## 17-bit SL Syntheses (100% Complete!)

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

### Re: 17-bit SL Syntheses

Either way, #113 from a 14-bitter:
x = 163, y = 31, rule = B3/S23
19bo\$20bo\$18b3o3\$22bo3bo8bo\$20bobob2o7b2o\$21b2o2b2o7b2o4\$11b2o39b2o31b
2o18bo15b2o\$11bobo38bobo30bobo17bobo13bobo\$13bo40bo2b2o28bo2b2o13b2o
16bo2b2o27b2o2b2o\$12b2ob2o36b2obo2bo26b2obo2bo29b2obo2bo9bobobo12bo2bo
2bo\$15bobo38bobobo28bobobo31bobobo26bobobobo\$15bobo38bo2bo29bo2bo32bo
2bo26b2obo2bo\$16bo38b2o19bobo2b3o4b2o36b2o31b2o\$77b2o2bo\$77bo4bo10b2o\$
60b2o30bo2bo\$61b2ob3o13b2o10bo2bo\$60bo3bo16b2o10b2o\$65bo14bo2\$3o27b2o\$
2bo27bobo\$bo28bo50b2o\$25b2o53bobo\$25bobo54bo\$25bo!
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1723
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#241 and #242 done in the obvious way:
x = 56, y = 55, rule = B3/S23
9bo\$8bo\$8b3o\$6bo\$4bobo\$5b2o4\$41b2o\$11b2o2b2obo23bo2b2obo\$11bo3bob2o22b
o3bob2o\$12b3o27b3o\$10bobo22bo4bobo\$10b2o21bobo4b2o\$34b2o\$3o\$2bo33b3o\$b
o36bo\$37bo16\$51bo\$27bo22bo\$26bo23b3o\$26b3o\$53b2o\$10bob2o3b2o21bob2o3b
2o4bobo\$10b2obo2bobo21b2obo2bobo4bo\$14b3o27b3o\$17bo29bo\$16b2o28bo\$46b
2o4\$22b2o\$22bobo\$22bo\$18b3o\$20bo\$19bo!

Edit: #211:
x = 93, y = 40, rule = B3/S23
58bo\$56bobo\$26bo30b2o\$25bo\$25b3o41bo\$70bo\$10bo57b3o\$11bo17bo48bo\$9b3o
16bo33bo15bobo\$28b3o32bo14b2o\$61b3o2\$obo\$b2o53bo\$bo55bo\$55b3o3\$52bobo
21b2o\$19b2o32b2o20bo2bo\$18bobo32bo21bo2bo\$18bo57b2o\$10b2o5b2o\$9bo2bo8b
o48b2o\$10bobo7bobob2o43bo2bob2o\$11bo8bob2o2bo43bob2o2bo\$21bo3b2o44bo3b
2o\$22b3o47b3o\$24bo49bo2\$90b3o\$90bo\$5b2o3b2o2b2o75bo\$4bobo4b2obobo\$6bo
3bo3bo\$54b3o\$56bo\$16b3o36bo\$16bo\$17bo!

#216 can be constructed from #223 which was solved earlier by Extrementhusiast:
x = 20, y = 32, rule = B3/S23
7bo\$8b2o\$7b2o2\$11bobo4bo\$7b2o2b2o4bo\$7bobo2bo4b3o\$7bo5\$2o2bo2bo\$o3b4o\$
b3o\$3bobo\$4bobo3b2o\$5bo3bo2bo\$9bo2bo\$10b2o10\$b3o\$3bo\$2bo!

Extrementhusiast wrote:#171 from a 17-bitter apparently not on the list

That's actually an 18-bitter, but it can easily be constructed based on my synthesis of #173. Here's a synthesis from a 13-cell still life:
x = 251, y = 43, rule = B3/S23
24bo\$24bobo\$24b2o2\$4bo\$2bobo\$3b2o18bo167b2o\$23bobo38bo122bo3bobo\$23b2o
38bo124bo2bo9bo\$63b3o4bo79bo35b3o12bobo\$34bo33b2o81b2o48b2o\$33bo28bo6b
2o79b2o\$33b3o25b2o122bo\$61bobo90bobo4bo24bo\$150b2o2b2o4bo23b3o\$150bobo
2bo4b3o\$150bo\$o81bobo94bo\$b2o79b2o96bo\$2o53b2o26bo21b2o38b2o31b3o14b2o
\$15bo38bo2bo46bo2bo36bo2bo46bo2bo26b2obo16b2obo\$15b3o37b3o47b3o2bo34b
3o2bo44b3o26bob2o16bob2o\$18bo39b2o48b3o37b3o47b2o5b2o21b2o18b2o\$15b3ob
o35b3o2bo44b3o37b3o47b3o2bo3b2o19b3o2bo14b3o2bo\$15bo2bo36bo2b2o21bo2bo
20bo2bo36bo2bo46bo2bobo5bo18bo2bobo14bo2bobo\$16b2o39bo22bo25b2o39bobo
3b2o42bobo27bobo18b2o\$56b2o22bo3bo32b2o29bo3bo2bo42bo29bo\$80b4o34b2o
32bo2bo\$117bo3b2o30b2o71b2ob2o\$121bobo101bobobobo\$121bo59b3o12b2o29bob
o\$31b3o149bo11b2o\$31bo5b3o142bo14bo\$32bo4bo82bo\$38bo28b2o50b2o\$67bobo
49bobo76b3o\$67bo43b2o85bo\$19bo31b3o23b2o32bobo85bo\$16bo2bobo31bo23bobo
13b2o16bo32b3o\$14bobo2b2o31bo24bo14bobo51bo\$15b2o77bo20b2o28bo\$115bobo
\$115bo!

Speaking of #173, here's a slight reduction of my previous synthesis:
x = 129, y = 42, rule = B3/S23
24bo101bobo\$24bobo94bo4b2o\$24b2o95bobo3bo\$121b2o\$4bo89bo20bo\$2bobo87bo
bo19bo\$3b2o18bo69b2o19b3o\$23bobo38bo\$23b2o38bo\$63b3o4bo21bo28bo\$34bo
33b2o20bobo11b3o13bo\$33bo28bo6b2o20b2o11bo15b3o\$33b3o25b2o42bo\$61bobo\$
86bo\$84bobo\$85b2o34bo\$o120bobo\$b2o114b2o2b2o\$2o53b2o16bo31b2o9b2o\$15bo
38bo2bo14bo31bo2bo10bo\$15b3o37b3o14b3o30b3o2bo\$18bo39b2o48b3o\$15b3obo
35b3o2bo44b3o\$15bo2bo36bo2b2o45bo2bo\$16b2o39bo49b2o\$56b2o5\$31b3o33b2o\$
31bo5b3o26bobo\$32bo4bo30bo19b2o20bo\$38bo48bobo19b2o\$89bo19bobo2\$19bo\$
16bo2bobo43b2o45b2o\$14bobo2b2o22b2o19b2o46bobo\$15b2o25bobo21bo45bo\$44b
o!

#100 could possibly be done by a method somewhat like this:
x = 71, y = 17, rule = B3/S23
16bobo\$16b2o\$17bo17b3ob3o\$37bo3bo\$35b3o3bo\$35bo5bo\$35b3o3bo\$57b2o\$6bo
52bo\$2bob2o34bo15bobo\$obo2b2o6b2o26bo14bob2o3b2o\$b2o6b2obo2bob2obo13b
9o16b2obo2bob2obo\$9b2obo2bobob2o20bo17b2obo2bobob2o\$13b2o25bo22b2o2\$
57b6o2b2o\$62bo2bob2o!

Edit 2: In the same vein as some of the recent syntheses, #122 and #163 can be constructed from 17-bit still lifes that don't seem to be on the list:
x = 33, y = 60, rule = B3/S23
6bo20bo\$4bobo20bobo\$5b2o20b2o4\$4bo\$5b2o\$4b2o10b2o\$16b2o\$bo4bo\$b2o2bo\$o
bo2b3o4b2o\$13bo2bo\$13bobobob2obo\$14b2obobob2o\$18bo12b2o\$30b2o\$32bo23\$
30bo\$12b2o2bo13bobo\$12bo2bobo12b2o\$13b2obobo\$14bobobo\$14bo2bo\$bobo2b3o
4b2o\$2b2o2bo\$2bo4bo10b2o\$17bo2bo\$5b2o10bo2bo\$6b2o10b2o\$5bo4\$6b2o\$5bobo
\$7bo!

#201, #202, and #209 from the still unsolved #210:
x = 32, y = 85, rule = B3/S23
11bo\$10bo\$10b3o\$8bo\$6bobo\$7b2o2\$11b2o\$11bo2bo2b2o\$12b2obo2bo\$13bobobo\$
13bo2bo\$12b2o24\$29bo\$12b2o15bobo\$11bo2bo2b2o10b2o\$12b2obo2bo\$13bobobo\$
13bo2bo\$obo2b3o4b2o\$b2o2bo\$bo4bo10b2o\$16bo2bo\$4b2o10bo2bo\$5b2o10b2o\$4b
o4\$5b2o\$4bobo\$6bo12\$29bo\$11b2o16bobo\$11bo2bo2b2o10b2o\$12b2obo2bo\$13bob
obo\$13bo2bo\$obo2b3o4b2o\$b2o2bo\$bo4bo10b2o\$16bo2bo\$4b2o10bo2bo\$5b2o10b
2o\$4bo4\$5b2o\$4bobo\$6bo!

The synthesis of #171 can be improved by using Buckingham's 2-glider bun-to-bookend:
x = 33, y = 24, rule = B3/S23
obo\$b2o\$bo2\$14b2o\$13bo2bo\$14b3o2bo\$17b3o\$14b3o\$14bo2bo\$15b2o\$26b2o\$27b
2o\$26bo3b2o\$30bobo\$30bo3\$29bo\$28b2o\$28bobo\$3b2o\$4b2o\$3bo!

Edit 3: #286 from a 19-cell still life that I think can be constructed:
x = 74, y = 39, rule = B3/S23
43bo\$44b2o\$43b2o\$40bo\$41bo\$39b3o6\$14bobo\$15b2o\$3b2o10bo37b2o\$3bo2b2o
45bo2b2o\$4b2o2bo11bo33b2o2bo12bobo\$6bobo5b2o2b2o36bobo12b2o\$6bo2b2o3b
2o3b2o35bo2b2o11bo\$obo4b2o2bo31bo13b2o2bo\$b2o7bobo28bobo16bo\$bo9bo30b
2o3bo9b3o\$17bo30bo8bo\$16b2o28b3o\$5b2o2bo2bo3bobo\$5b2o2b4o34bo\$47b2o\$
11b2o33bobo\$b2o8b2o\$o2bo2b2o\$o2bo2bobo4b3o\$b2o3bo6bo\$14bo\$47b3o18b2o\$
49bo18bobo\$15b3o30bo19bo\$15bo\$16bo46b2o7b2o\$63bobo5b2o\$63bo9bo!

Edit 4:
I wrote:#286 from a 19-cell still life that I think can be constructed

It certainly can be:
x = 62, y = 28, rule = B3/S23
44bobo\$45b2o\$35bo9bo\$33bobo19bo\$34b2o6bo11bo\$40bobo11b3o\$41b2o6\$7bo7b
2o27bo5b2o3b2o\$8bo5bo2bo27bo4bobobo2bo\$o5b3o6bobo25b3o5bo3bobo\$b2o13bo
b2o36bob2o\$2o15bo2bo36bo2bo\$5b3o11bobo24b2o11bobo\$7bo12bo24bobo12bo\$6b
o40bo3\$57b2o\$48b2o7bobo\$47bobo7bo\$49bo3b2o\$52b2o\$54bo!
-Matthias Merzenich
Sokwe
Moderator

Posts: 1334
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

#107 from a presumably trivial 21-bitter:
x = 17, y = 27, rule = B3/S23
6bo\$7bo\$5b3o2\$9bo6bo\$7b2o5b2o\$8b2o5b2o2\$5bo\$6bo\$4b3o2\$10bo3b3o\$9bobo2b
o\$2obo2bo3bobo2bo\$ob5o4bo2\$b2obo\$b2ob3o\$7bo\$6b2o\$12b3o\$12bo\$13bo\$9b2o\$
8b2o\$10bo!

Also, I kept #202 in there because it could lead to #210, not necessarily the other way round.

EDIT: #230 from a hopefully trivial 19-bitter (which I could draft up a process for if need be):
x = 59, y = 16, rule = B3/S23
12bo\$10b2o20bobo\$11b2o20b2o\$33bo\$2ob2o3b2o15b2ob2o6bo14b2ob2o\$bobobo2b
obo15bobo2bo3b2o15bobo\$bo2bo3bo17bo2b3o3bobo14bo2b3o\$2b2o23b2o24b2o3bo
\$4b3o22b3o23b3o\$4bo2bo21bo2bo22bo\$5bobo22bobo\$6bo24bo2\$34b2o\$33b2o\$35b
o!
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1723
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Path to #351 (I think the 19-cell still life is constructible):
x = 65, y = 14, rule = B3/S23
63bo\$61b2o\$37b2o18b2o3b2o\$b2o18bo9b2o3bo2bo11b2o3bo2bo\$o2bo3b2o13bo7bo
2bo2bob2o10bo2bo2bob2o\$b2obobobo7b8o7b2obobo14b2obobo\$2bobobo15bo9bobo
bo15bobobo\$2bobob2o13bo10bobob2o14bobob2o4bo\$3bo29bo19bo8bobo\$62b2o2\$
54b2o2b2o\$54b2o2bobo\$58bo!

Edit: Full synthesis of #351 from 18 gliders (the 8-glider synthesis of the 19-cell still life is from Lewis' soup results):
x = 189, y = 40, rule = B3/S23
96bo\$95bo\$95b3o4\$36bo\$36bobo\$36b2o56b2o\$93bobo2b2o\$95bo2bobo\$98bo3\$
163bo\$162bo\$128b2o28b2o2b3o\$62b2o28b2o28b2o3bo2bo21b2o3bo2bo21b2o\$7bo
53bo2bo8bo17bo2bo3b2o21bo2bo2bob2o20bo2bo2bob2o20bo2bo\$8bo29bo23b2obob
2o2b2o19b2obobobo22b2obobo24b2obobo24b2obo\$6b3o28bobo23bobobobo2b2o19b
obobo25bobobo25bobobo25bobo\$37bobo23bobobobo23bobob2o24bobob2o24bobob
2o5bo18bobob2o\$3b3o24bo7bo25bo3bo4bo20bo29bo29bo7b2o20bobobo\$5bo22bobo
41b2o89b2o20bo\$4bo24b2o41bobo\$155b2o2b2o\$28bo96b3o27b2ob2o\$28b2o95bo
34bo\$27bobo96bo\$122b3o\$124bo\$32b2o89bo\$b2o28bo2bo\$obo29b2o\$2bo\$4b2o\$4b
obo\$4bo12b3o\$19bo\$18bo!

Edit 2: A 14-glider synthesis of #214 with the block moved to the other side:
x = 137, y = 34, rule = B3/S23
36bo\$36bobo22bo\$36b2o21bobo\$60b2o6bo\$68bobo63bo\$65bo2b2o64bobo\$63bobo
68b2o\$64b2o32bo\$99bo32bo\$97b3o32bo\$101bo30bo\$62b2o27b2o8bobo17b2o\$7bo
53bo2bo26bo2bo6b2o18bo2b2o\$8bo29bo23b2obob2o23b2obob2o23b2obo\$6b3o28bo
bo23bobobobo23bobobobo23bobob2o\$37bobo23bobobobo23bobobobo23bobob2o\$3b
3o24bo7bo25bo3bo25bo3bo25bo\$5bo22bobo\$4bo24b2o2\$28bo\$28b2o\$27bobo3\$32b
2o\$b2o28bo2bo\$obo29b2o\$2bo\$4b2o\$4bobo\$4bo12b3o\$19bo\$18bo!

