ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

4 glider syntheses

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

4 glider syntheses

Postby BobShemyakin » June 15th, 2014, 12:22 pm

I corrected table synthesis Dean Hickerson. It added 33 collision.
x = 10, y = 3, rule = S23/B3
428bo$374bo53bobo$25bo41bo103bo203boo51boo$23boo43bo103bo141bo59boo45b
obo$24boo40b3o101b3o142bo106boo$21bo198bo52bo39b3o61bobo42bo3bo$19bobo
199bo52boo101boo47bobo$oboo16boo28boo48boo48boo48booboo14b3o28boo21boo
bbo23boo48boo25bo22boo23boo24bo12bo38boo$oobo46bobo23bo23bobo48bobboo
45bobo22bo23boobo23bobo20bobbo46bobobboo43bobbo47bobo12bo36bobbo21bobo
$53bo20boo26bo48bobobbo17bo26bobo21bo28bo22boo22b3o46bo5bo44boobboo6b
oo35bobbo10b3obbo33boboo21boo$22boo30bo20boo25bobo12bobo32bobboo18boo
23booboo20b3o23bo73bo25b5o10b3o34boobbo6boo34b3o16boo30boobbo23bo$23b
oobboo26bo47bobo12boo54boo76boboo47b3o15bobbo28bo14bo5boo27bobbo6bo54b
obo3bobo23bo4bo20bo$22bo3boo26boo15boo31bo13bo49boo8bobo73boo8boo37bo
bbo12bobobb3o40bo5boo29boo46b3o19boo24bob3o19bobo$28bo41bobobboo92boo
7boo38bo8boo34bobo38boo14boo53bo75bobbo20bobb3o20boo22boo$72bobbobo90b
o10bo38boo7bobo35bo185bobo24bo$75bo141bobo7bo224bo26bo55b3o$117boo4bo
411bo$118boobbo145b3o43boo204b3o13bo$117bo4b3o145bo44boo205bo$269bo44b
o206bo$$122boo$122bobo$122bo10$517bo$515bobo$68bo447boo$69bo$67b3o45bo
113bobo$15bobo98bo112boo$16boo57bo38b3o6bo106bo$16bo10bo46bo48bobo40bo
350bobbobo$25boo47b3o46boo42boo44bobo110bo46bo93bo47bobobboo$oo16b3o5b
oo22boo17bo30boo48boo14boo3bo28booboo9boo34boo48boo3bo20bobo22bo19boo
28boo47boo16boo35bo10boo3bo$obbo16bo29bobo16boo29bobbo46bobo18bobo26b
oobobo8bo35bobobboo43bobobobo19boo22bobo19boo26bobboboo19bo4bo18bobo
14boo31boobbobo$bboo15bo32bo15bobo4boo24boobo16b3o27boo18boo30bobo45b
oo3bo19bo25bobobo15bo27bobboboo19boo23bobobobo19boobbobo18bo10boo8bo
26bo3bobbo$52bobo19boo28bo11b3obbo31boo48boo11boo35b3o19bo25booboo17bo
27bobobo19boo25boobobo18boo3boo17boboboo8boo5bobo27b3oboo$23bo29boo21b
o27boo12bo3bo30bobo61boo34bo21b3o43b3o28bobbo21bo28bo43boobbobo6bo8boo
29bo$22boo93bo36bo61bo52bo83boo16boo81bobo47b3o$22bobo142boo101boo100b
oo65bo15bo50bo$166bobo100boo100bo66boo$168bo104bo43boo3bo53boo60bobo$
228boo43boo9bo31bobobboo52boo143boo$228bobo41bobo8boo33bobbobo53bo93b
3o47boo$228bo54bobo187bo46bo$472bo$423bo$173b3o247boo$173bo248bobo$
174bo3$153bo$154bo$152b3o3$120bo$121boo68bo$120boo69bobo$191boo$126bo$
125bo$66bobo56b3o388bo$67boo153bo45bo200bobo42bobo$67bo154bobo41bobo3b
o94bobo61bo38boo43boo$217bobobboo43boo4boo46bo46boo61bobo36bo$24bo103b
3o87boo52boo45bobo46bo3bo38bo19boo93bo$bo17bobobbobo23boo48boo26bo21b
ooboo45booboo13bo31boo48boo18boobbobo23boo20bobo25boo10bo37boo48boo3b
oo15bobbo$bobo16boobboo24bobo47bo28bo21bobo46boobo27bo19bobbo21bobo21b
obo21boo24bobo19boo26boboboo4b3o37boboboo17bo26bobobobbo12bobobb3o$obo
17bo30bobo47bobboo44bobbo49bo26boo19bobobo15b3obboo24bo22bo26bo49bobob
o45bobobo14boo28booboboo13boo$bbo12boo36bo19bobo26bobbo44bobo50bobo24b
obo17boobobbo14bo5bo23booboo13boo31boo23bo23boobobbo42bobobobo15boo30b
obo$16boo9b3o23boo18boo28boo46bo52boo48boo16bo31bobo13boo32bo21bo28boo
12bo30boo3bo20boo26bobo$15bo11bo46bo42bo96boo88bobo12bo5b3o26b3o19b3o
40boobboo45bo5bobo26bo18b3o$28bo88boo94bobo89bo19bo31bo60bobobbobo44b
oo4bo49bo$71boo43bobo96bo110bo29boo65bo45bobo53bo$70boo307boo$72bo305b
oo$65boo313bo$64bobo102boo3bo$66bo101bobobboo$170bobbobo14$474bo$77bo
40bobo352bo$23bo52bo42boo64bobo178bo106b3o$21boo53b3o40bo65boo177bobo$
22boo46bo58bobo54bo178boo104bo$71bo57boo141bobo45bo96bobo52boo$18bobo
48b3o58bo41bobo57bo40boobbobo41boo95boo51boo3boo$19boo152boo56bo41bo3b
oo41boo96bo3bo52boo$oo17bo30boo48boo48boo21bo3bo22boo29b3o17boo25bo21b
oo50bo19bo27boo20bobo27boo23bo24boo$obobo46bo48bobobboo43boboboo20boo
23bo48bobo20bo26boboboo45bobo16boo28bobo19boo26bobbo47bobbo10bo17bo$3b
oo46boboo17bo30bobbo6boo3bo33bobo21bobo22boboo15boo28boboboo16boo28bob
obo43bobbo17boo29bo47b3o47bobbo12boo16boo$26boo24bobo18boo29boo6bobobb
oo33bobo14boo31bobbo13bobo29boobobo15bobo26boobobo22bobo19booboo46boo
96b3o12boo16boo$17bo7boo26bo18boo40bobbobo33bo16boo31bobbo14bo3bo29bo
11bo37bo23boo22bobbo93b3o58boo$17boo8bo141bo34boo18boo41boo61bo22bobo
16b3o27b4o44bobbo46b3o9boo19boo$16bobo56boo147bobo39bobo85bo17bo29bobb
o22boo21bobbo45bobbo7bo22boo$74boo250boo45bo29boo16bo6bobo21boo47bobbo
28bo$76bo152b3o95boo92boo5bo73boo$229bo96bo93bobo$230bo149b3o$380bo$
381bo3$466b3o$468bo$322bo144bo$322boo$321bobo7$25bo$23boo150bo$16bo7b
oo92bobo8bo44bo191bo$17bo57bo43boo7bo45b3o102bo87bo$15b3o55boo44bo8b3o
146boo42bobo41b3o$24boo48boo202boo42boo$23boo297bo53bo$25bo45bo302boo$
16bo49b3o3boo102boo149bobo45boo40bo9bo$oo14boo32boboo14bobboo28bo22boo
24booboo13bo6boo24boo48boo13bo33boo3boo20boo23bo47boo16boo7bobo20boo3b
o47boo$obboo10bobo32boobbo12bo32bobo16b3obbobo24bobobo10bobobbo5bo22bo
bbo15bo30bobobbo11bo4bo27bobobobo21bo22bobo46boboboo11boo8boo21bobobob
o44b3obo17bo$boobo48bobo45boo18bobbo26bobbo12boobbobo27boobo15bo29bobo
bobo8b3o3bo30bobo46bobbo21b3o23bobobo45bobobo11bobo29bo4bo15boo$54bo
14b3o31boo15bo29boo19boo30bobo12b3o30booboo15b3o27booboo44boo3bo20bo
25bobbo46bobbo13boo29boboboboo14boo$69bo33bobo97bobo114boo34bo20bo22bo
bo47bobo16bo31boobobbo$70bo33bo99bo114bobo35bo42boo11bo36boo53boo19boo
$220boo49b3o47bo3bo28b3o56boo56boo39boo11boo$214bo4bobo49bo52boo28bo
57bobobboo53boo37bobo13bo$214boo5bo50bo51bobo90bobo51bo41bo$213bobo
201bo106boo$382boo139bobo$225b3o154bobo80bo14boo43bo$225bo156bo82boo
12boo$226bo237bobo14bo12$319bo$273bo46bo$273bobo42b3o$273boo149bo$231b
o193bo$62bo166boo90bobo7bo91b3o$63boo165boo40b3o4b3o39boo7boo48bo$62b
oo53bo49bobo96boo6bo4bo42bo7bobo40bo5bo$22bo45bo49bo49boo95bobo5bo6bo
93boo3b3o86bobo$20boo44boo48b3o5bo43bo3bo94bo105boo94boo50bo3bo$oo14bo
4boo27boo15boo31booboo19bobo23boo20bobo27boo46boo3boo44boo16b3o28boo5b
oo42bo17boo3bo28bo15bo30boo3boo15bobo$obo14boo31bobo47boobo20boo24bobo
19boo28bobbo44bobobobo45bobboo14bo28bo7bo41bobo17boobbobo26b3o17bo26bo
bobobo13b3ob3o$bobo12boo33bobo49bo11boo35bo47boobboo20bo25bobo45bobobo
bo13bo30b3ob3o43bobo15bo4boo25boo3bo14boo29bobo$bboo48bobo8boo38boo9bo
bo35b3o45bo24bo26bobo45boobbo48bobo20boo25bo46bobbobobo14boo6bo21bobo$
13bo39boo9boobboo46bo38bo46bo22b3o25bo50boo48bo20bobo25boboo43bobboboo
22boo19bobobobo13b3ob3o$13boo6b3o39bo4bobo50bo32boo22bo22boo174bobb3o
18boboboo12boo30boo26bobo18boo3boo15bobo$12bobo6bo46bo51boo55boo201bo
20boo15bobo48bo51bo3bo$22bo97bobo54bobo44boo155bo38bo48boo$223boo243bo
bo$174boo39bo9bo$175boo38boo$174bo39bobo15$121bobo186bo$122boo184bobo$
122bo101bo84boo$16bo195bobo10boo$17bo195boo9boo45bobo201bo$15b3o50bo
144bo57boo202bobo39bo$66bobo158b3o42bo202boo41bo$67boo55bobobbo99bo
286b3o$77bo47boobbobo41bobo52bo234bobbobo$oo48booboo20boo23boo23bo3boo
20boo21boo24bobbo46boo48booboo17bo28boo48boo19bobobbo22boo3bo5bobobboo
33boo$bo49bobo22boo22bobo47bobbo20bo25b4o46bobboo46bobobo15bo28bobbo
26bo19bobbo19boobbobo20bobobobo5boo3bo32bobbo$boboo18bo26bobbo17boo28b
obo46bobobo15bo33boo45bobobo22bo22bobobo11bo3b3o26boobo21bo4bobo17boob
o19bo3boo23bobobbo43boo$bbobo16boo28boo19boo28bobo46bobbo15boo4bobo23b
obbo25boo17boobobo21boo21booboo11bo34boboo19boo4boo21boo47bobboo$22boo
47bo31bobo46boo15bobo4boo8bo15boo27bobo20bo18boobbobo36b3o32bo22bobo
23boobo46bobo48b4o$104bo72bo7boo44bo40bobo77b3o45bobbo46boo48bo4bo16bo
$74boo109bobo86bo79bo46boo72boo24b4o15bobo$22b3o49bobo242bo49boo3boo
99bobo43boobbo$22bo51bo48b3o155boo35boo50boobbobo43bo6b3o45bo27boo20bo
bo$16boo5bo101bo154boo36bobo48bo4bo45boo5bo75boo20boo$15bobo106bo157bo
136bobo6bo$17bo$518bo$518boo$517bobo9$17bobo$18boo$18bo3$121bo$119boo$
25bobobbo51bo37boo157bo$26boobbobo47boo28bo168bobo141bo$26bo3boo45bo3b
oo25bobo168boo140bobo103bo$76boo31boo10b3o146bobo149boo101bobo11bo$71b
obobbobo42bo149boo47bo4bo141bo58boo11bobo$oo48boo20boo26boo20bo27boo
48boo11bo11bo25boo18bo28boobboo15bobbo26boo48boo47boo3boo11boo13bo18b
ooboo32boo$obo48bo20bo28bo48bobo47bobo8bobo9boo25bobo47bo4bo13b3obb3o
23bobo47bobbo23bobo20bobobobo10boo12boo18boboboo24boo$3bobo45bobo47bob
oo46boo49bo9boo10boo24bo50b4o45bobboo46b3o23boo23bobo8boo17boo17bobo
28boo$4boo46bobo22boo23bobbo47boo15bo31b3o15boo29b4o16boobboo74bobobo
48boo18bo3bo21bobobobo7boo12boo20boobob4o22bo$53bobo20boo25bobo47bobo
10bobbo35bo13bobo33bo14bobobbobo23boo47boobobo10bo3bo30boobo17bobo25b
oo3boo6bo13boo25boobbo$24b3o27bo23bo25bo49boo8bobobb3o32bobo14bo31bobo
16bobbo25boo16b3o32bo9bobobboo30bobbo18boo54bo54bo$26bo138boo38bo47boo
66bo43boobbobobbo27boo129boo$25bo201boo91bo4bo48bobo56b3o97bobo$112boo
113bobo94boo48boo57bo$111bobo113bo96bobo107bo$113bo57b3o$171bo$163b3o
6bo$165bo$164bo$359boo$358bobo$360bo10$228bobo$228boo89bo102bo49bobo$
77bo151bo90boo101boo47boo$77bobo239boo53bo47boo49bo$65bo11boo93bo201bo
bo143bo$66bo105bobo192bo6boo93bobo49boo$64b3o105boo46bo50bo96boo100boo
48boo$17bobo6bo108bo84bobo49boo3bo41bo47boo51boo48bo$oo16boo6bobo21boo
48boo31boo16bo48booboo15boo29bo19boobboo23booboo14boo29boobbo45boo17bo
bobbobo23booboo46boo3boo$bo16bo3boobboo23bo49bobbo29boo14bobobboo17boo
24boobo10bo35boboboo20boo23boboo13bobo4bo24bobbobo44bobo18bobboo24bo3b
o45bobbobobbo$bobo17bobo27boboo46bobobo14boo29boo3bo8boo4bobbobo26bo
11boo33bobobobo44bo22bo26b3obo15boo29bo22bo25b3o46booboboboo$bbobo18bo
28bobbo46bobbo13bobo31b3o8bobobbobobbo25b3o11boo35boobobo12boo31b3o19b
3o27bo11boo3bobo26bobboo98bobo$3bo49boo48boo16bo3bo27bo12bo3boo28bo54b
o14boobboo29bo45b3o13boobbo28boobo49b3o47bobo$25boo47bo49boo143bo3boo
29boo45bo14bo36bo48bo3bo45booboo$24boo47boo49bobo87b3o58bo51boo74bobo
46booboo68bobo$26bo46bobo138bo111boo76boo13boo55bo48boo$215bo112bo91b
oo53boo49bo$71bo347bo55bobo$71boo449b3o$70bobo58bo341bo50bo$130boo341b
oo48bo$130bobo339bobo51boo$525boo$527bo10$425bobo$426boo$125bo300bo$
120bobobbobo194bobo$120boo3boo195boo$121bo201bo$67bo359bo$19bo48bo49bo
200bobo105bobo$17bobo46b3o50boo9bo37bo151boo52bo52boo$18boo5bo92boo8b
oo39bo57bo92bo52bo61bo32bo$oo23bobo22boo48boo27boo19boo15b3o31bo25bobo
21booboo20bo23booboo45boo21b3o25boo31boo14boo4boo8bobo14bo$o24boo23bob
o47bobo48bobbo23bo21boboboo15bo5boo21bobobobo17boo25bobo46bobbo25bo20b
obbo26boobbobo13bobobbobo9boo14bobo$bo51bo16bo31bo48bobobo22bobo19bobo
bo17bo27bobobobo11bobo4boo24bobbo46b3o24boo20bobbo25bobo20bobbo7boo18b
oo$bbobo49bo16bo30bobo45boobobo22boo21bobbo15b3o28bo3bo13boo31bobo49b
oo22bobo20boo28bo18bobobbobo4bobo14boo$3boo50bo13b3o31bobo48bo19boo26b
oo65bo31booboo47bobbo93boo4boo6bo14bobo$22b3o31bo47boo68bobo144bo31bo
bbo18boo24b4o74bo$24bo30boo117bo45b3o6bo91boo31boo20boo23bobbo$23bo47b
oo149bo5boo39bo3bo46bobo43boo7bo26boo$26boo44boo4boo82boo57bo6bobo38b
ooboo91bobo$25boo44bo6bobo82boo103bobobobo49bo42bo$27bo50bo83bo160boo$
323bobo!

One collision is eliminated, because found 3-glider collision biPond.
x = -130, y = -86, rule = S23/B3
29bo$30bo$28b3o3$4boo$3bobbo$3bobbo$booboo$obbo$obbo$boo$38bobo$31boo
5boo$32boo5bo$31bo!

