00.....00.@0. 3..21.0@.@0.12..3 .....10@.@01..... .....2.@.@.2..... ......@@.@@...... ......00.00...... .....3.....3.....   <- Unknown: split rotor (gap = 1)p8 r132 25x25 .........2A...A2......... ..........1.@.1.......... ..........A@@@A.......... ............0............ ...........A@A........... ..........2.@.2.......... .......A@00...00@A....... ......A.@00...00@.A...... ......@@.........@@...... 2.....00.........00.....2 A1A..200.........002..A1A ..@.A...............A.@.. .@@0@@.............@@0@@. ..@.A...............A.@.. A1A..200.........002..A1A 2.....00.........00.....2 ......@@.........@@...... ......A.@00...00@.A...... .......A@00...00@A....... ..........2.@.2.......... ...........A@A........... ............0............ ..........A@@@A.......... ..........1.@.1.......... .........2A...A2.........   <- UNKNOWNp8 r116 23x23 .........2.@.2......... .........A000A......... ...........@........... ..........A0A.......... .........B.0.B......... ......1@@@...@@@1...... .....1.@@0...0@@.1..... .....@@.........@@..... .....@@.........@@..... 2A..B@0.........0@B..A2 .0.A...............A.0. @0@00.............00@0@ .0.A...............A.0. 2A..B@0.........0@B..A2 .....@@.........@@..... .....@@.........@@..... .....1.@@0...0@@.1..... ......1@@@...@@@1...... .........B.0.B......... ..........A0A.......... ...........@........... .........A000A......... .........2.@.2.........   <- UNKNOWNp8 r84 19x19 .........3......... ........101........ .......B.0.B....... ....A@@0...0@@A.... ...A.@00...00@.A... ...@@.........@@... ...@0.........0@... ..B00.........00B.. .1...............1. 300.............003 .1...............1. ..B00.........00B.. ...@0.........0@... ...@@.........@@... ...A.@00...00@.A... ....A@@0...0@@A.... .......B.0.B....... ........101........ .........3.........   <- UNKNOWNp9 r36 10x10 .......1.. .....00A.. .....000@1 ....10@..A ...1.0@@A. .0000.1... .00@@1.... 1A0.@..... ..@.A..... ..1A......   <- UNKNOWNp9 r40 10x10 ......01.. ......00A. ......@@1. .....00@@3 .....00.03 ...00..AA. 00@00..2.. 10@@.A2... .A1@0A.... ...33.....   <- UNKNOWNp4 r16 4x6 ...1.. AAA.@0 1.@0@0 AAA1.B   <- UNKNOWNp6 r12 5x6 ....1. ..000. 1@.A1B .AA... .2....   <- UNKNOWNp6 r18 6x6 ....3. ..1@@. .A.00. 2@00@. .1@1A3 ..A...   <- UNKNOWNp7 r19 5x7 ...1.2. .1A@0@. .0@@0@3 C.00A1. ...B...   <- UNKNOWNf31 r47 10x17 ............A2... A...........@.... 1..........1@1... A1A........0@@A.. ..1........0.1.1B ..A11......0A.AA3 ....A.2A...0A2... ....A1@.1100.A... ......0A.A0...... ..........B......   sep-3 new2015f31 r48 10x18 ............A2.... A...........@..... 1..........1@1.... A1A........0@@A... ..1........0.1.1B. ..A11......0A.AA2. ....A.2A...0A2...C ....A1@.1100.A.... ......0A.A0....... ..........B....... sep-3 new2015f31 r49 11x17 ............A2... A...........@.... 1..........1@1... A1A........0@@A.. ..1........0.1.1B ..A11......0A.AA3 ....A.2A...0A2... ....A1@.1100.A... ......0A.A0...... ..........A...... .........2A......   sep-3 new2015f31 r50 11x18 ............A2.... A...........@..... 1..........1@1.... A1A........0@@A... ..1........0.1.1B. ..A11......0A.AA2. ....A.2A...0A2...C ....A1@.1100.A.... ......0A.A0....... ..........A....... .........2A.......   sep-3 new2015f31 r48 10x17 ...........1A.... A.........B.@.... 1..........0@1... A1A........0@@A.. ..1........0.1.1B ..A11......0A.AA3 ....A.2A...0A2... ....A1@.1100.A... ......0A.A0...... ..........B......   sep-3 false positivef31 r49 10x18 ...........1A..... A.........B.@..... 1..........0@1.... A1A........0@@A... ..1........0.1.1B. ..A11......0A.AA2. ....A.2A...0A2...C ....A1@.1100.A.... ......0A.A0....... ..........B.......   sep-3 false positivef31 r50 11x17 ...........1A.... A.........B.@.... 1..........0@1... A1A........0@@A.. ..1........0.1.1B ..A11......0A.AA3 ....A.2A...0A2... ....A1@.1100.A... ......0A.A0...... ..........A...... .........2A......   sep-3 false positivef31 r51 11x18 ...........1A..... A.........B.@..... 1..........0@1.... A1A........0@@A... ..1........0.1.1B. ..A11......0A.AA2. ....A.2A...0A2...C ....A1@.1100.A.... ......0A.A0....... ..........A....... .........2A.......   sep-3 false positivef36 r56 8x20 ..........1......... .......B.A.0........ .2..B.A.1A0001...... .@@0@0@00.00@@A1.... .0@0@@00..1B...1.... B000000........A1A.. 100...2..........1.. .0...............A1A   sep-3 new2015f39 r62 12x22 .....................A .....................1 ...................A1A ...................1.. ..........1......11A.. .......B.A.0..A2.A.... .2..B.A.1A0011.@1A.... .@@0@0@00.00A.A0...... .0@0@@00..1B.......... B000000............... 100...2............... .0....................   sep-3 new2015f39 r60 10x22 ...................A1A ...................1.. .0...............A1A.. 100...2..........1.... B000000........AA1.... .0@0@@00..1B...1...... .@@0@0@00.00@@A1...... .2..B.A.1A0001........ .......B.A.0.......... ..........1...........   sep-3 new2015`
Last edited by Scorbie on January 24th, 2015, 12:59 pm, edited 1 time in total.
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Scorbie wrote:here are the unknown rotors file...

I took the liberty of minimizing the two p9s:
`x = 43, y = 18, rule = B3/S2337b2o\$13b2o22bo\$12bobo23bo\$12bo24b2o2bo\$11b2o26b3o\$5bo4bo2b2o21bobo\$4bobo3bobo2bo20b2obo\$5bo8bo24bo\$9b4ob2o22b2ob2o\$9bo3bo25bobo\$7b2ob2obo22b2obobo\$4b2obobo2bo17b2o3bobob2o\$3bo3bobobo13b2obo2bo3b2o\$b3obobo2bo14bob2obo2bo\$o3bo3b2o19bob6o\$2o2bob2o21bo6bo\$5bobo20b2o3b3o\$33bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1479
Joined: July 9th, 2009, 2:44 pm

### Re: New p17 and other billiard tables

Okay, now I'm back and started organizing rotors. But I can't open the currently running dr file because notepad++ says that it's too big to open.(about 200,000KB) Does anyone know programs to open big big files? (Would be better if we had "Find all/ Find in all files" feature.)
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Scorbie wrote:I can't open the currently running dr file because notepad++ says that it's too big to open.(about 200,000KB) Does anyone know programs to open big big files? (Would be better if we had "Find all/ Find in all files" feature.)

TextPad has a regexp Find in Files function. It can probably handle a .2GB file with no trouble, but it will take a while to open it initially -- it's not really optimized for that kind of thing. I've heard good things about UltraEdit, and it has a free trial option... haven't used it myself though.

dvgrn
Moderator

Posts: 5742
Joined: May 17th, 2009, 11:00 pm

### Re: New p17 and other billiard tables

Thanks a lot!!! Textpad works real nice! (and even faster than notepad++)

N.B. Will add the unknown rotors here.