Unfortunately, this does not improve the synthesis of #214.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1334
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

#143 from #232:
x = 602, y = 45, rule = B3/S23
96bo382bo\$94b2o365bo16bo\$95b2o365bo15b3o\$455bo4b3o\$195bo260b2o\$10bo
183bo260b2o6bo18bo\$10bobo40bo140b3o14bo60bo190b2o16bo69bo27bo\$10b2o34b
o5bo139bo19bo60bo188bobo16b3o68b2o23b2o\$47b2o3b3o37bo100bo16b3o58b3o
28bo248b2o25b2o\$46b2o39bo2b2o53bo18bo26b3o81bo24bobo41bo7bo7bo89bo\$55b
2o20bo10bo2b2o10bo39bobo17bo51bobo56bo26b2o16b2o24b2o5bobo4bo91b2o102b
obo15bobo\$55bobo20b2o6b3o12b2o41b2o17b3o49b2o57b3o43b2o3bo18b2o6b2o5b
3o88b2o104b2o15b2o\$55bo4bo16b2o23b2o18bo70bobo20bo86bo15bo3b2o205bo25b
o17bo\$60bobo54bo3bo13bo4b2o4bo13bobo24bo5b2o27bobo5bo52bobo11bobob2o
21b2o4bo31b2o84bo79bobo\$obo28bobo26b2o56b2ob3o12b2obo2bob2o15b2o25bo5b
o27b2o5bo42bobo8b2o13b2o2b2o26bobo3bo25bobo84bo79b2o\$b2o29b2o83b2o16b
2o2bo2bo2b2o14bo24b3o34bo5b3o13bo27b2o9bo13bo31b2o4bobo14b2ob2o4bo31b
2o19b2o30b3o17b2o84bo23bo\$bo23bo6bo16bo3bo26bo5bo3bo3bo5bo30b2o7b2o
104bo26bo51bo10b2o16bob2o35bobo18bobo11bo37bobo37bo24b4o19bo21bo\$24bob
ob2o4bo13bobobobo25b2o3bobobobobobo3b2o31b2o56b2o19b2ob2o10b3o15b3o10b
o22bo20b2o21bobo6b2o19bo38bo20bo13bobo35bo33bobob2o20bo4bo3bo16b3o8bo
3bo8b3o\$2b3o20b2ob2o3bo15b2obobo24bobo4b2obobob2o4bobo29bo33bo23bobo
18bobobobo9bo24b2o3bobo20bobo19b2o22b2o6bobo17b2o37b2o19b2o13b2o2b2o
31b2o34b2o2b2o19bo4bo31bo3bo\$4bo28b3o17bo10bo25bo24b2ob2o18b2ob2o21bob
ob2o19bobob2o15bo5bo10bo19b2o2bo2bo2bo19bo2bo5b2o17bo23bo3bo23bo38bo
15bo4bo14bobo29bo4bo31bo24bo5bo2bo27bo3bo\$3bo59b2o50b2ob2o18b2ob2o22b
2ob2o20b2ob2o16b5o32b2o2b5o18b5o5b2o14b5o19b5o23b5o34b5o16b5o14bo32b5o
\$63bobo12b2o21b2o144bo26bo12bo12bo23bo27bo38bo36b2o49bo28bo19bo36bo\$7b
2ob2o15b2ob2o19b2ob2o21bobo8b2ob2o8bobo11b2ob2o18b2ob2o22b2ob2o20b2ob
2o16b2ob2o36b2ob2o18b2ob2o21b2ob2o19b2ob2o23b2ob2o34b2ob2o16b2ob2o9b2o
36b2ob2o8bobo23b2obobob2o11b2obobob2o28b2obobob2o26b2ob2o\$8bobo2b2o13b
obo2b2o17bobo2b2o20bo9bobo2b2o5bo14bobo2b2o16bobo2b2o20bobo2b2o18bobo
2b2o14bobo2b2o11b3o20bobo2b2o16bobo2b2o19bobo2b2o17bobo2b2o21bobo2b2o
32bobo2b2o14bobo2b2o8bo36bobo2b2o5bo2bo23bobobobo13bobobobo30bobobobo
26bobobobo\$8bo2bobo14bo2bobo18bo2bobo31bo2bobo21bo2bobo17bo2bobo21bo2b
obo19bo2bobo15bo2bobo12bo22bo2bobo17bo2bobo20bo2bobo18bo2bobo22bo2bobo
33bo2bobo15bo2bobo46bo2bobo7b2o24bo2bo2bo13bo2bo2bo16b2o12bo2bo2bo12b
2o12bo2bo2bo\$9bobobo15bobobo19bobobo32bobobo22bobobo18bobobo22bobobo
20bobobo16bobobo13bo22bobobo18bobobo21bobobo19bobobo23bobobo34bobobo
16bobobo47bobobo34bobobo15bobobo16bobo13bobobo13bobo12bobobo\$10bobo17b
obo21bobo34bobo24bobo20bobo24bobo22bobo18bobo38bobo20bobo23bobo21bobo
25bobo36bobo18bobo49bobo36bobo17bobo19bo14bobo14bo15bobo\$11bo19bo23bo
36bo26bo22bo26bo24bo20bo40bo22bo25bo23bo27bo38bo20bo51bo38bo19bo36bo
32bo2\$552b2o23b2o\$375bo175bobo23bobo\$375b2o8bobo125bo17b2o20bo14b2o7bo
\$374bobo9b2o121b2o2bobo14bobo30bo3bobo\$386bo102bo20b2ob2o16bo16b2o12b
2o4bo12b2o\$445b2o41b2o19bo39b2o11bobo15b2o\$386b2o58b2o40bobo57bo33bo\$
385bobo57bo120b3o\$387bo178bo\$567bo\$563b3o\$565bo\$564bo\$396bo\$395b2o\$
395bobo!

I do seem to remember a three-glider finger spark, in which the gliders were coming from two quadrants instead of three. (The mounting of the blocks can be simplified depending on how the construction of #232 goes.)

But, above all, my more unusual component finally gets used!

EDIT: #232 from an 11-bitter:
x = 25, y = 25, rule = B3/S23
10bo\$8bobo3bo\$9b2o3bobo\$14b2o\$12bo\$11b2o\$11bobo\$18bo\$18bobo\$b2ob2o12b
2o\$2bobo\$2bo2bo2b2o\$3bobo2b2o\$4bo3\$23bo\$22b2o\$3bobo16bobo\$4b2o\$4bo\$b2o
\$obo3b2o\$2bo3bobo\$6bo!
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1723
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#222 from 21 gliders using the same converter as the one used for #351:
x = 219, y = 35, rule = B3/S23
36bo\$36bobo22bo\$36b2o21bobo\$60b2o6bo84bo\$68bobo83bo\$65bo2b2o82b3o\$63bo
bo90bo\$64b2o89bo34bo\$99bo55b3o27b2ob2o\$97bobo85b2o2b2o\$98b2o2bo\$62b2o
27b2o8bo19b2o28b2o28b2o10b2o16b2o2bo\$7bo53bo2bo26bo2bo6b3o17bo2bo26bo
2bo26bo2bo7b2o17bo2bobobo\$8bo29bo23b2obob2o23b2obob2o23b2obob2o23b2obo
b2o23b2obob2o5bo17b2obob2o\$6b3o28bobo23bobobobo23bobobobo23bobobo25bob
obo25bobobo25bobo\$37bobo23bobobobo23bobobobo23bobobobo23bobobo25bobobo
25bobo\$3b3o24bo7bo25bo3bo25bo3bo25bo3b2o24bo2bob2o23bo2bob2o23bo\$5bo
22bobo126bo2bo26bo2bo\$4bo24b2o127b2o28b2o2b3o\$192bo\$28bo164bo\$28b2o\$
27bobo\$128bo\$125bo2bobo\$32b2o89bobo2b2o\$b2o28bo2bo89b2o\$obo29b2o\$2bo\$
4b2o\$4bobo\$4bo12b3o\$19bo105b3o\$18bo106bo\$126bo!

#392:
x = 62, y = 20, rule = B3/S23
2o38b2o\$bo39bo17bo\$bob2o36bob2o14bobo\$2bobo37bobo14b2o\$4bobo37bobo\$3bo
b2o7bo28bobobo\$3bo10bobo26bo2bo\$2b2o6b2o2b2o14bobo2b3o4b2o\$9b2o20b2o2b
o\$11bo19bo4bo10b2o\$4b3o39bo2bo\$6bo27b2o10bo2bo\$5bo29b2o10b2o\$34bo4\$35b
2o\$34bobo\$36bo!

#291 from the unsolved #357:
x = 32, y = 19, rule = B3/S23
6bo\$4bobo\$5b2o4\$4bo\$5b2o10b2o\$4b2o10bo2bo\$16bo2bo\$bo4bo10b2o\$b2o2bo\$ob
o2b3o4b2o\$13bo2bo\$13bobobo\$14bobobo\$16bobo10b2o\$15bo2b2o9bobo\$15b2o12b
o!

Edit: #371:
x = 52, y = 19, rule = B3/S23
2o28b2o17bo\$obo27bobo16bobo\$2bo2bo26bo2bo13b2o\$b2obobo3b2o19b2obobo\$3b
obo3b2o22bobobo\$3bo7bo21bo2bo\$2b2o16bobo2b3o4b2o\$7b3o11b2o2bo\$9bo11bo
4bo10b2o\$8bo27bo2bo\$24b2o10bo2bo\$25b2o10b2o\$24bo4\$25b2o\$24bobo\$26bo!
-Matthias Merzenich
Sokwe
Moderator

Posts: 1334
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

#197 from a 16-bitter:
x = 60, y = 25, rule = B3/S23
13bo\$3bo7b2o24bobo\$4bo2bo4b2o21bobobobo\$2b3obobo6b2o19b2ob2o\$7b2o6bobo
\$15bo22bo\$10b2o25bobo13bobo\$bo8bobo24b2obo12b2obo\$2bo2bo6bo27bo15bo\$3o
bobob4ob2o20b3obob2o9bob2ob2o\$5b2obo2bobobo18bo2bobobobo8b2obobobo\$14b
o19b2o2bo3bo15bo2\$b2o26b3o\$2b2o8bo18bo3b2o\$bo9b2o17bo3bobo3b2o\$11bobo
22bo3bobo\$40bo2\$9b3o\$11bo\$10bo\$12b3o\$12bo\$13bo!
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1723
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

I apologize in advance for the length of this post. I had a sudden surge of inspiration on Tuesday and Wednesday, and I usually find that I can get a lot accomplished in a short time if I just go with it. I've arranged them in order by synthesis methods, rather than numerically or chronologically.

There was a standard converter (bit+snake to teardrop) that should have been in the automatic synthesis database, but wasn't, so the following three objects should never have been on the "hard" list:

#122 from 40 gliders:
x = 168, y = 98, rule = B3/S23
47bobo\$48boo3bo\$13bobo32bobboo\$13boo37boo\$4bo9bo\$5bobbo46bo\$3b3o3boobb
o41bobo42bo\$8boobbo42boo15bo19bo6bo12bo19bo19bo\$12b3o13boobo16boobo16b
oobobo14boobobo5b3o6boobobo14boobobo14boobobo\$28boboo16boboo16boboobo
bboo10boboobobboo10boboobo14boboobo14boboobo\$72bo3boo14bo3boo14bo19bo
19bo\$11bo17b3o17b3o17b3o17b3o17b3o17b3o17b3o\$10bo18bobbo16bobbo4b3o9bo
19bo19bo19bo18bo\$10b3o17bobo17bobo4bo79bo10boo\$4bo26bo19bo6bo77bo\$4boo
127boob3o\$3bobo5bo43bo76bobo\$10boo42boo78bo\$10bobo41bobo\$136b3o\$136bo\$
137bo11\$49bo\$48bo\$48b3o5\$87bo\$85bobo\$86boo3\$97bo\$96bo\$96b3o\$22bo39bo
19bo29bo\$18boobobo4boobboo24booboboboo11booboboboo5bo15booboboboobo\$
18boboobo5boobobo23bobooboboo11bobooboboo6boo13bobooboboboo\$22bo5bo3bo
29bo19bo9boo18bo\$19b3o37b3o17b3o6b3o18b3o\$18bo39bo19bo11bo17bo\$18boo
38boo18boo9bo18boo19\$115bo\$114bo\$114b3o\$25bobo\$25boo\$12bo13bo15bo19bo
19bo19bo19bo19bo19bo\$8booboboboobo19booboboboobo9booboboboobo9boobobob
oobo9booboboboobo3boo4booboboboo11booboboboo11booboboboo\$8bobooboboboo
19bobooboboboo9bobooboboboo9bobooboboboo9bobooboboboobboo5boboobobobo
10boboobobobo10boboobobobo\$12bo10bo4bobo13bo19bo19bo19bo8bo10bobbo16bo
bbo16bobbo\$9b3o9boo5boo7bo19bo67boo18boo18boo\$8bo13boo5bo6bobo17bobo\$
8boo26bobo17bobo48boo\$24bo12bo8boo9bo8boo38boo\$23boo21boo6boo10boo40bo
bb3o11bo19bo\$oo15boo4bobo27bobo55bo12bobo17bobo\$boo14bobo35bo12b3o35b
oo4bo11bobbo16bobbo\$o16bo50bo36bobo17boo18boo\$11boo56bo37bo40b3o\$10boo
136bo\$12bo6b3o127bo\$19bo\$20bo\$\$14boo\$15boo\$14bo!

#156 and #167 from 21 gliders each:
x = 190, y = 93, rule = B3/S23
13bobo\$14boo75bobo\$14bo76boo\$92bo77bo\$79bobo87bo\$79boo7bobo37bo40b3o\$
31bobo42bo3bo7boo36bobo17boo18boo\$31boo41bobo12bo37boo4bo11bobbo16bobb
o\$32bo42boo55bo12bobo17bobo\$129bobb3o11bo19bo\$76bo15b3o32boo\$76boo14bo
35boo\$45bo29bobo15bo8boo18boo18boo18boo18boo\$44bo19bo19bo18bo19bo19bo
bboo15bobboo15bobboo\$34bo9b3o16bobo17bobo17bobo17bobo8bo8bobobbo14bobo
bbo14bobobbo\$33bo30boboboo14boboboo14boboboo14boboboobboo10bobobo15bob
obo15bobobo\$33b3o26boboboobo12boboboobo12boboboobo12boboboobo3boo7bobo
boo14boboboo14boboboo\$62boo18boo18boo18boo18boo18boo18boo\$36boo\$36bobo
\$11boo23bo98b3o\$10bobo122bo\$12bo123bo\$\$30boo\$30bobo\$30bo\$\$12boo\$11bobo
\$13bo\$31bo\$30boo\$30bobo14\$167bo\$167bobo\$161bo5boo15boo\$15bo146bo21boo\$
16boo142b3o\$15boo\$156bobo24boo\$157boo23bobbo\$43booboboo23booboboo23boo
boboo13booboboo13booboboo7bo5booboboo13booboboo\$42boboboobo7boo13bobob
oobo7boo13boboboobo12boboboobo14boboobo14boboobo14boboobo\$24bo18bo13b
oo14bo13boo14bo19bo20bo10boo7bo19bo\$22bobobbo62b3o50boo11boo5boo18boo\$
23boobbobo60bo64bo\$27boo62bo29b3o\$118bobbo\$119bobbo\$117b3o5\$oo\$boo\$o3\$
170bo\$169bo\$46bo37boo42bo40b3o\$46bobo34bobo3bo36bobo17boo18boo\$46boo
37bo3bobo35boo4bo11bobbo16bobbo\$89boo41bo12bobo17bobo\$44boo46b3o34bobb
3o11bo19bo\$44boo46bo34boo\$93bo34boo\$\$43boo18boo18boo17boo18boo18boobb
oo14boobboo14boobboo\$42bobbo16bobbo16bobbo16bobbo16bobbo8bo7bobbobbo
13bobbobbo13bobbobbo\$43booboboo13booboboo13booboboo13booboboo13boobob
oobboo9boobobo14boobobo14boobobo\$44boboobo14boboobo14boboobo14boboobo
14boboobo3boo9boboo16boboo16boboo\$44bo19bo19bo19bo19bo19bo19bo19bo\$43b
oo18boo18boo18boo18boo18boo18boo18boo\$\$135b3o\$135bo\$136bo!

The following syntheses involve flipping the end of a bookend to attach it to something else:

Sokwe wrote:#109 and #320

mniemiec wrote:Ship to boat can be done more cheaply (2 gliders), reducing this by two.