Taking into account your corrections and additions found me a table 4-glider synthesis is as follows:
x = 20, y = -48, rule = S23/B3
71bo$72bo$70b3o$$74bo46bo$73bo48boo$73b3o45boo6bo$24bo104bobo$bo17bobo
bbobo23booboo45boo27boo$bobo16boobboo24bo3bo45boobo$obo17bo30b3o50bo$
bbo12boo84bo$16boo9b3o72boboo$15bo11bo23b3o50boo$28bo21bo3bo$50booboo
57boo$111bobo$69b3o41bo$71bo$70bo$116b3o$72b3o43bo$72bo44bo$73bo37$
528bobo$369bo159boo$370boo157bo$25bo145bo197boo46bo60bo$23boo147bo141b
o103boo57bo$24boo144b3o142bo101boo58b3o$21bo198bo92b3o$19bobo199bo147b
o$oboo16boo28boo16bo31boo13bobbobo29boo48booboo14b3o28boo49boo47booboo
14boo29boo20bo27boo49bo31bobo14boo$oobo46bobo16boo29bobo10bobobboo31bo
bboo45bobo22bo23bobobboo43bobbo47boboo13bobo4bo24boo21bo26bobo47bobob
oo28boo14boboboo$52bo15boo4bobo25bo11boo3bo31bobobbo17bo26bobo21bo25b
oo3bo19bo24b3o47bo22bo29bo16b3o28bo47bobobobo22b3obbo17boboo$22boo28bo
bo19boo26bobo47bobboo18boo23booboo20b3o25b3o19bo49bo26b3o19b3o23b5o46b
ooboo13boo30boobobbo23bo19boo20bo$23boobboo24boo20bo27bobo68boo77bo21b
3o25b3o15bobbo30bo44bo52bobbo11bobo34bobo22bo21boboo15bobo$22bo3boo40b
3o33bo63boo8bobo88bo33bobbo12bobobb3o27boo47boo16boo30bobbo13bo4bobo
28bo29boo14bobbo16boo$28bo41bo55boo41boo7boo38bo8boo41boo32boo14boo55b
oo24boo15boo32boo19boo58boo16boo$69bo56bobo39bo10bo38boo7bobo39boo105b
oo39bo4bo53bo60bo32bo$118bo7bo90bobo7bo45bo104bo38boo53boo96boo$75b3o
40boo153boo9bo131bobo52boo96bobo6bo$75bo41bobo152bobo8boo29boo157bo
103bo$76bo206bobo29boo260b3o$314bo254boo$568bobo$570bo13$522bo$370bobo
150bo$371boo148b3o$66bobo46bo113bobo139bo$19bobo45boo47bo112boo37bo$
20boo45bo46b3o6bo106bo35bobo3bo100bobo$20bo102bobo40bo100boo4boo98boo
154bo$123boo42boo44bobo56boo49bo50bo146b3o5bobo$oo22bo25boo48boo48boo
14boo3bo28booboo9boo34boo49bo19boo27booboo46boo49boo13bobbobo28booboo
17bo5boo22boo$obbo19bo26bobo47bobbo46bobo18bobo26boobobo8bo36bobbo21bo
bo21bobo19boo27bobo46bobboboo19bo4bo19bobbo10bobobboo28bobobobo15bo28b
3obo27bo$bboo12boo5b3o25bobo47boobo16b3o27boo18boo30bobo45bobobo15b3o
bboo22bobboboo19boo23bobbo46bobobobo19boobbobo17boboo11boo3bo28bobobob
o43bo4bo25boo$17boo34bo19bobo28bo11b3obbo31boo48boo11boo32boobobbo14bo
5bo23bobobo19boo25bobo47boobobo18boo3boo17boo49booboo44boboboboo24boo$
16bo10bo25boo18boo29boo12bo3bo30bobo61boo35boo16bo29bobbo21bo23booboo
50bo44boboo96boobobbo$26boo46bo42bo36bo61bo86boo16boo52bo75bobbo100boo
29boo$26bobo138boo153boo50boo63bo12boo68boo48boo11boo$71boo93bobo152bo
52bobo61boo81bobo47bobo13bo$70boo96bo157boo110bobo24b3o6bo48bo49bo$72b
o155boo95boo45bo94bo5boo109boo$65boo161bobo96bo44boo92bo6bobo107bobo$
64bobo161bo142bobo211bo$66bo$423bo$173b3o247boo$173bo248bobo$174bo3$
153bo$154bo$152b3o4$122bo68bo$120bobo68bobo$121boo68boo$77bo$23bo52bo
49bo239bo$21boo53b3o45boo238bobo$22boo46bo54boo95bo142boo106bo96bo$71b
o150bobo47bobo156bo39bobo44bobo47bobo$18bobo48b3o56boo87bobobboo49boo
bbobo151bobo38boo45boo48boo$19boo106boo89boo53bo3boo132bo19boo86bo59bo
bo$oo17bo30boo48boo27bo20booboo45booboo13bo32boo25bo22boo16bo5bo26bo
19bo27boo10bo38boo48boo26bobo21boboo22boo$obobo46bo48bo50bobo46boobo
27bo18bobo20bo26bobbo13bobo3boo26bobo16boo28boboboo4b3o37bobbo23bobo
20bobboboo22boo20b3obobo18bo3bo$3boo46boboo17bo28bobboo44bobbo49bo26b
oo18boboboo16boo26boobo14boo4boo24bobbo17boo29bobobo44b3o23boo21bobbob
obo14boo6bo19bo3bobbo12bo5boo$26boo24bobo18boo27bobbo44bobo50bobo24bob
o18boobobo15bobo28boboo44booboo45boobobbo46boo18bo3bo22boo3bo14boo27bo
bobobo13boo3bobo$17bo7boo26bo18boo29boo46bo52boo49bo11bo35bobbo46bobbo
48boo12bo31boobo17bobo28b3o17bo27booboo13bobo$17boo8bo89b3o94boo51boo
35boo18boo27bobo16b3o44boobboo26bobbo18boo28bo15bo$16bobo56boo42bo93bo
bo50bobo54boo29bo17bo45bobobbobo26boo65boo$74boo42bo96bo109bo47bo49bo
59b3o32bobo$76bo406bo$315boo167bo$316boo62b3o$169boo3bo140bo64bo$168bo
bobboo206bo$170bobbobo13$25bo$23boo$16bo7boo41bo50bobo245bo105bo$17bo
50boo49boo64bobo136bo42bo105boo$15b3o49boo50bo65boo86bo51boo38b3o104b
oo48bo$24boo103bobo54bo84boo51boo104bo89bobo$23boo104boo141boo102bo46b
o5bo91boo$25bo43bo3bo56bo41bobo57bo94bobo44boo48boo3b3o$16bo53bobbobo
97boo56bo95boo46boo46boo45boo57bobobbo36bo3bo$oo14boo32boobboo12b3obb
oo25boo48boo21bo3bo22boo29b3o17booboo16boo27boo25bo23bo47boo5boo41boo
17bobobbobo25bo3boo22boobbobo13boo3boo12bobo3bobo$obboo10bobo32bobobbo
44bobobboo43boboboo20boo23bo48bobobobo8boo4boo27bobobboo44bobo46bo7bo
41bobo18bobboo25bobobobo22bo3boo14bobobobo13boo3boo$boobo48boo48bobbo
6boo3bo33bobo21bobo22boboo15boo28bobobbo10boo5bo26bo5bo44bobbo21b3o22b
3ob3o44bo22bo24bobbobo46bobo$104boo6bobobboo33bobo14boo31bobbo13bobo
29boo12bo35b5o10b3o31boo3bo20bo26bobo20boo22bobboo46boobbo46bobo$114bo
bbobo33bo16boo31bobbo14bo3bo77bo14bo5boo30bo20bo26bo20bobo22boobo51bob
o42bobobobo13boo3boo$169bo34boo18boo91bo5boo32bo69bobb3o20bo52boo42boo
3boo12bobo3bobo$62boo160bobo98bo28b3o73bo22bobo65boo48bo3bo$63boo213b
oo74bo76bo22boo13boo49bobo$62bo166b3o46bobo189boo50bo$229bo48bo190bo$
230bo151boo$382bobo$382bo11$436bo$435bo$435b3o$273bo$176bo96bobo$118bo
bo8bo44boo97boo245bobo$75bo43boo7bo46boo248bo95boo$73boo44bo8b3o192bo
102bo94bo$74boo196b3o4b3o42bo99b3o140bo$266boo6bo4bo42b3o45bo152bobo
42bo$22bo48bo193bobo5bo6bo90boo150boo41b3o$20boo44b3o3boo102boo89bo
102boo53boo97bo$oo14bo4boo27boboo14bobboo28bo22boo24booboo11bobo7bobo
22boo47boo3boo44boo47boo49boobo19boo26boo46booboo46boo$obo14boo31boobb
o12bo32bobo16b3obbobo24bobobo11boobbobobbo23bobbo15bo30bobobobo43bobo
bbo18bo25boboboo44bobboo21bo24bobbo45bo3bo45bobbo$bobo12boo35bobo45boo
18bobbo26bobbo12bo3boo28boobo15bo31bobo45bobobobo18bo26bobobo43boo49b
4o46b3o47boo$bboo50bo14b3o31boo15bo29boo20bo30bobo12b3o31bobo46boobobo
16b3o25boobobo22bobo20b3o$13bo55bo33bobo97bobo47bo51bo49bo23boo21bobbo
20b3o22boo28bo19b3o47b4o$13boo6b3o46bo33bo99bo125b3o47bo22boo23bo21bo
bbo25bobo18bo3bo45bo4bo16bo$12bobo6bo198boo101boo5bo96bo22bobbo26boobb
obo13booboo46b4o15bobo$22bo191bo4bobo100boo7bo44boo73boo31boo34bo50boo
bbo$214boo5bo102bo52boo106bo34boo31boo20bobo$213bobo160bo100boo40bobo
31boo20boo$477bobo$225b3o249bo45bo$225bo296boo44bo$226bo295bobo43boo$
567bobo$476bo$476boo$372bo102bobo$372boo$371bobo7$280bo$278boo$279boo
241bobo$231bo244bo45boo$62bo166boo140bobo50bo51bobo44bo$63boo165boo36b
obbobo98boo50bobo49boo$62boo53bo49bobo96bobobboo99bo44bo6boo93bobo53bo
$68bo49bo49boo97boo3bo145boo54bo45boo52bo$66boo48b3o5bo43bo3bo204bobo
37boo56boo43bo53b3o$oo14bo33boo15boo31booboo19bobo23boo20bobo27boo49bo
47booboo20bo23boo3boo20boo21boobbo50boo17boo24booboo45boo$bo12bobobbob
o28bobo47boobo20boo24bobo19boo28bobbo46bobo45bobobobo17boo24bobobobo
21bo21bobbobo45boobbobo42bo3bo46bo$o14boobboo30bobo49bo11boo35bo47boo
bboo45bobbo45bobobobo11bobo4boo25bobo46b3obo15boo27bobbobobbo42b3o47bo
boo$b3o16bo31bobo8boo38boo9bobo35b3o45bo27bo22bobo47bo3bo13boo30booboo
48bo11boo3bobo27bobobboo92booboo12bo$3bo49boo9boobboo46bo38bo46bo24boo
21boobobo63bo50boo29b3o13boobbo30boo19boo28b3o44bo17boo$63bo4bobo50bo
32boo22bo22boo20boobbobo24boo113bobo29bo14bo55boo28bo3bo44b4o12boo3bo$
68bo51boo55boo43bobo44boo100bo3bo98bo27booboo47bo17boo$12b3o12boo91bob
o54bobo44bo45boo47bo3bo50boo150bo24b3o17bobo$14bo12bobo239bo49booboo
50bobo94boo52boo24bo$13bo13bo146boo39bo102bobobobo145bobo52bobo$175boo
38boo255bo$174bo39bobo306bo51b3o$523boo50bo$522bobo51bo10$17bobo$18boo
$18bo300bo$121bobo196bo$122boo194b3o$122bo101bo$212bobo10boo$25bobobbo
182boo9boo45bobo47bobo7bo$26boobbobo35bo144bo57boo48boo7boo249bo$26bo
3boo34bobo158b3o42bo49bo7bobo249boo$67boo55bobobbo99bo351boo$77bo47boo
bbobo41bobo52bo147bo40bo9bo$oo48booboo20boo23boo23bo3boo20boo21boo24bo
bbo46boo49boo16b3o28boo3bo20bobo21boo16boo7bobo21boo51boo44boo$obo48bo
bo22boo22bobo47bobbo20bo25b4o46bobboo47bobboo14bo28bobobobo19boo22bobo
boo11boo8boo21bobbo49bobbo21bobo19boo$3bobo44bobbo17boo28bobo46bobobo
15bo33boo45bobobo22bo21bobobobo13bo31bobobo15bo29bobobo44b3o49boboo21b
oo24boo$4boo45boo19boo28bobo46bobbo15boo4bobo23bobbo25boo17boobobo21b
oo21boobbo46booboo17bo28bobbo59boo5b3o26boobbo23bo20b5obo26boo$71bo31b
obo46boo15bobo4boo8bo15boo27bobo20bo18boobbobo24boo65b3o26bobo50b3o8bo
bo5bo27bo4bo20bo23bo5bo25bobo$24b3o77bo72bo7boo44bo40bobo125boo11bo38b
o3bo9bo6bo26bob3o19bobo24bob3o22boo4bo$26bo47boo109bobo86bo138boo37boo
boo44boo22boo25boo25boo6boo$25bo48bobo335bobobboo57bo101bo7boo$74bo48b
3o155boo84boo3bo44bobo55boo58b3o50bo$125bo154boo84bobobboo44bo57bobo
57bo$124bo157bo85bobbobo146b3o13bo$473bo48bo$473boo46bo$472bobo12$517b
o$515bobo$516boo$121bo$119boo$82bo37boo$80boo28bo$77bo3boo25bobo306bo
99bobbobo57bo$76boo31boo10b3o247bo46boo49bo45bobobboo59boo$17bobo6bo
44bobobbobo42bo163bo83bobo45boo51bo34bo10boo3bo58boo7bobo$oo16boo6bobo
21boo20boo26boo20bo27boo48boo11bo11bo25boo30boo15boobboo13bobobbobo23b
oo18boobbobo23boo27bo21boo15b3o29boobbobo47bo21boo11boo$bo16bo3boobboo
23bo20bo28bo48bobo47bobo8bobo9boo25bobbo24bobo3boo14bo4bo14boobboo24bo
bo21boo24bo26boo21bobbo46bo3bobbo46b3o20boo11bo$bobo17bobo27bobo47bob
oo46boo49bo9boo10boo24bobobo24boo20b4o15bo4bo26bo22bo25b3oboo12b3o6boo
21b3o47b3oboo45boo3bo18bo$bbobo18bo28bobo22boo23bobbo47boo15bo31b3o15b
oo29bobobo23bo71booboo13boo32bobobo13bo49bobo29bo47bobobobo$3bo49bobo
20boo25bobo47bobo10bobbo35bo13bobo30bobbo26boo17boo17bo33bobo13boo33bo
bo12bo30b3o17boo31b3o43bobboboo$25boo27bo23bo25bo49boo8bobobb3o32bobo
14bo31boo28boo16boo17boo32bobo12bo5b3o27boo43bo3bo12boo3bo4boo27bo43bo
bo27boo$24boo139boo38bo71bo4bo36bobo33bo19bo74booboo13boo6boo73bo27bob
o$26bo200boo48boo45boo50bo90bo10bo102bo$112boo113bobo46bobo45bobo99b3o
91boo$111bobo113bo96bo101bo94boo$113bo57b3o253bo92bo$171bo$163b3o6bo$
165bo$164bo13$474bo$272bo155bo44bo$77bo143bobobboo42boo156bobo42b3o$
77bobo142boobbobo42boo100bo54boo86bo$65bo11boo93bobo47bo3bo41bo104bobo
45bobo47bo42bobo53bo$18bo47bo105boo92bobo48bo55boo4bo42boo48boo41boo
54boo$19bo44b3o106bo93boo8bobo38boo58boo42bo3bo44boo3boo92boo$17b3o
115bo141boo38boo52bo6bobo45bobo46boo49bo$oo48boo48boo31boo16bo48booboo
13b3o30boo25bo21boo49bobo18boo27boo23boo24boo23bo22boo3boo15bobbo25boo
3boo$obo48bo49bobbo29boo14bobobboo18bo24boobo16bo29bobbo46bo49bob4o15b
oo27bobbo46bobbo46bobobobbo12bobobb3o22bobbobobbo$3bo21bo25boboo46bobo
bo14boo29boo3bo8bo3bobobboo27bo15bo31b3o12bo34b3o15b3o28bo5bo44boobboo
6boo35b3o48booboboo13boo27booboboboo$4bo20bobo24bobbo46bobbo13bobo31b
3o9boo3boobbobo23b3o51boo10boo35bo17bo29b3obo47boobbo6boo88bobo46bobo$
3boo20boo26boo48boo16bo3bo27bo10bobo3bo29bo52bobbo8bobo36boo14bo32boo
48bobbo6bo36b3o51bobo46bobo$19b3o7bo44bo49boo127bobo49bo98boo44bobbo
51bo18b3o25booboo$21bo6boo43boo49bobo127bo50bobo16boo47b3o75bobbo71bo
48bobo$20bo7bobo42bobo230boo15bobo47bo78boo71bo49boo$212boo111bo3bo44b
o201bo$71bo141boo113boo$71boo139bo115bobo241b3o$70bobo58bo442bo$130boo
441bo$130bobo443boo$575boo$466b3o108bo$468bo$467bo9$310bo$125bo182bobo
63bo$120bobobbobo181boo62bo$120boo3boo246b3o86bo$121bo341boo$67bo394b
oo$68bo49bo$66b3o50boo9bo140bo96bo3bo100bo$17bo5bo94boo8boo37bobo57bob
o42boo3bo91bo3boo45bo50boo$oo16boobbo27boo48boo27boo19boo16boo31bo25b
oo22bo19boobboo23booboo17bo27boobo13b3obboo27boo15bobo29boobboo16boo
28boo$obo14boo3b3o25bobo47bobo48bobbo13bo10bo20boboboo14bo7bo21boboboo
20boo23bobobo15bo29bob3o45boboboo12boo29bo4bo11bobo31bobbo10bo17bo$3bo
49bo16bo31bo48bobobo21boo21bobobo16boo27bobobobo44bobobo11bo3b3o27bo4b
o46boboo44b4o13boo30bobbo12boo16boo$4bo49bo16bo30bobo45boobobo22boo21b
obbo15boo29boobobo12boo29booboo11bo35b3obo11bo34bo64bo31b3o12boo16boo$
5bo12boo35bo13b3o31bobo48bo19boo26boo51bo14boobboo40b3o35boo12boo31bob
o15bo4boo27boo56boo$4boo13boo35bo47boo67boo94bo3boo92bobo30bobo17boobb
obo25bobbo44b3o9boo19boo$18bo36boo118bo44boo53bo125bo17boo3bo28boo45bo
bbo7bo22boo$71boo148boo5b3o88bo181bobbo28bo$29bo42boo4boo82b3o55bo7bo
89boo182boo$28boo41bo6bobo83bo64bo88bobo142bo$28bobo47bo84bo299boo$
423b3o36bobo$425bo$424bo!

It contains 119 still and 3 periodic collisions.
Bob Shemyakin
Last edited by BobShemyakin on June 26th, 2014, 2:47 pm, edited 1 time in total.
BobShemyakin
 
Posts: 202
Joined: June 15th, 2014, 6:24 am

Re: 4 glider syntheses

Postby Sokwe » June 15th, 2014, 6:41 pm

Nice new syntheses! I presume the 3-glider bi-pond is new. If so, that's the first new 3-glider synthesis in quite some time!

The only other 4-glider synthesis I know of is this one (found by myself based on an earlier synthesis by Mark Niemiec and a predecessor by Lewis Patterson):
x = 29, y = 18, rule = B3/S23
26bo$26bobo$26b2o3$23bo$3b2o16b2o$3b2o17b2o$o$5o$4bo$2o$2o18b2o$19bobo
$21bo$26b3o$26bo$27bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1146
Joined: July 9th, 2009, 2:44 pm

Re: 4 glider syntheses

Postby BobShemyakin » June 18th, 2014, 11:57 am

I found another 4 glider collision
x = 13, y = -34, rule = S23/B3
121bobo$122boo$122bo$28bo$29boo$28boo$4bo$3bobo$3bobbo87bo31bobo$boob
oo87boboboo28boo$obo20bobo67bobobobo22b3obbo$obo21boo68boobobbo23bo$bo
22bo73bobo22bo$99bo29boo$26b3o99boo$28bo4boo95bo$27bo4boo$34bo25$120bo
$121boo$120boo$36bo$bboo30boo53boo$bobbo24bobo3boo52boo$bobobo24boo61b
oo$bbobobo23bo58b5obo26boo$3bobbo26boo54bo5bo25bobo$4boo28boo54bob3o
22boo4bo$28bo4bo57boo25boo6boo$28boo87bo7boo$27bobo97bo!

In addition there are three interesting collision
x = -1, y = -1, rule = B3/S23
99bo5bo34bo$99bo5bo33bo53bo$83bo5bo9boo3boo33b3o49bobo$bboo5boo7boo5b
oo56bo5bo85boo15boo$3boo3boo9boo3boo57boo3boo5b3obbooboobb3o64bobbo$o
bbobobobobbo3bobbobobobobbo17bo15bo34bobobobobobo67bobo$3obooboob3o3b
3obooboob3o18bo13bo17b3obbooboobb3o5boo3boo33boo31bo3boboo22bo$bobobob
obobo5bobobobobobo17b3o13b3o17bobobobobobo47bobo29bobo3bobbo20boo9bo$
bb3o3b3o7b3o3b3o56boo3boo9boo3boo23bo9bo31bobbo3bobo20bobo6boo$51bo5bo
39bobobobobobo19bobo39booboobo3bo31boo$bb3o3b3o7b3o3b3o24boo3boo25boo
3boo5b3obbooboobb3o18boo38bobbobbobo20boo$bobobobobobo5bobobobobobo22b
obo3bobo22bobobobobobo77bobobbobbo18bobo$3obooboob3o3b3obooboob3o50b3o
bbooboobb3o5boo3boo60bo3bobooboo21bo$obbobobobobbo3bobbobobobobbo70bo
5bo59bobo3bobbo$3boo3boo9boo3boo57boo3boo9bo5bo21b3o35bobbo3bobo$bboo
5boo7boo5boo56bo5bo39bo36boobo3bo$83bo5bo38bo39bobo$168bobbo$169boo!

Bob Shemyakin
BobShemyakin
 
Posts: 202
Joined: June 15th, 2014, 6:24 am

Re: 4 glider syntheses

Postby Sokwe » June 21st, 2014, 8:27 pm

Your 5-glider synthesis of cap on beehive can easily be modified to create a 4-glider synthesis:
x = 26, y = 14, rule = B3/S23
21bobo$15bo6b2o$13bobo6bo$14b2o$bo$obob2o16b2o$obobobo15bobo$bo2bobo
15bo$4b2o3$23b2o$23bobo$23bo!


Here are three reactions that might lead to 4-glider syntheses, but I was unable to find the necessary 3-glider syntheses for the starting reactions:
x = 99, y = 21, rule = B3/S23
96bo$46bo49bobo$45bo50b2o$45b3o3$41bo$5bo34bobo$6bo32bo3bo$5bo38bo$b2o
2bo36b3o$b6o$o4bo$77bo$76bobo$76bobo$11b2o$10b2o65bo$12bo63b3o$76bo2bo
$76b2o!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1146
Joined: July 9th, 2009, 2:44 pm

Re: 4 glider syntheses

Postby BobShemyakin » June 27th, 2014, 1:49 pm

Trying to repeat your 4-glider syntheses, I found 11 more:
x = -60, y = 31, rule = S23/B3
89bo$87boo$88boo$$17bo$18boo57bobbobo$17boo56bobobboo65bobo$76boo3bo
66boo$148bo$19bo3bo38bo$20bobbobo35bobo$oobboo12b3obboo35bobbo$obobbo
54bobo$3boo54boobobo$63boo55bo31bobo$78boo39boboboo28boo$79boo38bobobo
bo22b3obbo$12boo64bo41boobobbo23bo$13boo109bobo22bo$12bo112bo29boo$
154boo$156bo16$81bo$79boo$80boo$77bo$75bobo$76boo8bobo$86boo30boo$60b
oo25bo30boboboo$59bobbo57boboo$60b3o12bo43boo20bo$63boo10boo43boboo15b
obo$62bobbo8bobo43bobbo16boo$62bobo56boo$63bo74bo$138boo$137bobo6bo$
145bo$145b3o$137boo$136bobo$138bo18$147bo$148boo$147boo7bobo$94bo26bo
21boo11boo$60boo30boo27b3o20boo11bo$59bobbo24bobo3boo24boo3bo18bo$59bo
bobo24boo28bobobobo$60bobobo23bo28bobboboo$61bobbo26boo24bobo27boo$62b
oo28boo24bo27bobo$86bo4bo56bo$86boo$85bobo20$80bo$81bo$79b3o$$138bo$
136bobo$87bo49boo$79b3o5bobo57bobo$59booboo17bo5boo32boboo22boo$58bobo
bobo15bo38b3obobo18bo3bo$58bobobobo53bo3bobbo12bo5boo$59booboo54bobobo
bo13boo3bobo$119booboo13bobo$$80boo$79bobo$81bo16$81bo$81bobo65bo$81b
oo4bo62boo$86boo61boo$79bo6bobo$59bobo18boo36boo$58bob4o15boo37boo$58b
o5bo57boo$59b3obo54b5obo26boo$61boo55bo5bo25bobo$119bob3o22boo4bo$81b
3o36boo25boo6boo$81bo64bo7boo$82bo73bo!

The corrected table look basically the post.

I'm not sure what synthesis of your starting reactions necessarily 3-glider.
Bob Shemyakin
BobShemyakin
 
Posts: 202
Joined: June 15th, 2014, 6:24 am

Re: 4 glider syntheses

Postby mniemiec » June 29th, 2014, 1:09 am

BobShemyakin wrote:I corrected table synthesis Dean Hickerson. It added 33 collision.

Upon close examination, this appears to be the same list you sent out via e-mail two years ago, with many objects slightly re-arranged in position and phase, and transposed diagonally. The bi-pond has been removed (see below), and I see one additional collision that I have never seen before (and that I wouldn't know how to synthesize any other way). When did you find this one?
x = 42, y = 11, rule = B3/S23
27bo$25bobo11bo$26b2o11bobo$2b2ob2o32b2o$bobob2o24b2o$bobo28b2o$2obob
4o22bo$4b2o2bo$34bo$33b2o$33bobo!


BobShemyakin wrote:One collision is eliminated, because found 3-glider collision biPond.

This is remarkable! It's the first new three-glider synthesis found in almost two decades!

BobShemyakin wrote:In addition there are three interesting collision

There are many ways to create the two honeyfarms from four gliders. The most interesting is a collision with rotational symmetry that takes a long time before getting there. Moving the honeyfarms one space apart also works to produce two pulsars with even symmetry. The above-mentioned synthesis doesn't work, but other honeyfarm producers do, as do two gliders into two skewed blocks.

I know of two six-glider syntheses of the quad-loaf. One was found by Dave Buckingham; I'm not sure who found the other one. The second one involves the same 4-glider mechanism you show, except two additional gliders suppress the outer bi-loaves.
x = 95, y = 90, rule = B3/S23
36b3o3b3o7b3o3b3o$6bo$7bo26bo4bobo4bo3bo4bobo4bo$5b3o26bo4bobo4bo3bo4b
obo4bo$10bo23bo4bobo4bo3bo4bobo4bo$9bo26b3o3b3o7b3o3b3o$5b3ob3o$7bo28b
3o3b3o7b3o3b3o$6bo27bo4bobo4bo3bo4bobo4bo$9b3o22bo4bobo4bo3bo4bobo4bo$
9bo24bo4bobo4bo3bo4bobo4bo$10bo$36b3o3b3o7b3o3b3o8$36b3o3b3o8b3o3b3o$$
34bo4bobo4bo4bo4bobo4bo$34bo4bobo4bo4bo4bobo4bo$34bo4bobo4bo4bo4bobo4b
o$3bobboo6boo20b3o3b3o8b3o3b3o$bobobboobboobbobo$bboo6boobbo21b3o3b3o
8b3o3b3o$34bo4bobo4bo4bo4bobo4bo$34bo4bobo4bo4bo4bobo4bo$34bo4bobo4bo
4bo4bobo4bo$$36b3o3b3o8b3o3b3o8$36b3o3b3o$$34bo4bobo4bo5b3o3b3o$obo31b
o4bobo4bo$boo3bo27bo4bobo4bo3bo4bobo4bo$bo4bobo27b3o3b3o5bo4bobo4bo$6b
oo42bo4bobo4bo$36b3o3b3o7b3o3b3o$9boo23bo4bobo4bo$8bobo4bo18bo4bobo4bo
5b3o3b3o$10bo3boo18bo4bobo4bo3bo4bobo4bo$14bobo33bo4bobo4bo$36b3o3b3o
5bo4bobo4bo$$52b3o3b3o6$46bo$47bo$45b3o7$10boo$6bobboo19bo59bo$4boo5bo
17bobo57bobo$5boo21bobbo56bobbo$b3o23bobooboo53bobooboo$3bo13bo8bobobb
obbo21bo29bobobbobbo$bbo13bo8bobbobbobo20bobo10boo16bobbobbobo$16b3o7b
ooboobo22boo9boo18booboobo$13boo13bobbo36bo19bobbo$8bo5boo12bobo26bobo
28bobo$9boobbo15bo27boo30bo$8boo48bo$50boo$49bobo$51bo4$72boo$72bobo$
72bo!


BobShemyakin wrote:I found another 4 glider collision

As far as I know, these four are all new. The left two previously had 5-glider syntheses. The top right one was not explicitly synthesized, but could easily be built up (for considerably more than four gliders). The bottom right one is totally new; it might possibly have been buildable from 1-beacon, at considerable expense.
mniemiec
 
Posts: 833
Joined: June 1st, 2013, 12:00 am

Re: 4 glider syntheses

Postby Sokwe » June 29th, 2014, 2:28 am

BobShemyakin wrote:I'm not sure what synthesis of your starting reactions necessarily 3-glider.

I did not find any 4-glider syntheses for those objects. I was hoping that someone might, but it seems unlikely.
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1146
Joined: July 9th, 2009, 2:44 pm

Re: 4 glider syntheses

Postby BobShemyakin » June 29th, 2014, 12:11 pm

mniemiec wrote: ... this appears to be the same list you sent out via e-mail two years ago...
I see one additional collision that I have never seen before... When did you find this one?

Yes, this is the list sent out by mail in December 2012. Before its submission to the forum in June 2014, I decided to check it out. That's when I found the 3-glider collision for bi-pond and this additional collision.
Bob Shemyakin
BobShemyakin
 
Posts: 202
Joined: June 15th, 2014, 6:24 am

Re: 4 glider syntheses

Postby Sokwe » July 8th, 2014, 11:16 pm

Is this already known? It should have been found by hand years ago.
x = 37, y = 28, rule = B3/S23
11b2o3bo$10bobo2b2o$12bo2bobo22$34b3o$b2o31bo$obo32bo$2bo!

I wouldn't be surprised if there are other ways to modify the initial 2-glider collision to get different bookend-based still lifes.
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1146
Joined: July 9th, 2009, 2:44 pm

Re: 4 glider syntheses

Postby BobShemyakin » July 10th, 2014, 3:02 pm

Sokwe wrote: Is this already known? It should have been found by hand years ago.
CODE: SELECT ALL
x = 37, y = 28, rule = B3/S23
11b2o3bo$10bobo2b2o$12bo2bobo22$34b3o$b2o31bo$obo32bo$2bo!