This is the new rotors from oscs. All the p3s are actually trivial variants of this osc.
`x = 10, y = 15, rule = B3/S232bo\$bobo\$bobo4b2o\$2obob2o2bo\$bobo2bobo\$bo4bob2o\$2b3obo\$8b2o\$2b3obo2bo\$bo4bobo\$bobo2bob2o\$2obob2obo\$bobo4bo\$bobo4b2o\$2bo!`

And the p9 seems versatile, although I haven't tested it.
`x = 13, y = 13, rule = B3/S238bo\$7bobo\$3b2obo2bo\$3b2ob2obob2o\$9bobo\$3b4obo3bo\$2bo7b3o\$2bobobobo\$obob2obobob2o\$2obo3bobobo\$3bob2obo2bo\$3b2obobobo\$9bo!`

`p3 r13 4x7 ....21. 3.A0@0. .1..A0B .A2....   new2015p3 r14 5x7 ...1... ..A0A.. ..1.1.. 21A.A12 A.....A   new2015p3 r14 5x8 ......1A 2A.A1@1. .1.1.... .A0A.... ..1.....   new2015p3 r14 6x6 ....31 .....2 2A.A1A .1.1.. .A0A.. ..1...   new2015p3 r14 6x7 .....1B .....A. B1.1A1. .A.A... .101... ..A....   new2015p3 r14 6x7 .....13 .....2. 2A.A1A. .1.1... .A0A... ..1....   new2015p3 r14 6x7 .....2A .....1. 2A.A1A. .1.1... .A0A... ..1....   new2015p3 r16 6x7 .....31 A.....2 21A.A1A ..1.1.. ..A0A.. ...1...   new2015p3 r16 6x7 .....31 2.....2 A1A.A1A ..1.1.. ..A0A.. ...1...   new2015p3 r16 6x8 ......13 2.....2. A1A.A1A. ..1.1... ..A0A... ...1....   new2015p3 r16 6x8 ......1B 1.....A. BA1.1A1. ..A.A... ..101... ...A....   new2015p3 r16 6x8 ......1B B.....A. 1A1.1A1. ..A.A... ..101... ...A....   new2015p3 r16 6x8 ......2A A.....1. 21A.A1A. ..1.1... ..A0A... ...1....   new2015p3 r16 6x8 ......2A 2.....1. A1A.A1A. ..1.1... ..A0A... ...1....   new2015p3 r16 7x7 .....1. ...1A0B ...A.B. .1A1... A0..... .1A1... ...B...   new2015p3 r16 7x8 ......1A ...A1@1. ...1.... .A1A.... 10...... .A1A.... ...2....   new2015p3 r16 7x8 .......1 .....1AB .....A.. B1.1A1.. .A.A.... .101.... ..A.....   new2015p3 r16 7x8 .......2 .....A1A .....1.. 2A.A1A.. .1.1.... .A0A.... ..1.....   new2015p3 r18 6x8 ....1... ...A0A.. ...1.1.. .A1A.A1A .1.....2 2A....31   new2015p3 r18 6x8 ....1... ...A0A.. ...1.1.. .A1A.A1A .1.....2 A2....31   new2015p3 r18 6x9 ....1.... ...A0A... ...1.1... .A1A.A1A. .1.....1. 2A.....A2   new2015p3 r18 7x8 .....1.2 ...A1@1A ...1.2.. .A1A.... 10...... .A1A.... ...2....   new2015p3 r18 8x8 ......31 .......2 .....A1A .....1.. 2A.A1A.. .1.1.... .A0A.... ..1.....   new2015p3 r18 8x9 .......2A .......1. .....A1A. .....1... 2A.A1A... .1.1..... .A0A..... ..1......   new2015p3 r18 8x9 .......1B .......A. .....1A1. .....A... B1.1A1... .A.A..... .101..... ..A......   new2015p3 r18 8x9 .......13 .......2. .....A1A. .....1... 2A.A1A... .1.1..... .A0A..... ..1......   new2015p6 r12 5x6 ....1. ..000. 1@.A1B .AA... .2....   new2015p6 r16 6x9 ........2 ......1@A 2A.A1@1.. .1.1..... .A0A..... ..1......   new2015p7 r13 4x7 .....2. .B.A101 A000@1. ..C....   new2015p7 r14 4x7 .....23 .B.A101 A000@1. ..C....   new2015p9 r18 5x7 ....3.. .1A0A.. A0..1.3 .1A0A1A ...A2.B   new2015`
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Unfortunately, I haven't found many fizzles...
EDIT: I initially had a lot of UNKNOWNs so I was excited, but most of them were from mistaken search options and another bunch of them were from UNKNOWN oscillator rotors. So all I got was these fizzlers which isn't too much so I was a little disappointed.

EDIT: the last one is compatible with the single signal -- (same as the signal receiver)
`x = 129, y = 55, rule = B3/S2385bo2bo\$83b6o\$13bo2bo25bo2bo36bo6b2o\$11b6o23b6o36b4obobo\$10bo6b2o20bo6b2o31bo7bobo30b2o\$10b4obobo21b4obobo32b5obobob2o21b2o6bo2bo2bo\$7bo7bobo18bo7bobo38bobo2bo21bo9b5o\$7b5obobobob2o15b5obobobob2o29b4o2bobobo23bo5bo7b2o\$13bobob2obo21bobob2obo28bo4bobobob2o21b2o5b5obobo\$7b4o2bobo20b4o2bobo33bo2bobob2o38bobo\$4bobo4bobobo17bobo4bobobo30b2obobobo22b2o10b5obobob2o\$2b3obo2bobob2o16b3obo2bobob2o31b2obobo24bo2bob2o5bo5bobobo\$bo4bobobo6b2o11bo4bobobo6b2o30bobo21b2obob2obobo5b3o2bobobo\$o2bob2obo7bobo10bo2bob2obo7bobo30b2o22bo2bo4bobo2bo5bobo2bo\$b3obo2bo7bo13b3obo2bo7bo40b2o16b2ob4ob4o4bo2bo\$6b2o7b2o18b2o7b2o35b2obo2bo18bo4bo9b2o\$3b2obo10b2o13b2obo10b2o34bob2o20bobo2bob3o\$3bo2bo3b2ob4o2bo12bo2bo3b2ob4o2bobo22bob2o5bobo22b2o3bobo\$4b2o3bobobo4bobo12b2o3bobobo4bob2o22b2obo3b3o2bo30bo\$9bobobob2obobo17bobobob2obo31bo3b2o30b2o\$7b3obobobo2b2o16b3obobobo2bo31b4o\$6bo3bobobo2bo17bo3bobobo2bob2o32bo\$6b2o2bobobob2o18b2obobobob2obobo28b2obob2o\$11b2obo19bobob2ob2obo4bo30bobo2bo\$14bo19b2o4bo3bo33bo4b2o\$14b2o24bob2o34b5o\$41bo40bo\$42b4obo32bo\$44bob2o32b2o3\$10bo2bo2bo\$10b7o\$17b2o\$8b6obobo\$7bo7bobo\$8b4obobobob2o\$13bobob2obo\$3b2ob5o2bobo\$3b2obo4bobobo\$6bo2bobob2o\$6bobobo6b2o\$5b2obo7bobo\$3bo4bo7bo\$3b2ob2o7b2o\$4bobo10b2o\$4bobo3b2ob4o2bo\$5bo3bobobo4bobo\$9bobobob2obobo\$7b3obobobo2b2o\$6bo3bobobo2bo\$6b2o2bobobob2o\$11b2obo\$14bo\$14b2o!`