#320 can be further reduced from 24 to 21 gliders by basing it off a boat, rather than a ship:
x = 152, y = 49, rule = B3/S23
128bobo\$128boo\$129bo\$46bo\$47bo3bo18boo13bo4boo18boo18boo\$45b3oboo18bo
bbo10bobo3bobbo12boobbobbo12boobbobbo12boo\$50boo17bobbo11boo3bobbo12b
oobbobbo12boobbobbo3bo8bobbo\$70boo9boo7boo18boo18boobboo10b3o\$7bo72bob
o52boo12boo\$7bobo16boo18boo18boo14bo3boo18boo18boo18boobo\$3boobboo16bo
bobboo13bobobboo13bobobboo13bobobboo13bobobboo13bobobboo13bobobobo\$bbo
bo5b3o13bo3boo14bo3boo14bo3boo14bo3boo14bo3boo14bo3boo14bo3boo\$4bo5bo\$
11bo10\$52bo\$52bobo\$52boo\$47bobo\$48boo\$5bo42bo\$4bo\$4b3o43bo\$bbo39bo5boo
\$obo40bo5boo\$boo38b3o\$\$5boo19boo18boo19bo19bo19bo19bo19bo\$5bobbo16bobb
o16bobbo17bobo17bobo17bobo17bobo17bobo\$6b3o17b3o17b3o18boo18boo18boo
18boo18boo\$9boo18boo18boo18boo18boo18boo18boo18boo\$6boobo16boobo16boob
o15b3obo15b3obo15b3obo15b3obo15b3obo\$5bobobobo13bobobobo13bobobobo12bo
bbobobo12bobbobobo12bobbobobo12bobbobobo12bobbobo\$6bo3boo14bo3boo8bobo
3bo3boo12bobo3boo7b3obbobo3boo12boo4boo12boo4boo12boobbo\$41boo22bo15bo
3bo\$41bo38bo48bo\$85boo42boo\$39boo44bobo40bobo\$40boo43bo46boo\$39bo92bob
o\$132bo!

#162 from 44 gliders:
x = 173, y = 104, rule = B3/S23
104bo\$105boo\$104boo3\$100bo\$98bobobbo\$99boobbobo\$103boo7\$10boo120bo19bo
19bo\$6bobboo19bo29bo19bo19bo7bobo19b3o17b3o17b3o\$4boo5bo17bobo27bobo
17bobo17bobo6boo19bo19bo19bo\$5boo21bobbo26bobbo16bobbo16bobbo7bo18bobb
oo15bobboo15bobboo\$b3o23boboo14bo11boboo16boboo16boboo26boboobo14boboo
bo14boboobo\$3bo22bobo17bo9bobo4bobo10bobo17bobo12bo14bobo17bobo17bobo\$
bbo22bobbo15b3o8bobbo4boo10bobbo16bobbo12bobo11bobbo16bobbo16bobboboo\$
26boo28boo6bo10bobo17bobo13boo12bobo17bobo3boo12bobobbobo\$74booboo15b
ooboo25booboo15boobooboo12booboobbo\$45b3o104bo\$39bobo5bo\$40boo4bo63bo\$
40bo68boo\$109bobo4\$57boo\$56bobo\$58bo8\$15boo\$15b3o\$14boboo\$14b3o\$15bo8b
obo\$24boo\$25bo39bo\$63bobo\$28bo35boo\$27bo\$27b3o16boo18boo\$5bobo38boo18b
oo\$6boo22boo\$6bo15bo7bobo\$20b3o7bo\$19bo\$18bobboo26boboo16boboo16boboo
16boboo16boboo16boboo16boboo\$17boboobo26boobo16boobo16boobo16boobo16b
oobo16boobo16boobo\$16bobo28boo18boo18boo18boo18boo18boo18boo\$15bobbob
oo26boboo16boboo16boboo16boboo16boboo16boboo16boboo\$15bobobbobo24bobbo
bo14bobbobo14bobbobo14bobbobo14bobbobo14bobbobo14bobbobo\$14booboobbo
25boobbo15boobbo15boobbo15boobbo15boobboo14boobboo14boobboo\$144bo\$117b
oo26bo21boo\$113bobboo25b3o21bobo\$113boo3bo29b3o17bo\$10bo101bobo33bo\$
10boo133boobbo\$9bobo132bobo\$14boo130bo\$13boo\$15bo12\$38bobo\$39boo\$39bo\$
bbo6boboo16boboo16boboo16boboo16boboo16boboo16boboo16boboo\$obo6boobo
16boobo4boo10boobo16boobo16boobo5bo10boobo16boobo16boobo\$boo4boo18boo
9boo7boo18boo18boo9bobo6boo18boo18boo\$8boboo16boboo5bo10boboo16boboo
16boboo6boo8boboo16boboo16boboo\$bbo4bobbobo9boo3bobbobo9boo3bobbobo13b
obobobo13bobobobo13bobobobbo12bobobobbo14bobobbo\$bboo3boobboo8bobbobb
oobboo8bobbobboobboo13boo3boo13boo3boo13boo4boo12boo4boo15bobboo\$bobo
17bobbo16bobbo55bo\$7boo13boo3boo13boo3boo47bobbo28bo\$7bobo17bobo17bobo
45boobb3o25boo\$8bo19bo19bo46bobo29bobo\$88b3o11b3o19boo\$42boo8boo36bo
11bo20bobo\$42bobo7bobo34bo13bo21bo\$42bo9bo41b3o\$94bo\$95bo!

Using a slightly different spark (that can probably be improved), many forming 16s can be changed into 17s by forming a loop-like projection rather than a hat-like one:

52-glider 16-bit still-life gives us #286 from 56 gliders (final step of both 16 and 17):
x = 122, y = 39, rule = B3/S23
10bo69bo\$8bobo67bobo\$9boo68boo\$21bo69bo\$21bobo67bobo\$21boo68boo7bo\$99b
o\$10bo69bo18b3o\$11boo68boo\$10boo68boo\$\$105bo\$4bobo67bobo22bo5bobo\$5boo
22bo45boo22bobo3boo\$5bo22bo27boo17bo23boo\$28b3o25bobo32boo\$25bo31boo
32boo\$26boo20bo69bobo\$18boo5boo21b3o37boo28boobo\$14boobobbo8b3o14boo3b
o32boobobbo25boo3bo\$15boboboo8bo15boboboo34boboboo24boboboo\$15bobbo11b
o14bobbo36bobbo26bobbo\$oo14bobo27bobo21boo14bobo27bobo\$boo14bo29bo23b
oo14bo12b3o14bo\$o69bo29bo\$101bo\$40bo69bo\$4boo34bo33boo34bo\$5boo33bo34b
oo33bo\$4bo69bo\$16boo14boo52boo\$16bobo12boo53bobo\$16bo16bo52bo\$3boo68b
oo\$4boo68boo16b3o\$3bo69bo18bobbo\$92bo\$92bo\$93bobo!

#198 from 23 gliders:
x = 139, y = 45, rule = B3/S23
88bo\$86bobo\$87boo17bobo\$82bobo21boo\$83boo22bo\$83bo7\$44bobo3bobo\$45boo
3boo\$bbo42bo5bo24boobboo\$3bo52bo20boobobo\$b3o51bo20bo3bo\$48b3o4b3o\$4bo
bo17bo19bo3bo15bo29bo38boo\$4boo17bobo17bobo3bo13boboboo24boboboo34bobo
boo\$5bo16bobo12b3obbobo17bobboobo23bobboobo32boobboobo\$21bobo15bobobo
9boo7bobo27bobo37bobo\$3o19bo15bo3bo3b3o3boo9boo28boo36bobbo\$bbo45bo5bo
34boo41boo\$bo35bo9bo41boo28boo\$37boo79booboo\$36bobo80b4o\$120boo9\$75bo
5boo\$75boo5boo19bo\$74bobo4bo20boo\$102bobo3\$80boo\$81boo\$80bo!

These use a known long-bookend-to-tub welder:

#344 and #216 from other 17s:
x = 168, y = 101, rule = B3/S23
11bo\$12bo\$10b3o\$21bo\$20bo\$20b3o3\$12bobo\$13boo\$13bo10bo\$23bo85bo34bobo\$
23b3o83bobo33boo\$109boo34bo4bo\$26boo123boobobo\$26bobo12bobboo15bobboo
15bobboo15bobboobboo11bo19bo8boobboo5bo\$26bo13bobobbo14bobobbo14bobobb
o14bobobbobbobo9bobobobbo12bobobobbo7bo4bobobobbo\$10bo30boobo16boobo
16boobo16boobo3bo12boob4o13boob4o13boob4o\$10boo4b3o24bo19bo19bo19bo19b
o19bo19bo\$9bobo6bo15bo8bobo17bobo17bobo17bobo17bobo17bobo17bobo\$17bo
15bo10boo18boo18boo18boo18boo18boo7bo10bobo\$33b3o117bobo9bo\$44boo18boo
83boobboo\$44boo18boo82boo\$19bo4b3o123bo\$19boo5bo39b3o74b3o\$18bobo4bo
40bo78bo\$67bo76bo7\$8bo126bo\$6boo125bobo\$7boo125boo16bobo\$152boo\$3bo
149bo\$bobo\$bboobbo\$6bobo\$6boo\$53bo\$51bobo\$bo19bo5boo12bo5boo3boo17bo5b
oo3boo7bo5boo3boo7bo5boo3boo7bo5boo3boo5bo11bo\$obobobbo12bobobo3bo11bo
bobo3bo21bobobo3bo3boo6bobobo3bo3boo6bobobo3bo3boo6bobobo3bo3boo4bo11b
obobo\$boob4o13boob4o13boob4o6bo16boob4o13boob4o13boob4o13boob4o10b3o
10boob3o\$3bo19bo19bo10bobo16bo19bo19bo19bo29bo3bo\$3bobo17bobo17bobo8b
oo17bobo5boo10bobo5boo10bobo5boo10bobo5boo8boo10bobobo\$4bobo17bobo17bo
bo11boo14bobo4boo11bobo4boo11bobo4boo11bobo4boo8bobo10bobo\$5bo19bo19bo
12bobo14bo19bo19bo19bo15bo13bo\$58bo46bo\$103boo17boo18boo\$104boo15bobo
17bobo\$121boo18boo\$\$102b3o\$104bo3bo\$103bobboo\$107boo14\$8bo126bo\$6boo
125bobo\$7boo125boo16bobo\$152boo\$3bo149bo\$bobo\$bboobbo\$6bobo\$6boo\$53bo\$
51bobo\$27boo18boo3boo23boo3boo13boo3boo13boo3boo13boo3boo5bo\$oobbobbo
12boobbo3bo11boobbo3bo21boobbo3bo3boo6boobbo3bo3boo6boobbo3bo3boo6boo
bbo3bo3boo4bo11boobbo\$o3b4o12bo3b4o12bo3b4o6bo15bo3b4o12bo3b4o12bo3b4o
12bo3b4o10b3o9bo3b3o\$b3o17b3o17b3o10bobo14b3o17b3o17b3o17b3o27b3o3bo\$
3bobo17bobo17bobo8boo17bobo5boo10bobo5boo10bobo5boo10bobo5boo8boo10bob
obo\$4bobo17bobo17bobo11boo14bobo4boo11bobo4boo11bobo4boo11bobo4boo8bob
o10bobo\$5bo19bo19bo12bobo14bo19bo19bo19bo15bo13bo\$58bo46bo\$103boo17boo
18boo\$104boo15bobo17bobo\$121boo18boo\$\$102b3o\$104bo3bo\$103bobboo\$107boo
!

#113 from 74 gliders:
x = 225, y = 133, rule = B3/S23
139bobo\$140boo\$140bo\$4bo22bobo\$5bo21boo64bo\$3b3o22bo58bo3bobo45bo\$88b
oobboo46bo\$87boo27bo21b3o5bo\$42bo19bo19bo19bo12bobo4bo22bobo4bo19bo10b
o8bo19bo\$5boobboo30bobo17bobo17bobo17bobo10bobbo3bobo20bobbo3bobo17bob
o10bo6bobo17bobo\$6boobobo28bobo17bobo17bobo17bobo12boo3bobo22boo3bobo
17bobo9b3o5bobo17bobo\$5bo3bo31bo19bo19bo7boo10bo19bo29bo18bo19bo19bo\$
42b3o17b3o17b3o3bobo11b3o17b3o7bobo17b3o10boo4b4o10boo4b4o16b4o\$44bo
19bo5bo13bo5bo13bo19bo8boo6bo12bo10boo7bo10boo7bo19bo\$68boo9boo18boo
18boo12bo5bobo7boo18b3o17b3o17b3o\$69boo7bobo17bobo17bobo19boo6bobo17bo
bbo16bobbo16bobbo\$78boo18boo18boo28boo17bobo17bobo17bobo\$168bo19bo19bo
\$\$64boo70bo\$64bobo69boo\$64bo70bobo\$60b3o83bobo\$62bo84boo\$24boo35bo85bo
\$23boo\$25bo122boo\$149boo\$148bo3\$147bo\$147boo\$146bobo6\$124boo\$120bobboo
\$22bobo96bo3bo\$22boo95b3o\$23bo\$138boo18boo\$121boo15bobo17bobo\$120boo
17boo18boo\$75bo46bo\$12bo29bo19bo12bobo14bo19bo19bo19bo15bo13bo19bo19bo
\$11bobo27bobo17bobo11boo14bobo4boo11bobo4boo11bobo4boo11bobo4boo8bobo
10bobo17bobo17bobo\$10bobo27bobo17bobo8boo17bobo5boo10bobo5boo10bobo5b
oo10bobo5boo8boo10bobobo15bobobo15bobobo\$10bo29bo19bo10bobo16bo19bo19b
o19bo29bo3bo15bo3bo15bo3bo\$11b4o26b4o16b4o6bo19b4o16b4o16b4o16b4o10b3o
13b3o17b3o17b3o\$14bo30bo19bo29bo3boo14bo3boo14bo3boo14bo3boo4bo\$9b3o
27b3obboo13b3obboo3boo18b3obboo3boo8b3obboo3boo8b3obboo3boo8b3obboo3b
oo5bo12b3o17b3o17b3o\$8bobbo12boo12bobbo16bobbo6bobo17bobbo16bobbo16bo
bbo16bobbo26bobbo16bobbo17bobbo\$8boo13boo13boo18boo10bo17boo18boo18boo
18boo28boo18boo21boo\$25bo4\$12b3o155bo\$14bo154boo27boo\$13bo137boo16bobo
22boobbobo\$18boo130bobo40bobobbo\$18bobo131bo42bo\$14boobbo\$15boo182bo\$
14bo184boo\$198bobo3\$121bo\$119bobobboo\$120boob3o\$123boobo\$124b3o\$125bo\$
12bo19bo19bo19bo19bo19bo19bo19bo19bo19bo\$11bobo17bobo17bobo17bobo17bob
o17bobo17bobo17bobo17bobo17bobo\$10bobobo15bobobo15bobobo15bobobo15bobo
bo15bobobo10bo4bobobo15bobobo15bobobo15bobobo\$10bo3bo15bo3bo15bo3bo15b
o3bo15bo3bo15bo3bo8bobo4bo3bo15bo3bo15bo3bo15bo3bo\$11b3o17b3o17b3o17b
3o17b3o17b3o10boo5b3o17b3o17b3o17b3o\$119b3o\$9b3o17b3o17b3o17b3o17b3o
17b5o7bo7b5o17b3o17b3o17b3o\$9bobbo16bobbo16bobbo16bobbo16bobbo16bo4bo
5bo8bo4bo16bobbo16bobbo15bo3bo\$11boo18bobo17bobo17bobo17bobo18bobo17bo
bo18boo18boo15booboo\$6bo9bo15bo19bo19bobo17bobob3o13boo18boo\$7boo5boo
41bo15bo19bobbo27b3o\$6boo7boo38boo40bo28bo46boo\$52boobboo67bo3boo38boo
bbobo\$8bo43bobo75boo36bobobbo\$8boo42bo76bo40bo\$7bobo5b3o\$17bo155boo\$
16bo155bobo\$174bo9\$170bobo\$171boo\$171bo\$12bo19bo19bo19bo19bo19bo19bo
19bo29bo19bo\$11bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo15boo10bo
bo17bobo\$10bobobo15bobobo15bobobo15bobobo15bobobo15bobobo15bobobo15bob
obo13bobo9bobobo15bobobo\$10bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15b
o3bo15bo3bo15bo9bo3bo15bo3bo\$11b3o17b3o17b3o17b3o17b3o17b3o17b3o17b3o
27b3o17b3o\$172bo\$11b3o15b7o13b7o13b3ob3o13b3ob3o13b3ob3o13b3ob3o13b4ob
o17boo5b4obo16boobo\$bbo7bo3bo7bo6bobbobbo13bobbobbo12bobbobobbo11bobbo
bobbo11bobbobobbo11bobbobobbo11bobboboo16bobo4bobboboo16boboo\$obo7boob
oo7bobo43boo5boo11boo5boo11boobbobboo11boobbobboo11boo28boo\$boo19boo
115boo\$139bobo\$3b3o13b3o68bo42b3o3bo\$5bo13bo70boo37b3obo37bo\$4bo15bo
68bobo39bobbo36boo\$52boo76bo39bobo\$48boobbobo\$47bobobbo38b3o\$oo21boo
24bo41bo\$boo19boo68bo\$o23bo63b3o\$90bo\$89bo\$48b3o\$50bo\$49bo!