Nice! I have never seen. With pleasure I correct table of 4-glider synthesis:
x = -10, y = -1, rule = S23/B3
71bo$72bo$70b3o$$74bo46bo$73bo48boo$73b3o45boo6bo$24bo104bobo$bo17bobo
bbobo23booboo45boo27boo$bobo16boobboo24bo3bo45boobo$obo17bo30b3o50bo$
bbo12boo84bo$16boo9b3o72boboo$15bo11bo23b3o50boo$28bo21bo3bo$50booboo
57boo$111bobo$69b3o41bo$71bo$70bo$116b3o$72b3o43bo$72bo44bo$73bo37$
424bo$369bo53bo$370boo51b3o86bo$25bo145bo197boo142boo$23boo147bo141bo
197boo$24boo144b3o142bo$21bo198bo92b3o102bo3bo100bo$19bobo199bo147bo
49bo3boo45bo50boo$oboo16boo28boo16bo31boo13bobbobo29boo48booboo14b3o
28boo49boo47booboo14boo29boobo13b3obboo27boo15bobo29boobboo16boo28boo$
oobo46bobo16boo29bobo10bobobboo31bobboo45bobo22bo23bobobboo43bobbo47bo
boo13bobo4bo25bob3o45boboboo12boo29bo4bo11bobo31bobbo10bo17bo$52bo15b
oo4bobo25bo11boo3bo31bobobbo17bo26bobo21bo25boo3bo19bo24b3o47bo22bo26b
o4bo46boboo44b4o13boo30bobbo12boo16boo$22boo28bobo19boo26bobo47bobboo
18boo23booboo20b3o25b3o19bo49bo26b3o19b3o25b3obo11bo34bo64bo31b3o12boo
16boo$23boobboo24boo20bo27bobo68boo77bo21b3o25b3o15bobbo30bo48boo12boo
31bobo15bo4boo27boo56boo$22bo3boo40b3o33bo63boo8bobo88bo33bobbo12bobo
bb3o27boo61bobo30bobo17boobbobo25bobbo44b3o9boo19boo$28bo41bo55boo41b
oo7boo38bo8boo41boo32boo14boo55boo72bo17boo3bo28boo45bobbo7bo22boo$69b
o56bobo39bo10bo38boo7bobo39boo105boo173bobbo28bo$118bo7bo90bobo7bo45bo
104bo173boo$75b3o40boo153boo9bo228bo$75bo41bobo152bobo8boo29boo197boo$
76bo206bobo29boo156b3o36bobo$314bo160bo$474bo14$528bobo$370bobo156boo$
371boo156bo$66bobo46bo113bobo139bo45bo60bo$19bobo45boo47bo112boo37bo
149boo57bo$20boo45bo46b3o6bo106bo35bobo3bo100bobo41boo58b3o$20bo102bob
o40bo100boo4boo98boo$123boo42boo44bobo56boo49bo50bo$oo22bo25boo48boo
48boo14boo3bo28booboo9boo34boo49bo19boo27booboo45boo20bo27boo49bo31bob
o14boo$obbo19bo26bobo47bobbo46bobo18bobo26boobobo8bo36bobbo21bobo21bob
o19boo27bobo46boo21bo26bobo47boboboo28boo14boboboo$bboo12boo5b3o25bobo
47boobo16b3o27boo18boo30bobo45bobobo15b3obboo22bobboboo19boo23bobbo49b
o16b3o28bo47bobobobo22b3obbo17boboo$17boo34bo19bobo28bo11b3obbo31boo
48boo11boo32boobobbo14bo5bo23bobobo19boo25bobo45b5o46booboo13boo30boob
obbo23bo19boo20bo$16bo10bo25boo18boo29boo12bo3bo30bobo61boo35boo16bo
29bobbo21bo23booboo44bo52bobbo11bobo34bobo22bo21boboo15bobo$26boo46bo
42bo36bo61bo86boo16boo52bo27boo16boo30bobbo13bo4bobo28bo29boo14bobbo
16boo$26bobo138boo153boo50boo27boo15boo32boo19boo58boo16boo$71boo93bob
o152bo52bobo40bo4bo53bo60bo32bo$70boo96bo157boo89boo53boo96boo$72bo
155boo95boo45bo43bobo52boo96bobo6bo$65boo161bobo96bo44boo99bo103bo$64b
obo161bo142bobo203b3o$66bo502boo$568bobo$173b3o394bo$173bo$174bo3$153b
o$154bo$152b3o4$122bo68bo$120bobo68bobo$121boo68boo329bo$77bo445bo$23b
o52bo49bo239bo154b3o$21boo53b3o45boo238bobo$22boo46bo54boo95bo142boo$
71bo150bobo47bobo$18bobo48b3o56boo87bobobboo49boobbobo249bo$19boo106b
oo89boo53bo3boo242b3o5bobo$oo17bo30boo48boo27bo20booboo45booboo13bo32b
oo25bo22boo16bo5bo26bo19bo28boo49boo13bobbobo28booboo17bo5boo22boo$obo
bo46bo48bo50bobo46boobo27bo18bobo20bo26bobbo13bobo3boo26bobo16boo28bo
bboboo19bo4bo19bobbo10bobobboo28bobobobo15bo28b3obo27bo$3boo46boboo17b
o28bobboo44bobbo49bo26boo18boboboo16boo26boobo14boo4boo24bobbo17boo28b
obobobo19boobbobo17boboo11boo3bo28bobobobo43bo4bo25boo$26boo24bobo18b
oo27bobbo44bobo50bobo24bobo18boobobo15bobo28boboo44booboo46boobobo18b
oo3boo17boo49booboo44boboboboo24boo$17bo7boo26bo18boo29boo46bo52boo49b
o11bo35bobbo46bobbo49bo44boboo96boobobbo$17boo8bo89b3o94boo51boo35boo
18boo27bobo16b3o76bobbo100boo29boo$16bobo56boo42bo93bobo50bobo54boo29b
o17bo66bo12boo68boo48boo11boo$74boo42bo96bo109bo47bo64boo81bobo47bobo
13bo$76bo361bobo24b3o6bo48bo49bo$315boo150bo5boo109boo$316boo62b3o83bo
6bobo107bobo$169boo3bo140bo64bo204bo$168bobobboo206bo$170bobbobo247bo$
423boo$422bobo11$25bo$23boo$16bo7boo41bo50bobo245bo$17bo50boo49boo64bo
bo136bo42bo$15b3o49boo50bo65boo86bo51boo38b3o$24boo103bobo54bo84boo51b
oo147bo96bo$23boo104boo141boo102bo54bo39bobo44bobo47bobo$25bo43bo3bo
56bo41bobo57bo94bobo44boo55bobo38boo45boo48boo$16bo53bobbobo97boo56bo
95boo46boo34bo19boo86bo59bobo$oo14boo32boobboo12b3obboo25boo48boo21bo
3bo22boo29b3o17booboo16boo27boo25bo23bo47boo10bo38boo48boo26bobo21bob
oo22boo$obboo10bobo32bobobbo44bobobboo43boboboo20boo23bo48bobobobo8boo
4boo27bobobboo44bobo46boboboo4b3o37bobbo23bobo20bobboboo22boo20b3obobo
18bo3bo$boobo48boo48bobbo6boo3bo33bobo21bobo22boboo15boo28bobobbo10boo
5bo26bo5bo44bobbo21b3o23bobobo44b3o23boo21bobbobobo14boo6bo19bo3bobbo
12bo5boo$104boo6bobobboo33bobo14boo31bobbo13bobo29boo12bo35b5o10b3o31b
oo3bo20bo24boobobbo46boo18bo3bo22boo3bo14boo27bobobobo13boo3bobo$114bo
bbobo33bo16boo31bobbo14bo3bo77bo14bo5boo30bo20bo27boo12bo31boobo17bobo
28b3o17bo27booboo13bobo$169bo34boo18boo91bo5boo32bo61boobboo26bobbo18b
oo28bo15bo$62boo160bobo98bo28b3o61bobobbobo26boo65boo$63boo213boo74bo
68bo59b3o32bobo$62bo166b3o46bobo202bo$229bo48bo205bo$230bo151boo$382bo
bo$382bo14$273bo$176bo96bobo$118bobo8bo44boo97boo197bo$75bo43boo7bo46b
oo296boo$73boo44bo8b3o192bo148boo48bo$74boo196b3o4b3o42bo105bo89bobo$
266boo6bo4bo42b3o45bo52bo5bo91boo$22bo48bo193bobo5bo6bo90boo51boo3b3o$
20boo44b3o3boo102boo89bo102boo51boo45boo57bobobbo36bo3bo$oo14bo4boo27b
oboo14bobboo28bo22boo24booboo11bobo7bobo22boo47boo3boo44boo47boo48boo
5boo41boo17bobobbobo25bo3boo22boobbobo13boo3boo12bobo3bobo$obo14boo31b
oobbo12bo32bobo16b3obbobo24bobobo11boobbobobbo23bobbo15bo30bobobobo43b
obobbo18bo25boboboo44bo7bo41bobo18bobboo25bobobobo22bo3boo14bobobobo
13boo3boo$bobo12boo35bobo45boo18bobbo26bobbo12bo3boo28boobo15bo31bobo
45bobobobo18bo26bobobo44b3ob3o44bo22bo24bobbobo46bobo$bboo50bo14b3o31b
oo15bo29boo20bo30bobo12b3o31bobo46boobobo16b3o25boobobo22bobo21bobo20b
oo22bobboo46boobbo46bobo$13bo55bo33bobo97bobo47bo51bo49bo23boo23bo20bo
bo22boobo51bobo42bobobobo13boo3boo$13boo6b3o46bo33bo99bo125b3o47bo46bo
bb3o20bo52boo42boo3boo12bobo3bobo$12bobo6bo198boo101boo5bo99bo22bobo
65boo48bo3bo$22bo191bo4bobo100boo7bo44boo53bo22boo13boo49bobo$214boo5b
o102bo52boo91boo50bo$213bobo160bo92bo$$225b3o$225bo$226bo4$372bo$372b
oo$371bobo4$436bo$435bo$435b3o$280bo$278boo$279boo239bobo$231bo193bo
95boo$62bo166boo140bobo52bo94bo$63boo165boo36bobbobo98boo50b3o140bo$
62boo53bo49bobo96bobobboo99bo150bobo42bo$68bo49bo49boo97boo3bo250boo
41b3o$66boo48b3o5bo43bo3bo204bobo45boo97bo$oo14bo33boo15boo31booboo19b
obo23boo20bobo27boo49bo47booboo20bo23boo3boo20boo22boobo19boo26boo46b
ooboo46boo$bo12bobobbobo28bobo47boobo20boo24bobo19boo28bobbo46bobo45bo
bobobo17boo24bobobobo21bo21bobboo21bo24bobbo45bo3bo45bobbo$o14boobboo
30bobo49bo11boo35bo47boobboo45bobbo45bobobobo11bobo4boo25bobo45boo49b
4o46b3o47boo$b3o16bo31bobo8boo38boo9bobo35b3o45bo27bo22bobo47bo3bo13b
oo30booboo46b3o$3bo49boo9boobboo46bo38bo46bo24boo21boobobo63bo50boo30b
obbo20b3o22boo28bo19b3o47b4o$63bo4bobo50bo32boo22bo22boo20boobbobo24b
oo113bobo31boo23bo21bobbo25bobo18bo3bo45bo4bo16bo$68bo51boo55boo43bobo
44boo100bo3bo51bo22bobbo26boobbobo13booboo46b4o15bobo$12b3o12boo91bobo
54bobo44bo45boo47bo3bo50boo75boo31boo34bo50boobbo$14bo12bobo239bo49boo
boo50bobo108bo34boo31boo20bobo$13bo13bo146boo39bo102bobobobo152boo40bo
bo31boo20boo$175boo38boo260bobo$174bo39bobo260bo45bo$522boo44bo$522bob
o43boo$567bobo$476bo$476boo$475bobo6$17bobo$18boo$18bo300bo$121bobo
196bo$122boo194b3o$122bo101bo297bobo$212bobo10boo249bo45boo$25bobobbo
182boo9boo45bobo47bobo7bo92bo51bobo44bo$26boobbobo35bo144bo57boo48boo
7boo92bobo49boo$26bo3boo34bobo158b3o42bo49bo7bobo84bo6boo93bobo53bo$
67boo55bobobbo99bo188boo54bo45boo52bo$77bo47boobbobo41bobo52bo147bo40b
oo56boo43bo53b3o$oo48booboo20boo23boo23bo3boo20boo21boo24bobbo46boo49b
oo16b3o28boo3bo20bobo21boobbo50boo17boo24booboo45boo$obo48bobo22boo22b
obo47bobbo20bo25b4o46bobboo47bobboo14bo28bobobobo19boo22bobbobo45boobb
obo42bo3bo46bo$3bobo44bobbo17boo28bobo46bobobo15bo33boo45bobobo22bo21b
obobobo13bo31bobobo15bo28b3obo15boo27bobbobobbo42b3o47boboo$4boo45boo
19boo28bobo46bobbo15boo4bobo23bobbo25boo17boobobo21boo21boobbo46booboo
17bo30bo11boo3bobo27bobobboo92booboo12bo$71bo31bobo46boo15bobo4boo8bo
15boo27bobo20bo18boobbobo24boo65b3o27b3o13boobbo30boo19boo28b3o44bo17b
oo$24b3o77bo72bo7boo44bo40bobo126bo14bo55boo28bo3bo44b4o12boo3bo$26bo
47boo109bobo86bo199bo27booboo47bo17boo$25bo48bobo449bo24b3o17bobo$74bo
48b3o155boo84boo3bo98boo52boo24bo$125bo154boo84bobobboo97bobo52bobo$
124bo157bo85bobbobo98bo$523bo51b3o$523boo50bo$522bobo51bo15$121bo$119b
oo$82bo37boo$80boo28bo470bo$77bo3boo25bobo471boo$76boo31boo10b3o247bo
209boo$17bobo6bo44bobobbobo42bo163bo83bobo45bo9bo$oo16boo6bobo21boo20b
oo26boo20bo27boo48boo11bo11bo25boo30boo15boobboo13bobobbobo23boo18boo
bbobo23boo16boo7bobo21boo51boo44boo$bo16bo3boobboo23bo20bo28bo48bobo
47bobo8bobo9boo25bobbo24bobo3boo14bo4bo14boobboo24bobo21boo24boboboo
11boo8boo21bobbo49bobbo21bobo19boo$bobo17bobo27bobo47boboo46boo49bo9b
oo10boo24bobobo24boo20b4o15bo4bo26bo22bo26bobobo44b3o49boboo21boo24boo
$bbobo18bo28bobo22boo23bobbo47boo15bo31b3o15boo29bobobo23bo71booboo13b
oo31bobbo59boo5b3o26boobbo23bo20b5obo26boo$3bo49bobo20boo25bobo47bobo
10bobbo35bo13bobo30bobbo26boo17boo17bo33bobo13boo28bobo50b3o8bobo5bo
27bo4bo20bo23bo5bo25bobo$25boo27bo23bo25bo49boo8bobobb3o32bobo14bo31b
oo28boo16boo17boo32bobo12bo5b3o22boo11bo38bo3bo9bo6bo26bob3o19bobo24bo
b3o22boo4bo$24boo139boo38bo71bo4bo36bobo33bo19bo37boo37booboo44boo22b
oo25boo25boo6boo$26bo200boo48boo45boo50bo35bobobboo57bo101bo7boo$112b
oo113bobo46bobo45bobo90bobo55boo58b3o50bo$111bobo113bo96bo92bo57bobo
57bo$113bo57b3o346b3o13bo$171bo301bo48bo$163b3o6bo300boo46bo$165bo306b
obo$164bo11$517bo$515bobo$516boo$272bo$77bo143bobobboo42boo$77bobo142b
oobbobo42boo$65bo11boo93bobo47bo3bo41bo$18bo47bo105boo92bobo48bo99bo
99bobbobo57bo$19bo44b3o106bo93boo8bobo38boo98boo49bo45bobobboo59boo$
17b3o115bo141boo38boo98boo51bo34bo10boo3bo58boo7bobo$oo48boo48boo31boo
16bo48booboo13b3o30boo25bo21boo67boo3bo25boo27bo21boo15b3o29boobbobo
47bo21boo11boo$obo48bo49bobbo29boo14bobobboo18bo24boobo16bo29bobbo46bo
51boo14bobobboo25bo26boo21bobbo46bo3bobbo46b3o20boo11bo$3bo21bo25boboo
46bobobo14boo29boo3bo8bo3bobobboo27bo15bo31b3o12bo34b3o15b3o28bobbo16b
obbobo25b3oboo12b3o6boo21b3o47b3oboo45boo3bo18bo$4bo20bobo24bobbo46bo
bbo13bobo31b3o9boo3boobbobo23b3o51boo10boo35bo17bo28b3o50bobobo13bo49b
obo29bo47bobobobo$3boo20boo26boo48boo16bo3bo27bo10bobo3bo29bo52bobbo8b
obo36boo14bo84bobo12bo30b3o17boo31b3o43bobboboo$19b3o7bo44bo49boo127bo
bo49bo44b3o52boo43bo3bo12boo3bo4boo27bo43bobo27boo$21bo6boo43boo49bobo
127bo50bobo16boo24bobbo96booboo13boo6boo73bo27bobo$20bo7bobo42bobo230b
oo15bobo25bobo113bo10bo102bo$212boo111bo3bo22bo73b3o91boo$71bo141boo
113boo96bo94boo$71boo139bo115bobo96bo92bo$70bobo58bo$130boo$130bobo11$
392b3o$359boo31bo$310bo47bobo32bo$125bo182bobo49bo113bo$120bobobbobo
181boo117bo44bo$120boo3boo301bobo42b3o$121bo251bo54boo86bo$67bo305bobo
45bobo47bo42bobo53bo$68bo49bo254boo4bo42boo48boo41boo54boo$66b3o50boo
9bo140bo106boo42bo3bo44boo3boo92boo$17bo5bo94boo8boo37bobo57bobo42boo
3bo93bo6bobo45bobo46boo49bo$oo16boobbo27boo48boo27boo19boo16boo31bo25b
oo22bo19boobboo23booboo17bo28bobo18boo27boo23boo24boo23bo22boo3boo15bo
bbo25boo3boo$obo14boo3b3o25bobo47bobo48bobbo13bo10bo20boboboo14bo7bo
21boboboo20boo23bobobo15bo28bob4o15boo27bobbo46bobbo46bobobobbo12bobo
bb3o22bobbobobbo$3bo49bo16bo31bo48bobobo21boo21bobobo16boo27bobobobo
44bobobo11bo3b3o26bo5bo44boobboo6boo35b3o48booboboo13boo27booboboboo$
4bo49bo16bo30bobo45boobobo22boo21bobbo15boo29boobobo12boo29booboo11bo
34b3obo47boobbo6boo88bobo46bobo$5bo12boo35bo13b3o31bobo48bo19boo26boo
51bo14boobboo40b3o34boo48bobbo6bo36b3o51bobo46bobo$4boo13boo35bo47boo
67boo94bo3boo129boo44bobbo51bo18b3o25booboo$18bo36boo118bo44boo53bo97b
3o75bobbo71bo48bobo$71boo148boo5b3o88bo53bo78boo71bo49boo$29bo42boo4b
oo82b3o55bo7bo89boo54bo201bo$28boo41bo6bobo83bo64bo88bobo$28bobo47bo
84bo408b3o$574bo$573bo$576boo$575boo$466b3o108bo$468bo$467bo!

Sokwe wrote:Your 5-glider synthesis...

Here is my table 5-glider synthesis (92 still +5 oscillators):
x = 20, y = -65, rule = S S23/B3
106bo$106bobo$106boo5$101bo$99boo$100boo85bo$186bo116bo$186b3o113bo$
101b3o131bo66b3o$101bo60bo17bo52boo$102bo60bo16boo45bo6boo8bo$5boo65b
oo19bo46boo4boo13b3o15bobo29boo12bobo14boo40bo$5bo14boo3bo45bobbo16bob
o46bobobbobo62bobbo12boo10bo4boo38bobo$6bobo10boboboo46bobo18boo48bobb
o36boo26bobobbo22bobo$9bo11bobboo44boobobbo63bobobbobo34bobo26bo26boo
41bo3boo$8boo64boobo10boo50boo4boo34bo29boobo26bo37bo5bo$77bo9bobo58b
oo15b3o46bo26boo38bobo$23b3o48b3o12bo58bobo16bo73bobo39boo18bo$23bo50b
o74bo16bo124boo9boo$24bo265bobo9bobo$292bo$299bo$299boo$15boo281bobo7b
o$16boo289boo$15bo20bo270bobo$35boo$35bobo35$123bo$122bo$122b3o6$20bob
o$20boo$21bo$385bobo205bo$385boo205bo$33bo352bo205b3o$31boo$32boo62bob
o67bo211bobo296bo$97boo7bo57bobo64bobo62bo10bobo69boo201bo92boo$97bo6b
oo59boobbobo59boo64boo8boo70bo192bobo8bo67bo24boo$101bo3boo51bobo8boo
61bo63boo6bo3bo125bobo136boo6b3o68boo$oo68boo17b3o8boo39boo16boo9bo39b
oo68boo3boo15bobo46boo67boo3bo9boo54booboo64boo11bo56boo19boo$bobboo
64bobo18bo8bobo37bobo16bo50bobo67bobobobo16boo45bobbo66bobobobo8bo8bo
45bobobobo63bobo67bobo35b3o$bobobo7b3o56bo17bo49bo70bobo10bobo3b3o49bo
bo65boboo24bo43bobobo17bobo43bobobobbo11boo3boo46bobboo12boo51bobboo
33bo$bbo12bo11bo44boboo65bobboo66boo11boo3bo51bobo66bobboo23boo41bobbo
18boo45bo3bobo12boobbobo44boobobbo12boo48bobobobo32bo$14bo10boo46bobo
66bobbo68boo9bo5bo51bo9boo58bobbo21boo41boo73bo12bo4bo47bobboo12bo50b
oobbo37bo$26boo46bo68boo69bobo77boo58boo76bo88boo37bobo71bobo18boo14b
oo$215bo77bo6b3o78boo50boo85boo38boo73boo19boo13bobo$156boo5boo137bo
79boo48boo88bo66b3o45boo16bo$25b3o127bobo5bobo135bo79bo136bo70bo47bobo
$25bo131bo5bo353boo71bo47bo$26bo407b3o80bobo$386boo48bo$227boo156boo
48bo$226bobo158bo$228bo12b3o276boo$241bo204boo72bobo$242bo203bobo71bo$
446bo$124bo$123bo$123b3o$89bobo$90boo$90bo$$322bo$322bobo61bo$322boo
61bo$385b3o$$165bo$166bo207boo$164b3o207bobo$22bo347bo3bo$21bo348boo
148bo56bo99bo$21b3o152bobo44bobo143bobo64bo81boo58boo95boo$176boo46boo
211bo81boo56boo97boo$13bo163bo46bo210b3o63bo85bo$14boo361boo123bo82boo
64bo$13boo362bobo68bo51b3o83boo64boo14b3o$bo68boo68boo68booboo15bo49b
oo69boo12bo11bo42boo24boo42boo20bo3bo43booboobboo61boo3boo14boo17bo$ob
o67bobbo66bobo23boo43bobobo15bo48bobbobboo62bobobboo8boo53bobo15boo7b
oo41bobo17bobobbo44boobobobbo61bobobobo32bo$bobo68boo68bo22bobo43bobbo
bo12b3o50boo3bo62bobobobo7bobo55bobbo11bobo52bobboo14boobb3o45boboo17b
3o45bobo37bo$bbobo12bo4boo50boo27bobbobo33boboo21bo9boo31boo3bo68b3o
12bo51bobbo67bobobo12bo52bobobbo62b3o23bo43bobobobo34boo$3bobo12boobbo
bo49bobo24bobobboo35bobbo30bobo55boo47bo15boo52boo65boobobo64boobobbo
62bo24bo44boo3boo34bobo$4bo12boo3bo52bo26boo3bo37boo26bo3bo57bobo61boo
124bo69boo140boo16boo$173boo60bo401bobo16boo$172bobo262b3o5boo126boo
20boo41bo16bo$17boo280b3o137bo4boo74boo50bobo19boo$16bobo282bo136bo7bo
73bobo51bo21bo$18bo205bo75bo219bo$224boo$223bobo$238b3o$238bo$239bo$
320boo$283boo34boo$284boo35bo$283bo$81boo$80bobo$82bo272bo$353bobo$
354boo$29bo$29bobo$29boo$8bo$9bo360bobo141bo$7b3o361boo139bobo$371bo
141boo$$86bo15bobo$87boo13boo$86boo15bo53bobo420bo$158boo369bobo49bo$
93bo64bo138bo5bo149bo76boo47b3o$91bobo72bo131boo4boo78bo67bo77bo$92boo
73bo129boo4boo77boo59boobb3obb3o$oo68booboo65boo3bo19b3o42boo68boo70b
oo29boo36boo19bobobbo43boo68boo27boo$bobbo66bobobo65bobbobo9boobbobo
48bobboo64boboboo65bob3o64bobobbo18bo3bo41bobbo66bobbo26bobo$bobobo65b
obbo16b3o47bobobo9bobo3boo48bobobbo65bobobo63bo5bo63bobobobo64bobobboo
63bobobboo22bo$bbobo17bo49boo19bo48bobo12bo3bo4bo43boobobo8bobobbobo
50bobbo17bo3boo42b5o28b3o34boobobbo64boobobbo35bo27bo4bo$3bo19boo67bo
50bo22boo46bo10boobboo52boo9boo7boobbobo43bo30bo40boo68bobo32bobbo29b
4o$22boo141bobo57bo4bo64boo5bobobbo61b3o13bo109boo31bobobb3o37bo$294bo
76bo64boo91boo32boo8boo8boobb3o$370bo66boo9b3o112boo7bobo7bobobbo$22b
3o76b3o332bo11bo135bo3bo$24bo4bo71bo347bo$23bo4boo72bo$28bobo$232bo$
231boo265boo$231bobo263bobo$224bo274bo$224boo$223bobo$254boo$254bobo$
23bobo228bo$24boo$24bo4$452bo$451bo$289bo161b3o$290bo$288b3o12bobo$
303boo$304bo56bobo$362boo213bo$94bobo265bo215boo8bo$95boo202bo3b3o271b
oo8bo$95bo145bo56bo4bo208bo74b3o$169bo69boo57b3o3bo138bo3bo58bo4bo$98b
obo68bobo59bobo6boo199bobobbo57boo5b3o$99boo59bo8boo60boo209boobb3o56b
oo$ooboo65boo27bo41boo18bo48boo20bo47boboo66boo69boobo66bo75bo$oboobbo
64bo68bobo16b3o48boboboo64boobo66bo69bobb4o63bobo68bo3b3o$5boo27bo36bo
boo24bo41bo23bo46bobobo12boo52boboo13bo50b3o66boo5bo62bobbo9b3o54bobob
o14bo$32bobo4bo30boobobo23boo41b3o18boo47bobbo14boo51bobbo12boo52bo71b
obo22bo40b3o11bo54boboboboo12boo$33boobboo35bo23bobo44bo13boo3boo45boo
16bo54boo13bobo51boboo68boo22boo53bo56boobobbo11boo3bo$38boo104bobo11b
obo193bobbo11b3obboo73bobo39b3o71boo16boo8boo$94boo10b3o36bo14bo194boo
14bobbobo113bobbo89bobo7bobo$93bobo10bo257boo4bo3bo115bobo100bo$95bo
11bo60b3o192bobo125bo$168bo53b3o9boo129bo$169bo54bo9bobo$223bo10bo269b
o$25boo359b3o115boo$26boo358bo116bobo15bo$25bo361bo132boo$455boo63bobo
$455bobo$455bo$52boo$51boo$53bo3$426bobo$427boo$427bo$$106bo$106bobo$
16bobo87boo$17boo442bo$17bo442bo$169bobo288b3o$169boo336bobo$170bo57bo
10bo62bo205boo70bo$229boo7bo61boo79bo126bo72bo$161bobo64boo8b3o60boo
60bobo14bo198b3o$95boo64boo201boo14b3o58bo80bo$25bo68bobo65bo201bo77b
oo77bo69bo$20bobobbobo68bo3bo205bo134boo3bo74b3o65boo$oo19boobboo43boo
27boo39boo27bobo38boo3bo12bo51boobo11bo9bo44boobboo64bobooboo19boo45bo
69boo25boo$obboo16bo48bobboo24bobo38bobo26boo39bobobobo11boo51bob3o7bo
bo9b3o42bobobbo64boobobobo17bobo44bobo68bobo$bboobbo65boobo66bo23bo3bo
41boboo11bobo51bo4bo7boo56boo73bo63bobbo69bobo$5boo68bo66bobo20boo45bo
67boo3boo11boo52bo71b3o27boo34bo3boo17bo51bobo12bo$75boo66bobo19bobo
43boo84bobo8boo40bobo21boo48bo29bobo34b3obbo14bobo49bobobo13bo$86b3o
13b3o39bobo91bo60bo7boo41boo22bobo77bo38bobbo15boo47b3oboo12b3o12boo$
88bo13bo42bo84b3o4boo70bo60bo3bo119boo20b3o41bo32boo$23b3o61bo15bo128b
o4bobo130boo144bo43boo33bo$25bo6bo198bo137bobo145bo59boo$24bo6boo135b
3o407boo$31bobo134bo408bo$169bo194boo$365boo$364bo$507b3o$509bo$508bo
16$456bo$454boo$231bo223boo142bo$232bo89bo274boo$230b3o75bo11boo276boo
$87bo78bo75bo66bo11boo115bo153boo$88boo3bobo6bo64bo55bo18bobo62b3o61bo
bo65bo75bo76bobo$87boo5boo4boo63b3o56bo17boo73bo53boo64b3o6bo69boo70b
oobbo$oo68boo22bo6boo37boo68booboo7b3o5boo48boobboo29boo33boo20bo48boo
3boo18bobo42bo23boo44boo24bobo$obo24bobo40bo4boo63bobo67boobo15bobo48b
obobbo30boo32bobo16bo50bobbobobo18boo42bobo68bobo25bo$bbo24boo42b3obbo
12b3o50bo70bo17bo50b3o66boo14bobo51bobobo16bo47bobbo69bo$bboboo11boo9b
o44boo16bo50boboo67bobo65bo71boo13boo52bobbo14bobo48bobo69boo$3bobo4bo
bo5boo70bo52bobbo26bo40bobo64boo34b3o33bobo69boo14boo49booboo19bo43boo
bo$11boo4bo126boo26bo42bo21bo79bo38bo137bobbo19boo41boobo$11bo12bo75b
oo70b3o61boo80bo38bo136bobo12boo5boo3bo11boo28boboo$14boo7boo74boo135b
obo117boo137bo12bobo9boo11bobo27bobbo$13bobo7bobo75bo262boo144bo9bobo
10bo30boo$15bo349boo$169boo193bo223bo$168bobo283boo132boo$170bo211boo
70bobo130bobo$159bo24boo195boo71bo$159boo22boo198bo$158bobo24bo177boo$
364boo$363bo$303b3o$305bo$304bo3$564boo$565boo$564bo$116bo$115bo111bo$
88bobo24b3o110boo$89boo136boo15bo$89bo153bo$243b3o$439bo$297bo142boo$
154bo143bo140boo$155boo84bo54b3o84bo$15bo138boo84bo142bobo60bobo70bobo
$16bo148bo74b3o66bo73boo61boo71boo71bo$14b3o149boo136boboboo137bo72bo
69boo$165boo138boobobo62boobb3o130boo4bo74boo$oo68boobboo64boo3boo63b
oo68boo23bo44bo21bobobbo43boo21boo45boo16bobobboo49bo13bo$obboo65bobo
bbo64bo4bo64bobo67bo69b3o21bo3bo41bobbo11b3o7boo43bobbo17bo3boo44boobo
bo13boo$boobbo8bobo55bobo66b3obo20b3o43bo68b3oboo8bo57bobboo63bobobboo
9bo6bo45bobbo66bobobobo12boo$4boo9boo55boo11bobbobo52boo21bo45boboo18b
o48bobo9boo4bo50boo3bo64boobobo8bo54boo27boo38boboboboboo$15bo67bobobb
oo77bo45bobbo17bobo46bobo8bobo4boo51b3o68bo67b3o24bobo38bo3booboo$18bo
65boo3bo66b3o55bobo17boo48bo15bobo51bo70boo27b3o36bobbo23bo64bobo$18b
oo138bo56bo238bo39bobo88boo$17bobo137bo74bo222bo39bo13b3o69boo3bo$28b
3o202boo129boo15boo128bo70boo$28bo132boo69boo131boo13boo128bo70bo$29bo
132boo200bo17bo$161bo$$10bo$10boo$9bobo100boo461boo$112bobo461boo$112b
o462bo13$296bo$297boo10bo$296boo10bo$308b3o$89bobo146bobo350bobo$89boo
65bo81boo266bo74bo9boo$15bo74bo66bo81bo213bo53boo73boo8bo$13bobo139b3o
72bobo218boo53boo66bobo4boo$14boo215boo219boo121boo$231bo68bo142bo131b
o$oboo13bo53bo68boo68boo3boo63boobo17boo10b3o34boo68bo21bo52boo63boo6b
o$oobbo13boo50bobo67bo5boo62bobobbo64bob4o14boo3bo7bo36bobboo65b3o19b
3o49bobbo62bobo3b3o12bo$3bobo11boo52bobo10b3o4bo49b3obobo15bobo45bobob
o8bobo3b3o7boo44bo17boo8bo36bobobo67boboo63boobboboo21bo42bobbo15boo$
4boo66boo12bo4bobo49boo13bo5boo46bobo10boo3bo9bobo41bobo17bobo43boobo
bbo65boobobo62bobobo22boo41bobobobo13bobo$10boo8boo52boo9bo5boo65boo4b
o48bo11bo5bo8bo43boo68boo69bobo17boo44bobbo19bo3boo40boobbobo$11boo8b
oo51bobo80bobo7bo205bo51boo17boo48boo18boo48boo$10bo9bo54bo90bo200bo3b
oo73bo66bobo$92boo72b3o196bobo4boo129boo18bo65b3o$24boo61b3obbobo271b
oo136boo16boo65bo$24bobo62bobbo80bo329bo18bobo65bo$24bo63bo83boo275boo
$172bobo274bobo$449bo$436b3o$438bo$437bo$376boo$375boo$377bo$$361bo$
361boo$360bobo6$359boo$360boo$248bo110bo$246boo56bo293bo$228bo18boo55b
obo132bo80bobo73boo$229boo73boo131bobo69bo10boo61bo13boo$155bo16bo55b
oo202bobo3boo67bobo11bo62bo$156bo14bo124bobo134boo73boo72b3o$102bo51b
3o14b3o123boo83bobo48bo$103bo125b3o65bo72bo11boo$101b3o60bo64bo71bo69b
oo10bo77bo$94b3o67bobo63bo71bo67boo87boo$oo19bo51boo21bo3b3o37boo22boo
44boo68boo18b3o47boo69boo24b3o10boo33bo66boo$obo17bo49bo3bo20bo4bo39bo
boboo64bobbo26b3o37bobboo65bobo20bo46bobbo25bo44bobo64bobo$bobo13bobb
3o5bobo39b4o27bo40bobo66boobo25bo41boobo66bo20boo46bobbo23bo42bobbobo
14bo48bo$bbobo10bobo10boo111bobbo68bobo14boo9bo43bo11bo53boobo17bobo
47b3o26bo38boboboboo14boo47b5o$4bo11boo11bo42boo68boo16b3o50bobbo12bob
o50b3o13boo53bobo94boo39boobobbo13boo3bo46bobbo$4boo66boo88bo51boo15bo
50bo14boo54bobbo8boo57b3o23bobo42boo18boo49bo18boo6boo$161bo9boo181boo
8bobo10boo44bobbo88bobo47booboo15bobo5bobo$17b3o151bobo123boo67bo9boo
45boo141bobbo11bo3bo7bo$19bo151bo124boo80bo125b3o59bobo12boo$18bo7b3o
269bo207bo60bo12bobo$26bo478bo$27bo6$79boo$78bobo$80bo$107boo$107bobo$
107bo4$10bo$8bobo145bo$9boo15bo130boo63bo$25bo130boo65boo$25b3o194boo$
169bo$168bo$168b3o$436bobo$20bo416boo$21bo65bo301bo47bo$19b3o63bobo76b
o3bo141bo77bo118bo77bo$86boo74bobobbo142bobo63bo11b3o52bo64boo76boo$
25boo136boobb3o140boo51bo12bobo65bo62boo59bo16boo$oo23bobo42boo69bo69b
oo22bo45boo67boo12boo4bo5boo42boo20b3o45boo68boo5bobo$obo22bo44bobo67b
obo67bobbo19bobo4bo39bobboboo63bobo10boo6boo47boboboo64bobbo66bobo4boo
$bbo70bo67boboboo64boobo19boobboo41boo3bo16boo4bo42bobboo13boo50bobobo
64b5o13b3o50bobboo34bobo$bbobo5b3o61bo19bo48bobo67bobo23boo42b3o16bobo
bboo42boobobo64boobobbo15boo51bo14bo9bobo36bobobobo34boo$3bobo6bo62bo
7bobo7bo49bobo67bobbo66bo20bo3boo44bo70bobo16boo47boobo13bo10boo37boo
bbo16boo19bo$4boo5bo64bo7boo7b3o48bo69boo138boo70bo16bo48bobbo26bo41bo
bo15boo15bo$77bo6bo407boo71boo14bo18bo$78bo158boo280boo77b3o$77boo13b
oo142bobo279boo$92bobo143bo8bobo183boo4b3o78bo$92bo154boo63b3o117bobo
6bo164boo$100b3o145bo63bo121bo5bo164boo$100bo212bo69b3o119boo100bo$
101bo281bo122boo$384bo120bo$153b3o$155bo144boo$154bo146boo$300bo!