And these are the ones that I couldn't stabilize. --marked as sep-3 false positive in the unknownrotors I posted above.
`*****  Fizzle at gen 31f31 r49 10x18 ...........1A..... A.........B.@..... 1..........0@1.... A1A........0@@A... ..1........0.1.1B. ..A11......0A.AA2. ....A.2A...0A2...C ....A1@.1100.A.... ......0A.A0....... ..........B.......   <- UNKNOWNChange counts: 4 4 4 4 4  4 4 4 2 3  2 5 6 4 3  4 6 6 7 8  8 9 9 8 4  2 2 5 4 2  1 0Sizes: 3x4 4x3 4x3 3x4 4x3  4x4 3x4 4x2 3x2 4x2  2x2 2x3 3x3 4x4 3x4  3x5 3x6 3x7 4x8 5x8  4x8 3x6 2x6 3x6 2x5  2x2 2x2 3x2 4x3 2x1  1x1 0x0Gen 0.  Rows 38 - 63.  Cols 33 - 51.,,,,,,,,,,,o.oooo,,,,,,,,,......o,,,,,,,,oooo01.o,,,,,,,......o.o,,,,,,oooo01.o.o,,,,,......o.o.,,,,,oooo..o.o,,,,o....o.o.,,,.o..o.o.,,..o.o.o..,,.oo.o.....o.o.,,.o..o.......o.o,,..oo.......oo..,,o.o...........o,,,.o...oo.oooo.o,,,o...o.o.o...o.,,,,,..o.o.o.oo..,,,,,ooo.o.o.o...,,,,,...o.o.o..o.,,,,,,o.o.o.o.oo,,,,,,o.oo.o.,,,,,,,o...o.,,*****  Fizzle at gen 31f31 r48 10x17 ...........1A.... A.........B.@.... 1..........0@1... A1A........0@@A.. ..1........0.1.1B ..A11......0A.AA3 ....A.2A...0A2... ....A1@.1100.A... ......0A.A0...... ..........B......   <- UNKNOWNChange counts: 4 4 4 4 4  4 4 4 2 3  2 5 6 4 3  4 6 6 7 8  8 9 9 8 4  2 2 5 3 2  1 0Sizes: 3x4 4x3 4x3 3x4 4x3  4x4 3x4 4x2 3x2 4x2  2x2 2x3 3x3 4x4 3x4  3x5 3x6 3x7 4x8 5x8  4x8 3x6 2x6 3x6 2x5  2x2 2x2 3x2 3x2 2x1  1x1 0x0Gen 0.  Rows 38 - 62.  Cols 33 - 51.,,,,,,,,,,,o.oooo,,,,,,,,,......o,,,,,,,,oooo01.o,,,,,,,......o.o,,,,,,oooo01.o.o,,,,,......o.o.,,,,,oooo..o.o,,,,o....o.o.,,,.o..o.o.,,..o.o.o..,,.oo.o.....o.o.,,.o..o.......o.o,,..oo.......oo..,,o.o...........o,,,.o...oo.oooo.o,,,o...o.o.o...o.,,,,,..o.o.o.oo..,,,,,ooo.o.o.o...,,,,,...o.o.o..o.,,,,,,,.o.o.o.oo,,,,,,,..o.o,,*****  Fizzle at gen 31f31 r50 11x17 ...........1A.... A.........B.@.... 1..........0@1... A1A........0@@A.. ..1........0.1.1B ..A11......0A.AA3 ....A.2A...0A2... ....A1@.1100.A... ......0A.A0...... ..........A...... .........2A......   <- UNKNOWNChange counts: 4 4 4 4 4  4 4 4 2 3  2 5 8 5 3  4 6 6 7 8  8 9 9 8 4  2 2 5 3 2  1 0Sizes: 3x4 4x3 4x3 3x4 4x3  4x4 3x4 4x2 3x2 4x2  2x2 2x3 3x5 4x6 3x4  3x5 3x6 3x7 4x8 5x8  4x8 3x6 2x6 3x6 2x5  2x2 2x2 3x2 3x2 2x1  1x1 0x0Gen 0.  Rows 38 - 62.  Cols 33 - 51.,,,,,,,,,,,o.oooo,,,,,,,,,......o,,,,,,,,oooo01.o,,,,,,,......o.o,,,,,,oooo01.o.o,,,,,......o.o.,,,,,oooo..o.o,,,,o....o.o.,,,.o..o.o.,,..o.o.o..,,.oo.o.....o.o.,,....o.......o.,,o.oo.......oo.o,,o.o...........o,,,.o...oo.oooo.o,,,o...o.o.o...o.,,,,,..o.o.o.oo..,,,,,ooo.o.o.o...,,,,,...o.o.o..o.,,,,,,,.o.o.o.oo,,,,,,,..oo.,,,,,,,....,*****  Fizzle at gen 31f31 r51 11x18 ...........1A..... A.........B.@..... 1..........0@1.... A1A........0@@A... ..1........0.1.1B. ..A11......0A.AA2. ....A.2A...0A2...C ....A1@.1100.A.... ......0A.A0....... ..........A....... .........2A.......   <- UNKNOWNChange counts: 4 4 4 4 4  4 4 4 2 3  2 5 8 5 3  4 6 6 7 8  8 9 9 8 4  2 2 5 4 2  1 0Sizes: 3x4 4x3 4x3 3x4 4x3  4x4 3x4 4x2 3x2 4x2  2x2 2x3 3x5 4x6 3x4  3x5 3x6 3x7 4x8 5x8  4x8 3x6 2x6 3x6 2x5  2x2 2x2 3x2 4x3 2x1  1x1 0x0Gen 0.  Rows 38 - 63.  Cols 33 - 51.,,,,,,,,,,,o.oooo,,,,,,,,,......o,,,,,,,,oooo01.o,,,,,,,......o.o,,,,,,oooo01.o.o,,,,,......o.o.,,,,,oooo..o.o,,,,o....o.o.,,,.o..o.o.,,..o.o.o..,,.oo.o.....o.o.,,....o.......o.,,o.oo.......oo.o,,o.o...........o,,,.o...oo.oooo.o,,,o...o.o.o...o.,,,,,..o.o.o.oo..,,,,,ooo.o.o.o...,,,,,...o.o.o..o.,,,,,,o.o.o.o.oo,,,,,,.oo.oo.,,,,,,...o...,,`

For fun:
`x = 37, y = 39, rule = B3/S232\$6bo2bo\$4b8o\$3bo8bo\$3bo2b7o\$2b2obo\$3bobo2b7o\$3bobobo7bo\$2b2obob9o\$3bobobobo8bo2bo2bo2bo\$3bobobob10o2b7o\$4b2obobobo16b2o\$7bobobo2b11obobo\$7bobobobo12bobo\$8b2obobo2b7obobob2o\$11bobobo8bobobo\$11bobobo2b4o2bobobo\$12b2obobo4bobobob2o\$15bobo2bobob2o\$15bobobobo\$14b2obobo\$17bobo\$17b2o2\$20b2o\$20bo\$21bo\$22bo\$23bo\$24bo\$25bo\$26bo\$27bo\$28bo\$29bo\$30bo\$31bo!`

By the way, do we have any collections of existing fizzles?
Last edited by Scorbie on January 25th, 2015, 10:19 am, edited 4 times in total.
Best wishes to you, Scorbie

Scorbie

Posts: 1380
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Scorbie wrote:Do we have any collections of existing fizzles?