#250 and #252 from 22 and 37 gliders (via their cheaper carrier-based cousins, rather than the other way around):
x = 171, y = 118, rule = B3/S23
91bo\$92bo\$90b3o\$25bo18bobo3bobo21boo18boo\$23boo20boo4boo20bobbo16bobbo
\$24boo19bo5bo22boo18boo\$48boo\$47bobo\$13bobo3bo14boo3bo9bo4boo3bo15boo
18boo18boo18boo18boo\$14booboo14bobbobobo12bobbobobo12bobbobbo13bobbobb
o13bobbobbo13bobbobbo13bobbobbo\$14bo3boo13booboboo13booboboo13boobobob
o12boobobobo12boobobobo12boobobobo3bo8boobobobo\$34bobo17bobo8boo7bobo
bboo13bobobboo13bobobboo13bobobbooboo10bobobbo\$15bo13boo3bobo17bobo7b
oo8bobo17bobo17bobo17bobo6boo9bobo\$14boo12boo5bo19bo4b3o3bo8bo19bo19bo
19bo19bo\$14bobo13bo31bo82b3o\$61bo83bo\$146bo19\$61bo\$9bobo49bobo\$10boo
49boo\$10bo4boo18boo15bo4bo7boo18boo\$7bo5bobbobbo16bobbo10bobo5boo6bobb
o16bobbo\$5bobo5boobobobo15bobobo10boo4boo7bobobo15bobobo\$6boo6bobobbo
13boobobbo14bo8boobobbo11boboobobbo\$3boo9bobo14bobbobo17boo5bobbobo14b
oobobo\$bbobo4boo4bo15boobbo17bobo5boobbo19bo\$4bo3bobo\$10bo46b3o\$59bo\$
58bo14\$135bo\$136boo11bo\$135boo11bo\$148b3o\$60bo85bo\$59bo84bobo\$11bobo
45b3o45bobo35boo\$12boo13bo80boo\$12bo12boo30bo50bo\$26boo30bo42bobo\$56b
3o43boobboo\$3bo48b3o19boo18boo6bo3bobo5boo6boo20boo6boo\$4bo49bo19boobb
oo14boobboo6bo7boobboobbobo19boobboobbobo\$bb3o48bo24boo18boo18boo3boo
23boo3boo\$\$bo\$boo31boo18boo18boo18boo18boo28boo\$obo3boo7boo17bobo17bob
o17bobo17bobo17bobo27bobo20boo\$5bobo8bobbo16bobbo16bobbo16bobbo16bobbo
16bobbo26bobbo16bobbo\$7bo8bobobo15bobobo15bobobo15bobobo15bobobo15bobo
bo12b3o10bobobo15bobobo\$13boobobbo13boobobbo13boobobbo13boobobbo13boob
obbo13boobobbo15bo7boobobbo13boobobbo\$11bobbobo14bobbobo14bobbobo14bo
bbobo14bobbobo14bobbobo17bo6bobbobo14bobbobo\$11boobbo15boobbo15boobbo
15boobbo15boobbo15boobbo25boobbo15boobbo22\$141bo\$141bobo\$141boo\$132bo
4bo9boo18boo\$130bobo5boo6bobbo16bobbo\$131boo4boo7bobobo15bobobo\$134bo
8boobobbo11boboobobbo\$134boo5bobbobo14boobobo\$133bobo5boobbo19bo\$\$137b
3o\$139bo\$138bo!

16s converted to 17s using a standard but convoluted carrier-to-eater converter, slightly adjusted at the end to accomodate inconvenient protrusions:

#334 from 33 gliders:
x = 179, y = 33, rule = B3/S23
119bo\$119bobo\$119boo\$97bobo\$98boo\$98bo51bo\$150bobo\$150boo\$93bo51bo\$94b
oo50boo\$8bo84boo50boo\$bbo6boo\$obo5boo\$boo41bobo\$11bo10booboobo16boo5b
ooboobo13booboobo33booboobo8boo3booboobo8boo3booboobo13booboobo\$7bo3bo
bo9boboboo16bo7boboboo14boboboo34boboboo8bobo3boboboo8bobo3boboboo14bo
boboo\$b3obboo3boo9bo24bo4bo19bo39bo16bobbo16bobbo19bo\$3bobbobo14boo16b
o5boo4boo16boboo36boboo13booboboo13booboboo18boo\$bbo21bo16boo3bobo5bo
16bobbo36bobbo16bobbo8boo6bobbo19bo\$22bo17bobo9bo19boo38boo17boo11boo
5boo21bobo\$22boo28boo89bo15boo14boo\$3o119bo35boo\$bbo118bo24boo6b3o3bo\$
bo45boo40boo30b3o21bobo8bo\$4b3o41boo40boo26boo27bo7bo\$4bo42bo41bo24bo
3bobo\$5bo91b3o12bobo3bo\$b3o95bo13boo\$3bo94bo\$bbo\$94boo\$93bobo\$95bo!

#114 from 43 gliders:
x = 137, y = 75, rule = B3/S23
9bo\$7bobo9bo\$8boo7bobo\$18boo\$25bobo\$25boo19bo19bo19bo7bobo9bo19bo\$26bo
15boobobo14boobobo14boobobo7boo5boobobo14boobobo\$43bobobo15bobobo15bob
obo7bo7bobobo15bobobo\$27b3o12bobboo15bobboo15bobboo10bo4bobboo15bobboo
\$27bo15boo18boo18boo6bo5boo4boo16boboo\$20bo7bo15bo19bo19bo6boo3bobo5bo
16bobbo\$8b3o8boo22bo19bo18bo7bobo9bo19boo\$10bo8bobo21boo12bobo3boo6bo
10boo18boo\$9bo48boo11bobo\$58bo12boo\$68boo27boo\$8b3o56boo29boo\$10bo58bo
27bo\$9bo46b3o\$18b3o37bo4boo\$18bo38bo6boo\$19bo43bo\$9b3o57boo\$11bo56boo\$
10bo59bo15\$18bo\$16boo\$17boo\$5bo73bo\$6boo71bobo\$5boo72boo\$23bo33bobo\$
21boo35boo\$22boo4bo29bo51bo\$26boo82bobo\$27boo81boo\$53bo51bo\$29bo24boo
50boo\$29boo22boo50boo\$28bobo\$\$16bo28boo28boo18boo18boo18boo\$5boo5boobo
bo24boobbo25boobbo10boo3boobbo10boo3boobbo15boobbo\$4bobo6bobobo25bobo
27bobo11bobo3bobo11bobo3bobo17bobo\$6bo5bobboo25bobboo25bobboo12bobbobb
oo12bobbobboo15bobboo\$oo9boboo26boboo26boboo13booboboo13booboboo18boo\$
boo8bobbo26bobbo26bobbo16bobbo8boo6bobbo19bo\$o11boo13bo14boo28boo17boo
11boo5boo21bobo\$26boo75bo15boo14boo\$26bobo53bo35boo\$81bo24boo6b3o3bo\$
13boo34boo30b3o21bobo8bo\$12bobo35boo26boo27bo7bo\$14bo34bo24bo3bobo\$57b
3o12bobo3bo\$59bo13boo\$58bo\$\$54boo\$53bobo\$55bo!

The following use a more streamlined tie-boat mechanism. While this can be used in other places, here it is always used to attach a boat where the tie is only from one side, and the other side requires separate induction that is created simultaneously:

#229 from 28 gliders:
x = 125, y = 65, rule = B3/S23
43bo\$42bo\$42b3o\$\$7bobo3bo29b3o\$8booboo17boboo11bo4boboo13booboboo13boo
boboo13booboboo\$8bo3boo16boobbo9bo5boobbo11boboboobbo11boboboobbo11bob
oboobbo\$33boo18boo12bo5boo12bo5boo12bo5boo\$47bo\$11b3o32boo62boo\$11bo
34bobo60bobo\$7bo4bo97bo\$7boo\$6bobo\$80bo\$81bo\$79b3o\$83b3o\$85bo4b3o\$84bo
5bo\$91bo14\$11bobo\$11boo87bo\$12bo85boo5bo\$6bo92boobboo\$7bo96boo\$5b3o4\$b
o35boo18boo18boo18boo\$bbo35bo19bo19bo11bobo5bo\$3o4booboboo24boboboo14b
oboboo14boboboo7boo5boboboo13booboboo\$6boboboobbo24b3obbo14b3obbo14b3o
bbo6bo7b3obbo12bob3obbo\$7bo5boo6bo21boo18boo18boo18boo18boo\$20bo20boo
18boo18boo6bo11boo18boo\$bbobo5boo8b3o17bobo17bobo17bobo4bobo10bobo17bo
bo\$3boo4bobo12b3o14bo19bo19bo6boo11bo19bo\$3bo6bo13bo\$25bo10bo19bo33bo\$
16b3o16bobo4boo11bobo4boo26boo\$16bo18bobo4boo11bobo4boo25bobo\$6boo9bo
18bo19bo\$5bobo45boo9boo\$7bo6boo36bobo9bobo\$13boo39bo9bo\$15bo\$11boo\$10b
obo\$12bo3boo\$15boo\$17bo!

Using the above mechanism reduces #192 from 50 to 26 gliders:
x = 149, y = 58, rule = B3/S23
115bo\$115bobo\$115boo\$\$114bo\$51bo60bobo\$52bo60boo\$50b3o\$\$6bo46bobo\$6bob
o17boo18boo5boo11boo18boo18boo18boo13bo4boo\$bb3oboo17bobbo16bobbo5bo
10bobbo16bobbo16bobbo3boo11bobbo11bobobbobbo\$4bo20bobo17bobo9b3o5boboo
16boboo16boboobbobo11boboo12boobboboo\$3bo22bo19bo10bo8bo19bo19bo6bo12b
o19bo\$58bo5bobo17bobo17bobo17bobo17bobo\$53bo10boo18boo18boo18boo18boo\$
52bo\$52b3o9boo18boo\$40bo4b3o16boo18boo\$40boo5bo\$39bobo4bo35boo\$81bobo\$
83bo9\$5bo61bo\$6bo58boo\$4b3o45bo13boo26bo\$8bo41boo43bo\$7bo43boo40b3o\$7b
3o17boo16bo11boo18boo18boo\$27boo17bo10boo17bobbo16bobbo\$44b3o16boo12b
oo18boo\$63bobo\$bo4boo13bo4boo23bo4boo5bo21boo18boo18boo\$obobbobbo11bob
obbobbo11bo9bobobbobbo23bobbobbo13bobbobbo13bobbobbo\$boobboboo12boobbo
boo12bo9boobboboo22boboboboo12boboboboo12boboboboo\$6bo19bo12b3o14bo20b
oo3boobbo10boo3boobbo15boobbo\$4bobo17bobo16bo10bobo20boo5bobo10boo5bob
o17bobo\$4boo18boo17boo9boo28boo7b3o8boo18boo\$38bo3bobo50bo\$38boo7boo
45bo\$37bobo6bobo\$48bo\$\$52boo\$52bobo\$52bo\$\$50boo\$49bobo\$51bo!

#318 from 30 gliders:
x = 124, y = 88, rule = B3/S23
82bo\$83bo3bo18boo\$81b3oboo18bobbo\$86boo17bobbo\$106boo\$41bo\$31bo7bobo9b
o19bo19bo19bo\$27boobobo7boo5boobobo11booboobobo11booboobobo11booboobob
o\$27boboobbo9boobboboobbo10booboboobbo10booboboobbo10booboboobbo\$32boo
8bobo7boo18boo18boo18boo\$44bo\$109boo\$108bobo\$10bo98bo\$9bo\$9b3o\$5bobo
71bo\$6boo72bo\$6bo71b3o\$82b3o\$bo82bo4b3o\$bboo79bo5bo\$boo87bo5\$b3o\$3bo\$
bbo\$\$16boo\$16bobo\$bbo13bo\$bboo\$bobo17\$36bo\$37boo6bo\$36boo7bobo\$bbo42b
oo5bobo\$obo19boo18boo8boo\$boo19boo18boo9bo\$\$boo19boo18boo\$obo19boo18b
oo\$bbo3boo18boo9bo8boo6boo\$5bobbo16bobbo9boo5bobbo4boo\$5bobbo16bobbo8b
oo6bobbo6bo\$6boo18boo18boo\$\$11bo19bo19bo25boobbo15boobbo15boobbo\$4boob
oobobo11booboobobo11booboobobo24bobbobo14bobbobo14bobbobo\$4booboboobbo
10booboboobbo10booboboobbo7bo16b3obbo14b3obbo14b3obbo\$12boo18boo18boo
6bo21boo18boo18boo\$40bobo17b3o17boo18boo18boo\$9boo18boo10boo6boo28bobo
17bobo17bobo\$8bobo17bobo10bo6bobo29bo19bo19bo\$9bo19bo19bo14b3o\$64bo10b
o19bo\$65bo8bobo4boo11bobo4boo\$56b3o15bobo4boo11bobo4boo\$56bo18bo19bo\$
44boo11bo34boo9boo\$43bobo45bobo9bobo\$45bo8boo37bo9bo\$53boo\$55bo\$49boo\$
48bobo\$50bo5boo\$55boo\$57bo!

The following create an attached side, inspired by the synthesis of #137:

#138 from 24 gliders:
x = 147, y = 59, rule = B3/S23
78bo\$76bobo\$77boo\$\$81bo\$81boo\$80bobo\$42bo\$41bo41boo\$41b3o39bobo42bo\$
39bo43bo16boo18boo6bobo9boo\$40bo30b3o27bo19bo6boo11bo\$38b3o19boo11bo6b
oo18bo19bo19bo\$60boo10bo7boo18boo18boo18boobbo\$143bobo\$7bobo10boo18boo
18boo18boo18boo18boo18booboo\$bbobobboo12bo19bo19bo19bo19bo19bo19bo\$3b
oo3bo12boboo16boboo16boboo16boboo16boboo16boboo16boboo\$3bo18bobbo16bo
bbo16bobbo16bobbo16bobbo16bobbo16bobo\$24boo18boo18boo18boo18boo18boo4b
o\$boo127bobo\$bboo6bo119boo\$bo7boo\$9bobo115b3o\$127bo\$128bo17\$79bo\$79bob
o47bo\$36bo42boo48bobo\$37bo52bo38boo\$35b3o40bo5bo5bobo\$47bo31bo4bobo3b
oo16bo19bo\$11bo33boo30b3o4boo22bo19bo\$9bobo34boo40bo19bo19bo\$oo8boo8b
oo18boo7boo36boo\$bo19bo19bo7bobo35bobo\$o7boo10bo19bo8bo10bo19bo\$oobbo
3bobo9boo18boo18b3o17b3o18boo18boo18boo\$3bobobbo14bobbo16bobbo16bobbo
16bobbo13bobbobbo13bobbobbo13bobbobbo\$ooboo15boob4o13boob4o13boob4o13b
oob4o13boob4o13boob4o13boob4o\$bo19bo19bo19bo19bo19bo19bo19bo\$boboo16bo
boo16boboo16boboo16boboo16boboo16boboo16boboo\$bbobo17bobo17bobo17bobo
17bobo17bobo17bobo17bobo!