Bob Shemyakin
BobShemyakin
 
Posts: 202
Joined: June 15th, 2014, 6:24 am

Re: 4 glider syntheses

Postby BobShemyakin » July 24th, 2014, 6:00 pm

Found another object 4 glider synthesis:
x = -135, y = -71, rule = S23/B3
21bo$22boo$21boo4$oo$bo$bobo16boo$bbobo16boo$3bobo14bo3boo$4bobo17bobo
$5boo17bo5$32b3o$32bo$33bo!

Now my 4 glider synthesis is as follows:
x = -1, y = -1, rule = S23/B3
71bo$72bo$70b3o$$74bo46bo$73bo48boo$73b3o45boo6bo$24bo104bobo$bo17bobo
bbobo23booboo45boo27boo$bobo16boobboo24bo3bo45boobo$obo17bo30b3o50bo$
bbo12boo84bo$16boo9b3o72boboo$15bo11bo23b3o50boo$28bo21bo3bo$50booboo
57boo$111bobo$69b3o41bo$71bo$70bo$116b3o$72b3o43bo$72bo44bo$73bo34$
443b3o$410boo31bo$361bo47bobo32bo$359bobo49bo113bo$360boo117bo44bo$
479bobo42b3o$25bo145bo252bo54boo86bo$23boo147bo251bobo45bobo47bo42bobo
53bo$24boo144b3o251boo4bo42boo48boo41boo54boo$21bo198bo101bo106boo42bo
3bo44boo3boo92boo$19bobo199bo101boo3bo93bo6bobo45bobo46boo49bo$oboo16b
oo28boo16bo31boo13bobbobo29boo48booboo14b3o28boo50bo19boobboo23booboo
17bo28bobo18boo27boo23boo24boo23bo22boo3boo15bobbo25boo3boo$oobo46bobo
16boo29bobo10bobobboo31bobboo45bobo22bo23bobobboo44boboboo20boo23bobob
o15bo28bob4o15boo27bobbo46bobbo46bobobobbo12bobobb3o22bobbobobbo$52bo
15boo4bobo25bo11boo3bo31bobobbo17bo26bobo21bo25boo3bo19bo24bobobobo44b
obobo11bo3b3o26bo5bo44boobboo6boo35b3o48booboboo13boo27booboboboo$22b
oo28bobo19boo26bobo47bobboo18boo23booboo20b3o25b3o19bo26boobobo12boo
29booboo11bo34b3obo47boobbo6boo88bobo46bobo$23boobboo24boo20bo27bobo
68boo77bo21b3o28bo14boobboo40b3o34boo48bobbo6bo36b3o51bobo46bobo$22bo
3boo40b3o33bo63boo8bobo88bo50bo3boo129boo44bobbo51bo18b3o25booboo$28bo
41bo55boo41boo7boo38bo8boo41boo54bo97b3o75bobbo71bo48bobo$69bo56bobo
39bo10bo38boo7bobo39boo99bo53bo78boo71bo49boo$118bo7bo90bobo7bo45bo95b
oo54bo201bo$75b3o40boo153boo9bo84bobo$75bo41bobo152bobo8boo338b3o$76bo
206bobo339bo$624bo$627boo$626boo$517b3o108bo$519bo$518bo10$424bo$369bo
53bo$370boo51b3o86bo$66bobo46bo113bobo137boo142boo$19bobo45boo47bo112b
oo37bo45bo197boo$20boo45bo46b3o6bo106bo35bobo3bo42bo$20bo102bobo40bo
100boo4boo38b3o102bo3bo100bo$123boo42boo44bobo56boo95bo49bo3boo45bo50b
oo$oo22bo25boo48boo48boo14boo3bo28booboo9boo34boo49boo47booboo14boo29b
oobo13b3obboo27boo15bobo29boobboo16boo28boo$obbo19bo26bobo47bobbo46bob
o18bobo26boobobo8bo36bobbo21bobo21bobbo47boboo13bobo4bo25bob3o45bobob
oo12boo29bo4bo11bobo31bobbo10bo17bo$bboo12boo5b3o25bobo47boobo16b3o27b
oo18boo30bobo45bobobo15b3obboo23b3o47bo22bo26bo4bo46boboo44b4o13boo30b
obbo12boo16boo$17boo34bo19bobo28bo11b3obbo31boo48boo11boo32boobobbo14b
o5bo47bo26b3o19b3o25b3obo11bo34bo64bo31b3o12boo16boo$16bo10bo25boo18b
oo29boo12bo3bo30bobo61boo35boo16bo30b3o15bobbo30bo48boo12boo31bobo15bo
4boo27boo56boo$26boo46bo42bo36bo61bo86bobbo12bobobb3o27boo61bobo30bobo
17boobbobo25bobbo44b3o9boo19boo$26bobo138boo135boo14boo55boo72bo17boo
3bo28boo45bobbo7bo22boo$71boo93bobo207boo173bobbo28bo$70boo96bo209bo
173boo$72bo155boo283bo$65boo161bobo83boo197boo$64bobo161bo86boo156b3o
36bobo$66bo247bo160bo$474bo$173b3o$173bo$174bo3$153bo$154bo$152b3o4$
122bo68bo$120bobo68bobo$121boo68boo335bobo$77bo292bobo156boo$23bo52bo
49bo244boo156bo$21boo53b3o45boo245bo45bo60bo$22boo46bo54boo95bo195boo
57bo$71bo150bobo47bobo98bobo41boo58b3o$18bobo48b3o56boo87bobobboo49boo
bbobo93boo$19boo106boo89boo53bo3boo44bo50bo$oo17bo30boo48boo27bo20boob
oo45booboo13bo32boo25bo22bo19boo27booboo45boo20bo27boo49bo31bobo14boo$
obobo46bo48bo50bobo46boobo27bo18bobo20bo26bobo19boo27bobo46boo21bo26bo
bo47boboboo28boo14boboboo$3boo46boboo17bo28bobboo44bobbo49bo26boo18bob
oboo16boo26bobboboo19boo23bobbo49bo16b3o28bo47bobobobo22b3obbo17boboo$
26boo24bobo18boo27bobbo44bobo50bobo24bobo18boobobo15bobo26bobobo19boo
25bobo45b5o46booboo13boo30boobobbo23bo19boo20bo$17bo7boo26bo18boo29boo
46bo52boo49bo11bo34bobbo21bo23booboo44bo52bobbo11bobo34bobo22bo21boboo
15bobo$17boo8bo89b3o94boo51boo34boo16boo52bo27boo16boo30bobbo13bo4bobo
28bo29boo14bobbo16boo$16bobo56boo42bo93bobo50bobo53boo50boo27boo15boo
32boo19boo58boo16boo$74boo42bo96bo105bo52bobo40bo4bo53bo60bo32bo$76bo
249boo89boo53boo96boo$325boo45bo43bobo52boo96bobo6bo$327bo44boo99bo
103bo$169boo3bo196bobo203b3o$168bobobboo394boo$170bobbobo392bobo$570bo
12$25bo$23boo497bo$16bo7boo41bo50bobo402bo$17bo50boo49boo64bobo178bo
154b3o$15b3o49boo50bo65boo86bo90bobo$24boo103bobo54bo84boo92boo$23boo
104boo141boo$25bo43bo3bo56bo41bobo57bo296bo$16bo53bobbobo97boo56bo289b
3o5bobo$oo14boo32boobboo12b3obboo25boo48boo21bo3bo22boo29b3o17booboo
16boo27boo16bo5bo26bo19bo28boo49boo13bobbobo28booboo17bo5boo22boo$obb
oo10bobo32bobobbo44bobobboo43boboboo20boo23bo48bobobobo8boo4boo27bobbo
13bobo3boo26bobo16boo28bobboboo19bo4bo19bobbo10bobobboo28bobobobo15bo
28b3obo27bo$boobo48boo48bobbo6boo3bo33bobo21bobo22boboo15boo28bobobbo
10boo5bo26boobo14boo4boo24bobbo17boo28bobobobo19boobbobo17boboo11boo3b
o28bobobobo43bo4bo25boo$104boo6bobobboo33bobo14boo31bobbo13bobo29boo
12bo37boboo44booboo46boobobo18boo3boo17boo49booboo44boboboboo24boo$
114bobbobo33bo16boo31bobbo14bo3bo77bobbo46bobbo49bo44boboo96boobobbo$
169bo34boo18boo78boo18boo27bobo16b3o76bobbo100boo29boo$62boo160bobo96b
oo29bo17bo66bo12boo68boo48boo11boo$63boo213boo45bo47bo64boo81bobo47bob
o13bo$62bo166b3o46bobo157bobo24b3o6bo48bo49bo$229bo48bo36boo150bo5boo
109boo$230bo85boo62b3o83bo6bobo107bobo$315bo64bo204bo$381bo$423bo$423b
oo$422bobo12$176bo$118bobo8bo44boo190bo$75bo43boo7bo46boo94bo52bo42bo$
73boo44bo8b3o141boo51boo38b3o$74boo195boo51boo147bo96bo$376bo54bo39bob
o44bobo47bobo$22bo48bo255bobo44boo55bobo38boo45boo48boo$20boo44b3o3boo
102boo149boo46boo34bo19boo86bo59bobo$oo14bo4boo27boboo14bobboo28bo22b
oo24booboo11bobo7bobo22boo47boo49boo25bo23bo47boo10bo38boo48boo26bobo
21boboo22boo$obo14boo31boobbo12bo32bobo16b3obbobo24bobobo11boobbobobbo
23bobbo15bo31bo48bobobboo44bobo46boboboo4b3o37bobbo23bobo20bobboboo22b
oo20b3obobo18bo3bo$bobo12boo35bobo45boo18bobbo26bobbo12bo3boo28boobo
15bo30bobo16boo28bo5bo44bobbo21b3o23bobobo44b3o23boo21bobbobobo14boo6b
o19bo3bobbo12bo5boo$bboo50bo14b3o31boo15bo29boo20bo30bobo12b3o31bobo
16boo28b5o10b3o31boo3bo20bo24boobobbo46boo18bo3bo22boo3bo14boo27bobobo
bo13boo3bobo$13bo55bo33bobo97bobo47bobo14bo3boo27bo14bo5boo30bo20bo27b
oo12bo31boobo17bobo28b3o17bo27booboo13bobo$13boo6b3o46bo33bo99bo49bobo
17bobo40bo5boo32bo61boobboo26bobbo18boo28bo15bo$12bobo6bo198boo33boo
17bo50bo28b3o61bobobbobo26boo65boo$22bo191bo4bobo132bo68bo59b3o32bobo$
214boo5bo261bo$213bobo268bo$382boo$225b3o54b3o97bobo$225bo56bo99bo$
226bo56bo13$273bo$273bobo$273boo197bo$231bo241boo$62bo166boo92bo148boo
48bo$63boo165boo40b3o4b3o42bo105bo89bobo$62boo53bo49bobo96boo6bo4bo42b
3o45bo52bo5bo91boo$68bo49bo49boo95bobo5bo6bo90boo51boo3b3o$66boo48b3o
5bo43bo3bo94bo102boo51boo45boo57bobobbo36bo3bo$oo14bo33boo15boo31boob
oo19bobo23boo20bobo27boo46boo3boo44boo47boo48boo5boo41boo17bobobbobo
25bo3boo22boobbobo13boo3boo12bobo3bobo$bo12bobobbobo28bobo47boobo20boo
24bobo19boo28bobbo44bobobobo43bobobbo18bo25boboboo44bo7bo41bobo18bobb
oo25bobobobo22bo3boo14bobobobo13boo3boo$o14boobboo30bobo49bo11boo35bo
47boobboo46bobo45bobobobo18bo26bobobo44b3ob3o44bo22bo24bobbobo46bobo$b
3o16bo31bobo8boo38boo9bobo35b3o45bo27bo23bobo46boobobo16b3o25boobobo
22bobo21bobo20boo22bobboo46boobbo46bobo$3bo49boo9boobboo46bo38bo46bo
24boo24bo51bo49bo23boo23bo20bobo22boobo51bobo42bobobobo13boo3boo$63bo
4bobo50bo32boo22bo22boo20boobbobo100b3o47bo46bobb3o20bo52boo42boo3boo
12bobo3bobo$68bo51boo55boo43bobo98boo5bo99bo22bobo65boo48bo3bo$12b3o
12boo91bobo54bobo44bo97boo7bo44boo53bo22boo13boo49bobo$14bo12bobo294bo
52boo91boo50bo$13bo13bo146boo39bo160bo92bo$175boo38boo$174bo39bobo6$
372bo$372boo$371bobo4$17bobo416bo$18boo415bo$18bo416b3o$121bobo156bo$
122boo154boo$122bo101bo54boo239bobo$212bobo10boo198bo95boo$25bobobbo
182boo9boo145bobo52bo94bo$26boobbobo35bo144bo54bobbobo98boo50b3o140bo$
26bo3boo34bobo158b3o36bobobboo99bo150bobo42bo$67boo55bobobbo99bo37boo
3bo250boo41b3o$77bo47boobbobo41bobo52bo148bobo45boo97bo$oo48booboo20b
oo23boo23bo3boo20boo21boo24bobbo49bo47booboo20bo23boo3boo20boo22boobo
19boo26boo46booboo46boo$obo48bobo22boo22bobo47bobbo20bo25b4o48bobo45bo
bobobo17boo24bobobobo21bo21bobboo21bo24bobbo45bo3bo45bobbo$3bobo44bobb
o17boo28bobo46bobobo15bo33boo45bobbo45bobobobo11bobo4boo25bobo45boo49b
4o46b3o47boo$4boo45boo19boo28bobo46bobbo15boo4bobo23bobbo25boo18bobo
47bo3bo13boo30booboo46b3o$71bo31bobo46boo15bobo4boo8bo15boo27bobo16boo
bobo63bo50boo30bobbo20b3o22boo28bo19b3o47b4o$24b3o77bo72bo7boo44bo22b
oo113bobo31boo23bo21bobbo25bobo18bo3bo45bo4bo16bo$26bo47boo109bobo81b
oo100bo3bo51bo22bobbo26boobbobo13booboo46b4o15bobo$25bo48bobo193boo47b
o3bo50boo75boo31boo34bo50boobbo$74bo48b3o143bo49booboo50bobo108bo34boo
31boo20bobo$125bo192bobobobo152boo40bobo31boo20boo$124bo352bobo$477bo
45bo$522boo44bo$522bobo43boo$567bobo$476bo$476boo$475bobo8$319bo$320bo
$318b3o$121bo400bobo$119boo355bo45boo$82bo37boo149bobo47bobo7bo92bo51b
obo44bo$80boo28bo160boo48boo7boo92bobo49boo$77bo3boo25bobo161bo49bo7bo
bo84bo6boo93bobo53bo$76boo31boo10b3o294boo54bo45boo52bo$17bobo6bo44bob
obbobo42bo254bo40boo56boo43bo53b3o$oo16boo6bobo21boo20boo26boo20bo27b
oo48boo11bo11bo24boo49boo16b3o28boo3bo20bobo21boobbo50boo17boo24booboo
45boo$bo16bo3boobboo23bo20bo28bo48bobo47bobo8bobo9boo25bobboo47bobboo
14bo28bobobobo19boo22bobbobo45boobbobo42bo3bo46bo$bobo17bobo27bobo47bo
boo46boo49bo9boo10boo25bobobo22bo21bobobobo13bo31bobobo15bo28b3obo15b
oo27bobbobobbo42b3o47boboo$bbobo18bo28bobo22boo23bobbo47boo15bo31b3o
15boo28boobobo21boo21boobbo46booboo17bo30bo11boo3bobo27bobobboo92boob
oo12bo$3bo49bobo20boo25bobo47bobo10bobbo35bo13bobo32bo18boobbobo24boo
65b3o27b3o13boobbo30boo19boo28b3o44bo17boo$25boo27bo23bo25bo49boo8bobo
bb3o32bobo14bo50bobo126bo14bo55boo28bo3bo44b4o12boo3bo$24boo139boo38bo
68bo199bo27booboo47bo17boo$26bo200boo297bo24b3o17bobo$112boo113bobo51b
oo84boo3bo98boo52boo24bo$111bobo113bo52boo84bobobboo97bobo52bobo$113bo
57b3o108bo85bobbobo98bo$171bo351bo51b3o$163b3o6bo350boo50bo$165bo356bo
bo51bo$164bo15$77bo143bobobboo$77bobo142boobbobo$65bo11boo93bobo47bo3b
o354bo$18bo47bo105boo408boo$19bo44b3o106bo197bo209boo$17b3o115bo149bo
83bobo45bo9bo$oo48boo48boo31boo16bo48booboo13b3o30boo30boo15boobboo13b
obobbobo23boo18boobbobo23boo16boo7bobo21boo51boo44boo$obo48bo49bobbo
29boo14bobobboo18bo24boobo16bo29bobbo24bobo3boo14bo4bo14boobboo24bobo
21boo24boboboo11boo8boo21bobbo49bobbo21bobo19boo$3bo21bo25boboo46bobob
o14boo29boo3bo8bo3bobobboo27bo15bo30bobobo24boo20b4o15bo4bo26bo22bo26b
obobo44b3o49boboo21boo24boo$4bo20bobo24bobbo46bobbo13bobo31b3o9boo3boo
bbobo23b3o48bobobo23bo71booboo13boo31bobbo59boo5b3o26boobbo23bo20b5obo
26boo$3boo20boo26boo48boo16bo3bo27bo10bobo3bo29bo51bobbo26boo17boo17bo
33bobo13boo28bobo50b3o8bobo5bo27bo4bo20bo23bo5bo25bobo$19b3o7bo44bo49b
oo127boo28boo16boo17boo32bobo12bo5b3o22boo11bo38bo3bo9bo6bo26bob3o19bo
bo24bob3o22boo4bo$21bo6boo43boo49bobo150bo4bo36bobo33bo19bo37boo37boob
oo44boo22boo25boo25boo6boo$20bo7bobo42bobo201boo45boo50bo35bobobboo57b
o101bo7boo$212boo62bobo45bobo90bobo55boo58b3o50bo$71bo141boo109bo92bo
57bobo57bo$71boo139bo307b3o13bo$70bobo58bo341bo48bo$130boo341boo46bo$
130bobo339bobo12$517bo$515bobo$125bo390boo$120bobobbobo144bo$120boo3b
oo143boo$121bo149boo$67bo200bo$68bo49bo147bobo48bo99bo99bobbobo57bo$
66b3o50boo9bo136boo8bobo38boo98boo49bo45bobobboo59boo$17bo5bo94boo8boo
37bobo57bobo47boo38boo98boo51bo34bo10boo3bo58boo7bobo$oo16boobbo27boo
48boo27boo19boo16boo31bo25boo22boo25bo21boo67boo3bo25boo27bo21boo15b3o
29boobbobo47bo21boo11boo$obo14boo3b3o25bobo47bobo48bobbo13bo10bo20bobo
boo14bo7bo21bobbo46bo51boo14bobobboo25bo26boo21bobbo46bo3bobbo46b3o20b
oo11bo$3bo49bo16bo31bo48bobobo21boo21bobobo16boo28b3o12bo34b3o15b3o28b
obbo16bobbobo25b3oboo12b3o6boo21b3o47b3oboo45boo3bo18bo$4bo49bo16bo30b
obo45boobobo22boo21bobbo15boo32boo10boo35bo17bo28b3o50bobobo13bo49bobo
29bo47bobobobo$5bo12boo35bo13b3o31bobo48bo19boo26boo49bobbo8bobo36boo
14bo84bobo12bo30b3o17boo31b3o43bobboboo$4boo13boo35bo47boo67boo78bobo
49bo44b3o52boo43bo3bo12boo3bo4boo27bo43bobo27boo$18bo36boo118bo44boo
32bo50bobo16boo24bobbo96booboo13boo6boo73bo27bobo$71boo148boo5b3o75boo
15bobo25bobo113bo10bo102bo$29bo42boo4boo82b3o55bo7bo96bo3bo22bo73b3o
91boo$28boo41bo6bobo83bo64bo98boo96bo94boo$28bobo47bo84bo164bobo96bo
92bo!