Here is a collection Calcyman compiled back in 2008:
`#C Top-left section: 2c/3 and corresponding TL fizzles.#C Bottom-left section: various reactions that can't be categorised#C anywhere else.#C Right section: Up to 7 different variations for each reaction.#C Each row#C corresponds to a different key reaction, and each column#C corresponds to a different input.#C#C A) Small TL eater#C B) Medium TL eater#C C) Large TL eater#C D) Perpendicular TL eater (with split)#C E) Small 2c/3 fizzle#C F) Medium 2c/3 fizzle#C G) Large 2c/3 fizzle#Cx = 578, y = 336, rule = B3/S23173bo51bo\$172bobo24boo22b3o\$173bo25boo21bo31boo\$196bo25b6o22boobobbo\$149bo21b5o20b5o27bo22boboobbo18boo\$148bobo19bo4bo24bo21b3obboo14boo5bo4boo15boobobo\$148bobo18bobbo23boo20boobobbo18bobo3bob3o5bo11bobobo\$123bo22b3oboo14bobboboo19boobobo21boboo22bo3bo4b6o11bo3boo67bo21bobo25bobo\$100bo22b3o19bo19bobobo5bo15bobobo4bo18bo5bo19booboob3o15boobbo96bo21bo35bobo27bobobo\$75boo3booboo14bobo3booboo16bo3booboo11b3oboo3booboo6bobbo4bobo3booboo6boboboobbobo3booboo6boobo4bobo3booboo14bobo3booboo8bobb6o3booboo57bo3bo19bo65bo65bobobo44bobo\$75boo4boboo13bobbo4boboo15boo4boboo13boboo4boboo9boobbobbo4boboo5boobo4bobbo4boboo6booboobbobbo4boboo10b3obobo4boboo8boo6bo4boboo85bo20bo36bo29bo86bo\$81bo17boo5bo24bo24bo17boo5bo11bo5boo5bo17boo5bo12bobboboo5bo16b3o5bo60bobobo19bobo64bo64bo\$78boobo5boo14boobo5boo14boobo5boo14boobo5boo14boobo5boo4bobo7boobo5boo14boobo5boo5boo7boobo5boo9bo4boobo5boo81bo20bo36bo29bobobo81bo\$4booboo69boboboo4bo14boboboo4bo14boboboo4bo14boboboo4bo14boboboo4bo5boo7boboboo4bo14boboboo4bo14boboboo4bo6boobo4boboboo4bo53bo3bo19bo66bo64bobobo44bobo\$3boboboboboo12boo53bobobobo18bobobobo18bobobobo18bobobobo18bobobobo18bobobobo18bobobobo18bobobobo8booboo5bobobobo83bo21bo35bo29bo85bo\$3bobobobobo14bobboo4bo20boo19bobboboboboo14bobboboboboo14bobboboboboo14bobboboboboo14bobboboboboo14bobboboboboo14bobboboboboo14bobboboboboo14bobboboboboo54bo3bo19bobo25bobo35bo65bo50bo\$oobobobboobbo13bobobbobbobo20bo4boo12bobobobboo3bo12bobobobboo3bo12bobobobboo3bo12bobobobboo3bo12bobobobboo3bo12bobobobboo3bo12bobobobboo3bo12bobobobboo3bo12bobobobboo3bo139bobo27bobobo82bo\$oobobo4boobbo10boob4obbobobbo16bo4bobbo9b3obobo4boobbo9b3obobo4boobbo9b3obobo4boobbo9b3obobo4boobbo9b3obobo4boobbo9b3obobo4boobbo9b3obobo4boobbo9b3obobo4boobbo9b3obobo4boobbo208bo48bobo\$3bobb4obb3o17b3obb3o16b4obb3o8bo4bobb4obb3o8bo4bobb4obb3o8bo4bobb4obb3o8bo4bobb4obb3o8bo4bobb4obb3o8bo4bobb4obb3o8bo4bobb4obb3o8bo4bobb4obb3o8bo4bobb4obb3o\$3bo6boo13b6o4boo23boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo\$4b6obbo12bo5b4obbo18b4obbo16b6obbo16b6obbo16b6obbo16b6obbo16b6obbo16b6obbo16b6obbo16b6obbo16b6obbo\$9boboboboo9b5o3boboboboo14bobboboboboo17boboboboo17boboboboo17boboboboo17boboboboo17boboboboo17boboboboo17boboboboo17boboboboo17boboboboo\$bb7obbobobo15b3obbobobo16boobbobobo11b7obbobobo11b7obbobobo11b7obbobobo11b7obbobobo11b7obbobobo11b7obbobobo11b7obbobobo11b7obbobobo11b7obbobobo\$bbo6boobbobo12boobobboobbobo13b3obboobbobo11bo6boobbobo11bo6boobbobo11bo6boobbobo11bo6boobbobo11bo6boobbobo11bo6boobbobo11bo6boobbobo11bo6boobbobo11bo6boobbobo\$3b3obbo4boboboo10bobobo4boboboo9bobbobo4boboboo9b3obbo4boboboo9b3obbo4boboboo9b3obbo4boboboo9b3obbo4boboboo9b3obbo4boboboo9b3obbo4boboboo9b3obbo4boboboo9b3obbo4boboboo9b3obbo4boboboo105boo23boo6b3o119boo\$5bobb5obbobobo9bobob5obbobobo9bobob5obbobobo10bobb5obbobobo10bobb5obbobobo10bobb5obbobobo10bobb5obbobobo10bobb5obbobobo10bobb5obbobobo10bobb5obbobobo10bobb5obbobobo10bobb5obbobobo96boobboo3bo23bobo5b3o27boo39boo48bobo\$15bobobo10bo9bobobo10bo9bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo96bobobbobbo26b3o4bo4boo14booboobbobbo30booboobbobbobboo43bo\$10b5obboboboo12b5obboboboo12b5obboboboo12b5obboboboo12b5obboboboo12b5obboboboo12b5obboboboo12b5obboboboo12b5obboboboo12b5obboboboo12b5obboboboo12b5obboboboo44boo3boo23boo19b3o3boo24bo3bo7bobbo14bobo4boobbo29bobo4b3obbo36boo5boo\$10bo6bobobo13bo6bobobo13bo6bobobo13bo6bobobo13bo6bobobo13bo6bobobo13bo6bobobo13bo6bobobo13bo6bobobo13bo6bobobo13bo6bobobo13bo6bobobo44bobobbobbo14boobo3bobbo17bo3b3o22bobbob3obbooboobboo15bobb4obb3o29bobb4o3boobbo34bobo3bo\$13b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo43bo5b3o14boboobobb3o14bobbob3o3boo20b4o4booboboboo16boo6boo31boo6b3obb3o36b3obboo\$13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo40b6o5boo9bo5b3o5boo10b4o4b3obbo16bo6b3o4bobo4b3o11bobb6obbo29bobb5o4boo38bo3boobbo\$16b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo37boo6bo3b3o9b6o3bo3b3o7bo6b3o4boo17b7o3b4obob4obbo11boo6boboboboo25boo6b4obbo33bobbob3obbobobbo\$16bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo37bobb6o4boo7boo6b4o4boo7b7o3b4o4boo20b3o3bo3bobbo16b6obbobobo28b6o3boboboboo29b4o4b3obb3o\$17b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo35boo6boo11bobb5o4boo18b3o3bo3b3o15b5o3b3obbobboo17bo5boobbobo28bo5b3obbobobo27bo6b3o4boo\$23bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo37bobb4obbo11boo6b3obbo12b5o3b3o5boo14bo6boo3booboobb3o15bobobo4boboboo26boboobobboobbobo27b7o3b4obbo\$19b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo37bobo4boo13bobb4o3boo12bo6boo3b3o18bobb4obboobbobobbobbo16boob5obbobobo26boobobbo4boboboo31b3o3boboboboo\$19bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo33booboobbo15bobo4b3o14bobb4obbobbobbo16boobo4boboboo4boo29bobobo33b4obbobobo25b5o3b3obbobobo\$22b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo40bobo11booboobbobbo13boobo4bobo3boo17bobboobbobo34b5obboboboo36bobobo24bo6boo3boobbobo\$22bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo41boo19boo14bobboobbobo25bo5bo35bo6bobobo31b6obboboboo21bobb4obbobo4boboboo\$23b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo77bo5bo25boo44b4obbobo31bo7bobobo21boobo4bobob5obbobobo\$29bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo77boo77bo5boboboo31b5obbobo21bobboobbobo9bobobo\$25b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo159b3obbobobo30bo6boboboo20bo5bo5b5obboboboo\$25bo7boo15bo7boo15bo7boo15bo7boo15bo7boo15bo7boo15bo7boo15bo7boo15bo7boo15bo7boo15bo7boo15bo7boo158bo4bobobo33b4obbobobo18boo11bo6bobobo\$28b4obo19b4obo19b4obo19b4obo19b4obo19b4obo19b4obo19b4obo19b4obo19b4obo19b4obo19b4obo160b4obboboboo30bo5bobobo34b4obbobo\$28bo4bo19bo4bo19bo4bo19bo4bo19bo4bo19bo4bo19bo4bo19bo4bo19bo4bo19bo4bo19bo4bo19bo4bo166bobobo32b5obboboboo31bo5boboboo\$29b4o21b4o21b4o21b4o21b4o21b4o21b4o21b4o21b4o21b4o21b4o21b4o163b4obbobo39bobobo35b3obbobobo\$471bo5boboboo31b5obbobo35bo4bobobo\$31boo23boo23boo23boo23boo23boo23boo23boo23boo23boo23boo23boo166b3obbobobo31bo5boboboo33b4obboboboo\$31boo23boo23boo23boo23boo23boo23boo23boo23boo23boo23boo23boo166bo4bobobo21boo6bo4b3obbobobo38bobobo\$475b4obboboboo18boo6boo3bo4bobobo34b4obbobo\$465boo14bobobo14bo18b4obboboboo31bo5boboboo\$459bo4bobo10b4obbobo13bobo3b4o16bobobo35b3obbobobo\$458bobo3bo12bo7boo12bobobbo4bo11b4obbobo35bo4bobobo\$199bo51bo206bobobboo15b4obo12booboobb5o11bo7boo35b4obboboboo\$198bobo24boo22b3o147boo23boo6b3o22booboo18bo4bo11bobbobboo19b4obo24boo16bobobo\$199bo25boo21bo31boo109boobboo3bo23bobo5b3o21bobbobb3o16b4o10bobboobbobbobboo14bo4bo23bobo12b4obbobo\$222bo25b6o22boobobbo108bobobbobbo26b3o4bo4boo14bobboobbo3bo29boobo4b3obbo16b4o24bo14bo7boo\$175bo21b5o20b5o27bo22boboobbo18boo38boo3boo23boo19b3o3boo24bo3bo7bobbo13boobo4boobbo16boo11bobb4o3boobbo34boo5boo17b4obo\$174bobo19bo4bo24bo21b3obboo14boo5bo4boo15boobobo38boobbobbo14boobo3bobbo17bo3b3o22bobbob3obbooboobboo15bobb4obb3o16boo11bo6b3obb3o16boo16bobo3bo19bo4bo\$174bobo18bobbo23boo20boobobbo18bobo3bob3o5bo11bobobo37bo6b3o14boboobobb3o14bobbob3o3boo20b4o4booboboboo17bo6boo33b5o4boo19boo18b3obboo18b4o\$51boo96bo22b3oboo14bobboboo19boobobo21boboo22bo3bo4b6o11bo3boo36b7o5boo9bo5b3o5boo10b4o4b3obbo16bo6b3o4bobo4b3o14b6obbo37b4obbo37bo3boobbo\$23booboo4boo18bobboo69bo22b3o19bo19bobobo5bo15bobobo4bo18bo5bo19booboob3o15boobbo46bo3b3o9b6o3bo3b3o7bo6b3o4boo17b7o3b4obob4obbo19boboboboo26b7o3boboboboo29bobbob3obbobobbo16boo\$22bobobobobobbo18bobobbo3bo39boo3booboo14bobo3booboo16bo3booboo11b3oboo3booboo6bobbo4bobo3booboo6boboboobbobo3booboo6boobo4bobo3booboo14bobo3booboo8bobb6o3booboo30b6o4boo7boo6b4o4boo7b7o3b4o4boo20b3o3bo3bobbo15b7obbobobo27bo6b3obbobobo30b4o4b3obb3o16boo\$22bobobobob3o18boob4obbobo22bo15boo4boboo13bobbo4boboo15boo4boboo13boboo4boboo9boobbobbo4boboo5boobo4bobbo4boboo6booboobbobbo4boboo10b3obobo4boboo8boo6bo4boboo29bo6boo11bobb5o4boo18b3o3bo3b3o15b5o3b3obbobboo16bo6boobbobo28booboobobboobbobo27bo6b3o4boo\$19boobobobboo29b3obbo17bobbobo20bo17boo5bo24bo24bo17boo5bo11bo5boo5bo17boo5bo12bobboboo5bo16b3o5bo32bobb4obbo11boo6b3obbo12b5o3b3o5boo14bo6boo3booboobb3o14b3obbo4boboboo27boobobbo4boboboo24b7o3b4obbo\$19boobobo4boo20b6o4boo18b4obbo16boobo21boobo21boobo21boobo21boobo11bobo7boobo21boobo12boo7boobo16bo4boobo31boobo4boo13bobb4o3boo12bo6boo3b3o18bobb4obboobbobobbobbo16bobb5obbobobo22b3o8b4obbobobo30b3o3boboboboo\$22bobb4obbo19bo5b4o4boo18boo17boboboo4boo13boboboo4boo13boboboo4boo13boboboo4boo13boboboo4boo4boo7boboboo4boo13boboboo4boo13boboboo4boo5boobo4boboboo4boo23bobboobbo15bobo4b3o14bobb4obbobbobbo16boobo4boboboo4boo29bobobo20bobbo15bobobo25b5o3b3obbobobo\$22bo6boo21b5o3bo3b3o14b4o4boo15bobobobobbo15bobobobobbo15bobobobobbo15bobobobobbo15bobobobobbo15bobobobobbo15bobobobobbo15bobobobobbo5booboo5bobobobobbo25bobbobboo12booboobbobbo13boobo4boo4boo17bobboobbobo34b5obboboboo17boo3bo7b6obboboboo21bo6boo3boobbobo\$23b6o4boo22b3o5boo14bobbo3b3o12bobbobobob3o13bobbobobob3o13bobbobobob3o13bobbobobob3o13bobbobobob3o13bobbobobob3o13bobbobobob3o13bobbobobob3o13bobbobobob3o27booboobbo13bobbobboo14bobboobbo27bobbobbo35bo6bobobo22boo7bo7bobobo22bobb4obbobo4boboboo\$28bo3b3o19boobobb3o19boo5boo11bobobobboo16bobobobboo16bobobobboo16bobobobboo16bobobobboo16bobobobboo16bobobobboo16bobobobboo16bobobobboo32bobobbo10b3obbooboobb3o13bobbobboo26booboo39b4obbobo34b5obbobo21boobo4bobob5obbobobo\$21b7o5boo20bo4bobbo20b3o13b3obobo4boo12b3obobo4boo12b3obobo4boo12b3obobo4boo12b3obobo4boo12b3obobo4boo12b3obobo4boo12b3obobo4boo12b3obobo4boo30bobo3b3o5bobbo4bobobbobbo14booboobbo26bobo40bo5boboboo31bo6boboboo18bobboobbobo9bobobo\$21bo6b3o22bobo5boo21bobbo11bo4bobb4obbo10bo4bobb4obbo10bo4bobb4obbo10bo4bobb4obbo10bo4bobb4obbo10bo4bobb4obbo10bo4bobb4obbo10bo4bobb4obbo10bo4bobb4obbo30bo6bo5boo3bobbobo3boo16bobobbo27bobo43b3obbobobo33b4obbobobo19bobbobbo5b5obboboboo\$24boobbobbo21boo30boo12boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo48boo3bo22bobo3b3o25bo44bo4bobobo33bo5bobobo20booboo6bo6bobobo\$24boo3boo74b6o4boo13b6o4boo13b6o4boo13b6o4boo13b6o4boo13b6o4boo13b6o4boo13b6o4boo13b6o4boo73bo6bo71b4obboboboo31b5obboboboo18bobo10b4obbobo\$110bo3b3o18bo3b3o18bo3b3o18bo3b3o18bo3b3o18bo3b3o18bo3b3o18bo3b3o18bo3b3o158bobobo39bobobo19bobo10bo5boboboo\$103b7o5boo11b7o5boo11b7o5boo11b7o5boo11b7o5boo11b7o5boo11b7o5boo11b7o5boo11b7o5boo154b4obbobo34b5obbobo20bo14b3obbobobo\$103bo6b3o15bo6b3o15bo6b3o15bo6b3o15bo6b3o15bo6b3o15bo6b3o15bo6b3o15bo6b3o158bo5boboboo32bo5boboboo32bo4bobobo\$106boobbobbo17boobbobbo17boobbobbo17boobbobbo17boobbobbo17boobbobbo17boobbobbo17boobbobbo17boobbobbo160b3obbobobo29bo4b3obbobobo32b4obboboboo\$106boo3boo18boo3boo18boo3boo18boo3boo18boo3boo18boo3boo18boo3boo18boo3boo18boo3boo161bo4bobobo29boo3bo4bobobo38bobobo\$475b4obboboboo32b4obboboboo31b4obbobo\$481bobobo39bobobo32bo5boboboo\$477b4obbobo35b4obbobo35b3obbobobo\$477bo7boo34bo7boo34bo4bobobo\$480b4obo38b4obo36b4obboboboo\$424boo6b3o45bo4bo38bo4bo24boo16bobobo\$391boo31bobo5b3o46b4o40b4o24bobo12b4obbobo\$372bo18bobo32b3o4bo4boo24boo34boo8bo42bo14bo7boo\$342boo3boo19boobobo19b3o29bo3bo7bobbo16boo4bobo17boo9boo5bo6b3o16boo16boo5boo17b4obo\$342boobbobbo14bobbobobobbo17bo3bobbo21bobbob3obbooboobboo11boo5bo4bo19boo9bobo4boboobbo19boo16bobo3bo19bo4bo\$339bo6b3o15b4o3b3o14bobbob3obbobo20b4o4booboboboo13bobo4bobooboo31bobboobobo3b3o36b3obboo18b4o\$339b7o5boo8bo6b3o5boo10b4o4b3obbo16bo6b3o4bobo4b3o11bobboobobo3bo29boobobo4b3o3bo34bo3boobbo\$346bo3b3o8b7o3bo3b3o7bo6b3o4boo17b7o3b4obob4obbo10boobobo4boobbo31bobb4o3boobbo29bobbob3obbobobbo16boo\$341b6o4boo15b4o4boo7b7o3b4o4boo20b3o3bo3bobbo16bobb4obb3o31bo6b3obb3o29b4o4b3obb3o16boo\$340bo6boo14b5o4boo18b3o3bo3b3o15b5o3b3obbobboo17bo6boo35b5o4boo29bo6b3o4boo\$340bobb4obbo12bo6b3obbo12b5o3b3o5boo14bo6boo3booboobb3o15b6obbo39b4obbo28b7o3b4obbo\$337boobobo4boo13bobb4o3boo12bo6boo3b3o18bobb4obboobbobobbobbo20boboboboo28b7o3boboboboo31b3o3boboboboo\$338bobboobobo12boobobo4b3o14bobb4obbobbobbo14boobobo4boobboo4boo16b7obbobobo29bo6b3obbobobo27b5o3b3obbobobo\$336bobo4boboo13bobboobobo3boo9boobobo4boo4boo16bobboobobo3bo24bo6boobbobo32b4o3boobbobo26bo6boo3boobbobo\$53boo281boo5bo14bobo4boboobbobbo9bobboobobo22bobo4boboo4boo25boobo4boboboo29bobbobbo4boboboo23bobb4obbobo4boboboo\$52bob3o285boo14boo5bo6boo8bobo4boboo22boo5bo8bo25boob5obbobobo34b5obbobobo19boobobo4b3ob5obbobobo\$48boobo5bo306boo16boo5bo31boo8bobo33bobobo41bobobo20bobboobobo11bobobo\$45boobbobob3obbo329boo42boo28b5obboboboo33b5obboboboo15bobo4boboob4ob5obboboboo\$45bo3bobbo3boo404bo6bobobo34bo6bobobo16boo5bo4bobbobo6bobobo\$47bobo4bobo408b4obbobo37b4obbobo22boo4bobo5b4obbobo\$43b4obob5obo211bo196bo5boboboo34bo5boboboo26bo6bo5boboboo\$42bo3bobo6bo211bobo198b3obbobobo36b3obbobobo35b3obbobobo\$42boo4b4oboo210b3obo198bo4bobobo36bo4bobobo35bo4bobobo\$40boobbobbo3bobo210bo4boo198b4obboboboo34b4obboboboo33b4obboboboo\$41bobobboboobobobobboo35boo166bobboo3bo203bobobo41bobobo40bobobo\$41bob4obobboboobobbo35bo167boboob3o200b4obbobo37b4obbobo36b4obbobo\$38boobo6bobo5boo38bo5boo137boobbo3bo14bo206bo5boboboo34bo5boboboo33bo5boboboo\$35boobbobob4obobb5o39boo5bo88boo4boo43b4obbobo14boboo205b3obbobobo36b3obbobobo35b3obbobobo\$35bo3bobbo3bobo6bo41boo4bo87bobbobobbobbo18bo18bo5b3obbo11boboboo205bo4bobobo36bo4bobobo35bo4bobobo\$37bobo4bobobb4o35boo3b4obbobboo88b3ob3obbobo17b3o16b5o4boo12boo9boobo197b4obboboboo34b4obboboboo33b4obboboboo\$33b4obob5ob3o3bo35boobbo3bobobo98b3obbo14boo3bo20b4o4boo16bobboboo12bobbo105boo23boo6b3o27boo17bobobo41bobobo22boo16bobobo\$32bo3bobo6bo3bo42boboobboboboo90b4o4boo14bobb3o16boobbo3bo3b3o15bobobo15b4o45boo54boo3bo23bobo5b3o27bobo12b4obbobo37b4obbobo21bobo12b4obbobo\$32boo4b4oboobboobbo41bobboobbobobo88bo4b4o4boo11bobo4boo12bobbob3o5boo11boo3bobbo19boo42bobbo3boo49bobbo26b3o4bo4boo24bo12bo7boo36bo7boo16boobbo14bo7boo\$30boobbobbo3bobo4boboo43bo4bobobo87bobobbo3bo3b3o10boo5b3o8boo3boboo3b3o13b3obo5boo12b6obbo42b3obbobbo23bo21b3o3boo17boo5bo3bo7bobbo23boo14b4obo19boobboo15b4obo17bobboo17b4obo\$31bobobboboobobobobbo47b4obboboboo85bobbob3o5boo11bobo4boo8bobboboo3bobobbo11bo4b6obbo10bo6boo48b3o16boobboobobo15boobbo3b3o19bobbobbob3obbooboobboo22boo16bo4bo15bobbobbobbo15bo4bo18boo19bo4bo\$31bob4obobboboobobo44b3o6bobobo87b3obobb3o14bobb3o14boo4b3obobo13b4o6boo11b7o4boo39b5o5boo12bobbobobobbo14bobbob3o3boo19b5o4booboboboo20bobbobboo15b4o12bobbobobboboobboo14b4o16b3obboo18b4o\$29b3o6bobo5boo45bobb6obbobo90bo3bobbo14boo3bo14bob3o5bo12bobo3b6o4boo13bo3b3o38bo5bo3b3o13b3o3b3o16b3o4b3obbo23b3o4bobo4b3o12bobbobobbobobbo29b4ob4o3boobbo28boobbo3boobbo\$28bo4b4obobb5o49bo8boboboo86bo5boo17b3o13bobobobbo17boo3bo5bo3b3o7boob3o5boo38b7o4boo16b3o5boo15b3o4boo19b5o3b4obob4obbo12b4ob4obb3o15boo21b3obb3o15boo11bobbob3obbobobbo16boo\$24boobbobboo3bobo6bo50b3obb3obbobobo85boo23bo15boo4boo22boob3o5boo8bobobb3o49boo15b5o3bo3b3o10b5o3b4o4boo14bo5b3o3bo3bobbo24boo18boo14b6o4boo18boo12b3o4b3obb3o16boo\$24bobobobobobobobb4o55bobbo4bobobo157bobobb3o12bobbobobbo39b4ob4obbo13bo5b4o4boo9bo5b3o3bo3b3o14b6o3b3obbobboo18b7obbo33bo5b4obbo34b3o4boo\$26bobobobboob3o3bo59b7oboboo152bobobbobobbo12bobobboo40bobbobobbobo14b6o4boo13b6o3b3o5boo21boo3booboobb3o15bo5boboboboo30b5o3boboboboo25b5o3b4obbo\$25boobobo4bo3bo68bobobo153boobboobobo14boo48bobbobboo20b3obbo19boo3b3o16b4ob4obboobbobobbobbo16b5obbobobo36b3obbobobo25bo5b3o3boboboboo\$28bobb4obb3o64b4obbobo161bo69boo13b4ob4o3boo11b4ob4obbobbobbo15bobbobobbobobboo4boo24boobbobo33b3o3boobbobo25b6o3b3obbobobo\$28bo6boo67bo5boboboo230boo11bobbobobboboo13bobbobobbobo4boo20bobbobbobo27b3obo4boboboo29bo3bobo4boboboo29boo3boobbobo\$29b6obbo69b3obbobobo229bo16bobbobbobb3o13bobbobbobo28booboo26bobbob5obbobobo28booboob5obbobobo19b4ob4obb3o4boboboo\$34boboboboo65bo4bobobo227bobo20boobboobbo16booboo29bo30boo9bobobo41bobobo19bobbobobbobo3b4obbobobo\$27b7obbobobo67b4obboboboo224boo28boo17bo30bobo36b5obboboboo33b5obboboboo20bobbobbobo7bobobo\$27bo6boobbobo73bobobo272bobo30boo37bo6bobobo34bo6bobobo25booboob6obboboboo\$28b3obbo4boboboo44bobo19b4obbobo272boo73b4obbobo37b4obbobo26bo3bobo6bobobo\$30bobb5obbobobo44boo19bo5boboboo344bo5boboboo34bo5boboboo21boboboo5b4obbobo\$40bobobo44bo23b3obbobobo346b3obbobobo36b3obbobobo20boobbo6bo5boboboo\$35b5obboboboo65bo4bobobo346bo4bobobo36bo4bobobo24bobo7b3obbobobo\$35bo6bobobo50booboobo10b4obboboboo344b4obboboboo34b4obboboboo22boo7bo4bobobo\$38b4obbobo51boboboo16bobobo351bobobo41bobobo33b4obboboboo\$38bo5boboboo48bo17b4obbobo347b4obbobo37b4obbobo39bobobo\$41b3obbobobo44boobo17bo5boboboo3boo339bo5boboboo34bo5boboboo32b4obbobo\$41bo4bobobo45boboo19b3obbobobobobo342b3obbobobo36b3obbobobo31bo5boboboo\$42b4obboboboo34boo3b3o23bo4bobobobo344bo4bobobo36bo4bobobo34b3obbobobo\$48bobobo35boobbo27b4obboboboo344b4obboboboo34b4obboboboo31bo4bobobo\$44b4obbobo39boboo30bobo353bobobo41bobobo33b4obboboboo\$44bo5boboboo37bobbo25b4obboboo346b4obbobo37b4obbobo39bobobo\$47b3obbobobo38boo25bo5boboo346bo7boo36bo7boo34b4obbobo\$47bo4bobobo68b3o353b4obo40b4obo35bo7boo\$48b4obboboboo64bo356bo4bo40bo4bo38b4obo\$54bobobo65boo106boo4boo242b4o42b4o39bo4bo\$50b4obbobo174bobb3o333b4o\$50bo7boo173bobo4bo243boo44boo\$53b4obo171boobobobboobo242boo44boo42boo\$53bo4bo140boo8boo20bobobobobob3o330boo\$54b4o142bo8boo20bobobobobbo3bo\$200bobo23boobboobobobo3b3o118boo95boo36boo\$56boo143boo23bobbobbobobbobobo98boo20bobo5boo88bo4boo31bobboo4bo\$56boo169boobobobobobobo98bobbo21bo4bobbo86bo4bobbo30bobobbobbobo\$221boo5bobobobobobbo99b3o21boobobb3o87b4obb3o29boob4obbobobbo\$195boo24boo5bobobboboboo98boo5boo20b3o5boo87boo39b3obb3o\$196bo32bobobobobo98bobbo3b3o15b5o3bo3b3o83b4obbo31b6o4boo\$196bobo32bobobobbo97b4o4boo14bo5b4o4boo83bobboboboboo27bo5b4obbo\$197boo31bobboobobo101boo18b6o4boo88boobbobobo29b5o3boboboboo\$226boobb3o3boo98b4obbo24b3obbo84b3obboobbobo34b3obbobobo\$226b3o4bobo100bobbobo18boob4obbobo84bobbobo4boboboo28boobobboobbobo\$226boobb3o3boo102bo20bobobbo3bo86bobob5obbobobo28bobobo4boboboo\$230bobboobobo122bobboo92bo9bobobo28bobob5obbobobo\$231bobobobbo121boo101b5obboboboo26bo9bobobo\$229bobobobobo225bo6bobobo32b5obboboboo\$197bo23boo5bobobboboboo227b4obbobo32bo6bobobo\$197bobo21boo5bobobobobobbo226bo5boboboo32b4obbobo\$197b3o27boobobobobobobo228b3obbobobo31bo5boboboo\$199bo26bobbobbobobbobo229bo4bobobo34b3obbobobo\$226boobboobobobo232b4obboboboo31bo4bobobo\$209boo20bobobobo238bobobo33b4obboboboo\$209boobboo16bobobobobo232b4obbobo39bobobo\$213bobo14boobobobboo232bo5boboboo32b4obbobo\$190boo23bo17bobo4boo233b3obbobobo31bo5boboboo\$191bo23boo16bobb3obbo233bo4bobobo34b3obbobobo\$188b3o41boo4boo236b4obboboboo31bo4bobobo\$188bo293bobobo33b4obboboboo\$478b4obbobo39bobobo\$478bo7boo34b4obbobo\$481b4obo35bo7boo\$481bo4bo38b4obo\$482b4o39bo4bo\$526b4o\$484boo\$484boo42boo\$528boo9\$111bobbo26bobbo26bobbo26bobbo\$109b6o24b6o24b6o24b6o\$105boobo26boobo26boobo26boobo\$105boobobob5o18boobobob5o18boobobob5o18boobobob5o\$108bobo6bo20bobo6bo20bobo6bo20bobo6bo\$108bobobb5o20bobobb5o20bobobb5o20bobobb5o\$109boobo7bo18boobo7bo18boobo7bo18boobo7bo\$112bobb6o21bobb6o21bobb6o21bobb6o\$112bobo27bobo27bobo27bobo\$111boobobb6o18boobobb6o18boobobb6o18boobobb6o\$114bobo6bo20bobo6bo20bobo6bo20bobo6bo\$114bobobb5o20bobobb5o20bobobb5o20bobobb5o\$115boobo7bo18boobo7bo18boobo7bo18boobo7bo\$118bobb6o21bobb6o21bobb6o21bobb6o\$118bobo27bobo27bobo27bobo\$117boobobb6o18boobobb6o18boobobb6o18boobobb6o\$120bobo6bo20bobo6bo20bobo6bo20bobo6bo\$120bobobb5o20bobobb5o20bobobb5o20bobobb5o\$121boobo