Similarly, #370 from 21 gliders:
x = 169, y = 69, rule = B3/S23
50bo\$51bo\$11bo37b3o\$10bo42boo\$10b3o40boo\$96bo\$97boo\$11b3o82boo\$11bo\$
12bo\$\$106bo\$34boo18boo18boo18boo8boo18boo18boo18boo\$35bo19bo19bo19bo9b
oo18bo19bo11bo7bo\$19bo14bo19bo19bo19bo29bo19bo11bo7bo\$18boo14boo18boo
18boo18boo11bo16boo18boo10b3o5boo\$18bobo86boo18boo4boo12boo4boo12boo\$
34boo18boo18boo18boo10bobo15booboo4boo9booboo4boo9booboo\$33bobo17bobo
17bobo17bobo27bobo17bobo17bobo\$34bo19bo19bo19bo27bobbo16bobbo16bobbo\$
123boo18boo18boo7\$97boo\$97bobo\$bo80b3o12bo\$boo81bo\$obo80bo\$\$13boo\$13b
oo12\$100bo\$61bo39bo\$62boo35b3o\$61boo48bo\$109boo\$61bo48boo\$14boo18boo
18boo4boo22boo18boo7boo\$15bo19bo19bo4bobo22bo19bo7bobo\$14bo19bo19bo29b
o19bo8bo10bo\$14boo18boo18boo28boo18boo18b3o\$17boo18boo18boo28boboo16bo
boo16boboo\$9bo4booboo15booboo15booboo3boo20booboobo13booboobo13booboob
o\$10bobbobo19bo19bo7boo20bo19bo19bo\$8b3obobbo17bobo17bobo6bo20bobo17bo
bo17bobo\$13boo18boo18boo28boo18boo18boo\$70b3o\$70bo\$12boo57bo\$11bobo\$
13bo\$56boo\$55bobo\$57bo!

And similarly, a totally different way to make #343 - that reduces the cost from 31 to 30 gliders:
x = 196, y = 56, rule = B3/S23
169bo\$167bobo\$168boo\$\$170bo\$170bobo\$170boo\$82bo\$82bobo81bo\$82boobboo
67bobo6bobo\$85boo69boo7boo\$42bo44bo15bo19bo19bo12bo3bobo10bo19bo\$5bo
37bo19bo19bo18bobo17bobo17bobo16boo9bobo17bobo\$3bobo35b3o18bobo17bobo
17bobbo16bobbo16bobbo15bo10bobbo9boo5bobbo\$oobboo57boo18boo18boo6bo11b
oo18boo12b3o13boo10boo3booboo\$boo106bobo27boo18bo9boo18bobo\$o22boo18b
oo18boo18boo18boo5boo11boo13bobobboo13bo9bobobboo15bobboo\$4bobo17bo19b
o19bo19bo19bo19bo14bo4bo24bo4bo19bo\$4boo17bo19bo19bo19bo19bo19bo19bo
29bo19bo\$5bo17boo18boo18boo18boo18boo18boo18boo17b3o8boo10boo6boo\$8bo
155bo19bobbo\$7boo102boo50bo21boo\$7bobo100bobo56boo\$112bo55boo\$170bo\$
113boo\$113bobo\$113bo13\$bbo\$3bo9bo19bo19bo19bo19bo19bo19bo19bo\$b3o8bobo
17bobo17bobo17bobo8bobo6bobo17bobo17bobo17bobo\$5boo5bobbo16bobbo16bobb
o16bobbo8boo6bobbo16bobbo16bobbo16bobbo\$5boo3booboo15booboo15booboo15b
ooboo9bo5booboo13bobooboo13bobooboo13bobooboo\$9bobo17bobo17bobo17bobo
8bo8bobo16boobo16boobo16boobo\$10bobboo15bobboo9bo5bobboo14boobboo5boo
7boobboo18boo18boo17b3o\$14bo19bo10boo7bo19bo4bobo12bo19bo10bo8bo19bo\$
13bo19bo10boo7bo19bo10b3o6bo19bo9bobo7bo\$5boo6boo18boo18boo18boo11bo6b
oo18boo9boo7boo\$4bobbo38bo38bo41boo\$5boo39boo40b3o37boo\$b3o41bobo40bo
38bo\$3bo80b3obbo47b3o\$bbo83bo50bo\$85bo52bo!

[b]Objects with protruding loaves:

Here are some 17-bit still-lifes with loaf-like bonding sites, suitable for attaching molds and jams (I need these to complete the 22-bit molds - I'm not actually synthesizing them at this point, just noting the ones that can't yet be synthesized). #237*, #281, #314, #315, #316, #319 and #350* remain unsynthesized (plus two trivial ones replacing snakes with carriers in the ones marked *).

#375 from 27 gliders. I had actually built this one last March, as an intermediate step in one of the difficult 16s at the time (one that was needed to make 12-bit molds). I didn't record the 17-bit one separately, as the 17s weren't a current concern at the time, and only just noticed it again after making a much more ugly 56-glider synthesis of it!:
x = 163, y = 65, rule = B3/S23
86boo\$85bobobo\$87bobobo\$89boo\$94boo15bo19bo19bo\$37bo55boo15bobo17bobo
17bobo\$36bo58bo14boo18boo18boo\$36b3o\$57boo28boo18boo18boo18boo\$36bo19b
obo27bobo17bobo17bobo17bobo\$bbo19boo12boo4boo13bo4boo23bo4boo13bo4boo
13bo4boo13bo4boo\$obobb3o14bobo10bobo4bobo17bobo27bobo17bobo17bobo17bob
o\$boobbo17boo18boo18boo28boo18boo18boo18boo\$6bo18boo18boo18boo28boo18b
oo18boo18boo\$bo23bobo17bobo17bobo27bobo17bobo17bobo17bobo\$boo23bo19bo
19bo29bo19bo19bo19bo\$obo\$\$160boo\$139b3o18boo\$141bo\$140bo\$oo140boo17boo
\$boo139bobo16boo\$o141bo15\$33bo50bo44bo\$31bobo49bo46boo\$32boo16bobo26bo
3b3o43boo\$51boo27boo7bo48bobo\$51bo27boo6boo49boo\$41bo46boo49bo\$40bobo
6boo\$40boo6boo\$50bo\$37boo\$36bobo16bo7bo19bo13bobbo12bo3boo14bo3boo14bo
\$37bo4boo10bo7bobo17bobo11bo15bobo3bo13bobo3bo4bobo6bobo\$42bobo9b3o4bo
bbo16bobbo11bo3bo10bobbobbo13bobbobbo5boo6bobbobboo\$43boo17b3obo15b3ob
o9b4o12b3obo15b3obo7bo7b3obobo\$45boo18bobo9bo7bobo27bo19bo19bo\$45bobo
16bobbo10boo4bobbo26bo19bo11bo7bo\$46bo18boo10boo6boo27boo18boo10bobo5b
oo\$38bo107boo\$37boo\$33bo3bobo10boo93bo\$34boo14boo92boo\$33boo56b3o50bob
o\$79bo11bo\$42boo7boo26boo11bo\$41bobo7boo25bobo\$43bo!

#251 from 19 gliders, similar to a 16-bit one with beehive:
x = 175, y = 42, rule = B3/S23
147bo\$146bo\$146b3o5\$143bo\$144bo\$142b3o\$\$127bo12boo\$125bobo11bobo\$126b
oo13bo\$133b3o\$135bo18bo\$134bo18bo\$153b3o\$34bo\$35bo\$33b3o\$38bo132bo\$obo
33boo131b3o\$boo19bo14boo3bo12boobo3bo12boobo3bo22boobo3bo22boobo3bo22b
oobo3boo\$bo19bobo17bobo11boboobbobo11boboobbobo12bo8boboobbobo21boboo
bbobo21boboobbobbo\$22boo18boo18boo18boo10boo16boo28boo27bobo\$b3o30b3o
58boo20boo28boo9boo12bo\$bo28b3obo81bobbo26bobbo7boo\$bbo29bobbo79boboo
26boboo10bo\$31bo59bo22bobo27bobo\$90boo22bobo27bobo\$86boobbobo22bo29bo\$
87boo\$86bo\$\$134boo\$91b3o39bobo\$91bo43bo\$92bo\$145bo\$144boo\$144bobo!

The following synthesis is a combination of several useful results falling out of a doomed attempt to create the wrong object, and then building it the wrong way to boot. These two 17s aren't on the hard list - I was trying to make #350 but accidentally put the loaf on the wrong way! Still, a few useful converters fell out of the process. Incidentally, the base 16-bit still-life is reduced by 1 (using the 2-glider claw-to-beehive converter). The beehive-to-mango converter is less obtrusive (but costs 1 more glider). The mango-to-feather converter is much more expensive, but also much less obtrusive.

What's most ridiculous about this synthesis is that the whole reason I went through all the above convolutions was that the standard beehive-to-loaf converter won't work for #350. However, it DOES work for these objects! Building them the old easy way (row 3) costs 41 (w/loaf) and 49 (w/feather), while building them the new convoluted way (rows 4+5) costs 47 (w/feather) and 54 (w/loaf), so the old way is best for the loaf, but the new way is best for the feather:
x = 168, y = 143, rule = B3/S23
132bobo\$132boo\$133bo\$10bo\$11boo\$10boo4bo\$16bobo\$16boo\$10boo\$9bobo63boo
18boo18boo18boo18boo\$11bo60boobbo15boobbo15boobbo15boobbo15boobbo\$32b
3o36bobobo15bobobo17bobo7boo8bobo15bobobo\$32bobbo34bobboboo13bobboboo
6bo9boboo5bobo8boboo11bobobboboo\$6b3o17b3o3bo38boo18boo9bo11bobbo6bo9b
obbo10boo3boobbo\$6bobbo16bobbobbo69b3o11boo18boo18boo\$6bo19bo6bobo8bo\$
6bo19bo18boobo36b3o11bo29b3o\$7bobo17bobo14boobbobo36bo10boo29bo\$48boo
36bo11bobo29bo\$90boo11boo29boo\$91boobbo6boo21boo6boo\$90bo3boo8bo21boo
7bo\$94bobo28bo3b3o\$129bo\$40boo88bo\$41boo\$40bo66b3o\$107bo\$54bo53bo\$53b
oo\$53bobo6\$55boo\$54boo\$56bo6\$12bo\$10boo\$11boo\$7bo\$8boo\$7boo6boo18boo
18boo28boo18boo18boo\$12boobbo13boboobbo13boboobbo23boboobbo13boboobbo
13boboobbo\$11bobobo14boobobo14boobobo24boobobo14boobobo14boobobo\$8bobo
bboboo16boboo16boboo28boo18boo18boo\$3bobobboo3boobbo15boobbo15boobbo
26bobbo16bobbo16bobbo\$4boo10boo18boo18boo27boo18boo18boo\$4bo38boo3b3o\$
7boo33b4o4bo9boo12boo18boo\$6boo34booboobbo10bobo11boo18boo\$8bo35boo14b
o29b3o\$56b3o33bo\$58bo32bo\$57bo14\$141bobo\$100bo40boo\$99bo19boo21bo\$99b
3o17boo\$15boo18boo18boo18boo18boo18boo18boo28boo\$10boboobbo13boboobbo
13boboobbo13boboobbo13boboobbobb3o8boboobbobboo9boboobbo23boboobbo\$10b
oobobo14boobobo14boobobo14boobobo14boobobo3bo10boobobo3boo9boobobo24b
oobobo\$15boo18boo18boo18boo18boo3bo14boo18boo5boo21boo\$14bobbo16bobbo
16bobbo3boo11bobbo16bobbo16bobbo16bobbo3boo21bo\$15boo18boo18boo4bobo
11bobbo16bobbo16bobbo16bobbo4bo21bobo\$31boo18boo8bo14boo18boo18boo18b
oo10bo17boo\$10b3o18boo18boo94bo\$12bo45boo82b3obb3o\$11bo47boo81bo\$13b3o
34boo6bo84bo\$13bo35bobo\$14bo36bo90b3o\$53boo87bobbo\$53bobo80b3o3bo\$53bo
82bobbobbo\$136bo6bobo\$136bo\$137bobo12\$15boo18boo18boo18boo18boo18boo\$
10boboobbo13boboobbo13boboobbo13boboobbo13boboobbo13boboobbo\$10boobobo
14boobobo14boobobo5bo8boobobo14boobobo14boobobo\$15boo18boo18boo3bo14b
oo18boo18boo\$14bo19bo19bo5b3o11bobbo16bobbo16bobbo\$15bobo17bobo17bobo
6b3o8bobo17bobo17bobo\$16boo18boo18boo6bo11bo19bo19bo\$65bo15bo19bo\$36b
oo18boobb3o17bobo17bobo\$36boo18boobbo19bobo17bobo\$61bo19bo19bo\$16bobo
84boo\$16boo85bobo\$17bo85bo\$\$16b3o\$16bo\$17bo14\$boo\$obo\$bbo!

(Sadly, reversing this to make #350 won't work, as the mango version is stable, but the intermediate feather one isn't.)

The following miscellaneous syntheses are not related to each other:

The recent beehive-to-long-bookend-with-hook converter is very useful, and solves more than .5% of remaining still-lifes, including one 15-bit one (for the same cost as before), and this 16-bit one (that is reduced from 31 to 11 gliders):
x = 71, y = 15, rule = B3/S23
43bo\$43bobo\$13bo29boo\$13bobo37bo\$13boo38bobo\$8bo44boo\$7bo35bo\$7b3o33b
oo\$42bobo21boo\$10bo16boo18boo8b4o6bo\$9boo15bobbo16bobbo3boobbo3bo4bo3b
o\$bo7bobo14b3o17b3o4bobobo8b5o\$bbo50bo4bobbo\$3o22boboo16boboo16boboo\$
25boobo16boobo16boobo!

This tub-to-barge welder could be used to close billiard-table exteriors. It gives us #338, #337, #339, #376 from 20, 20, 22, 22:
x = 147, y = 172, rule = B3/S23
70bo23bo\$68bobo22bo\$69boo22b3o4\$101bo19bo19bo\$100bobo17bobo17bobo\$101b
oboboo14boboboo14boboboo\$103boboo16boboo16boboo\$103bo19bo19bo\$101bobo
10bo6bobo17bobo\$76boo23boo9bobo6boo17bobo\$75bobo12b3o20boo26bo\$77bo12b
o25boo\$91bo25boo\$70boo6boo36bo\$71boo5bobo40boo\$70bo7bo42bobo\$121bo11\$
116bobo\$116boo\$117bo\$111bo\$72bobo37bo\$73boo35b3o\$41bo19bo11bo7bo19bo
19bo19bo\$40bobo17bobo17bobo10booboobbobo10booboobbobo17bobo\$32bo8bobob
oo14boboboo14boboboo6booboo3boboboo6booboo3boboboo12boboboboo\$30bobo
10boboo16boboo7bo8boboo16boboo16boboo12bo3boboo\$31boo10bo16bobbo11bo4b
obbo16bobbo16bobbo16bobbo\$41bobo15bobobo9b3o3bobobo15bobobo15bobobo17b
obo\$33b3o4bobo17bobo17bobo17bobo17bobo19bo\$35bo5bo19bo19bo19bo19bo\$34b
o37b3o38boo\$72bo41boo\$73bo39bo\$123boo\$39b3o80boo\$39bo77boo5bo\$40bo77b
oo\$117bo9\$116bobo\$116boo\$117bo\$111bo\$72bobo37bo\$73boo35b3o\$41bo19bo11b
o7bo19bo19bo19bo\$40bobo17bobo17bobo10booboobbobo10booboobbobo17bobo\$
32bo8bobo17bobo17bobo9booboo3bobo9booboo3bobo15bobobo\$30bobo10bo19bo
10bo8bo19bo19bo15bo3bo\$31boo10boboo13bobboboo8bo4bobboboo13bobboboo13b
obboboo13bobboboo\$41boboboo12boboboboo6b3o3boboboboo12boboboboo12bobob
oboo14boboboo\$33b3o4bobo17bobo17bobo17bobo17bobo19bo\$35bo5bo19bo19bo
19bo19bo\$34bo37b3o38boo\$72bo41boo\$73bo39bo\$123boo\$39b3o80boo\$39bo77boo
5bo\$40bo77boo\$117bo9\$81bo\$81bobo\$81boo\$76bo\$77boo\$76boo\$38bo9bo24boo
26bo19bo19bo\$39boo7bobo10boobboo5bobo6boobboo13bobobboo13bobobboo13bob
obboo\$38boo8boo11bobobbo7bo6bobobbo14bobobbo14bobobbo14bobobbo\$25boo
18boo16boo18boo18boo18boo18boo\$25bo19bo17bo19bo19bo19bo19bo\$5boo16bobo
17bobo15bobo17bobo17bobo10bo6bobo17bobo\$4boo17boo18boo16boo18boo18boo
9bobo6boo17bobo\$boo3bo106boo26bo\$obo36bo76boo\$bbo36boo76boo\$38bobo75bo
\$121boo\$121bobo\$121bo11\$116bobo\$116boo\$117bo\$111bo\$72bobo37bo\$73boo35b
3o\$41bo19bo11bo7bo19bo19bo19bo\$40bobobboo13bobobboo13bobobboo6booboobb
obobboo6booboobbobobboo13bobobboo\$32bo8bobobbo14bobobbo14bobobbo6boob
oo3bobobbo6booboo3bobobbo12bobobobbo\$30bobo10boo18boo9bo8boo18boo18boo
14bo3boo\$31boo10bo16bobbo11bo4bobbo16bobbo16bobbo16bobbo\$41bobo15bobob
o9b3o3bobobo15bobobo15bobobo17bobo\$33b3o4bobo17bobo17bobo17bobo17bobo
19bo\$35bo5bo19bo19bo19bo19bo\$34bo37b3o38boo\$72bo41boo\$73bo39bo\$123boo\$
39b3o80boo\$39bo77boo5bo\$40bo77boo\$117bo9\$116bobo\$116boo\$117bo\$111bo\$
72bobo37bo\$73boo35b3o\$41bo19bo11bo7bo19bo19bo19bo\$40bobo17bobo17bobo
10booboobbobo10booboobbobo17bobo\$32bo8bobo17bobo17bobo9booboo3bobo9boo
boo3bobo15bobobo\$30bobo10bo19bo10bo8bo19bo19bo15bo3bo\$31boo10boo15bobb
oo10bo4bobboo15bobboo15bobboo15bobboo\$41bobobbo12bobobobbo6b3o3bobobo
bbo12bobobobbo12bobobobbo14bobobbo\$33b3o4bobobboo13bobobboo13bobobboo
13bobobboo13bobobboo15bobboo\$35bo5bo19bo19bo19bo19bo\$34bo37b3o38boo\$
72bo41boo\$73bo39bo\$123boo\$39b3o80boo\$39bo77boo5bo\$40bo77boo\$117bo!