Bob Shemyakin
BobShemyakin
 
Posts: 202
Joined: June 15th, 2014, 6:24 am

Re: 4 glider syntheses

Postby BobShemyakin » August 3rd, 2014, 12:52 pm

In the latest list of 4 glider synthesis was an error. Here is a corrected version.
x = 628, y = 410, rule = S23/B3
71bo$72bo$70b3o$$74bo46bo$73bo48boo$73b3o45boo6bo$24bo104bobo$bo17bobo
bbobo23booboo45boo27boo$bobo16boobboo24bo3bo45boobo$obo17bo30b3o50bo$
bbo12boo84bo$16boo9b3o72boboo$15bo11bo23b3o50boo$28bo21bo3bo$50booboo
57boo$111bobo$69b3o41bo$71bo$70bo$116b3o$72b3o43bo$72bo44bo$73bo36$
361bo$359bobo163bo$360boo117bo44bo$479bobo42b3o$25bo145bo252bo54boo86b
o$23boo147bo251bobo45bobo47bo42bobo53bo$24boo144b3o251boo4bo42boo48boo
41boo54boo$21bo198bo101bo106boo42bo3bo44boo3boo92boo$19bobo199bo101boo
3bo93bo6bobo45bobo46boo49bo$oboo16boo28boo16bo31boo13bobbobo29boo48boo
boo14b3o28boo50bo19boobboo23booboo17bo28bobo18boo27boo23boo24boo23bo
22boo3boo15bobbo25boo3boo$oobo46bobo16boo29bobo10bobobboo31bobboo45bob
o22bo23bobobboo44boboboo20boo23bobobo15bo28bob4o15boo27bobbo46bobbo46b
obobobbo12bobobb3o22bobbobobbo$52bo15boo4bobo25bo11boo3bo31bobobbo17bo
26bobo21bo25boo3bo19bo24bobobobo44bobobo11bo3b3o26bo5bo44boobboo6boo
35b3o48booboboo13boo27booboboboo$22boo28bobo19boo26bobo47bobboo18boo
23booboo20b3o25b3o19bo26boobobo12boo29booboo11bo34b3obo47boobbo6boo88b
obo46bobo$23boobboo24boo20bo27bobo68boo77bo21b3o28bo14boobboo40b3o34b
oo48bobbo6bo36b3o51bobo46bobo$22bo3boo40b3o33bo63boo8bobo88bo50bo3boo
129boo44bobbo51bo18b3o25booboo$28bo41bo55boo41boo7boo38bo8boo41boo54bo
97b3o75bobbo71bo48bobo$69bo56bobo39bo10bo38boo7bobo39boo99bo53bo78boo
71bo49boo$118bo7bo90bobo7bo45bo95boo54bo201bo$75b3o40boo153boo9bo84bob
o$75bo41bobo152bobo8boo338b3o$76bo206bobo339bo$624bo$627boo$626boo$
517b3o108bo$519bo$518bo10$424bo$369bo53bo$370boo51b3o86bo$66bobo46bo
113bobo137boo142boo$19bobo45boo47bo112boo37bo45bo197boo$20boo45bo46b3o
6bo106bo35bobo3bo42bo$20bo102bobo40bo100boo4boo38b3o102bo3bo100bo$123b
oo42boo44bobo56boo95bo49bo3boo45bo50boo$oo22bo25boo48boo48boo14boo3bo
28booboo9boo34boo49boo47booboo14boo29boobo13b3obboo27boo15bobo29boobb
oo16boo28boo$obbo19bo26bobo47bobbo46bobo18bobo26boobobo8bo36bobbo21bob
o21bobbo47boboo13bobo4bo25bob3o45boboboo12boo29bo4bo11bobo31bobbo10bo
17bo$bboo12boo5b3o25bobo47boobo16b3o27boo18boo30bobo45bobobo15b3obboo
23b3o47bo22bo26bo4bo46boboo44b4o13boo30bobbo12boo16boo$17boo34bo19bobo
28bo11b3obbo31boo48boo11boo32boobobbo14bo5bo47bo26b3o19b3o25b3obo11bo
34bo64bo31b3o12boo16boo$16bo10bo25boo18boo29boo12bo3bo30bobo61boo35boo
16bo30b3o15bobbo30bo48boo12boo31bobo15bo4boo27boo56boo$26boo46bo42bo
36bo61bo86bobbo12bobobb3o27boo61bobo30bobo17boobbobo25bobbo44b3o9boo
19boo$26bobo138boo135boo14boo55boo72bo17boo3bo28boo45bobbo7bo22boo$71b
oo93bobo207boo173bobbo28bo$70boo96bo209bo173boo$72bo155boo283bo$65boo
161bobo83boo197boo$64bobo161bo86boo156b3o36bobo$66bo247bo160bo$474bo$
173b3o$173bo$174bo3$153bo$154bo$152b3o4$122bo68bo$120bobo68bobo$121boo
68boo335bobo$77bo292bobo156boo$23bo52bo49bo244boo156bo$21boo53b3o45boo
245bo45bo60bo$22boo46bo54boo95bo195boo57bo$71bo150bobo47bobo98bobo41b
oo58b3o$18bobo48b3o56boo87bobobboo49boobbobo93boo$19boo106boo89boo53bo
3boo44bo50bo$oo17bo30boo48boo27bo20booboo45booboo13bo32boo25bo22bo19b
oo27booboo45boo20bo27boo49bo31bobo14boo$obobo46bo48bo50bobo46boobo27bo
18bobo20bo26bobo19boo27bobo46boo21bo26bobo47boboboo28boo14boboboo$3boo
46boboo17bo28bobboo44bobbo49bo26boo18boboboo16boo26bobboboo19boo23bobb
o49bo16b3o28bo47bobobobo22b3obbo17boboo$26boo24bobo18boo27bobbo44bobo
50bobo24bobo18boobobo15bobo26bobobo19boo25bobo45b5o46booboo13boo30boob
obbo23bo19boo20bo$17bo7boo26bo18boo29boo46bo52boo49bo11bo34bobbo21bo
23booboo44bo52bobbo11bobo34bobo22bo21boboo15bobo$17boo8bo89b3o94boo51b
oo34boo16boo52bo27boo16boo30bobbo13bo4bobo28bo29boo14bobbo16boo$16bobo
56boo42bo93bobo50bobo53boo50boo27boo15boo32boo19boo58boo16boo$74boo42b
o96bo105bo52bobo40bo4bo53bo60bo32bo$76bo249boo89boo53boo96boo$325boo
45bo43bobo52boo96bobo6bo$327bo44boo99bo103bo$169boo3bo196bobo203b3o$
168bobobboo394boo$170bobbobo392bobo$570bo12$25bo$23boo497bo$16bo7boo
41bo50bobo402bo$17bo50boo49boo64bobo178bo154b3o$15b3o49boo50bo65boo86b
o90bobo$24boo103bobo54bo84boo92boo$23boo104boo141boo$25bo43bo3bo56bo
41bobo57bo296bo$16bo53bobbobo97boo56bo289b3o5bobo$oo14boo32boobboo12b
3obboo25boo48boo21bo3bo22boo29b3o17booboo16boo27boo16bo5bo26bo19bo28b
oo49boo13bobbobo28booboo17bo5boo22boo$obboo10bobo32bobobbo44bobobboo
43boboboo20boo23bo48bobobobo8boo4boo27bobbo13bobo3boo26bobo16boo28bobb
oboo19bo4bo19bobbo10bobobboo28bobobobo15bo28b3obo27bo$boobo48boo48bobb
o6boo3bo33bobo21bobo22boboo15boo28bobobbo10boo5bo26boobo14boo4boo24bo
bbo17boo28bobobobo19boobbobo17boboo11boo3bo28bobobobo43bo4bo25boo$104b
oo6bobobboo33bobo14boo31bobbo13bobo29boo12bo37boboo44booboo46boobobo
18boo3boo17boo49booboo44boboboboo24boo$114bobbobo33bo16boo31bobbo14bo
3bo77bobbo46bobbo49bo44boboo96boobobbo$169bo34boo18boo78boo18boo27bobo
16b3o76bobbo100boo29boo$62boo160bobo96boo29bo17bo66bo12boo68boo48boo
11boo$63boo213boo45bo47bo64boo81bobo47bobo13bo$62bo166b3o46bobo157bobo
24b3o6bo48bo49bo$229bo48bo36boo150bo5boo109boo$230bo85boo62b3o83bo6bob
o107bobo$315bo64bo204bo$381bo$423bo$423boo$422bobo12$176bo$118bobo8bo
44boo190bo$75bo43boo7bo46boo94bo52bo42bo$73boo44bo8b3o141boo51boo38b3o
$74boo195boo51boo147bo96bo$376bo54bo39bobo44bobo47bobo$22bo48bo255bobo
44boo55bobo38boo45boo48boo$20boo44b3o3boo102boo149boo46boo34bo19boo86b
o59bobo$oo14bo4boo27boboo14bobboo28bo22boo24booboo11bobo7bobo22boo47b
oo49boo25bo23bo47boo10bo38boo48boo26bobo21boboo22boo$obo14boo31boobbo
12bo32bobo16b3obbobo24bobobo11boobbobobbo23bobbo15bo31bo48bobobboo44bo
bo46boboboo4b3o37bobbo23bobo20bobboboo22boo20b3obobo18bo3bo$bobo12boo
35bobo45boo18bobbo26bobbo12bo3boo28boobo15bo30bobo16boo28bo5bo44bobbo
21b3o23bobobo44b3o23boo21bobbobobo14boo6bo19bo3bobbo12bo5boo$bboo50bo
14b3o31boo15bo29boo20bo30bobo12b3o31bobo16boo28b5o10b3o31boo3bo20bo24b
oobobbo46boo18bo3bo22boo3bo14boo27bobobobo13boo3bobo$13bo55bo33bobo97b
obo47bobo14bo3boo27bo14bo5boo30bo20bo27boo12bo31boobo17bobo28b3o17bo
27booboo13bobo$13boo6b3o46bo33bo99bo49bobo17bobo40bo5boo32bo61boobboo
26bobbo18boo28bo15bo$12bobo6bo198boo33boo17bo50bo28b3o61bobobbobo26boo
65boo$22bo191bo4bobo132bo68bo59b3o32bobo$214boo5bo261bo$213bobo268bo$
382boo$225b3o54b3o97bobo$225bo56bo99bo$226bo56bo13$273bo$273bobo$273b
oo197bo$231bo241boo$62bo166boo92bo148boo48bo$63boo165boo40b3o4b3o42bo
105bo89bobo$62boo53bo49bobo96boo6bo4bo42b3o45bo52bo5bo91boo$68bo49bo
49boo95bobo5bo6bo90boo51boo3b3o$66boo48b3o5bo43bo3bo94bo102boo51boo45b
oo57bobobbo36bo3bo$oo14bo33boo15boo31booboo19bobo23boo20bobo27boo46boo
3boo44boo47boo48boo5boo41boo17bobobbobo25bo3boo22boobbobo13boo3boo12bo
bo3bobo$bo12bobobbobo28bobo47boobo20boo24bobo19boo28bobbo44bobobobo43b
obobbo18bo25boboboo44bo7bo41bobo18bobboo25bobobobo22bo3boo14bobobobo
13boo3boo$o14boobboo30bobo49bo11boo35bo47boobboo46bobo45bobobobo18bo
26bobobo44b3ob3o44bo22bo24bobbobo46bobo$b3o16bo31bobo8boo38boo9bobo35b
3o45bo27bo23bobo46boobobo16b3o25boobobo22bobo21bobo20boo22bobboo46boo
bbo46bobo$3bo49boo9boobboo46bo38bo46bo24boo24bo51bo49bo23boo23bo20bobo
22boobo51bobo42bobobobo13boo3boo$63bo4bobo50bo32boo22bo22boo20boobbobo
100b3o47bo46bobb3o20bo52boo42boo3boo12bobo3bobo$68bo51boo55boo43bobo
98boo5bo99bo22bobo65boo48bo3bo$12b3o12boo91bobo54bobo44bo97boo7bo44boo
53bo22boo13boo49bobo$14bo12bobo294bo52boo91boo50bo$13bo13bo146boo39bo
160bo92bo$175boo38boo$174bo39bobo6$372bo$372boo$371bobo4$17bobo416bo$
18boo415bo$18bo416b3o$121bobo156bo$122boo154boo$122bo101bo54boo239bobo
$212bobo10boo198bo95boo$25bobobbo182boo9boo145bobo52bo94bo$26boobbobo
35bo144bo54bobbobo98boo50b3o140bo$26bo3boo34bobo158b3o36bobobboo99bo
150bobo42bo$67boo55bobobbo99bo37boo3bo250boo41b3o$77bo47boobbobo41bobo
52bo148bobo45boo97bo$oo48booboo20boo23boo23bo3boo20boo21boo24bobbo49bo
47booboo20bo23boo3boo20boo22boobo19boo26boo46booboo46boo$obo48bobo22b
oo22bobo47bobbo20bo25b4o48bobo45bobobobo17boo24bobobobo21bo21bobboo21b
o24bobbo45bo3bo45bobbo$3bobo44bobbo17boo28bobo46bobobo15bo33boo45bobbo
45bobobobo11bobo4boo25bobo45boo49b4o46b3o47boo$4boo45boo19boo28bobo46b
obbo15boo4bobo23bobbo25boo18bobo47bo3bo13boo30booboo46b3o$71bo31bobo
46boo15bobo4boo8bo15boo27bobo16boobobo63bo50boo30bobbo20b3o22boo28bo
19b3o47b4o$24b3o77bo72bo7boo44bo22boo113bobo31boo23bo21bobbo25bobo18bo
3bo45bo4bo16bo$26bo47boo109bobo81boo100bo3bo51bo22bobbo26boobbobo13boo
boo46b4o15bobo$25bo48bobo193boo47bo3bo50boo75boo31boo34bo50boobbo$74bo
48b3o143bo49booboo50bobo108bo34boo31boo20bobo$125bo192bobobobo152boo
40bobo31boo20boo$124bo352bobo$477bo45bo$522boo44bo$522bobo43boo$567bob
o$476bo$476boo$475bobo8$319bo$320bo$318b3o$121bo400bobo$119boo355bo45b
oo$82bo37boo149bobo47bobo7bo92bo51bobo44bo$80boo28bo160boo48boo7boo92b
obo49boo$77bo3boo25bobo161bo49bo7bobo84bo6boo93bobo53bo$76boo31boo10b
3o294boo54bo45boo52bo$17bobo6bo44bobobbobo42bo254bo40boo56boo43bo53b3o
$oo16boo6bobo21boo20boo26boo20bo27boo48boo11bo11bo24boo49boo16b3o28boo
3bo20bobo21boobbo50boo17boo24booboo45boo$bo16bo3boobboo23bo20bo28bo48b
obo47bobo8bobo9boo25bobboo47bobboo14bo28bobobobo19boo22bobbobo45boobbo
bo42bo3bo46bo$bobo17bobo27bobo47boboo46boo49bo9boo10boo25bobobo22bo21b
obobobo13bo31bobobo15bo28b3obo15boo27bobbobobbo42b3o47boboo$bbobo18bo
28bobo22boo23bobbo47boo15bo31b3o15boo28boobobo21boo21boobbo46booboo17b
o30bo11boo3bobo27bobobboo92booboo12bo$3bo49bobo20boo25bobo47bobo10bobb
o35bo13bobo32bo18boobbobo24boo65b3o27b3o13boobbo30boo19boo28b3o44bo17b
oo$25boo27bo23bo25bo49boo8bobobb3o32bobo14bo50bobo126bo14bo55boo28bo3b
o44b4o12boo3bo$24boo139boo38bo68bo199bo27booboo47bo17boo$26bo200boo
297bo24b3o17bobo$112boo113bobo51boo84boo3bo98boo52boo24bo$111bobo113bo
52boo84bobobboo97bobo52bobo$113bo57b3o108bo85bobbobo98bo$171bo351bo51b
3o$163b3o6bo350boo50bo$165bo356bobo51bo$164bo15$77bo143bobobboo$77bobo
142boobbobo$65bo11boo93bobo47bo3bo354bo$18bo47bo105boo408boo$19bo44b3o
106bo197bo209boo$17b3o115bo149bo83bobo45bo9bo$oo48boo48boo31boo16bo48b
ooboo13b3o30boo30boo15boobboo13bobobbobo23boo18boobbobo23boo16boo7bobo
21boo51boo44boo$obo48bo49bobbo29boo14bobobboo18bo24boobo16bo29bobbo24b
obo3boo14bo4bo14boobboo24bobo21boo24boboboo11boo8boo21bobbo49bobbo21bo
bo19boo$3bo21bo25boboo46bobobo14boo29boo3bo8bo3bobobboo27bo15bo30bobob
o24boo20b4o15bo4bo26bo22bo26bobobo44b3o49boboo21boo24boo$4bo20bobo24bo
bbo46bobbo13bobo31b3o9boo3boobbobo23b3o48bobobo23bo71booboo13boo31bobb
o59boo5b3o26boobbo23bo20b5obo26boo$3boo20boo26boo48boo16bo3bo27bo10bob
o3bo29bo51bobbo26boo17boo17bo33bobo13boo28bobo50b3o8bobo5bo27bo4bo20bo
23bo5bo25bobo$19b3o7bo44bo49boo127boo28boo16boo17boo32bobo12bo5b3o22b
oo11bo38bo3bo9bo6bo26bob3o19bobo24bob3o22boo4bo$21bo6boo43boo49bobo
150bo4bo36bobo33bo19bo37boo37booboo44boo22boo25boo25boo6boo$20bo7bobo
42bobo201boo45boo50bo35bobobboo57bo101bo7boo$212boo62bobo45bobo90bobo
55boo58b3o50bo$71bo141boo109bo92bo57bobo57bo$71boo139bo307b3o13bo$70bo
bo58bo341bo48bo$130boo341boo46bo$130bobo339bobo12$517bo$515bobo$125bo
390boo$120bobobbobo144bo$120boo3boo143boo$121bo149boo$67bo200bo$68bo
49bo147bobo48bo99bo99bobbobo57bo$66b3o50boo9bo136boo8bobo38boo98boo49b
o45bobobboo59boo$17bo5bo94boo8boo37bobo57bobo47boo38boo98boo51bo34bo
10boo3bo58boo7bobo$oo16boobbo27boo48boo27boo19boo16boo31bo25boo22boo
25bo21boo67boo3bo25boo27bo21boo15b3o29boobbobo47bo21boo11boo$obo14boo
3b3o25bobo47bobo48bobbo13bo10bo20boboboo14bo7bo21bobbo46bo51boo14bobo
bboo25bo26boo21bobbo46bo3bobbo46b3o20boo11bo$3bo49bo16bo31bo48bobobo
21boo21bobobo16boo28b3o12bo34b3o15b3o28bobbo16bobbobo25b3oboo12b3o6boo
21b3o47b3oboo45boo3bo18bo$4bo49bo16bo30bobo45boobobo22boo21bobbo15boo
32boo10boo35bo17bo28b3o50bobobo13bo49bobo29bo47bobobobo$5bo12boo35bo
13b3o31bobo48bo19boo26boo49bobbo8bobo36boo14bo84bobo12bo30b3o17boo31b
3o43bobboboo$4boo13boo35bo47boo67boo78bobo49bo44b3o52boo43bo3bo12boo3b
o4boo27bo43bobo27boo$18bo36boo118bo44boo32bo50bobo16boo24bobbo96booboo
13boo6boo73bo27bobo$71boo148boo5b3o75boo15bobo25bobo113bo10bo102bo$29b
o42boo4boo82b3o55bo7bo96bo3bo22bo73b3o91boo$28boo41bo6bobo83bo64bo98b
oo96bo94boo$28bobo47bo84bo164bobo96bo92bo14$392b3o$359boo31bo$358bobo
32bo$360bo!

Bob Shemyakin
BobShemyakin
 
Posts: 202
Joined: June 15th, 2014, 6:24 am

Re: 4 glider syntheses

Postby BobShemyakin » August 15th, 2014, 5:50 am

I found 2 more 4-glider synthesis:
x = 95, y = 24, rule = S23/B3
30bo$28boo$29boo4$oo58boo$oboboo54bobo$bbobobo55bo$bbobbo15bobo38boboo
$boo19boo39bobbo$22bo41bobo21bo$65bo23bo$87b3o3$91bo$19b3o62boo4bo$21b
o63boo3b3o$20bo3boo58bo$24bobo$24bo67b3o$92bo$93bo!


mniemiec wrote June 29th, 2014
I know of two six-glider syntheses of the quad-loaf. One was found by Dave Buckingham; I'm not sure who found the other one. The second one involves the same 4-glider mechanism you show, except two additional gliders suppress the outer bi-loaves.

I found 8-glider synthesis another quad-loaf with suppress the outer bi-loaves:
x = 38, y = 23, rule = B3/S23
14bo$14bobo$14boo$$7bo$5bobo24bo$6boobbo20bobo$10bobo18bobbo$10boo20b
oobo$34bobo$bbo10boo19bobbo$3boo7boo18booboo$bboo10bo16bobbo$32bobo$5b
oo26boboo$4bobo27bobbo$6bobboo24bobo$9bobo24bo$9bo$$boo$obo$bbo!

Bob Shemyakin
BobShemyakin
 
Posts: 202
Joined: June 15th, 2014, 6:24 am

Re: 4 glider syntheses

Postby mniemiec » August 15th, 2014, 10:05 am

BobShemyakin wrote:I found 2 more 4-glider synthesis:

Both of these appear to be new. The first one will also likely improve many larger objects, especially many candelfrobras.

BobShemyakin wrote:I found 8-glider synthesis another quad-loaf with suppress the outer bi-loaves:

Cute! I'm sure this could easily be adapted to a 7-glider three-loaf version.
mniemiec
 
Posts: 833
Joined: June 1st, 2013, 12:00 am

Re: 4 glider syntheses

Postby Tropylium » September 23rd, 2014, 5:28 pm

mniemiec wrote:the first new three-glider synthesis found in almost two decades!

Come to think of it, what exactly is the status of research on three-glider collisions? The newer discoveries seem to be "deep" in the search tree (in terms of the time between the initial collision and the 3rd G colliding) — but have the collisions that are sufficiently "shallow" been surveyed to any completeness?
User avatar
Tropylium
 
Posts: 406
Joined: May 31st, 2011, 7:12 pm
Location: Finland

Re: 4 glider syntheses

Postby mniemiec » September 23rd, 2014, 9:46 pm

Tropylium wrote:
mniemiec wrote:the first new three-glider synthesis found in almost two decades!

Come to think of it, what exactly is the status of research on three-glider collisions? The newer discoveries seem to be "deep" in the search tree (in terms of the time between the initial collision and the 3rd G colliding) — but have the collisions that are sufficiently "shallow" been surveyed to any completeness?


Back in the 1980s (I think), Dave Buckingham tracked a very large number of 3-glider collisions, mostly by hand (i.e. manual positioning, and computer evaluation). From this he found hundreds of object-producing syntheses, and hundreds to thousands of spark-producing ones (that I am aware of). The fact that very few new 3-glider syntheses have been discovered since then indicates that his searches were fairly thorough. The fact that a few HAVE been found indicates that his searches were not exhaustive. Ones that he likely didn't track exhaustively were a third glider arriving late into the evolution of a methuselah. Those are usually boring and tedious, but occasionally turn up some surprises.

I'm sure many others have also searched the same space, so it has been fairly well explored, but I am not aware of anyone who has attempted a systematic exhaustive exploration of it (which is something that is sorely needed). At one point, I started doing so manually for a bit, and turned up many new constellations (hitherto unreported, probably because nobody thought them worthy of note). These sometimes turn out to be useful in some syntheses (for example, two blocks with varying degrees of separation). I've also only scratched the surface of these.

It would be good to have a systematic exploration of all non-trivial 3-glider collisions, keeping track of every possible census. Keeping track of useful sparks would also be useful, but would likely require a much more ambitious analysis. (By 'trivial' I mean things like a glider hitting one of the escaping gliders from a B-heptomino, and the result does not interact in any way with the original B-heptomino ash. There are an infinite number of each such collision, moving the collision point arbitrarily far away from the initial ash).
mniemiec
 
Posts: 833
Joined: June 1st, 2013, 12:00 am

Re: 4 glider syntheses

Postby Tropylium » September 25th, 2014, 9:07 am

mniemiec wrote:I am not aware of anyone who has attempted a systematic exhaustive exploration of it (which is something that is sorely needed). (…)

It would be good to have a systematic exploration of all non-trivial 3-glider collisions, keeping track of every possible census.