7bo18boobo7bo18boobo7bo18boobo7bo\$124bobb6o21bobb6o21bobb6o21bobb6o\$124bobo27bobo27bobo27bobo\$123boobobb6o18boobobb6o18boobobb6o18boobobb6o\$126bobo6bo20bobo6bo20bobo6bo20bobo6bo\$126bobobb5o20bobobb5o20bobobb5o20bobobb5o\$127boobo7bo18boobo7bo18boobo7bo18boobo7bo\$130bobb6o21bobb6o21bobb6o21bobb6o\$130bobo27bobo27bobo27bobo\$129boobobb6o18boobobb6o18boobobb6o18boobobb6o\$132bobo6bo3boo15bobo6bo3boo15bobo6bo20bobo6bo\$132bobobb5obbobbo14bobobb5obbobbo14bobobb5o20bobobb5o\$133boobo7b3obo14boobo7b3obo14boobo7bo18boobo7bo\$136bobb5o3boboboo13bobb5o3boboboo13bobb6o21bobb6o\$136bobo6bo3bobo14bobo6bo3bobo14bobo27bobo\$135boobobb6obbobo13boobobb6obbobo13boobobb6o18boobobb6o\$138bobo6bobobobo14bobo6bobobobo14bobo6bo20bobo6bo\$138bobobb4obobboobo13bobobb4obobboobo13bobobb5o20bobobb5o\$139boobo3bobobo3bo14boobo3bobobo3bo14boobo7bo18boobo7bo\$142bobo3bobobooboo15bobo3bobobooboo15bobb6o8bo12bobb6o\$139b3obob4obobbobo13b3obob4obobbobo16bobo14b3obo8bobo15boo\$139bo3bo7bobobbo12bo3bo7bobobbo14boobobb6o9boo7boobobb6o8bo\$143b8obb3o17b8obb3o18bobo6boboobboo13bobo6boboo3bo\$150bobo27bobo21bobobb5oboobbob3o10bobobb5oboo3boo\$141b7obboboo17b7obboboo21boobo15bo10boobo\$140bo7boboobbo15bo7boboobbo23bobb6o6boo13bobb6o10boo\$140b6obbo4boo6bo8b6obbo4boo23bobo5bo5bo15bobo5bo5boobobbo\$129boo15bobo8bob3o14bobo28boobobb3o5boboo12boobobb3o5bobob3o\$129bo8b6obboboo7boo9b6obboboo30bobo5bobbobo16bobo5bobbobo\$130bo3boobo6bobo13boobboobo6bobo33bobbo4b4obo16bobbo4b4ob3o\$129boo3boob5obbobo10b3obobboob5obbobo34boo9bo18boo9bo3bo\$142boboo10bo15boboo42b4o26b3obobboo\$122boo10b6obbo13boo6b6obbo46bo29bobo\$122bobboboo5bo5bobo15bo5bo5bobo44bo29bo\$123b3obobo5b3obboboo12boobo5b3obboboo43boo28boo\$127bobobbo5bobo16bobobbo5bobo\$125b3ob4o4bobbo16bob4o4bobbo\$124bo3bo9boo18bo9boo\$124boobbob3o26b4o\$129bobo29bo\$133bo29bo\$132boo28boo9\$252bobbo\$250b6o\$171bobbo71boobo\$169b6o40bobbo27boobobob5o\$130bobbo31boobo44b6o30bobo6bo\$128b6o31boobobob5o32boobo36bobobb5o\$124boobo40bobo6bo31boobobob5o29boobo7bo\$89bobbo31boobobob5o32bobobb5o34bobo6bo31bobb6o\$87b6o34bobo6bo32boobo7bo31bobobb5o31bobo\$83boobo40bobobb5o35bobb6o32boobo7bo27boobobb6o\$51bobbo28boobobob5o33boobo7bo32bobo41bobb6o30bobo6bo\$49b6o31bobo6bo35bobb6o31boobobb6o33bobo36bobobb5o\$45boobo37bobobb5o35bobo40bobo6bo31boobobb6o29boobo7bo\$9bobbo32boobobob5o30boobo7bo31boobobb6o32bobobb5o34bobo6bo31bobb6o\$7b6o35bobo6bo32bobb6o34bobo6bo32boobo7bo31bobobb5o31bobo\$3boobo41bobobb5o32bobo40bobobb5o35bobb6o32boobo7bo27boobobb6o\$3boobobob5o34boobo7bo28boobobb6o33boobo7bo32bobo41bobb6o30bobo6bo\$6bobo6bo36bobb6o31bobo6bo35bobb6o31boobobb6o33bobo36bobobb5o\$6bobobb5o36bobo37bobobb5o35bobo40bobo6bo31boobobb6o29boobo7bo\$7boobo7bo32boobobb6o30boobo7bo31boobobb6o32bobobb5o34bobo6bo31bobb6o\$10bobb6o35bobo6bo32bobb6o34bobo6bo32boobo7bo31bobobb5o31bobo\$10bobo41bobobb5o32bobo40bobobb5o35bobb6o32boobo7bo27boobobb6o\$9boobobb6o34boobo7bo28boobobb6o33boobo7bo32bobo41bobb8o28bobo6boboo\$12bobo6bo36bobb6o31bobo6bo35bobb6o31boobobb4o35bobo8bo27bobobboobbobo\$12bobobb5o36bobo37bobobb5o35bobo40bobo4bo33boobobb4obobo27boobobbobobbo\$13boobo7bo32boobobb6o30boobo7bo31boobobb4o34bobobboobo3boo27bobbobo3bobobo30bobobboboo\$16bobb6o35bobo6bo32bobb6o34bobo4bo34boobo3bo3bo30booboboboboboo29bob4o\$16bobo41bobobb5o32bobo40bobobboobo36bobooboobo31bobboobobbo32bo4boobo\$15boobobb6o8bo25boobo7bo28boobobb4o35boobo3bo32boboobobobobo32bo4bobobo33b3oboboo\$18bobo6boboobobobo27bobb6o31bobo4bo37bobooboo30boobobobobo35b4obboboo34boo\$18bobobb5oboboobobo27bobo37bobobboobo33b3obobobobo34bobobbo36bo3bobo\$19boobo10bobo27boobobb4o30boobobo3bo32bo4bobobobbo32bobbo3bo37bobobo\$22bobb4o4bo29bobbobo4bo32bobobooboo31b3oboboboboobbo29boobobob3o34booboo\$22bobo4bobboo30b3obobboobbo30bobbobobo34bobobobo3b3o31boboo4bo\$21boobobboobo37boobboboo31bobobobobo34bobobbobo34bo4b3o\$22bobobo3b4o30boobo4bo33booboboboobo33bob4oboo34b3obo\$22boboboboo4bo30boboobobo36bobo4bo34bo43boo\$23bobobobob3o31bobboboo37bobob3o37bo\$25bobobobo34boo42boobo38boo\$24boboobbo\$24bo3boo\$22booboo\$23bobo\$23bobo\$24bo7\$182boo\$182bo\$184bo\$114boo67boo\$114bo67bo6bo\$115b3o3boo24boo3boo29b4obobo\$117bobbobbo23boobbobbo31bobobbo\$120b3o28b3o29boo3b3o\$115b5o5boo18b6o5boo25bob3o5boo\$114bo5bo3b3o17bo6bo3b3o23boo5bo3b3o\$114b7o4boo15bobb7o4boo22bobb6o4boo\$121boo19boobo6boo26bobo6boo\$114boob4obbo21bob5obbo24booboobb3obbo\$115bobobbobo22boo4bobo25bo5bobbobo\$115bobbo3boo24bobobboo25booboobbobboo\$116boo4bo22booboo3bo27bobo4boo\$124bo20bobo7bo25bobo6boo\$123boo22bo6boo26bo7bo\$147boo39bobo\$188boo!`

There are also the glider eaters in 1998-eater-stamp-collection.rle that comes with Golly. I think this is most of what's known when it comes to drifters.

Scorbie wrote:Unfortunately, I haven't found many fizzles than I thought because most of them were from oscillators.

I'm not sure what you mean by this.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1479
Joined: July 9th, 2009, 2:44 pm

PreviousNext