#240 from 50 gliders, using the standard snake-to-tub-w/long-tail converter modified to use an inducting carrier, further modified here to use an (extremely expensive) hat:
x = 166, y = 102, rule = B3/S23
10bobo\$11boo\$11bo\$\$bbo8b3o17bo19bo19bo19bo19bo19bo19bo\$bboo9bo17b3o17b
3o17b3o17b3o17b3o17b3o17b3o\$bobo8bo21bo19bo19bo19bo19bo19bo19bo\$31boob
o16boobo16boobo16boobo16boobo16boobo16boobo\$31booboo15booboo15booboo
15booboo15booboo15booboo15booboo\$143bobo\$47bo95boo\$48bo48b3o13bo19bo
10bo8bo\$46b3o20booboo15booboo3bo11boobobo14boobobo14booboboboo\$68bobob
oo14boboboo4bo9bobobobo13bobobobo13bobobobobobo\$45bo23bo19bo6bo12bo3bo
15bo3bo15bo3bo3bo\$21bo23boo49boo\$20boo22bobo48bobo42boo\$20bobo117bobo\$
135bo4bo\$135bobo\$135boo\$126boo\$127boo3b3o\$54boo70bo5bo\$54bobo76bo\$54bo
11\$46bo\$44bobo\$45boo\$\$46bo19boo18boo\$46boo17bobbo16bobbo\$45bobo17bobbo
16bobbo\$66boo18boo\$11bo19bo19bo19bo10bo8bo19bo19bo19bo\$11b3o17b3o17b3o
17b3o9bobbo4b3o17b3o17b3o17b3o\$5bo8bo6bo12bo19bo19bo6b3obboo6bo14boo3b
o14boo3bo14boo3bo\$3bobo5boobo6bobo7boobo16boobo16boobo10bobo3boobo14bo
bbobo14bobbobo14bobbobo\$4boo5booboo5boo8booboo15booboo15booboo15booboo
15booboo15booboo15booboo\$\$31booboo15booboo15booboo15booboo15booboo15b
ooboo15booboo\$13bo17booboo15booboo15booboo15booboo15booboo15booboo15b
ooboo\$9booboboboo\$oo6bobobobobobo6boo\$boo6bo3bo3bo6boo127bo\$o25bo125bo
bo\$152bobo\$153bo\$3b3o15b3o\$5bo3b3o9bo110boo3bo\$4bo6bobboo6bo104boobbob
oboo\$10bobboo113boo3bobboo\$15bo111bo6\$19bo\$18boo\$18bobo11\$126bobo\$122b
o3boo\$123boobbo\$11bo19bo19bo19bo19bo19bo10boo7bo29bo\$11b3o17b3o17b3o
17b3o17b3o17b3o17b3o27b3o\$9boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo
3bo14boo3bo24boo3bo\$9bobbobo14bobbobo14bobbobo14bobbobo14bobbobo14bobb
obo14bobbobo23bo3bobo\$11booboo15booboo15booboo15booboo15booboo15booboo
15booboo21bobobooboo\$120bobo3bo31bo\$11booboo15booboo15booboo15booboo
15booboo6bo8booboo5boo3boo3booboo\$11booboo14bobobobo13bobobobo13bobobo
bo13bobobobo3boo10bobo6bo3bobo4bobo5bo\$5bo15bo9bo3bo15bo3bo14bobobbo
14bobobbo5boo9bobo17bobo5bobo\$6bo13bo50boo18boo20bo7b3o9bo6boo\$4b3o6bo
6b3o74bobo23bobboo8bo\$8bo3bobo3bo28bo38boo9boo23bo3bobo7bobo\$8boobbobo
bboo28boo38boo9bo27bo6bobboo\$7bobo3bo3bobo26bobo37bo45boo\$99boo23boo6b
obo\$49b3o46boo23bobo\$49bo50bo24bo\$50bo!

#211 from 27 gliders, using beehive-to-mango-to-feather converter (and its cousin w/loaf from 34):
x = 159, y = 70, rule = B3/S23
131bobo\$134bo\$125bobo6bo\$128bo2bo2bo\$49bo78bo3b3o\$50b2o5bo67bo2bo\$49b
2o4b2o40bobo26b3o\$56b2o39b2o\$44bo47bo5bo28bo\$45b2o4bo38b2o36bo\$44b2o6b
2o37b2o6b2o20b3o2b3o\$18b2o31b2o10bo34b2o23bo\$18bobo26b2o14bobo23bo10bo
12b2o7bo10b2o18b2o\$13bo4bo27bobo14b2o3bo5b2o11bobo4b2o16bo2bo11bo4bo2b
o17bobo\$11bobo24bo9bo9bo8bo5bo2bo11b2o3bo2bo16bo2bo11b2o3bo2bo19bo\$8b
2o2b2o20b2obobo14b2obobo7b3o4b2obo16b2obo16b2obo9b2o5b2obo16b2obo\$2o5b
obo25bobobo15bobobo15bobo17bobo17bobo17bobo17bobo\$b2o6bo24bo2b2o15bo2b
2o15bo2b2o15bo2b2o15bo2b2o15bo2b2o15bo2b2o\$o33bobo17bobo8b2o7bobo17bob
o17bobo17bobo17bobo\$35b2o18b2o4bo2b2o9b2o18b2o18b2o18b2o18b2o\$61b2o3bo
61bo\$60bobo65b2o\$127bobo13\$68bo\$68bobo\$68b2o14\$53bo\$54bo\$52b3o2\$53bo
73bo\$53b2o70bobo\$52bobo71b2o\$89bo19bo19bo19bo\$73b2o15bo2b2o13bobo17bob
o17bobo\$73b2o13b3o2b2o13bobo17bobo17bobo\$85bo23bo19bo19bo\$53b2o18b2o
11bo6b2o19bo19bo19bo\$53bobo17bobo8b3o6bobo17bobo17bobo17bobo\$56bo19bo
11b3o5bo16bo2bo16bo2bo16bo2bo\$54b2obo16b2obo12bo3b2obo16b2obo16b2obo
16b2obo\$55bobo17bobo11bo5bobo17bobo17bobo17bobo\$54bo2b2o15bo2b2o15bo2b
2o15bo2b2o15bo2b2o15bo2b2o\$54bobo17bobo17bobo17bobo17bobo17bobo\$55b2o
18b2o18b2o18b2o18b2o18b2o!

#273 from 77 gliders (based one of the hard 15s from 64 gliders). This converter is the reverse of the hat-to-loop converter, and might have other uses:
x = 147, y = 38, rule = B3/S23
127bo\$125bobo\$126boobbo\$48bo80bo\$3bo19bo19bo4bobo12boo18boo18boo18boo
4b3o11boo\$bbobo7bo9bobo17bobo3boo12bobo17bobo7bo9bobo17bobo17bobo\$bbo
bbo6bobo7bobbo16bobbo16bo19bo9bobo7bo19bo19bo\$ooboo7boo6booboo15booboo
15boob4o13boob4o5boo6boob4oboo10boob4oboo10boob4o\$obbo5boo9bobbo4boo
10bobbo4boo3bo6bobbobbo13bobbobbobboo9bobbobboboo10bobbobboboo10bobbo
bbo\$bobbo4bobo9bobbo3boo11bobbo3booboo8bobbo16bobbo4bobo9bobbo16bobbo
16bobo\$bboo5bo12boo18boo8boo8boo18boo5bo12boo18boo18bo\$126b3o\$102boo
18boobbo\$51boo49boo18boo3bo\$50boo\$52bo28bobo41bo\$82boo40boo\$82bo41bobo
\$\$81b3o\$83bo\$82bo14\$97boo\$97bobo\$97bo!

#126 from 34 gliders; same as 16 used in above #122 synthesis, but using eater instead of snake:
x = 161, y = 58, rule = B3/S23
49bobo\$50boo3bo\$15bobo32bobboo\$15boo37boo\$6bo9bo\$7bobbo46bo43bo\$5b3o3b
oobbo41bobo41bobo\$10boobbo42boo15bo19bo6boo11bo19bo19bo\$14b3o13boobo
16boobo16boobobo14boobobo14boobobo14boobobo14boobobo\$30boboo16boboo16b
oboobobboo10boboobobboo10boboobo14boboobo14boboobo\$74bo3boo14bo3boo14b
o19bo19bo\$13bo17b3o17b3o17b3o17b3o17b3o17b3o17b3o\$12bo18bobbo16bobbo4b
3o9bo19bo19bo19bo18bo\$12b3o17bobo17bobo4bo79bo10boo\$6bo26bo19bo6bo77bo
\$6boo127boob3o\$5bobo5bo43bo76bobo\$12boo42boo78bo\$12bobo41bobo\$138b3o\$
138bo\$139bo9\$45bo\$43bobobbo\$44boobbobo\$12bo35boo\$13bo38b3o\$11b3o38bo
44bobo\$53bo15boo18boo6boo20boo18boo18boo\$4bo5b3o11bo19bo19bo5bo13bo5bo
7bo15bo5bo13bo5bo13bo5bo\$oobobo4bo9booboboboo11booboboboo11boobobob3o
10boobobob3o20boobobob3o10boobobob3o10boobobob3o\$oboobo5bo8boboobobobo
10boboobobobo10boboobobo12boboobobo22boboobobo12boboobobo12boboobobo\$
4bo19bo3bo15bo3bo5bo9bo19bo10bo4bobo13bo19bo19bo\$b3o4bo12b3o17b3o9boo
6b3o17b3o9boo5boo7bo19bo\$o7boo10bo19bo12bobo4bo19bo13boo5bo6bobo17bobo
\$oo5bobo10boo18boo18boo18boo26bobo17bobo\$96bo12bo8boo9bo8boo\$95boo21b
oo6boo10boo\$72boo15boo4bobo27bobo\$73boo14bobo35bo12b3o\$72bo16bo50bo\$
83boo56bo\$82boo\$84bo6b3o\$91bo\$92bo\$\$86boo\$87boo\$86bo!

#352, #294, #293 from 16, 20, 14 gliders. The first two attach a "broken eater" (i.e. eater to gull converter, suppressing the tail bit next to the eater head):
x = 155, y = 122, rule = B3/S23
137bo\$135boo\$136boo\$bo\$bbo76bo39bo\$3o76bobo38boo\$79boo38boo\$77bo\$bo30b
o42bobo19boo28boo24bo\$o22bo7bo11bo19bo12boo5bo12bobbo3bo22bobbo3bo18bo
bo\$3o19bobo6b3o8bobo17bobo17bobo12boo3bobo11bobo8boo3bobo4b3o6boobobbo
\$6b3o13boo18boo18boo18boo18boo12boo14boo5bo8bo3boo\$6bo13boo10b3o5boo
18boo18boo18boo15bo12boo8bo9boo\$b3o3bo13bo12bo6bo14boo3bo14boo3bo14boo
3bo24boo3bo19bo\$3bo17bobo9bo7bobo11bobo3bobo11bobo3bobo11bobo3bobo14b
oo5bobo3bobo17bobo\$bbo19boo18boo12bo5boo12bo5boo12bo5boo15boo5bo5boo
18boo\$36bo81bo\$35boo\$35bobo\$\$115bo\$115boo4boo\$114bobo5boo\$121bo15\$130b
o\$128boo\$125bo3boo\$123bobo7bo\$124boo7bobo\$133boo\$119bo\$120boo\$119boo\$\$
127boo12bo\$126bobbo3bo6bo11boo\$116bobo8boo3bobo5b3o5boobobbo\$116boo14b
oo14bo3bobo\$117bo12boo18boobo\$126boo3bo11bobo5bo\$118boo5bobo3bobo9boo
6bobo\$119boo5bo5boo10bo7boo\$118bo\$\$141b3o\$141bo\$115bo26bo\$115boo4boo\$
114bobo5boo\$121bo13\$89bobo\$90boo20bo\$90bo22boo\$112boo25bo\$109bo29bobo\$
107bobo29boo\$108boo5\$120bo21bo\$118boo21bo\$119boo20b3o3\$144bobo\$144boo\$
145bo\$\$113bo\$114bobbo\$112b3obboo\$116bobo4bo28boo\$122bobo26bobbo\$122boo
24boobbobo\$120boo26boboobo\$121bo29bo\$121bobo27bobo\$122boo28boo14\$142b
3o\$142bo\$143bo!

#197 from 29 gliders:
x = 190, y = 53, rule = B3/S23
27boo18boo18boo18boo18boo18boo18boo\$24boobbo15boobbo15boobbo15boobbo
15boobbo15boobbo15boobbo\$23bobobo15bobobo17bobo17bobo17bobo17bobo17bob
o\$22bobboboo13bobboboo6bo9boboo16boboo16boboo16boboo16boboo\$23boo18boo
9bo11bobbo16bobbo16bobbo16bobbo16bobbo\$54b3o11boo18boo18boo18boo18bobo
\$6bo116bo9bo15bo\$7boobo26b3o11bo72boo5boo\$6boobbobo26bo10boo71boo7boo\$
10boo26bo11bobo\$42boo11boo16boo18boo30bo\$43boobbo6boo17boo18boo30boo\$
42bo3boo8bo39boo26bobo5b3o\$46bobo47bobo35bo\$96bo36bo\$bboo\$3boo\$bbo\$\$
16bo\$15boo155bo\$15bobo154bobo\$172boo\$\$150boo18boo\$150boo18boo\$\$17boo\$
16boo\$18bo4\$96bo\$94boo38bo\$95boo36bo\$133b3o\$98bo12bo19bo\$97boo12bo19bo
\$97bobo11bo19bo\$bo5boo18boo18boo18boo18boo18boo18boo5boo11boo18boo18b
oo\$bboboobbo15boobbo15boobbo15boobbo15boobbo15boobbo15boobbo4b4o7boobb
o15boobbo15boobbo\$3obbobo17bobo17bobo17bobo17bobo17bobo17bobo4booboo8b
obo17bobo17bobo\$5boboo15bobboo15bobboo15bobboo15bobboo15bobboo15bobboo
4boo9bobboo15bobboo15bobboo\$6bobbo15boobbo15boobbo15boobbo15boobbo15b
oobbo15boobbo15boo18boo18boo\$o7bobo17bobo17bobo16boobo16boobo16boobo
16boobo16boo18boo18boo\$boo6bo19bo19bo17bobbo16bobbo16bobbo16bobbo16bob
o17bobo17bobo\$oobboo62boo18boo18boo18boo4bo13bo19bo19bo\$3bobo127boo\$5b
o41boo84bobo\$43bobboo\$43boo3bo\$42bobo!