Well, I guess the 1st step would be assembling a way to catalogize 3G collisions. In principle we have at least the following dimensions:
- Directions. 2-on-1, 180°; 2-on-1, 90°; 3 directions.
- Phase differences. All equal; one off by 1; one off by 2; one off by 3; three phases.
- Collision timing. Best measured from the time of the first two glider colliding to the 3rd colliding.
- Initial collision type, i.e. what 2G collision are we bringing a 3rd glider into. Well-defined only if timing is positive (otherwise we might have two or even three different 2G collisions superposed).

The last two seem to make the best way to start cataloguing things, because it allows isolating the G+methuselah collisions in their own sub-search spaces and not have them randomly sprinkled around.

So for example this collision:
x = 13, y = 13, rule = B3/S23
8bo$8bobo$8b2o3$2o$b2o$o3$10b3o$10bo$11bo!

is an extension of 2G-to-boat with a 3-generation delay. But shift the extra glider two lanes up:
x = 13, y = 11, rule = B3/S23
8bo$8bobo$8b2o3$2o$b2o$o$10b3o$10bo$11bo!

Now it's delay 0, and has both a 2G-to-boat and 2G-to-block reactions underlying. Or, perhaps we could say it's delay -6 since by remooval of the "center" glider it takes 6 extra generations for the "edge" gliders to collide…
User avatar
Tropylium
 
Posts: 406
Joined: May 31st, 2011, 7:12 pm
Location: Finland

Re: 4 glider syntheses

Postby dvgrn » September 25th, 2014, 12:42 pm

Tropylium wrote:Well, I guess the 1st step would be assembling a way to catalogize 3G collisions. In principle we have at least the following dimensions:
- Directions. 2-on-1, 180°; 2-on-1, 90°; 3 directions.
- Phase differences. All equal; one off by 1; one off by 2; one off by 3; three phases.
- Collision timing. Best measured from the time of the first two glider colliding to the 3rd colliding.
- Initial collision type, i.e. what 2G collision are we bringing a 3rd glider into. Well-defined only if timing is positive (otherwise we might have two or even three different 2G collisions superposed).

Another angle of approach might be the one used by the 'ptbsearch' and 'catalyst' search utilities, not to mention gencols. Start with glider #1 coming from, say, northwest infinity, and enumerate all the ways that incoming glider #2 can be placed so that the first collision interaction occurs at T=0, then at T=1.

The T=2 and T-3 cases will be mirror images, so we can either leave those out, or else constrain the second glider to come from either the northeast or the east-southeast -- only have to try seven of 180-degree lanes, not all twelve.

--------------------------------

Come to think of it... it may make more sense to simply start with the list of 71 known two-glider collisions, one tick before they first interact, in some standard orientation -- it won't matter, pick your favorite lexicographical ordering to minimize, or whatever. Assume gliders have come from infinity.

Now all we have to do is add one more glider! Start the third-glider search at T=0. For each 2-glider about-to-be collision, look around the current bounding box and make a list of all the places where the placement of some glider shape will cause a new birth or suppress a birth on the next tick. Check that the glider could actually have gotten to each location (e.g., by backtracking all gliders 1 cell and running 4 ticks -- and if that works maybe backtracking 1K cells and running 4K ticks).

That should produce all the 3-glider collisions where all three gliders' initial interactions are simultaneous. Each collision will show up two or three times -- I don't see how to avoid that offhand, so we'll have to do another lexicographical ordering trick or something to dispose of the duplicates. Maybe someone can find a way to constrain the geometry of the initial 2-glider collisions so that picking out the canonical 3-crash is trivial...?

The real strength of this enumeration shows up at T>0. If a given glider#3 at location (X,Y) interacts with a given 2-glider crash for the first time at T=1, that's a unique collision that won't show up anywhere else in the search tree. Same for T=2 and above. (Right?) So the search space could be enumerated by iterating through

2G-collision number (1-71); T; whichG3 (16 phase/orientation combinations); G3X, G3Y

We can easily skip most of the (G3X, G3Y) in any given active region, of course -- we'd try only the locations that bring the glider within two cells of some live cell, but not adjacent to or overlapping any other live cells.

This allows for distributed searches of the space. We could finish a search using, say, all 71 collisions for all T up to 49, and then go back and do T=50..99 (for the handful of 2-glider collisions that last that long) without missing anything. If we really wanted to try distributing the work, each of the 71 collisions could be sent to a different core in a cluster. For the sixty 2G collisions that settle into something small and simple, we can stop searching at T={stability}, whenever that is.

--------------------------------

Then we have to figure out exactly what we're looking for, and what data we can afford to keep track of. If we run each 3G collision through apgsearch or something similar and collect only the unique ash object ID's, that will be a reasonably short list. All combinations of two output objects is a much bigger database, but maybe still manageable. Above that I don't know how much information we might want to store.

Really I'm thinking it would be nice to use this kind of enumeration as a basis for a comprehensive collection of three-glider sparks, or even 3G arbitrary active patterns -- so that if you need something like

x = 11, y = 6, rule = LifeHistory
3.2A$2.2AB2A3B$.10B$11B$11B$11B!

at the edge of the reaction envelope, you could either look it up in a database, or do a new runthrough of the three-glider search space to find something that works.

I suppose this enumeration generalizes fairly cleanly to four gliders, or even more, with minor duplications when two or more gliders interact simultaneously. It would just be necessary to scale back one's ambitions a bit and search up to a lower T value.

... Hmm, and maybe we can dodge all the duplication by requiring (G4Y>G3Y or (G4Y=G3Y and G4X>G3X)), or something like that. Does that make a possible case for starting the recursion at the first glider, and avoiding all the duplicates?

I haven't really addressed the thorny issues with glider #3 hitting initial-collision output gliders to make messes that send back other gliders, like

x = 86, y = 109, rule = LifeHistory
.A$2.A$3A95$84.A$83.A$83.3A7$81.A$80.2A$80.A.A!

For 3G cases I think that these can mostly be addressed adequately by brute force. We'll be able to say something like this: "An exhaustive search has been completed for all three-glider collisions with last interaction time T<=256" (or whatever turns out to be workable). Generally this kind of collision will become provably predictable as T increases. Try moving the top glider in the above pattern upward by multiples of two cells, and the reaction quickly gets very boring. Are there any more complicated classes of 3G reactions that I'm missing here?
dvgrn
Moderator
 
Posts: 3995
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: 4 glider syntheses

Postby Tropylium » September 25th, 2014, 5:06 pm

dvgrn wrote:Come to think of it... it may make more sense to simply start with the list of 71 known two-glider collisions, one tick before they first interact, in some standard orientation -- it won't matter, pick your favorite lexicographical ordering to minimize, or whatever. Assume gliders have come from infinity.

Now all we have to do is add one more glider! Start the third-glider search at T=0. For each 2-glider about-to-be collision, look around the current bounding box and make a list of all the places where the placement of some glider shape will cause a new birth or suppress a birth on the next tick. Check that the glider could actually have gotten to each location (e.g., by backtracking all gliders 1 cell and running 4 ticks -- and if that works maybe backtracking 1K cells and running 4K ticks).

That should produce all the 3-glider collisions where all three gliders' initial interactions are simultaneous.

Instead of backtracking, another possibility would be to superimpose pairs of 2G collisions just before contact over each other so that one glider is present in both, and the two others are either noninteracting or also a 2G collision just before contact.

I also suspect locating the incoming gliders by (lane, timing) rather than (x,y) coordinates would make maneuvering around the search space clearer: once we have all the simultaneous 3G collisions, backing up any noncentral glider by one generation will produce a new collision. (By "central" glider I mean the one that simultaneously collides with two other gliders. In the case of triangular collisions where all gliders are central, we need to individually try winding back each glider.) 3rd gliders could be also put anywhere on nominally noninteracting lanes, or "past" the initial collision, to see if the reaction catches up to it. This should cover all three-direction collisions, I think. For two-direction collisions we also have to consider putting one glider behind another, though these will necessarily collide at most some 5-6 generations later.


dvgrn wrote:The real strength of this enumeration shows up at T>0. If a given glider#3 at location (X,Y) interacts with a given 2-glider crash for the first time at T=1, that's a unique collision that won't show up anywhere else in the search tree. Same for T=2 and above. (Right?)

Yes, that was exactly the point I was trying to make.

dvgrn wrote:I suppose this enumeration generalizes fairly cleanly to four gliders, or even more, with minor duplications when two or more gliders interact simultaneously.

4G+ brings in all sorts of headaches due to an xG reaction in progress colliding with an yG reaction in progress, I'd imagine.
User avatar
Tropylium
 
Posts: 406
Joined: May 31st, 2011, 7:12 pm
Location: Finland

Re: 4 glider syntheses

Postby BobShemyakin » September 26th, 2014, 2:31 pm

Tropylium wrote:Well, I guess the 1st step would be assembling a way to catalogize 3G collisions. In principle we have at least the following dimensions:
- Directions. 2-on-1, 180°; 2-on-1, 90°; 3 directions.
- Phase differences. All equal; one off by 1; one off by 2; one off by 3; three phases.
- Collision timing. Best measured from the time of the first two glider colliding to the 3rd colliding.
- Initial collision type, i.e. what 2G collision are we bringing a 3rd glider into. Well-defined only if timing is positive (otherwise we might have two or even three different 2G collisions superposed).

My algorithm of search is similar on given:
- At one glider it is fixed all (a direction, position, a phase).
- The Direction of the second glider or sideways, or in a forehead. The second glider attacks first of a zone minimally necessary for all interactions with first. Its phase is any.
- The Direction of the third glider: provides 2-on-1, 180 °; 2-on-1, 90 °; 3 directions. Position: that flied towards the others. The phase is any.

With this algorithm found bi-block. This algorithm is good for the near zone (the small size of the field) interaction gliders. Its main drawback is the large number of trivial interactions when two glider already finished the interaction, and the third only on the approach.

For interaction from a distant zone other algorithm on the basis of 2G is offered.
We will define the term "battlefield" – the sizes of area in which occurs 2G, plus an approach way. The approach way is determined by stabilization time (glider emission) 2G.

Emitted 2G gliders from the battlefield we shall exclude (nothing being chased).

The algorithm consists in a choice 2G with greater battlefields. Bombardment 2G is spent within the limits of a battlefield in the necessary direction.

Only 8 from 71 2G have a battlefield more 50х50. 6 from them:
x = 404, y = 328, rule = B/S012345678
262b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o$190b2o
8b2o8b2o8b2o8b2o9b2o19b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o
8b2o8b2o8b2o$190b2o8b2o8b2o8b2o8b2o9b2o2$3b2o8b2o8b2o8b2o9b2o9b2o9b2o$
3b2o8b2o8b2o8b2o9b2o9b2o9b2o125b8o4b4o13b8o4b4o$193bo10bo4bo12bo10bo4b
o$193bo9bo6bo11bo9bo6bo$97b2o8b2o8b2o7b2o6b2o9b2o9b2o35bo16bobo7bobo9b
o6bo$97b2o8b2o8b2o7b2o6b2o9b2o9b2o35b6o10bo3bo5bo2b6o5bo4bo$11b4o4b8o
19b4o6b4o130b2o7bo7b2o5bo3bo9bo5b4o24b2o35bo2bo6bo5bo16bo2bo6bo2b10o
47b2o$3b2o5bo4bo3bo25bo4bo4bo4bo129b2o8bo8bo5bobo11bo3bo4bo2b2o19b2o
34b2o2bo6bo4b2o15b2o2bo6bo11bo47b2o$3b2o4bo6bo2bo24bo6bo2bo6bo4b2o34b
4o7bo15b8o2b10o51bo9bo5bo12bo2bo6bob2o54bobo2bo6bo3bobo14bobo2bo6bo11b
o$9bo9bo11bo7bo4bo9bo6bo4b2o33bo4bo5b2o15bo18bo51bo9bo4bobo11bo2bo6bo
56bo2bo2bo6bo2bo2bo2bo7bo2bo2bo2bo6bo10bo$9bo9b6o7bo5bo5bo9bo6bo38bo6b
o3bobo15bo18bo51bo9bo3bo3bo10bo2bo6bo59bo2bo6bo5bo3bo5bo6bo2bo6bo9bo$
9bob4o10bo7bo3bo6bob4o4bo6bo38bo9bo2bo3bo7bo3bo17bo45bo6bo2bo6bo2bo5bo
2bo6bo2bo6bo59bo2bo6bo5bo4bo3bo7bo2bo6bo8bo$9b2o4bo10bo7bobo7b2o4bo4bo
4b2o38bo12bo4bo5bo4b6o11bo47bo4bo4bo4bo2bo7bo2bo4bo4bo4bo60bo2b8o5bo5b
obo8bo2b8o7bo$9bo6bo9bo8bo8bo6bo4b4obo38bob4o7bo5bo3bo11bo9bo10b2o37b
4o6b4o15b4o6b4o61bo9bo5bo6bo9bo9bo6bo$9bo6bo9bo7bobo7bo6bo9bo35b2ob2o
4bo6bo6bobo13bo7bo11b2o32b2o107bo9bo5bo5bobo8bo9bo5bo$3b2o4bo6bo9bo6bo
3bo6bo6bo9bo35b2obo6bo5bo7bo14bo6bo46b2o107bo9bo5bo4bo3bo7bo9bo5bo$3b
2o4bo6bo2bo6bo5bo5bo5bo6bo2bo6bo38bo6bo5bo6bobo13bo5bo71b2o46b2o35bo9b
o5bo3bo5bo6bo9bo5bo$10bo4bo4bo4bo5bo7bo5bo4bo4bo4bo5b2o32bo6bo5bo5bo3b
o12bo5bo70b7o21b2o19b2o35bo9bo5bo2bo7bo5bo9bo5bo53b2o$11b4o6b4o21b4o6b
4o6b2o32bo6bo5bo4bo5bo4bo6bo5bo69b9o20b2o56bo9bo5bo16bo9bo5bo53b2o$
101bo4bo6bo3bo7bo4bo4bo6bo67b13o$102b4o7bo17b4o7bo66b17o$209b17o$3b2o
151b2o51b15o$3b2o92b2o35b2o20b2o32b2o17b13o$97b2o34b4o53b2o18b11o$119b
o11b6o75b10o$32b3o82b5o8b7o75b9o41b2o$6bo23b6o30b2o28bo19b8o4b10o50bo
23b6obo21b2o19b2o$7bo21b8obo27b2o29bo18b11ob11o50bo20b9ob2o19b2o159b2o
$5b3o21b6o3b3o54b3o19b8o3b11o48b3o20b7o3b2o180b2o$30b12o75b22o71b12o$
30b12o75b21o18b2o53b11o$5b2o23b5o2b5o56bo18b11ob9o18b2o27b3o24b3o3b3o$
6b2o23b5o2b4o56b2o17b11o2b8o49bo2b2o20b5ob3o$5bo24b5ob5o56bobo16b11obo
b8o48bo3b2o22bo3b3o$30b12o74b22o81bo$3b2o24b12o75b23o102b2o19b2o$3b2o
24b11o26b2o49b10o4b8o102b2o19b2o$30b9o27b2o50b7o8b5o264b2o$30b8o59b2o
19b6o11bo20b2o244b2o$31b5o61b2o19b4o34b2o$31b3o85b2o$32bo$190b2o$190b
2o$241b2o87bo$241b2o19b2o65b3o$3b2o61b2o194b2o65b3o$3b2o61b2o259b11o
64b2o$97b2o57b2o168b13o63b2o$97b2o57b2o159b2o8b15o$316b3o10b14o$315b7o
7b15o$190b2o8b2o8b2o8b2o8b2o9b2o71b9o4b16o$190b2o8b2o8b2o8b2o8b2o9b2o
71b9o2b18o$313b32o$262b2o49b33o$3b2o61b2o194b2o49b32o$3b2o61b2o244b34o
56b2o$97b2o8b2o8b2o8b2o8b2o8b2o7b2o153b37o54b2o$97b2o8b2o8b2o8b2o8b2o
8b2o7b2o153b39o$313b37o$315b36o$316b4ob29o$300bo15b3o4b7ob18o$301bo21b
8ob18o$262b2o35b3o21b6o3b20o$3b2o8b2o8b2o8b2o9b2o9b2o9b2o194b2o60b30o$
3b2o8b2o8b2o8b2o9b2o9b2o9b2o258b29o$295b3o26bo3b26o48b2o$297bo25b4ob
24o50b2o$296bo26b3ob23o$316b3o4b26o$316b4ob29o$315b36o$313b37o$262b2o
47b39o$262b2o47b37o$312b34o$313b32o57b2o$313b33o56b2o$313b32o$314b9o2b
18o$314b9o4b16o$315b7o7b15o$316b3o10b14o$262b2o53b2o8b15o$2o8b2o8b2o8b
2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o5b2o6b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o
8b2o8b2o8b2o8b2o25b2o62b13o$2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o
8b2o5b2o6b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o90b11o$329b3o
70b2o$329b3o70b2o$330bo5$262b2o$2o233b2o25b2o$2o233b2o$402b2o$402b2o3$
52b4o6b4o4b8o19b4o6b4o4b10o$51bo4bo4bo4bo3bo25bo4bo4bo4bo12bo$50bo6bo
2bo6bo2bo24bo6bo2bo6bo11bo$57bo9bo2bo11bo7bo11bo9bo10bo$2o55bo8bo3b6o
7bo5bo12bo8bo10bo112b2o25b2o$2o54bo7b2o10bo7bo3bo12bo7b2o10bo113b2o25b
2o$55bo10bo10bo7bobo12bo10bo8bo281b2o$54bo12bo9bo8bo12bo12bo6bo282b2o$
53bo13bo9bo7bobo10bo13bo5bo$52bo14bo9bo6bo3bo8bo14bo5bo$51bo8bo6bo2bo
6bo5bo5bo6bo8bo6bo5bo$50bo10bo4bo4bo4bo5bo7bo4bo10bo4bo6bo$50b8o4b4o6b
4o19b8o4b4o7bo2$2o233b2o$2o233b2o25b2o$262b2o138b2o$402b2o7$2o233b2o$
2o233b2o$262b2o138b2o$262b2o138b2o7$2o233b2o$2o233b2o$262b2o8b2o8b2o8b
2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o$262b2o8b2o8b2o8b2o8b2o
8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o7$2o233b2o$2o233b2o9$2o233b2o$
2o233b2o13$2o233b2o34b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o7b2o8b2o8b2o8b2o8b
2o8b2o$2o233b2o34b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o7b2o8b2o8b2o8b2o8b2o8b
2o8$312bo4b4o7bo16bo4b4o4bo6bo$2o233b2o34b2o38b2o3bo4bo5b2o15b2o3bo4bo
3bo6bo34b2o$2o233b2o34b2o37bobo2bo6bo3bobo14bobo2bo6bo2bo6bo34b2o$309b
o2bo9bo2bo2bo2bo7bo2bo2bo9bo2bo6bo$312bo8bo6bo3bo5bo6bo9bo2bo6bo$312bo
6b2o7bo4bo3bo7bo8bo3bo6bo$312bo8bo6bo5bobo8bo7bo4b8o$111bo4bo195bo9bo
5bo6bo9bo6bo12bo$110b4ob6ob2o188bo9bo5bo5bobo8bo5bo13bo$108b17o187bo9b
o5bo4bo3bo7bo4bo14bo$107b19o186bo2bo6bo5bo3bo5bo6bo3bo15bo$2o105b20o
108b2o34b2o39bo3bo4bo6bo2bo7bo5bo2bo16bo34b2o$2o104b21o108b2o34b2o39bo
4b4o7bo16bo2b8o9bo34b2o$106b22o$105b22o$105b23o$105b24o$103b29o$101b
32o$100b34o$100b34o$2o99b35o99b2o34b2o127b2o$2o101b34o98b2o34b2o127b2o
$103b33o$103b31o$104b30o$105b24o2b4o$107b19o6b2o$107b19o$106b19o$81bo
23b6ob12o$2o80bo21b8ob12o110b2o$2o78b3o20b7o3b11o111b2o$103b19o$103b
19o149b2o127b2o$84b2o17b11o2b6o149b2o61b2o2b8o5b2o47b2o$84bobo17b10obo
b4o212b13obo3b3o$84bo21b8ob7o205b2o2b18ob4o$107b15o203b5ob24o$108b15o
202b30o$110b13o201b31o$2o110b10o113b2o87b31o$2o111b4ob3o114b2o86b32o$
114b3o206b32o$323b30o$292bo30b29o$271b2o20bo27b2ob28o48b2o$271b2o18b3o
30b27o49b2o$322b28o$322b29obo$295bo22b3ob3ob29o$2o233b2o58b2o19b9o2b
30o$2o233b2o57bobo18b9obob31o$316b42o$317b40o$317b39o$271b2o44b39o44b
2o$271b2o45b25ob10o46b2o$320b22o3b9o$322b18o5b3o2b3o$323b16o$2o233b2o
86b15o$2o233b2o87b14o$324b13o$326b10o$326b10o$271b2o53b10o64b2o$271b2o
52b11o64b2o$325b10o$326b8o$328b3o2$2o233b2o$2o233b2o6$271b2o127b2o$
271b2o127b2o2$2o233b2o$2o233b2o9$2o233b2o34b2o127b2o$2o233b2o34b2o127b
2o9$2o233b2o34b2o127b2o$2o233b2o34b2o127b2o9$2o233b2o$2o233b2o34b2o8b
2o8b2o8b2o8b2o8b2o8b2o8b2o7b2o8b2o8b2o8b2o8b2o8b2o$271b2o8b2o8b2o8b2o
8b2o8b2o8b2o8b2o7b2o8b2o8b2o8b2o8b2o8b2o8$2o233b2o$2o233b2o9$2o233b2o$
2o233b2o9$2o7b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o5b2o6b2o8b2o8b
2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o9b2o$2o7b2o8b2o8b2o8b2o8b2o8b2o8b2o
8b2o8b2o8b2o8b2o5b2o6b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o9b2o!

2 remained (synthesis pi) have a battlefield same, as well as in the right top corner.