#353 from 24 gliders:
x = 128, y = 56, rule = B3/S23
103bo\$101boo\$102boo\$\$97bo\$98boo\$97boo3bo\$100boo\$101boo3\$60bo60boo\$61b
oo18bo19bo18bobbo\$26bobo15bo15boobbo15bobobo15bobobo15bobobo\$26boo16b
3o17b3o14boob3o14boob3o14boob3o\$27bo19bo19bo19bo19bo19bo\$46boo18boo18b
oo18boo18boo\$28b3o\$28bo\$29bo10\$16bobo\$16boo\$17bo\$11bo\$9bobo10bo\$10boo
8boo\$21boo86bo\$109bobo\$13bo95boo\$11bobo\$12boo24boo18boo18boo18boo10bo
7boo\$bboo35bo19bo19bo19bo9boo8bo\$o4bo15boo16boboo16boboo16boboo16boboo
6bobo7boboo\$6bo13bobbo16bobbo16bobbo16bobbo16bobbo16bobbo\$o5bo13bobobo
17bobo17bobo17bobo17bobo17bobo\$b6o6boo6boob3o14boob3o14boob3o14boob3o
14boob3o14boobo\$12bobo12bo19bo19bo19bo5bobo11bo12bobbo\$14bo11boo18boo
18boo18boo6boo10boo13boo\$16b3o75bo\$16bo24boo18boo35boo\$17bo23boo18boo
28boo4bobo\$90bobo6bo\$24boo33boo31bo\$24bobo31bobo42boo\$24bo35bo35boo5bo
bo\$95bobo5bo\$97bo!

#106 from 55 gliders (based on the last hard 16-bit still-life):
x = 114, y = 22, rule = B3/S23
9bo\$7bobo\$8boo\$\$10bo\$obo7bobo39bo25bo\$boo7boo41bo25bo\$bo49b3o23b3o17bo
\$5bo10bo38bo39boo\$6boo7bo39bobo38boo\$5boo8b3o37boo29bo\$84boo\$31boo18b
oo17boo8bobobboo3boo\$29bobbo16bobbo16bobbo8boo6bobbo\$29b3o17b3o17b3o9b
o7b3o\$20bo\$9boobo6boo8boobo16boobo16boobo16boobo14boobobo\$8boboobo5bob
o6boboobo14boboobo14boboobo14boboobo14boboobo\$7bo5bo13bo5bo13bo5bo13bo
5bo13bo5bo13bo5bo\$7boboobo14boboobo14boboobo14boboobo6boo6boboobo14bob
oobo\$8boboo16boboo16boboo16boboo6bobo7boboo16boboo\$80bo!

#345 from 59 gliders, based on an expensive 15. Sadly, there's no known way to convert this into the similar unsolved 21-bit trice tongs:
x = 128, y = 70, rule = B3/S23
71bo\$71bobo\$71boo\$69bo\$63bo3bobo\$64bo3boo\$28bobo31b3o\$28boo40bo\$29bo
38boo4bo\$69boo3bobo\$30boo42boo\$29boo54boo18boo18boo\$21bo3bo5bo9bo3boo
14bo3boo14bo4bo14bo4bo14bo4bo\$20bobobobo13bobobobo13bobobobo13bobobo
15bobobo15bobobo\$20boboboo14boboboo14boboboo5boo7boboboo14boboboo14bob
oboo\$21bobo17bobo17bobo7bobo7bobo17bobo17bobo\$23bo19bo19bo7bo11bo19bo
19bo\$23boo18boo18boo18boo18boo18bobo\$98bo9bo15boo\$99boo5boo\$98boo7boo
\$\$100bo\$100boo\$99bobo5b3o\$109bo\$108bo13\$100bobo\$100boo\$101bo8bo\$89bo
19bo\$90boo17b3o\$89boo11bo\$102bobo\$102boo\$108bo\$106boo\$107boo\$\$5boo18b
oo18boo9bo18boo18boo\$bo4bo14bo4bo14bo4bo8bo15bo4bo14bo4bo24bo\$obobo15b
obobo15bobobo10b3o12bobobo4boo9bobobo4boo19bobobo\$oboboo14boboboo14bob
oboo24boboboobbobbo8boboboobbobbo18bobob3o\$bobo17bobo17bobo14bo12bobo
4bobbo9bobo4bobbo19bobo3bo\$3bo8bo10bo19bo13boo14bo5boo12bo5boo22bobbo\$
3bobo5bo11boboo16boboo10bobo13boboo16boboo26bobo\$4boo5b3o10bobo17bobo
27bobo17bobo11bo15bo\$107boo\$8b3o96bobo\$8bo\$9bo\$bbo58bo\$bboo56boo33boo\$
bobo56bobo33boo6boo\$95bo7boo\$99b3o3bo\$101bo\$100bo!

Some failed attempts that need further work:

It seems like #143 (Valentine) is closely related to #289 (Half-Valentine? Broken Heart?). A modification of the predecessor for the former gives the latter. Also, the former can almost be converted to the latter (shown are generations 0 and 37):
x = 93, y = 68, rule = B3/S23
4bo9bo13b3o\$5b3o3b3o\$8b3o\$\$5bo3bo3bo13booboo\$5bobbobobbo12bobobobo\$7bo
bobo14bobbobbo\$7bobobo15bobobo\$3boo3bobo3boo12bobo\$3b3o3bo3b3o13bo\$4b
oo7boo10\$4bo9bo13b3o\$5b3o3b3o\$8b3o4boo\$13bobbo14bo\$5bo3bo3boo12boobobo
\$5bobbobo15bobobobo\$7bobobobbo11bobbobo\$7bobobobboo11bobo\$3boo3bobobbo
bbo11bobo4boo\$3b3o3bo3bobo13bo5boo\$4boo8bo9\$obo\$boo\$bo28bo\$29bo\$22bobo
4b3o\$22boo\$23bo\$\$50bo\$49bo\$50bo\$\$7booboo\$7booboo\$51bo39bo\$7booboo35boo
boboo13b3o17boobobo\$6bobobobo33boboboboo12bo3bo15bobobobo\$6bobbobbo33b
obbobo3boo13bo15bobbobo\$7bobobo35bobo4bobo11boo17bobo\$8bobo15b3o19bobo
17bo19bobo\$9bo16bo22bo39bo\$21bobo3bo40bo\$21boo\$22bo\$\$21b3o\$17boobbo\$
16boo4bo\$18bo!

Partial #383. I suspect the last step may not be possible:
x = 169, y = 24, rule = B3/S23
46bo\$47boo\$46boo\$\$55bo\$55bobo\$55boo3\$48booboo\$48booboo\$4bo19bo19bo19bo
bo17bobo17bobo17bobo14b3o20bobo\$oobobo14boobobo14boobobo14booboboo13b
ooboboo13booboboo13booboboo13bo3bo15booboboo\$oboobo14boboobo14boboobo
14boboo16boboo16boboo16boboo20bo15boboo\$4bo19bo19bo19b3o17b3o17b3o17b
3o15boo21boo\$boo18boo18boo18boo3bo14boo3bo14boo3bo14boo3bo15bo23bo\$bo
19bo19bo12bo6bo19bo19bo4bobo12bo4bobo37bobo\$bbo19bo19bo9boo8bo19bo8boo
9bo4boo13bo4boo13bo24boo\$boo18boo18boo10boo6boo18boo7boo9boo18boo\$86b
3o3bo\$46boo40bo\$47boob3o34bo\$46bo3bo\$51bo!

Partial #165 and #166: a slight alteration to the sparks used on of the hard 16s could make these (see generations 0, and 41; objects appear at 43). I'm adding this at the last minute, and can't recall exactly how to add such sparks. I've seen it done frequently enough, but I can't find any examples at the moment, and don't have the time to look them up at the moment:
x = 85, y = 92, rule = B3/S23
31bo\$30bo\$30b3o\$16bo\$17bo\$15b3o3\$29bobo\$29boo\$30bo\$37bo\$35boo\$36boo\$7b
o\$bo6bo\$bbo3b3o\$3o3\$20boo\$19bobbo\$19bobbo42bo3bo\$20boo43b3o\$67bobo\$25b
oo31bo10bo\$23bobbo28bobbo3boobbo11boobboo\$22boboo28booboobbobbo13bobbo
bbo\$21bobo30bo6bobo16booboo\$21bobo30boo5bobo17bobo\$22bo39bo18bobo\$61bo
bo18bo\$\$59bo5bo\$39boo17bo3bo3bo\$38boo18b4o3bo\$40bo20boo\$58booboo\$3b3o
5bo47b5o\$5bo5boo46bo3boo\$4bo5bobo50boo4\$22bobo\$22boo\$23bo\$\$22boo\$22bob
o\$22bo\$\$65bo3bo\$65b3o\$67bobo\$14boo42bo10bo\$13bobo39bobbo3boobbo11boobb
oo\$15bo38booboobbobbo13bobbobbo\$54bo6bobo16booboo\$54boo5bobo17bobo\$62b
o18bobbo\$61boboo17boo21\$65bo3bo\$65b3o\$67bobo\$58bo10bo\$55bobbo3boobbo
11boobboo\$54booboobbobbo13bobbobbo\$54bo6bobo16booboo\$54boo5bobo17bobo\$
62bo17bobbo\$60boobo17boo!

Summary:

The above syntheses remove the following 34 objects from the list:
#106, #113, #114, #122, #126,
#138, #156, #162, #167, #197,
#198, #211, #216, #229, #240,
#250, #251, #252, #273, #286,
#293, #294, #318, #334, #337,
#338, #339, #344, #345, #352,
#353, #370, #375, #376.

Updates based on other posts during the last week:

Extrementhusiast wrote:#334 from a 15-bitter:

Sokwe wrote:This same method can be used to solve #114:

Nice! These are both much smaller than mine, without all the convolutions.

Extrementhusiast wrote:#344 from a solved 17-bitter:

This is the same as mine, but yours uses a cheaper weld (which should also be applied to #216)

Sokwe wrote:Also, the last step from this synthesis can be used to solve #138. Here are two similar ways to get there:

Sokwe wrote:#198:

See above for completely different ways to do these less expensively.

mniemiec wrote:#214 is listed as solved, but I don't have it in my list. When was that posted, and by whom?

Sokwe wrote:I posted a solution to a related still life on January 4 that made this still life trivial (see here). I actually found the synthesis sometime in December, but I assumed it was already known so I didn't post it. Here is #214 and three related still lifes (Edit: it turns out that this was not correct ):

Last week I was collating all the syntheses I had listed with the unsolved object list, and when I looked at #214, I saw that I did indeed already have a synthesis for it, attributed to you - so this was totally a bookkeeping error on my part.

Sokwe wrote:Here is a similar-looking 17-cell still life that isn't on the list but can be synthesized from 5 gliders (possibly already known):

I had an incremental synthesis for this taking 11 gliders, but this 5-glider one is new to me. This is of particular interest to me at the moment, as I am attempting to list every object (and pseudo-object) buildable from 6 or less gliders. (No, I'm not attempting any kind of exhaustive search by smashing 5 or 6 gliders together, but whenever one comes up, I add it to the lists.) I've currently got ten 3s, a bit over 100 4s, a bit over 100 5s and a bit over 200 6s.

Sokwe wrote:#115 from a constructable 18-cell still life:

Very nice! I wasted a lot of time trying to make this one; I didn't think of starting with a bun and turning it into a snake at the very end.

Extrementhusiast wrote:Either way, #113 from a 14-bitter:

Mine is similar, but more expensive because I've been using a round-about flipper for objects of this kind (e.g. eater tail to loaf) and had forgotten about the cheaper one. This should also similarly improve #250 and #252 (and several 16s).

Sokwe wrote:#211

Mine (above) is similar, but differs starting from the beehive. To get to #211, mine is much cheaper, but to get to the loaf-related cousin, yours is much cheaper - so both paths are useful.

Sokwe wrote:In the same vein as some of the recent syntheses, #122 and #163 can be constructed from 17-bit still lifes that don't seem to be on the list:

I think my synthesis (above) of #122 is slightly cheaper - almost identical to yours but using a snake instead of an eater.

Sokwe wrote:#286 from a 19-cell still life that I think can be constructed:

I count this as taking 61 gliders, which is a bit more than my (totally different) 56-glider direct method (above).

Extrementhusiast wrote:#107 from a presumably trivial 21-bitter:

Yes. It can be made by adding a slide-around inducting block to #378.

Extrementhusiast wrote:#143 from #232:

Extrementhusiast wrote:#232 from an 11-bitter:

Yay! And three weeks ahead of schedule! This also makes #289 much closer, especially if one uses a modified predecessor.

Extrementhusiast wrote:#197 from a 16-bitter:

I did it a totally different way (see above), which I think is cheaper. But I really like this converter! It looks like has a lot of potential for other similar objects.
mniemiec

Posts: 948
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

#289 from a 14-bitter:
x = 25, y = 23, rule = B3/S23
21bo\$20bo\$20b3o5\$11bo11bo\$7b2obobo9b2o\$6bobob2o10bobo\$6bo2bo\$2bo4bobo\$
obo5bo10b3o\$b2o16bo\$20bo3\$7b2o\$6bobo\$8bo\$10b3o\$10bo\$11bo!

EDIT: Full synthesis of #288:
x = 212, y = 31, rule = B3/S23
182bo\$180bobo\$50bo130b2o\$9bo41bo\$10bo30bobo5b3o103bo\$8b3o31b2o40bobo
67bo\$42bo41b2o24bobo20bo20b3o17bo\$85bo24b2o21bobo16bo19bobo\$5bo34b2o7b
2o25bobo32bo21b2o15bobo20b2o\$3bobo35b2o5b2o27b2o49bo22b2o\$4b2o34bo9bo
26bo8b2o26b2o13bo3bo5b2o21b2o25b2o\$bo9bo33b2o22bo15bobo21bo3bobo11b3o
2bobo3bobo14b2o4bobo19b2o3bobo15b2o\$b2o8b2o32bo24bo14bo22bobo2bo18bo2b
o2bo16bo2bo2bo20bo2bo2bo16bo2bo\$obo7bobo33bo21b3o15bo22b2o3bo18b3o3bo
16b3o3bo20b3o3bo16b2o3bo\$14b3o26b4o25bo10b4o24b4o21b4o19b4o23b4o18b4o\$
14bo8bobo17bo28b2o9bo27bo23bo22bo26bo20b2o\$15bo7b2o19bo22bo3bobo10bo
17bo9bo22bobo20bobo24bobo18bo2bo\$24bo18b2o22b2o7b2o5b2o15bobo8b2o23b2o
21b2o16bo8b2o20b2o\$20b2o44bobo6bobo23b2o2b2o68bobo\$20bobo54bo20b2o6b2o
68b2o\$20bo76bobo5bo\$99bo78b3o\$180bo\$15b3o62bo6b2o90bo\$15bo63b3o4b2o\$
16bo62bob2o5bo\$80b3o\$80b2o106b3o\$89b2o97bo\$88b2o99bo\$90bo!

EDIT 2: #108 can use the same method as #107:
x = 55, y = 17, rule = B3/S23
5bo13bo\$6bo13bo\$4b3o11b3o17bo\$8bo27b2o\$8bobo26b2o\$8b2o17bo\$25b2o\$4b2o
15bobo2b2o3b2o\$2bo2bo16b2o6bo2bo\$2b3o17bo7b3o2\$2b3o25b3o15b2ob2o\$bobob
o23bobobo15bobobo\$o5bo21bo5bo13bo5bo\$ob3obo13b2o6bob3obo13bob3obo\$bobo
bo13bobo7bobobo15bobobo\$21bo!

Because this is an unfinished synthesis, I'm leaving it on the list for now.