Bob Shemyakin
BobShemyakin
 
Posts: 202
Joined: June 15th, 2014, 6:24 am

Re: 4 glider syntheses

Postby BobShemyakin » December 27th, 2014, 7:46 am

Updating table 5 glider synthesis. It is enriched with 38 stable fusion. It also includes the synthesis switch engine.
x = 1060, y = 579, rule = B3/S23
562bo$560bobo$561b2o13$482bo$481bobo$116bo$116bobo362bo2bo$116b2o365b
2o$484bo$498b2o$498b2o2$111bo$109b2o370b2o$110b2o95bo275bo$206bo131bo
143b2o76b3o$206b3o128bo143b3o15bo62bo$111b3o151bo71b3o141b2o16b2o5b2o
53bo$111bo70bo17bo62b2o215b3obo14b2o5b2o80b2o$112bo70bo16b2o55bo6b2o8b
o206bo3bo11bobo87b2o$2o80b2o19bo56b2o4b2o13b3o15bobo39b2o12bobo14b2o
45bo163bo2bo11b2o89bo$o14b2o3bo60bo2bo16bobo56bobo2bobo72bo2bo12b2o10b
o4b2o43bobo162b3o14bo$bobo10bobob2o61bobo18b2o58bo2bo36b2o36bobo2bo22b
obo213b2o12bo2bo61b2o$4bo11bo2b2o59b2obo2bo73bobo2bobo34bobo36bo26b2o
46bo3b2o179bo62b2o$3b2o79b2obo10b2o60b2o4b2o34bo39b2obo26bo42bo5bo176b
3o62bo$87bo9bobo68b2o15b3o56bo26b2o43bobo195b2o$18b3o63b3o12bo68bobo
16bo83bobo44b2o18bo157bo17b2o$18bo65bo84bo16bo139b2o9b2o155bobo$19bo
305bobo9bobo156bo$327bo158b2o5bobo$334bo151b2o5bo$334b2o157bobo15b2o$
10b2o321bobo7bo150b2o15b2o$11b2o329b2o$10bo20bo310bobo$30b2o475b2o$30b
obo474b2o$494b2o$494b2o3$530b2o$530b2o3$502b2o114b2o$502b2o16b2o96bobo
$520b2o96bo3$516b2o$516b2o2$510b2o$510b2o11$540b2o$539bo2bo$530b2o8b2o
$530b2o$536bo$535bobo$535bobo$536bo6$134bo$133bo$133b3o$99bobo$100b2o$
100bo3$526bo$525bo$525b3o$20bobo$20b2o331bo$21bo329b2o161b2o456bo$333b
o18b2o160bobo454bo$334b2o174bo3bo231bobo222b3o$33bo231bo16bo50b2o175b
2o234b2o$31b2o233bo14bo227bobo223bo11bo$32b2o152bo77b3o14b3o325bo126bo
224bo$184bobo147b3o87bo183bo125b3o214bobo8bo$185b2o2bobo82bo59bo87b2o
93b2o77bo11b3o46bo8bo285b2o6b3o$178bobo8b2o83bobo58bo87b2o92bobo63bo
12bobo59bo7bobo184b2o74b2o21bo58b2o$2o78b2o79b2o16b2o9bo49b2o32b2o39b
2o83b2o79b2o22bo11bo42b2o22b2o4bo5b2o42b2o14b3o7b2o54bo130bo2bo72bobo
78bo2bo17bo$bo2b2o74bo2bo76bobo16bo60bobob2o69bo2bo26b3o53bo78bobo2b2o
18b2o53bobo20b2o6b2o47bobo78bobob2o127b3o23bobo48bo2b2o22b2o50b2o2bo
17bo11bobo$bobobo7b3o66b2o76bo81bobo71b2obo25bo49b2ob3o19b3o57bobobobo
17bobo55bo2b2o23b2o50bo78bobob2o10bobo140b2o48b2obo2bo22b2o51b3o15b3o
11b2o$2bo12bo11bo56b2o27bo2bobo42bo2b2o75bo2bo73bobo14b2o9bo49bobo21bo
60bo2bo76b2obobo75bob2o74b2obo14b2o112b3o26bo49bo2b2o22bo51b2o33bo$14b
o10b2o57bobo24bobo2b2o44bo2bo76b2o26b3o45bo2bo12bobo59bo8bo15bo62b2o
78bo76b2o2bo74bo2bo14bo112bo2bo23bo50bobo79bob2o$26b2o57bo26b2o3bo45b
2o107bo46b2o15bo58b2o9b2o156b2o75bo2bo76b2o25b3o99bo2bo25bo49b2o80bo2b
o$271bo9b2o122b2o4b3o228b2o14bo89bo102b2o24b3o10b2o76b3o41b2o$176b2o5b
2o96bobo129bo245bo78b2o9bo139b2o77bo66bobo$25b3o147bobo5bobo95bo130bo
244b3o6b2o69bobo151bo77bo65b2o$25bo151bo5bo482bobo70bo296bo$26bo639bo
196bo$418b2o238bo204b2o$417b2o184b3o52b2o202bobo3b2o167b2o$419bo183bo
53bobo207bobo167bobo$604bo264bo167bo2$1048b2o$1047b2o$1049bo2$91b2o$
90bobo$92bo369bo$460b2o$461b2o8$495bo$493bobo$494b2o3$668bo$332bo335bo
bo$333b2o175bobo155b2o$185bo146b2o177b2o$186bo324bo91bo54bo$184b3o401b
o12b2o56bo$22bo73bo15bobo471bobo13b2o53b3o297bo101bo$21bo75b2o13b2o
155bo317b2o165bo203b2o97b2o$21b3o72b2o15bo82bobo68bobo10bo360bo3b2o
105b2o135bobo65b2o99b2o$196b2o70b2o10bobo357bobobobo106b2o134b2o76bo
84b2o$13bo89bo93bo82b2o359b2obo17bo75bobo149bo74b2o85bobo$14b2o85bobo
420bo119bo18bo75b2o139b2o4bo79b2o80b2o2bo$13b2o87b2o418b2o120bobo14b3o
75bo111b2o26bobo2b2o44b2ob2o2b2o72b2o34bobo$bo78b2ob2o75b2o79bobo77b2o
22bo55b2ob2o76b2o39b2o40b2o18bo59b2o21bo52b2o26bobo98bo2bo27bo3b2o43b
2obobo2bo72bobo35bo$obo78bobobo74bobo23b2o52bob2o76bo2bo19bobo4bo50bo
3bo75bob3o78bobo19b2o79b2o51bo2bob2o22b2o99bo2bo79bob2o27b3o46bo$bobo
77bo2bo16b3o58bo22bobo52bo24bo55b2obo19b2o2b2o52b3o75bo5bo77bo20b2o75b
o4bobo50bo2bobo16b2o6bo100b2o37b2o38b3o33bo46b2o$2bobo12bo4b2o58b2o19b
o58bob2o21bo9b2o42b3o22b2o55bobo23b2o49bobo78b5o38b3o34b2ob2o23b2o71b
2o57b2o3bo14b2o110b3o34bobo37bo34bo44b2obo$3bobo12b2o2bobo77bo60bo2bo
30bobo44bo20b2o56bo2bo73b2o81bo40bo37bo27b2o69bobo59b3o17bo109bo2bo33b
o119b2obo$4bo12b2o3bo142b2o26bo3bo45b2o24b2o53b2o183b3o13bo34bobo26bo
133bo15bo114bobo156bob2o$193b2o75b2o239bo48b2o177b2o114bo23b3o71b2o20b
2o36bo2bo$192bobo74bo77b2o161bo227bobo140bo70bobo19b2o38b2o$17b2o92b3o
164b3o65bobo81bo169b2o278bo73bo21bo$16bobo92bo166bo69bo8bobo70bobo166b
2o447bo$18bo93bo166bo77b2o71b2o169bo446b2o$358bo688bobo11$1024b2o$
1025b2o$1024bo2$448bo$446b2o$447b2o3$428bo$428bobo$428b2o2$29bo401bo$
29bobo398b2o$29b2o225bo173bobo$8bo248b2o$9bo246b2o$7b3o$269bo$268bo
222bobo$268b3o221b2o172bo$104bobo385bo173bobo291bo$105b2o70bobo477bo8b
2o293bo$105bo72b2o237bo10bo229bo300b3o80bo$178bo85bo3bo149bo8bo228b3o
216bo164b2o$108bobo75bo75bobo2bo148b3o8b3o148bo297b2o163b2o$109b2o76bo
75b2o2b3o309bo271bo23b2o54b2o37b2o43bo13bo$2o78b2o27bo50b2o3bo19b3o53b
o80b2o38bo38bo78b2o80b2o13b3o12bo47b2o81b2o20bo104bobo77bo2bo36bobo38b
2obobo13b2o$bo2bo76bo79bo2bobo9b2o2bobo57bobo78bo2bo35b2o38bobo77bo80b
o2bo26bo48bobo78b3obo13b2o2b2o105bo2bo77bobo2b2o32bo39bobobobo12b2o$bo
bobo75bob2o24bo51bobobo9bobo3b2o58bobob2o74bobo37b2o37bobo78b3o78b2o
27b3o48bo16bobo58bo4bo14b2o2b2o105bobo78bo4bo72bobobobob2o$2bobo17bo
57b2obobo23b2o51bobo12bo3bo4bo56bobo74b2obobo75bob2o11bobo64bo156bob2o
15b2o60b4o14bo112b2ob2o19bo56b4o74bo3b2ob2o$3bo19b2o59bo23bobo52bo22b
2o55bobo78bobo7bo68bobo11b2o64bob2o73b4o76b2o2bo15bo83bo109bo2bo19b2o
74bo81bobo$22b2o161bobo56bo80bo9b2o66bobo11bo66bo2bo11b3o2b2o54bo3bo
78bobo77b2o18b2o109bobo12b2o5b2o3bo11b2o38b2o18b2o8b2o2b3o65b2o$104b2o
10b3o215b2o68bo80b2o14bo2bobo56b2o79b2o13bo5b2o56b2o18bobo109bo12bobo
9b2o11bobo37b2o17bobo7bobo2bo63b2o3bo$103bobo10bo377b2o4bo3bo152bobo5b
obo202bo9bobo10bo70bo3bo63b2o$22b3o80bo11bo299b2o9b3o62bobo162b2o5bo
365bo$24bo4bo386bobo9bo66bo$23bo4b2o388bo10bo153b2o9b2o153bo$28bobo
308b2o241bobo8b2o153b2o$340b2o2b2o170b3o65bo3bo6bo152bobo$339bo4bobo
169bo70b2o$344bo172bo69bobo435b2o$253b3o484b2o284b2o$255bo483bobo283bo
$254bo486bo2$337b2o$23bobo310bobo$24b2o312bo$24bo15$116bo$116bobo$116b
2o$958bo$956b2o$34bo300bo323bo297b2o$32bobo4bo296b2o322b2o80bo298bobo$
33b2o2b2o296b2o322b2o79bobo138bo65bo83bo9b2o$38b2o402bo68bo229b2o139bo
4bo60bo83b2o8bo$428bo11b2o51bobo14bo155bobo211b3o5bo57b3o75bobo4b2o$
105b2o82bo71bobo165bo11b2o51b2o14b3o65bobo85b2o75bo142b3o136b2o$104bob
o82bobo69b2o91bobo70b3o64bo84b2o86bo75bobo152bo126bo$106bo3bo69bo8b2o
71bo91b2o81bo141bo6bobo154b2o105b2obo45bo31b2o77b2o6bo$2ob2o75b2o27b2o
50b2o18bo58b2o78b2o33bo44b2o2b2o29b2o43b2o2b2o76b2o22b2o53b2o21b2o54b
2ob2o125bob4o41b3o31b2o77bobo3b3o12bo$ob2o2bo73bo2b2o24bobo48bobo16b3o
58bobo77bobo77bobo2bo30b2o42bobo2bo75bo2bo22bo52bo2bo11b3o7b2o53bo3bo
131bo155bo2bo15b2o$5b2o18b2o55b2obo75bo23bo55bobo10bobo3b3o60bo26bo51b
3o77b2o78b2o77bobo2b2o9bo6bo56b3o126bob4o75b4o75bobobobo13bobo$26b2o
57bo76b3o18b2o57b2o11b2o3bo60b3o24bobo50bo80bo159b2obobo8bo193b2obo41b
3o32bo4bo16bo57b2o2bobo$25bo59b2o78bo13b2o3b2o58b2o9bo5bo58bo28b2o50b
2o34b3o40bobo21b2o54b4o81bo77b3o171bo33b4o15bobo61b2o$96b3o13b3o49bobo
11bobo63bobo74b3o21b2o90bo42b2o22bobo52bo3bo81b2o27b3o45bo2bo170bo54b
2o2bo$98bo13bo52bo14bo64bo77bo22b2o90bo61bo3bo54b2o19b3o3b2o86bo47b2o
209b2o20bobo81b3o$97bo15bo231bo154b2o78bo5bobo86bo69b2o135bo50b2o20b2o
82bo$52b2o134b3o308bobo73b2o4bo4bo158bobo134b2o156bo$51b2o135bo169bo
215bobo168bo135bobo$53bo135bo167b2o217bo173b3o195bo$357bobo134b2o247b
2o5bo197b2o$257b2o236b2o245bobo6bo195bobo$256bobo235bo249bo$258bo12b3o
$271bo$272bo2$423b3o$425bo$424bo15$372bo$372bobo$372b2o2$16bobo$17b2o
1039bo$17bo847bo17bo172b2o$189bobo674bo14b2o160bo13b2o$189b2o226bo446b
3o15b2o160bo$190bo227bo541bo81b3o$263bobo150b3o176bo150bo211b2o$181bob
o80b2o328bo83bo68b2o210b2o$97bo83b2o81bo164bo151bo12b3o79b2o68b2o$25bo
72b2o3bobo6bo69bo241bobob2o71bobo78bo94b2o$20bobo2bobo69b2o5b2o4b2o
313b2obobo70b2o77b3o85bo185b2o16bo63b2o11bo5bo56b2o$2o19b2o2b2o53b2o
22bo6b2o47b2o27bobo48b2ob2o25bo49b2o78b2o23bo54b2o20bo58bo3b2o73bo26bo
57b2o123b2obo2bo15bobo60bobo12bo2b2o56bobo$o2b2o16bo58bo4b2o73bobo26b
2o50bobobo25bo48bo2bo2b2o72bo79bobo16bo60bobobo2bo72b3o24b3o54bo2bo
123bobob2o15b2o61bo12b3o3b2o3bo50bo$2b2o2bo74b3o2bo12b3o60bo23bo3bo50b
o2bobo22b3o50b2o3bo73b3ob2o8bo65b2o14bobo60bobobobo76bob2o73b2o2bob2o
31bo91bobobo76b2ob2o22bobo49b5o$5b2o76b2o16bo60bobo20b2o53b2o3bo78b3o
22bo53bobo9b2o4bo61b2o13b2o61b2ob2o76b2obobo72bobobo32b2o93bo2bo75bobo
bo23b2o52bo2bo$100bo62bobo19bobo87b2o47bo25b2o51bobo8bobo4b2o60bobo94b
3o3b2o3b2o52bobo22b2o49bo2bo29bo3b2o93b2o16bo7b2o49bobo2bo80bo28b2o6b
2o$164bobo108bobo71b2o53bo15bobo63bo95bo2b2o3b2o53b2o22b2o53b2o28b2o
114b2o7bobo49bo3b2o78b2ob2o25bobo5bobo$110b2o53bo109bo211bo93bo5bo4bo
78bo81bobo114bobo6bo136bo2bo21bo3bo7bo$23b3o83b2o375b2o255b2o18bo252bo
bo22b2o$25bo6bo78bo237b3o142b2o248b2o16b2o253bo22bobo$24bo6b2o155b3o
160bo143b2o246bo18bobo$31bobo154bo75bo85bo143bo179b2o$189bo74b2o408bob
o271b2o$263bobo246b2o160bo272bobo$278b3o230b2o148b3o285bo$278bo234bo
149bo$279bo213b2o167bo$370b2o122b2o$333b2o34b2o122bo$334b2o35bo$333bo
14$670bo$671bo$669b3o$126bo$125bo$98bobo24b3o$99b2o$99bo326bo258bo356b
o$427b2o10bo67bo177bobo192bobo158bo$426b2o10bo66bobo177b2o182bo10b2o
159b3o$438b3o65b2o359bobo11bo77bo$679bobo68bo117b2o88bo$518bo160b2o67b
2o196bo11b3o$518bobo159bo68b2o196bo91bo$186bo150bo5bo174b2o73bo82bo54b
o213b3o89b2o$187bo150b2o4b2o246bo82b2o55bo305b2o$185b3o149b2o4b2o85bo
152b2o2b3o2b3o80bobo52b3o122bo74b2o3b2o74bo30b2o$2o78b2o2b2o74b2o78b2o
78b2o78b2obo27b2o10b3o34b2o79b2o19bobo2bo53b2o77b2o20bo3bo107bobo73bob
obo2bo72bobo28b2o$obo24bobo50bobo2bo74bobo78bo2b2o74bobob2o74bob4o24b
2o3bo7bo36bobo19bo57bobo2bo18bo3bo51bo2bo76bobo17bobo2bo105bo2bobo14bo
60bobo2bo13bo58bo2bo29bo$2bo24b2o53bobo77bo78bobo2bo75bobobo79bo27b2o
8bo36bobob2o16b2o55bobobobo73bo2bo78bo2b2o14b2o2b3o102bobobob2o14b2o
58bo2b2o15b2o57bobo2b2o$2bob2o11b2o9bo53b2o11bo2bobo61bob2o74b2obobo8b
obo2bobo60bo2bo17bo3b2o55bobo27bobo46bob2o15b2o57b2obo2bo73b2o79bobo2b
o123b2obo2bo13b2o3bo53bobo18b2o59bo4bo$3bobo4bobo5b2o73bobo2b2o63bo2bo
26bo50bo10b2o2b2o62b2o9b2o7b2o2bobo54b2o77bo22b2o57b2o76b3o75b2obo2bo
127b2o18b2o53b2o81b4o$11b2o4bo76b2o3bo64b2o26bo62bo4bo74b2o5bobo2bo
134b2o23b2o134bo2bo78b2o148bobo$11bo12bo167b3o139bo171bo69b2o66b2o33b
2o267b3o62b2o$14b2o7b2o552b2o9b3o87b2o184b3o83bo62bo$13bobo7bobo550bo
11bo91bo69b2o114bo82bo61bobo19b2o$15bo573bo160bobo112bo145b2o20bobo$
189b2o325b2o232bo206b2o70bo3bo$188bobo324b2o440bobo69b2o$190bo71bo254b
o439bo70bobo$179bo24b2o55b2o$179b2o22b2o56bobo$122b2o54bobo24bo48bo$
122bobo129b2o$122bo130bobo$284b2o$284bobo$284bo21$424bo616bobo$424bobo
529bo10bo73b2o$424b2o528bobo9bo75bo$99bobo72bo561bobo216b2o9b3o$99b2o
74b2o73bo165bobo94bo223b2o129bo$25bo74bo73b2o75b2o74bo89b2o94bobo76bo
144bo131b2o9bobo155bo$26bo158bo64b2o7bo68bo88bo95b2o76bo276b2o10b2o
155bo$24b3o159b2o72b2o64b3o13bo78bo169b3o149bo137bo155b3o$185b2o72b2o
79b2o80bo80b2o2b3o171bo62bo108b2ob2o13bo64bo74bo29b3o$2o79bo78b2o3b2o
76bo73b2o22b2o57b2o18b3o57bo21bobo2bo53b2obo75b2ob2o21bo12b2o39b2o20b
3o109bob2o13b2o2bo59bobo72bobo28bo$o2b2o75bobo77bo4bo76bobo73bo81bo2b
2o75b3o21bo3bo51bo2b4o74bob2o22bo12b2o38bobob2o124b2o2bo15bobo2bobo56b
o2bo72bo2bo28bo$b2o2bo18bobo54bobo10b3o4bo59b3obo20b3o54b2o16b3o51b3o
84b2obo77bo2b2o72b2o5bo73bo23b3o3b2o49bobobo123bobobo20b2o53b2o2bobo
74bobo2b2o$4b2o19b2o55b2o12bo4bobo59b2o21bo76bo51bo89bo11bo64b2o3bo77b
obo74b3o25b2o49b2obo2bo15b2o106b2ob2o74bo4bo76bo4bo13bo$25bo58b2o9bo5b
2o84bo53b4o17bo53b2o84b3o13b2o64b3o78b2o78bo26bo52bobo16b2o185b4o78b4o
15bo$28bo55bobo89b3o61bo3bo72bo9b3o3b2o67bo14b2o65bo159bobo18b2o59bo
16bo221b3o62b3o$28b2o55bo92bo61b2o73bo13bo2b2o311bo18bobo196b3o67b2o
30bo47b2o$27bobo72b2o73bo137b2o11bo5bo82b2o164bo3bo78bo198bo67b2o31bo
46bo19bo$38b3o56b3o2bobo235b3o73b2o76b2o15b2o68bobo2bo277bo149b3o16b2o
$38bo60bo2bo78b2o157bo77bo76b2o13b2o70b2o2b3o86b3o55b2o4b3o218b2o54bo
15bobo$39bo58bo83b2o82b3o72bo152bo17bo149b3o10bo56bobo6bo217bobo$181bo
84bo397bo11bo57bo5bo220bo$267bo395bo299b3o$20bo569bo372bo$20b2o248b2o
317b2o373bo$19bobo247b2o318bobo$271bo9$595b2o$595bobo$595bo11$324bo$
325bo429bo$323b3o12bobo412bobo$338b2o414b2o119bo$339bo536b2o79bo$875b
2o81b2o8bo$957b2o8bo$176bo10bobo144bo3b3o626b3o$15bo161bo9b2o67bo76bo
4bo249bo73bo107bobo117bo144bo$13bobo159b3o10bo65bobo10bo65b3o3bo100bo
148bo3bo62bo4bo109b2o115b2o146b2o$14b2o78bobo4bo153b2o8b2o173bobo144b
3o3bobo58b2o5b3o107bo117b2o127bo16b2o$95b2o4bobo162b2o172b2o151b2o60b
2o195b2o83bo72b2o5bobo$ob2o13bo62bo2bo11bo5b2o58b2o78bo73bob2o82b2o77b
2o80b2o77bo79b2o129bo2bo36bo38bo3b3o72bobo4b2o$2o2bo13b2o60b4o78bo18bo
58bobo72b2obo81bo2bob2o73bo2b2o76bo2bo75bobo77bo2bo129b2obo23bo10b2o
37bobobo24bo52bo2b2o34bobo$3bobo11b2o141bo21b2o57b2o75bob2o13bo65b2o3b
o26b2o4bo41bobobo75bob2o21bo53bo2bo9b3o65bobo2b2o128bo24bo9bobo36bobob
ob2o22b2o48bobobobo34b2o$4b2o74b2o19b2o2b3o52b2o19b2o135bo2bo12b2o67b
3o26bobo2b2o41b2obo2bo73b2o23bo55b3o11bo66b2obo2bo46bo75b5o23b3o49b2ob
o2bo21b2o3bo45b2o2bo16b2o19bo$10b2o8b2o58bobo14b2o3b2obo55bo79b4o21b2o
51b2o13bobo66bo30bo3b2o44b2o77b2o20b3o66bo70bobo43bo2bo75bo2bo81b2o26b
2o8b2o39bobo15b2o15bo$11b2o8b2o58b2o13bobo2bo4bo54bobo76bo3bo21bobo
234bo60bo76b3o81b2o42bobo2b3o73b2o111bobo7bobo39b2o14bo18bo$10bo9bo77b
o63bobo13b3o59b2o13bo10bo230bo3b2o60bo19b2o55bo2bo126b2o105b2o94bo74b
3o$163bo16bo74b2o4b2o232bobo4b2o59b2o17bobo55bobo235b2o$24b2o153bo74bo
bo3b2o234b2o86bo56bo235bo$24bobo235bo793b2o$24bo161b3o253b3o610b2o$
186bo255bo211bo402bo$187bo255bo210b2o$590b2o61bobo15bo67b2o$589b2o79b
2o66bobo$591bo78bobo67bo$430b2o74b2o$431b2o72b2o$430bo76bo2$491bo$491b
2o$490bobo6$489b2o$490b2o$489bo10$335bo165bo378bo$336b2o164bo13bo148bo
214bobo$335b2o98bobo62b3o11b2o90bo59bo213b2o$435b2o78b2o87b2o58b3o6bo
63bobo$256bo179bo168b2o67b2o62b2o127bo$176bo80bo415b2o63bo129bo188bo$
102bo74bo77b3o87bobo80bobo435b3o186b2o$101bo73b3o89bo77b2o82b2o157bo
89bo5bo67bo278bo24b2o$101b3o144bo18bobo76bo82bo159bo86b2o6bobo64bo208b
o71b2o$108b3o138bo17b2o318b3o6bo80b2o5b2o65b3o207bo48b2o19b2o$2o19bo
58b2o20b3o3bo51b2o73b2ob2o7b3o5b2o58b2o3b2o79b2o82b2o21bo52b2o3b2o28bo
bo41b2o81bo146bo88b3o48bobo35b3o$obo17bo59bo3bo19bo4bo50bo5b2o67b2obo
15bobo59bo3bo31b2o46bo2bo80bobo21bobo49bo2bobobo28b2o42bo2bo78bobo143b
obo141bo2b2o33bo$bobo13bo2b3o5bobo50b4o18bo57b3obobo15bobo52bo17bo59bo
bobo14b2o14b2o47bob2o24bo55bo23b2o51bobobo26bo48b3o77bo2bo144b2o100bo
38bobobobo32bo$2bobo10bobo10b2o133b2o13bo5b2o52bobo76b2ob2o12bobo16bo
47bo2b2o23b2o50b2ob2o76bo2bo24bobo127bo3b2o17bo108bo3bo112b2o39b2o2bo
37bo$4bo11b2o11bo51b2o95b2o4bo54bobo94bo3bo62bo2bo21b2o50bo2bo81b2o24b
2o48b3o77b3o2bo14bobo107bobobobo75b2o35b2o42bobo18b2o14b2o$4b2o75b2o
94bobo7bo52bo21bo76b2o63b2o75bobo23bo10b3o119bo3bo78bo2bo15b2o107bobob
obo11bo63bobo79b2o19b2o13bobo$186bo74b2o76bobo89b2o49bo23b2o10bo121b2o
b2o79b2o20b3o101b2obobob2o10b2o7b2o54bobo80b2o16bo$17b3o166b3o72bobo
168b2o72bobo10bo226bo107bo13bobo7bobo54bobo22bo56bobo$19bo411bo315bo
130bo54bobobo23bo56bo$18bo7b3o164bo737b3ob2o22b3o12b2o$26bo165b2o736bo
42b2o$27bo164bobo241b2o166b2o77bo246b2o43bo$435b2o167bobo75b2o273b2o$
437bo166bo77bobo273b2o$737b3o217bo$739bo$738bo$124b2o$124bobo$124bo$
96b2o$95bobo$97bo9$53bo$52bo$52b3o3$175bo$176bo$174b3o13bobo$190b2o$
191bo399bo385bo$589bobo283bo99b2o$590b2o11bo270bo101b2o$603bobo136bo
131b3o$263bobo71bo265b2o135bobo5bo$177bo5bo79b2o70b2o78bo325b2o5bobo$
26bobo68bo80bo2b2o81bo71b2o78bo95bobo233b2o$27b2o7bo58bobo78b3o3b2o71b
obo156b3o83bo11b2o229bo$27bo6b2o60b2o158b2o172bo70b2o10bo229bobo311bo$
31bo3b2o219bo84bo88bobo67b2o94bo146b2o107b2o16bo5bo54b2o25bo96b2o$2o
17b3o8b2o48b2o82b2o24b3o42b2o3b2o73b2obo11bo9bo62bo26b2o48b2o79b2o2bo
28b2o45b2ob2o74b2o131bo2b2o10bobo5bobo51bo2bo15bobo5bo98b2o$obo18bo8bo
bo47bobo79bo2bo24bo44bobo2bo75bob3o7bobo9b3o58b3o76bobo20bo56bob4o29b
2o43bobobobo73bo2bo129bobo2bo10b2o5b2o52b2obo16b2o5b3o$2bo17bo62bo77bo
b2o26bo44bobobo8bobo3b3o7b2o49bo4bo7b2o69bo3b2o76bo20b2o55bo38b2o39bob
obo2bo11b2o3b2o55b3o126b2obo2b2o75bob2o13bo80bo$2bob2o78bo19bo57bo74bo
bo10b2o3bo9bobo47b2o3b2o11b2o65b2obo2bo74b2obo17bobo56b3o34b2o41bo3bob
o12b2o2bobo183bo2bo79bobobo94b2o14b3o$3bobo79bo7bobo7bo56bobo75bo11bo
5bo8bo66bobo8b2o59bobo12bobo61bobo78bo35bo45bo12bo4bo58b3o125b2o16bo
62b2obo2bo71b2o3b2o14b2o17bo$4bo81bo7b2o7b3o54b2o172bo7b2o61bo13b2o62b
o2bo8b2o66b2o106b2o49bo3bo142b2o65b2o72bobobobo32bo$87bo6bo249bo75bo
63b2o8bobo10b2o96b2o63b2o50b2ob2o141bobo141bobo37bo$88bo407bo9b2o97bob
o64bo69b2o204bo61bobobobo34b2o$87b2o13b2o404bo96bo62bo72bobo204b2o60b
2o3b2o34bobo$102bobo316b2o244b2o74bo203bobo3bo63b2o16b2o$102bo318bobo
243bobo195b2o84b2o64bobo16b2o$110b3o308bo322b2o118bobo85b2o64bo16bo$
110bo633bobo119bo$111bo632bo$431bo238b2o$430b2o238bobo$430bobo237bo!

When I update the table, I used syntheses of topic Soup search results.

Bob Shemyakin
BobShemyakin
 
Posts: 202
Joined: June 15th, 2014, 6:24 am

Re: 4 glider syntheses

Postby BobShemyakin » December 31st, 2014, 6:53 am

Happy New Year!
In the last days of 2014 I found 2 interesting synthesis.
4G:
x = 28, y = 12, rule = B/S
20bo$21bo$19b3o$2b2o$bo2bo$b2obo12bo7bobo$2bob2o9bobo7b2o$o15b2o8bo$2o
$20b2o$19bobo$21bo!


and 7G:
x = 76, y = 79, rule = B3/S23
74bo$72b2o$73b2o29$50bo$48b2o$49b2o5$45bo$37bo6b2o$b2o2b2o31bo5bobo$o
2bo2bo29b3o$2o2b2o2$38b3o$40bo$39bo27$12b3o$14bo$13bo$74bo$73b2o$73bob
o!


7G synthesis is interesting in that it has lowered the number of gliders not only for this object (from 9 to 7). Now for all objects SL with the number of bits not more than 11 required is not more than 8 gliders.

Bob Shemyakin
BobShemyakin
 
Posts: 202
Joined: June 15th, 2014, 6:24 am

Re: 4 glider syntheses

Postby Freywa » December 31st, 2014, 11:23 am

BobShemyakin wrote:7G synthesis is interesting in that it has lowered the number of gliders not only for this object (from 9 to 7). Now for all objects SL with the number of bits not more than 11 required is not more than 8 gliders.
Where can I get the current least number of gliders needed for still lifes? Niemiec's site should be up now but I don't know where the URL is.
User avatar
Freywa
 
Posts: 274
Joined: June 23rd, 2011, 3:20 am
Location: Singapore

Re: 4 glider syntheses

Postby BobShemyakin » January 1st, 2015, 6:12 pm

The old Niemiec's site is no longer working. In addition, it is outdated.
According to my data summary table still life of up to 13-bits is as follows:
...............bit..4...5...6...7...8...9...10...11....12...13
known..amount..2...1...5...4...9..10...25...46..121..240
..6....2G..........1...1...1...2...1
.11...3G...........1.......2...1...2...2
124...4G...................2...1...6...6...11...11...13...11
129...5G................................1.....7....8...17...24
142...6G................................1.....4...10...13...20
149...7G......................................2...11...28...43
170...8G......................................1....6...20...65
134...9G................................................21...35
.88..10G............... ..................................5...26
.46..11G.................................................3...12
.35..12G.................................................1....4

Here is the same table glider syntheses on bits.
3-8 bits:
x = 436, y = 211, rule = B3/S23
5b3o14bo3bo$20bobo2bo$21b2o2b3o21$56bo19bo$4b2o18bo30bobo12bobo2bo$4b
2o17bo32bo14b2o2b3o$23b3o45bo$20bo$18bobo57b2o$19b2o57bobo$78bo19$2b2o
13bobo$2bobo13b2o2b2o$3bo14bo3bobo$22bo17$178bobo$178b2o$179bo34bo18bo
$172bo40bobo16bo$3b2obo18bobo80b2o19bo26b2o15b2o39bobo15b3o$3bob2o19b
2o26b2o20bobo28bo2bo18bobo24bo15b2o41bo$26bo27bobo19b2o30b2o19b2o27bo$
32bo22b2o20bo47bo31b2o18b2o$31bo91bobo50bobo51b2o3b3o$31b3o90b2o52bo
50bobo3bo$75b3o103b2o48bo4bo$75bo104b2o$27b2o47bo105bo$26b2o$28bo41bo$
19b2o49b2o$20b2o47bobo$19bo13$108b2o14bo3bo$55bo22bo30bo12bobo3bobo$b
3o15bo33bobo15bo5bo28bo16b2o3b2o$2b3o15bo33bobo12bobo5b3o26b2o$18b3o3b
2o28bo15b2o$23b2o57b2o47bo$25bo48b3o5bobo45b2o$18b2o56bo5bo47bobo$17bo
bo55bo$19bo18$b2o15bo34b2o17bo81b2o17bo$bobobo13b2o31bo2bo15bo31b2o14b
obo32bobo15bo$4b2o12b2o11bo20bobo16b3o29bobo14b2o33bobo14b3o$29b2o22bo
51bo14bo3bo31bo$30b2o73b2o17bobo$69b2o53b2o50bo$68bobo99b2o3b2o$26b3o
41bo100b2o2bobo$19b2o5bo143bo$20b2o5bo$19bo14$272bobo$273b2o$273bo5$
280bobo2bo$281b2o2bobo$281bo3b2o2$2o20bo29b2o20bo44bo305bobo$o2b2o16bo
29bo2bo14bo2b2o43bobo89b2o16bo27b2o169b2o$b2obo16b3o27bo2bo12bobo3b2o
30b2o11b2o9bo26b2o17bo34bo17bo26bobo73bo43bo13bo36bo$16bo35b2o14b2o35b
obo21bobo23bo2bo14bobo34bob2o12b3o29bobo69bo45b2o10bo$17b2o87bobo20b2o
25bo2bo14b2o35bobo45b2o69b3o26b2o14b2o11b3o$16b2o89b2o48b2o148bo52bo
49b2o$118b2o59bo99b3o24bobo51bobo47bobo$119b2o57bo102bo25bobo11bo39bob
o49bo$16b2o100bo59b3o99bo27bobo11bo39bo51bo$15bobo2b3o211bo74bo10b3o
90b2o15bo$17bo2bo105b3o103b2o145b3o48b2o$21bo104bo45b2o59b2o146bo47bob
o3bo$127bo43bobo157bo48bo52b2o$173bo156b2o56bo34b2o9b2o$233b3o94bobo
54b2o33bobo$233bo153bobo34bo$227b2o5bo$226bobo$228bo6$22bo$21bo$21b3o$
35bo$22bo3b2o6bo$22b2o2bobo5b3o$2o19bobo2bo$obo2$2bobo$3b2o13$17b2o$
16bobo$18bo!

9-10 bits:
x = 503, y = 227, rule = B3/S23
391bo$391bobo$391b2o54bobo$239bo92bo37b2o75b2o23b2ob2o18bo$237bobo93b
2o36bo2b2o72bo24bobo14b2o3bobo$90bo89bo57b2o92b2o37bobobo27bo69bobo13b
obo3b2o$89bo35bobo50bobo191bo29bo16bob2o16bobo32bo16bo$72bo16b3o18b2o
14b2o3bobo45b2o86b2o27bo105b3o14b2o2bo16b2o$70bobo37bobo13bo4b2o28b2o
55b2o28bo19bo27bobo35bo3bo83bobo15bo$5b2o22bobo39b2o40bo18bo28bo57bo
28bobo17bob2o13bo10b2o37bo2bobo82bo$5bobo21b2o28b2o53bo47b3o19bobo32bo
bo26b2o19bobo13b2o28b2o2b2o12b3o2b2o159b2o$6bobo21bo28bobo17bobo33bo
49bo18b2o34bobo47bo13bobo28bobo2bo114b2o62bobo$7bobo52bo17b2o32b2o10b
3o35b2o19bo35b2o66b3o26b2o65bo48bobo62bo$8bo54bobo14bo47bo111b3o46bo
95b2o49bo$22bobo3b3o33b2o10b3o48bo50bobo61bo47bo93bobo10bo$23b2o3bo49b
o100b2o5b2o53bo154bo46b2o$23bo5bo47bo101bo5b2o140b2o67b3o44bobo$85bo
50b3o48bo97b2o41b2o113bo$84b2o50bo147bobo40bo69bo$84bobo50bo109bo38bo
109b2o$79b3o164b2o148bobo$79bo166bobo$80bo18$25bo$23bobo$24b2o$34bobo$
34b2o$35bo2$3b2o$3bo$4bobo2$6bobo$7b2o$22b3o$24bo$23bo13b3o$33b2o2bo$
34b2o2bo$33bo$46b2o$46bobo$46bo7$438bo$436bobo$437b2o9$484bobo$485b2o$
401bo83bo$399b2o4bo$301bo98b2o2bo66b2o$299b2o103b3o64bo2b2o$123bobo6bo
167b2o116b2ob2o50b2o2bo$123b2o6bo273bo12bob2o2bo51b2o$119b2o3bo6b3o
144bobo123b2o17b2o$120b2o157b2o61bo61bobo87bo$119bo159bo60bobo146bobo
2bobo$325bo15b2o103bo43b2o2b2o$19bo245b2o57bobo46b2ob2obo67b2o2bo38bo$
bo15bobo39b2o12bo138b2o28bo23bo2bo54bobo23bo22bob2ob2o66b2o2bo$obo15b
2o39bobo9bobo8bo91bo38bo28bobo21bobobo54bo22b2o100b3o$bobo56bobo9b2o6b
2o80b2ob2o8bo37bobo26b2o23bobo52b3o24b2o$2bobo20bo2bobo30bobo17b2o80bo
bo7b3o38bobo14bo36bo53bo63bobo$3bobo17bobo2b2o32b2o49b2o47bo2bo49bobo
14bo154b2o$4bo19b2o3bo82bo2bo47b2o20bobo28bo13b3o4b3o147bo104b3o$112bo
bobo19b2o47b2o50bo98b3o155bo6bo$14b2o8bo88bobo20bobo47bo51bo99bo4b3o
40b3o104bo6b2o$15b2o6b2o48b2o39bo21bo200bo5bo44bo2b2o45b3o59bobo$14bo
8bobo48b2o8b2o208bo49bo42bo4b2o46bo$73bo9b2o45bo47bo59b2o55bo95bo47bo$
85bo43b2o47b2o58bobo52b3o$129bobo45bobo58bo$294bo$294b2o168b3o$183b3o
107bobo3b2o163bo$183bo115bobo163bo$184bo114bo$147bo$146b2o$146bobo5$
289bobo$289b2o$290bo146bo$438bo$282bo153b3o$283bo$281b3o187b2o17bo$
237bo184b2o47bo16bobo$237bobo182bo2b2o9bobo33bo2b2o12b2o$176bo60b2o98b
o6bobo37bo38b2o2bo9b2o34bo2bo22bo$70bo103bobo3bo4bobo43bo34b2o67bobo6b
2o36bobo10bo30b2o9bo36b2o21b2o$68bobo104b2ob2o5b2o42bobo34bo3b2o5b3o
39b2o15b2o7bo22b2o13b2o9bo45bo57b2o$2o18bo48b2o3b2o36b2o65b2o5bo43b2o
35bo2bo8bo39bobo46bo2bo22b3o43b2o$obo18bo36b2o13bobo36bobo24bobo19b2o
46b2o3b2o52bobo7bo11b2o29bo47b2obo66bobo$3bo15b3o36bobo14bo9bo28bo24b
2o21bo46bobo2bo15bo38bo19b2o30bobo48bo77b3o$4bo56bo15b3o6bo27bob2o11b
2o9bo21bobo16b3o28bobo10bo3b2o8b2o45b2o3bo30bobo47b2o76bo44b2o$5bo56bo
14bo6b3o28bobo4bobo5b2o31bobo17bo29bo9bobo3bobo6b2o45bobo35bo127bo42b
2o$6bo56bobo12bo9bo34b2o4bo35bo16bo41b2o14bo46bo208bo$5b2o16bo40b2o22b
obo32bo12bo28b2o113b2o111b2o$24bo63b2o3b2o31b2o7b2o45bo3b2o91bobo70b2o
31b2o6bobo36bo$22b3o68bobo29bobo7bobo44b2o2bobo92bo70bobo29bobo6bo38b
2o$93bo33bo53bobo2bo153bo11bo33bo44bobo$288b3o49b2o$24b2o262bo50bobo
143b3o$25b2o4b2o188b2o66bo197bo$24bo6bobo186bobo58bo204bo$31bo190bo16b
2o40b2o$239bobo38bobo$239bo28$20bobo$21b2o53bo54bo$21bo54bobo4bobo26bo
b2o16b2o$31bobo42b2o6b2o26b2o2bo14b2o$31b2o24bo26bo30bobo54bobo10bo$
32bo23bobo2b2o11b3o39b2o17bo24bo12b2o9bo30bo2bo11bo$57bo2bobo13bo59bo
22bobo11bo10b3o28b4o9bobo$2b2o54b2o15bo58b3o23b2o67b2o$2bobo2b2o153b2o
51b2o$5bo2bo6b2o3bo106b3o7b3o22bobo50b2o19bobo$6b2o6bobo2b2o65b2o41bo
9bo23bo72b2o$16bo2bobo59b2o2b2o41bo9bo98bo$81bobo3bo$67b2o12bo59b2o37b
2o$66bobo8b3o60b2o31b3o4bobo44b3o$68bo10bo62bo32bo4bo48bo3b2o$78bo95bo
53bo4bobo$233bo19$12bo$13b2o$12b2o$17bobo$17b2o$18bo$b2o23bobo$bobo10b
obo9b2o$15b2o10bo$3bobo9bo2$5bobo17b3o$6b2o17bo$26bo2$20bo$20b2o$19bob
o!

11 bit:
x = 674, y = 284, rule = B3/S23
571bo$572bo$570b3o$282bo$283b2o$282b2o$317bo$317bobo$317b2o$502bobo$
503b2o58bo$137bo365bo60b2o$136bo325bo100b2o$136b3o322bo$23bobo435b3o
55bo$24b2o101bobo156bo215bobo13bo$24bo103b2o11bo145b2o63bo10bo91bo47b
2o13b3o$128bo12bobo142b2o58bo6bo7bobo8bo27bo55bo46bo$141b2o204bo3b3o8b
2o7bo21bobo5bo52b3o$197bo147b3o23b3o20b2o3b3o63bobo71bo$129bobo64bo39b
2o9bobo144bo14bo55b2o20b2o49bo$26bobo2bo98b2o64b3o38b2o8b2o160bobo26b
2o26bo4b2o14bobo38bo9b3o$27b2o2bobo46bobo47bo12bo23b2o13bo38b2o13bo3b
2o6bo21b2ob2o52b2o80b2o27bobo30bobo15bo2b2o33bo$2b2o23bo3b2o43bo3b2o6b
o28b2o22bobo24bo14b2o37bo2bo14bobo27bob2obobo49bo2b2o29bo20b2o57bo22b
2o5bo17bobobo33b3o$2bobo55b2o15b2o2bo6bobo27bo2b2o19b2o24bob2o10b2o38b
obobo13bo35b2o51b2obobo24bobo20bobo57bo20b2o25bo$3bobo54bobo13b2o10b2o
28bobobo46bo2bo50bo2bo106b2o25b2o3bo19bo57bo21bo64b2o$4bobo54bobo55bob
o17b2o3bo25bobo51b2o140bo19bo26bo30bobo83bobo$5bobo54bobo13bo41bo19b2o
b2o26bo27bo44b2o118b3o20bo23b2o32b2o83bo$6bo57bo13b2o59bo3bobo52b2o43b
2o103b3o37bo23b2o$64b2o11bobo7bo110bobo44bo104bo38bo79b2o$86b2o204bobo
54bo13b3o22b2o78b2o$25b3o58bobo203b2o69bo106bo$27bo265bo70bo$26bo465bo
$292b2o198b2o$292bobo196bobo$292bo111bobo$320bo83b2o$185b2o132b2o84bo$
186b2o131bobo$185bo218b2o$403bobo$405bo2$408b2o$408bobo$408bo$272b2o$
271bobo$273bo4$262bobo$262b2o$263bo$242bo$243bo71bo$241b3o69b2o$145bo
168b2o$28bo75bo41b2o44bo$23bobo2bobo72bo41b2o45bobo358b2o$23b2o3b2o73b
3o86b2o155bo62bo140bo$24bo173b2o150bo49bo10bo142bo$198bobo147b3o47bobo
10b3o141bo2b2o$21bo108bo67bo200b2o87b2o2b2o62bo2bo$22b2o9bo94bobo64b2o
242b2o47bo2bo2bo62b2o$21b2o8b2o96b2o3b2o32b2o24bobo25bobo46b2o55b2o
109bo49b2o2b2o$3b2o27b2o84b2o13bobo32bo27bo25b2obo34bo11bo2bo27bo25bo
2b2o50bo22bobo30bo$3bobo55b2o55bobo3b2o9bo13b2o18bo3b2o50bo34bobo9bobo
bo14b2o10bobo23bobo2bo17bo30bobo21b2o32bo2b2o$5bo55bobo57bo2bo12b3o9bo
bo18bo2bo51bob2o21b3o7b2o11bo2bo15b2o9b2o25bo2b2o18b2o29bobo21bo33bo2b
o$5bobo55bo58bobo12bo11bo21bobo27bo24bobo16bo6bo23b2o13bo3b2o55b2o32bo
56b2o$6bobo54bob2o56bo14bo33bo27b2o41bobo5bo43bobo48b2o8bobo27bobo$7b
2o55bobo79b2o52bobo41b2o10b2o37bo51b2o7b2o29bobo10bobo3b3o$65bo80bobo
89b3o6b2o7bobo87bo10bo30bo12b2o3bo$77bobo66bo36b3o54bo7b2o6bo144bo5bo$
78b2o7bo52bo44bo12b2o39bo7bo$78bo6b2o53b2o42bo13bobo98b3o$82bo3b2o51bo
bo56bo100bo118bo$70b3o8b2o217bo116b2o$72bo8bobo102b2o229bobo$71bo113bo
bo122b2o287b2o$187bo122bobo287b2o$310bo288bo13b2o$612b2o$280b3o331bo$
282bo327b2o$281bo327bobo$611bo9$156bo81bobo$154b2o83b2o$155b2o82bo$
161bo$159b2o322bo$160b2o320bo$482b3o$258bobo85bobo$85bo172b2o47bobo36b
2o$86bo153bo18bo47b2o38bo$26bo17bo39b3o8bo144b2o60bobo3bo$24bobo15b2o
49bobo66bo76bobo60b2o$25b2o16b2o49b2o64b2o141bo$98bo62b2o85bobo103bo
99bo$96b2o8bo79bo61b2o102b2o101bo18bo$97b2o6b2o80bo2bo6bo51bo103b2o98b
3o18bobo32bo$4b2o17bo81bobo11b2o23bo23bob2o13b3o2bobo4bobo22b2o47b2o
55b2o13b3o54bobo3bo67b2o31bobo$4bobo14bobo2b2o34b2o4bo12b2o36bobo2b2o
15bo2bobo21b2o2bo17b2o5b2o23bo4bo18b3o22bo2b2o17bo14bo20bo15bo37bob2o
14b2ob2o102b2o5bobo$7bo2b2o10b2ob2o35bobo2bobo12b2o36bo2bobo13bobo2b2o
25bobo49bo2bobo17bo25b2o2bo17bo7b2o2b2o21bob2o11bo38b2o2bo13bo3b2o4bo
59bo16b2o25b2o$8bo2bo15bo37bo2bo12bo39b2o17b2o30bobo20b2o27bo2bo10bo8b
o27bobo14b3o6b2o4b2o21bo2bo20bobo29bo23bo28b2ob2o27b2o15bobo25bo$9b2o
55b2o105bo16b2o3bobo3bo23b2o11b2o36bo11b3o6b3o3bo28bobo19b2o31b3o20b3o
26bob2obo25bobo16b2o$84b3o102b2o4bo4b2o35bobo50bo8bo33bo21bo33bo14b3o
37bo46b2o$86bo104bo8bobo86bo8bo105bo39b2o45bobo$85bo98b3o76b2o135bo4bo
65b2o2b2o15bo$186bo75b2o87bobo46b2o10b2o56bobob2o$185bo78bo38b2o47b2o
45bobo9b2o59bo3bo32bo$148b2o94b2o57bobo46bo55bo4bo95b2o14bo$20b2o125b
2o96b2o56bo104b2o98bobo13b2o$19bobo127bo94bo105b2o55bobo114bobo$15b2o
4bo328bobo$16b2o332bo125b2o$15bo459b2o$157b3o317bo$157bo$158bo6$112bo$
111bo$111b3o$77bobo592bo$78b2o591b2o$78bo592bobo2$126bo$127bo$125b3o$
525bo$525bobo$525b2o$164bo$24bo139bobo190bo$22bobo139b2o21bo15bobo149b
2o$23b2o163b2o13b2o93bobo55b2o266bobo$17bo15bo153b2o15bo94b2o172bo150b
2o$18bo12b2o224bo41bo102bo11bo56b2o152bo$16b3o13b2o160bo62bobo143b2o8b
o58b2o90bo$27bo164bobo62b2o43bobo97b2o9b3o98b2o49bo$27b2o3bo160b2o108b
2o52b2o154bobo47b3o$4b2obo18bobo2b2o30b2o54b2ob2o47b2ob2o49b2o17bo29b
2o27bo27b2ob2o11bobo7bobo24b2o129bo3bo$4bob2o23bobo29bo2bo53bobo49bobo
bo48bobob2o11bobo30bo56bobobo11b2o2bobo2bo26bobo83bobo16b2o27b2o$8b2o
55b2o52bo2bo49bo2bo16b3o32bobo13b2o30bob2o24bo28bo2bo12bo3b2o32bo53bob
o16b3o9b2o16bo2b2o24bobo$8bobo8b2o46b2o22bo2bobo22bobo51b2o19bo32bobo
44b2obobo23b2o26b2o20bo32b3o51b2obo17bo9bo19b2obo$9bo10b2o45bobo19bobo
2b2o24bo72bo34bo19b2o28bo23bobo84bo53bo16bo33bo$19bo48bo21b2o3bo152bob
o137b2o27b2o24bobo25b3o20b2o$248bo49b2o10b3o104bobo24bobo24bo33b3o13b
3o$239b3o55bobo10bo106bo27bo26bo34bo13bo$202b3o36bo57bo11bo194bo15bo$
202bo37bo$203bo276bo$399b3o64b2o11b2o$142b2o3bo253bo65b2o10bobo$141bob
o2b2o252bo65bo$143bo2bobo6$69b2o$68bobo$70bo4$590bo$591bo$589b3o2$551b
2o2b2o$551bo2bo2bo29b3o$552b2o2b2o31bo5bobo$215bo372bo6b2o$214bo381bo$
187bobo24b3o$188b2o$188bo2$33bo266bo299b2o$32bo265b2o299b2o$32b3o264b
2o300bo2$297bo12b2o$137bo157b2o12bobo2b2o$26bobo49bo56bobo114bo43b2o
13bo2bobo$27b2o5bobo42b2o3bobo6bo42b2o102bobo8bo62bo$3b2o22bo6b2o42b2o
5b2o4b2o26b2o48b2o2b2o48b2o10bo5b2o8b3o18b2o2bo$3bo31bo25b2o22bo6b2o
24bo2bo22bo24bobo2bo48bo2b2obo6b2o3bo30bo2bobo$4b3ob2o14b3o34bo4b2o50b
obobo21bobo24bobo50bobob2o5b2o11bo25b2o2bo$6b2obo10b3obo37b3o2bo12b3o
36bo2bo21b2o25b2o11bo2bobo35bo21b2o6bo21b2o$22bo2bo5b3o30b2o16bo37b2o
60bobo2b2o50b2o6bobo4b2o44b2o$21bo9bo49bo101b2o3bo49bobo13bobo42b2o$
32bo99b2o106bo3b3o54bo$91b2o38bobo112bo$90b2o41bo19b2o90bo$92bo60bobo$
153bo5$211b2o$211bobo$211bo3$293b2o$292bobo$294bo$624b2o$623b2o$625bo
22$26bo$27bo$25b3o$20bo$21bo$19b3o3bo$2o22b2o14bo$o23bobo12bo$bobo35b
3o2$3bobo2$5bobo$6b2o$29bo$27b2o$28b2o$24b2o$23b2o$25bo5bo$30b2o$30bob
o4$11b2o28bo$12b2o26b2o$11bo28bobo$21b3o$23bo$22bo!

Bob Shemyakin
BobShemyakin
 
Posts: 202
Joined: June 15th, 2014, 6:24 am

Re: 4 glider syntheses

Postby BobShemyakin » January 7th, 2015, 3:15 pm

Tropylium wrote
Well, I guess the 1st step would be assembling a way to catalogize 3G collisions.

Tropylium gave me a good idea. I began to bombard 2G.
For reception 3G it was useless. But quite good results for 4G and beyond.
4G:
x = 275, y = 21, rule = B3/S23
139bo$140bo118bobo$138b3o119b2o$76bobo129bo51bo$19bo57b2o129bobo$20bo
56bo130b2o$2ob2o13b3o5bo33b2o58bob2o56b2o2b2o16bo38b2o$ob2o2bo20bo32bo
bo57b2o2bo55bobo2bo15b2o37bo2bo$5b2o18b3o33bobo59b2o57b2o17bobo37bo2bo
$29bo3b2o27bobo60b2o55bo59b3o$29b2o2bobo28bo17bo42bobo52bobo14b3o$28bo
bo2bo30b2o14b2o44bo22bo30b2o17bo44b3o$81b2o66bobo46bo44bo2bo26b2o$149b
2o92b2o27b2o$84b2o105b2o81bo$84bobo59b3o8b2o31bobo77b2o$84bo4b3o56bo7b
2o34bo76bobo$89bo57bo10bo112bo$90bo172b2o$262bobo$264bo!

5G:
x = 336, y = 38, rule = B3/S23
145bo$146bo$87bo56b3o6bo$13bo74bo12bo52b2o179bo$14bo71b3o10b2o52b2o47b
o130b2o$12b3o85b2o101b2o129b2o$75bobo80bo5bo37b2o$76b2o78b2o6bobo$76bo
80b2o5b2o33b2o$b2o22bo34b2o3b2o53b2o59bo16bobo42b2ob2o56b2o21bo$o2bob
2o18b2o33bobobobo24bo28bo2bo56bobo17bo42bo3bo52b2obo2bob2o16bo$bobobo
18bobo9b2o24bobo27bo28b3o56bo2bo60b3o53b2o2bo4bo16b3o$2bo2bo30bobo23bo
bo25b3o88b3o57b3o61bo18bo$3b2o23b3o5bo24b2ob2o55b3o89b3o24bo3bo61bobo
14b2o$28bo91bo3bo56b3o21b3o5bo26b2ob2o78bobo$29bo62bo27b2ob2o56bo2bo
11b3o6bo8bo$92b2o88bobo13bo7bo$91bobo89bo13bo58bo12bobo$254bobo12b2o$
255b2o13bo$163bo$162b2o102b2o50bo$162bobo102b2o49b2o$266bo50bobo3$313b
o$313b2o$283bo28bobo$282b2o$282bobo5$15b2o256bo$14bobo255b2o$16bo255bo
bo!

6G:
x = 54, y = 39, rule = S23/B3
41bo$booboo34bo$obobo25bo9b3o$obobbo22bobo$bobboo23boo3$29b3o$29bo$30b
o8$17b3o$19bo$18bo$$51b3o$51bo$52bo13$48b3o$48bo$49bo!

Bob Shemyakin
BobShemyakin
 
Posts: 202
Joined: June 15th, 2014, 6:24 am

Next

Return to Patterns

Who is online

Users browsing this forum: Kazyan, skomick, Yahoo [Bot] and 6 guests