EDIT 3: This finishes #108:
x = 793, y = 47, rule = B3/S23
677bo\$598bo77bo\$385bo213bo76b3o\$62bo323bo120bo89b3o43bo\$61bo29bo10bo
281b3o121bo92bo39b2o115bo\$61b3o28bo7b2o8bobo393b3o3bo87bo41b2o54bo57bo
bo12bo\$90b3o8b2o7b2o48bo97bo144bobo90bo5bo7b2o88b3o34bobo58bobo56b2o
11bo\$8bo85bo16bo47bo99bo93bo49b2o92bo5b2o6b2o125b2o58b2o21bo41bo6b3o\$
9b2o43bo32bo6bobo62b3o95b3o94bo49bo90b3o4b2o134bo81bo43b2o\$8b2o42bobo
33bo5b2o256b3o61bo149bobo29bobo119b3o40b2o\$53b2o5bo18bo6b3o67bobo257bo
bo148b2o30b2o117bo\$13bo10bo3bo30bo20b2o75b2o254bo2b2o75bo73bo3bo27bo
74b3o40bobo42bo\$13bobo6bobo3bobo28b3o17b2o76bo106bo149bo79b2o76b2obobo
139b2o43b2o\$13b2o8b2o3b2o233bo148b3o78b2o49bo26b2o2b2o29bo154bobo\$63bo
bo34b2o31b2o16bo12b2o25b2o3b2o18b2o3b2o28b2o3b2o5b3o21b2o3b2o21b2o3b2o
24b2o3b2o26b2o3b2o31b2o3b2o17b2o3b2o17bo8b2o3b2o21b2o3b2o21b2o10b2o18b
2o12bo17b2o8b2o27b2o5bo3bo21b2o5bo3bo39b2o27b2o21b2o17bob2o\$11bo14b3o
34b2o34bo2bo29bo2bo16b2o9bo2bo25bo2bo2bo16bobo2bo2bo26bobo2bo2bo27bobo
2bo2bo19bobo2bo2bo22bobo2bo2bo24bobo2bo2bo3b2o24bobo2bo2bo3bo13bo2bo2b
o3bo13b2o7bo2bo2bo3bo17bo2bo2bo3bo15bo2bo3bo6b2o16bo2bo3b2o23bo2bo3bob
o2b2o25bo2bo3bobobobo19bo2bo3bobobobo37bo2bo25bo2bo19bo2bo16b2o2bo\$5bo
3b2o17bo6bob2o16bob2o5bo33bob2o22bobo4bo2b2o15b2o6bo2bo2b2o18bo4bobobo
2b2o16bobobo2b2o26bobobo2b2o7b2o18bobobo2bobo18bobobo2bobo21bobobo2bob
o23bobobo2bobobobo24bobobo2bobobobo10bobobo2bobobobo11b2o6bobobo2bobob
obo16bobo2bobobobo10b2obo2bobobobo19b2obo2bobobobo19b2obo2bobobob2o25b
2obo2bobobob2ob2o16b2obo2bobobob2ob2o8bo25b2obo2bo22b2obo2bo16b2obo2bo
20bo\$6b2o2b2o15bo5b3obo15b3obo38b3obo24b2o4b2obo22b3o2b2obo17bobo4b2o
2b2obo18bo2b2obo24bo3bo2b2obo8bobo18bo2b2obobo19bo2b2obobo22bo2b2obobo
24bo2b2obobob2o26bo2b2obobobobo10b2o2b2obobobobo19b2o2b2obobobobo13b2o
bob2obobobobo11bob2obobobobo2b2o16bob2obobobo22bob2obobobo29bob2obobob
o23bob2obobobo14bobo24bob2ob2o22bob2ob2o14bobob2ob2o16b2ob2o\$5b2o25bo
4bo14bo4bo7b2o28bo4bo24bo8bo21bo8bo18b2o8bo2bo21bo2bo22bobo6bo2bo8bo
23bo2b2o23bo2b2o26bo2b2o28bo2b2o33bo2bobob2o15bo2bobob2o24bo2bobob2o
14bo2bobo2bobob2o10bobobo2bobob2o2b2o15bobobo2bobobobo18bobobo2bobobob
2o24bobobo2bobobob2ob2o15bobobo2bobobob2ob2o8b2o23bobobo2bo16bo4bobobo
2bo15bobobo2bo17bo2bo\$32bob3o15bob3o7b2o29bob3o31b3o22b2o4b3o30b2o23b
2o24b2o7b2o34b2o26b2o29b2o31b2o36bo2bo20bo2bo29bo2bo19b2o3bo2bo14b2o3b
o2bo8bo14b2o3bo2bo3b2o18b2o3bo2bo3bobo2b2o20b2o3bo2bo3bobobobo14b2o3bo
2bo3bobobobo32b2o3bo2bo13bobo4b2o3bo2bo15bo3bo2bo17bo2bo\$7b3o21b2obo
15bobobo11bo26bobobo24b3o6bo30bo7bo15b3o103bo27bo30bo32bo37b2o22b2o31b
2o26b2o21b2o30b2o12bo17b2o8b2o27b2o5bo3bo21b2o5bo3bo5b3o31b2o15b2o10b
2o21b2o19b2o\$7bo42b2o41b2o29bo44bo18bo66b2o34bo27bo29bo11bo20bo11b2o
175b2o2b2o29bo76bo\$8bo114bo45b3o15bo67b2o33bo23bo4b2o6bo21b2o7bo2bobo
18b2o11b2o175b2obobo106bo32b2o17b3o20bo\$b2o287b2o20bobo12bobo26bobo2b
2o31bo3b2o70b2o95bo3bo27bo74b3o40bobo18bo20b2o\$obo156b2o6bo52bobo90b2o
12b2o28b2o39bobo70b2o94b2o30b2o117bo18bo20bobo\$2bo81bo75b2o4b2o52b2o
73bo28b2o72bo71bo95bobo29bobo119b3o\$84b2o73bo6bobo52bo64b2o6b2o27b2o
313bo81bo\$6b2o75bobo199bobo6bobo17b3o8bo312b2o81bo\$5b2o155bo7b2o48b3o
64bo28bo80bo75b2o125b3o34bobo\$7bo79b2o72b2o7bobo47bo70b3o21bo3b2o75b2o
41b2o27b3obo2bob3o120bo41b2o\$88b2o71bobo6bo50bo21bo15b2o32bo26b2o74bob
o39bobo29bo2b2o2bo123bo39b2o\$87bo155b2o13b2o32bo26bo120bo28bo8bo118b3o
43bo\$242bobo15bo64b2o115b2o155bo76b3o\$324b2o116bobo153bo77bo\$248b2o76b
o46b2o67bo234bo\$247bobo124b2o\$249bo123bo2\$255bo\$254b2o\$254bobo4\$205b2o
\$204bobo\$206bo!
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1723
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:#304 from a 16-bitter:

This can be reduced by one by this standard bookend-to-wing converter:
x = 34, y = 20, rule = B3/S23
11bo\$10bo\$o9b3o\$boo13bo\$oo12boo\$15boo4bo\$21bobo\$21boo\$\$18b3o\$18bo\$19bo
\$\$32bo\$7bo4boo13bo3bobo\$6bobobobbo8bo3bobobobbo\$7boob3o8boo4boob3o\$9bo
11bobo5bo\$9boboo16boboo\$10bobo17bobo!

Sokwe wrote:Also, the last step from this synthesis can be used to solve #138. Here are two similar ways to get there:

Your first one and mine are identical (24 gliders), while your second eater-based one is one cheaper.

Sokwe wrote:This same method can be used to solve #114:

Even though the base still-life (15.370) is ridiculously expensive, this method (40 gliders) is still slightly cheaper than mine (43).

Sokwe wrote:#115 from a constructable 18-cell still life:

The original 18-bit still-life is made from down-snake-on-snake then converting one snake into a bun - which your synthesis later converts back into a snake (two expensive transformations) - just so you can safely put a temporary boat there. This would be much easier to just deal with the snake directly. Unfortunately, all the ways I knew to directly add an inducting table or long bookend required one bit to be too close to the object. Fortunately, I was able to modify one of these to add the table directly without the forward bit, bypassing all the conversions. This reduces this synthesis from 44 to 22 gliders - and a subsequent improvement of this table-adder reduces it 2 more, to 20 (which, for 6 gliders, is almost as cheap as adding it the conventional way, via boat):
x = 248, y = 104, rule = B3/S23
bbo\$obo\$boo22\$101bobo\$101boo\$102bo16\$51bobo\$52boo\$52bo\$\$51b3o\$53bo117b
o\$52bo119bo43bo\$116boo18boo18boo12b3o3boo18boo19bo8boo18boo\$117bo11bo
7bo19bo19bo15boobbo17b3o5boobbo15boobbo\$116bo10bobo6bo19bo7b4o8bo17bob
o27bobo17bobo\$116boo10boo6boo18boo5bo3bo8boo16boboo20bo5boboo16boboo\$
131boo19boo13bo4boo19boo16boo5boo3boo20bo\$116boo12bobo3boo14boobboo5bo
bbo5boobboo18boo12bobo4bobo6boo18boo\$117bo14bo4bo19bo19bo19bo14bo14bo
19bo\$32boo82bo19bo19bo11boo6bo19bo29bo19bo\$33boo81boo18boo18boo9bobo6b
oo18boo28boo18boo\$32bo136bo\$171boo42boo\$171bobo33boo5bobo\$171bo36boo6b
o\$207bo12\$174bo\$173bo\$173b3o\$\$170bobo\$171boo3boo18boo\$171bo5bo15boobbo
\$168bo7bo17bobo\$166bobo7boo16boboo\$167boo3boo19boo\$172boobboo18boo\$
177bo19bo\$168boo6bo19bo\$169boo5boo18boo\$168bo\$23b3o\$25bo\$24bo61boo\$86b
obo\$86bo\$\$98bo\$97boo\$97bobo4\$19boo\$18bobo\$20bo!

Sokwe wrote:A 14-glider synthesis of #214 with the block moved to the other side:

By subsequently sliding the block over, this gives #214 from 22 gliders, compared to the previous method from 25.

Extrementhusiast wrote:#171 from a 17-bitter apparently not on the list:

Sokwe wrote:That's actually an 18-bitter, but it can easily be constructed based on my synthesis of #173. Here's a synthesis from a 13-cell still life:

Sokwe wrote:The synthesis of #171 can be improved by using Buckingham's 2-glider bun-to-bookend:

As I was fleshing this out, it did indeed use the #173 one, plus bookend-to-bookend-w/tail. However, yor new order (bookend-to-snake AFTER wrapping the eater tail) saves three gliders. Your original 6-glider bun-to-bookend-w/tail was the same cost as doing it in two steps, but the improvement makes it better.

Extrementhusiast wrote:#201, #202, and #209 from the still unsolved #210:

#210 is quite easy, from 20 gliders; the final standard eater-to-feather conversion has one extra glider (SW corner) added to reduce the footprint. So this gives us all four:
x = 113, y = 56, rule = B3/S23
89bo\$89bobo\$50bo38boo\$50bobo\$7bo36bo5boo15boo18boo\$6bo38bo21boo18boo\$
6b3o34b3o\$\$39bobo24boo18boo18boo\$40boo23bobbo16bobbo16bobbo\$o10bobo12b
oobo10bo5boobo16boobo16boobo16boobo\$boo8boo14bob3o15bob3o15bob3o15bob
3o15bob3o\$oo10bo14bo4bo5boo7bo4bo14bo4bo14bo4bo14bo4bo\$4boo20boo3boo6b
oo5boo3boo13boo3boo13boo3boo13boo3boo\$5boo6b3o22bo\$4bo8bo\$14bo14\$7boo\$
6bobo3bo\$8bo3bobo\$12boo45bobo\$15b3o41boo\$15bo38bobo3bo\$16bo38boo\$55bo
3boo\$6boo17boo18boo12bobo13boo\$5bobbo16bobbo16bobbo10bo15bobbobboo\$6b
oobo16boobo16boobo26boobobbo\$7bob3o15bob3o15bob3o25bobobo\$7bo4bo14bo4b
o14bo4bo24bobbo\$6boo3boo13boo3boo13boo3boo23boo\$\$63b3o\$63bo\$64bo\$\$59b
oo\$54boo3bobo\$54bobobbo\$54bo\$42boo\$41bobo\$43bo!

Sokwe wrote:#286 from a 19-cell still life that I think can be constructed:

[quote="mniemiec"]I count this as taking 61 gliders, which is a bit more than my (totally different) 56-glider direct method (above).
Oops! After fully instantiating all the steps, it looks like 58 gliders.
mniemiec

Posts: 948
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

mniemiec wrote:Your first one and mine are identical (24 gliders), while your second eater-based one is one cheaper.

The eater-based synthesis of #138 that I posted can be reduced by 3 gliders using this reaction:
x = 14, y = 11, rule = B3/S23
7bo\$5bobo3bo\$2o4b2o3bobo\$obo8b2o\$2bo\$2b2o2b2o\$5bo2bo\$2b2ob4o\$3bo\$3bob
2o\$4bobo!

mniemiec wrote:By subsequently sliding the block over, this gives #214 from 22 gliders, compared to the previous method from 25.

Extrementhusiast's synthesis (the only other synthesis of this object that I know of) takes only 20 gliders:
x = 112, y = 27, rule = B3/S23
85bo\$84bo\$25bo26bo31b3o\$23bobo27bo\$24b2o6bo18b3o3bo24bo\$32bobo12bo7b2o
24bo\$29bo2b2o14b2o6b2o23b3o\$27bobo17b2o\$28b2o53bo\$57bo24b2o\$57bobo22bo
bo\$57b2o\$obo23b2o17b2o25b2o28b2o\$b2o22bo2bo16bo2bo23bo2b2o25bo2b2ob2o\$
bo24b2obo16b2obo23b2obo2b2o22b2obobo\$7bobo17bobo17bobo24bobobobo23bobo
bo\$7b2o16bobob2o14bobob2o21bobob2o24bobob2o\$8bo16b2o18b2o25b2o28b2o6b
2o\$3b2o104b2o\$2bobo3b2o94bo6bo\$4bo3bobo92b2o\$8bo47b2o29b2o14bobo\$56bob
o27b2o12b2o\$56bo31bo10bobo\$44b3o54bo\$46bo\$45bo!
-Matthias Merzenich
Sokwe
Moderator

Posts: 1334
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

Partial synthesis of #161 from the corresponding bun version:
x = 425, y = 36, rule = B3/S23
178bo\$177bo\$177b3o147bo48bo14bo18bobo\$53bo132bobo139b2o44bobo12bobo18b
2o\$54bo44bo66bobo17b2o139b2o46b2o13b2o19bo\$52b3o42bobo67b2o4bobo11bo
197bobo\$98b2o67bo5b2o211b2o\$56bo88bo28bo95bo115bo\$57bo88bo124b2obobo\$
55b3o86b3o16bo106b2o2b2o23bo\$77bo19bo63bobo14b2o95bo24bo72b2o\$55bo22bo
3bo15b2o10b2o34bo15b2o14bobo117b3o33b2o36b4o\$27bo27b2o19b3ob2o15b2o10b
o2bo32b2o32bo25b2o22b2o21b2o19b2o17b2o17bo11bo10bobo20b2o13b2ob2o23b2o
\$28bo25bobo24b2o26bo2bo32bobo56bo2bo20bo2bo19bo2bo17bo2bo14bo2bo17bobo
7bobo7bo4bo18bo2bo15b2o22bo2bo\$4bobo19b3o65bo4bo10b2o93b3o21b3o20b3o
18b3o14b3o18b2o9b2o7b5o12bo6b3o40b3o\$o3b2o88b2o2bo68bo135bo42bobo32bo\$
b2o2bo70b2o15bobo2b3o4b2o32b2o27bo4b2o30b3o21b3o20b3o18b3o14b3o6bo2bo
21b3o4b3o13b2o4b3o26bo13b3o\$2o29b2o25b2o3bo13bo2bo25bo2bo28bo2bo24b3o
3bo2bo29bo2bo20bo2bo19bo2bo17bo2bo13bo2bo4b2o2b3o21bo4bo2bo18bo2bo23b
3o13bo2bo18b2o2bo\$7b2o2bo13bo5bobo3bo20bobobobo12bobobo24bobobo27bobob
o29bobobo7bo22bobo21bobo20bobo18bobo14bobo3bobo24bo7bobo12bo6bobo27bo
5b2o5bobo17bo2bobo\$7bo2bobo10bobo8bobobo22b2o2bo12b2o2bo24b2o2bo27b2o
2bo20b2o7b2o2bo5b2o21b2o2bo19b2o2bo15bo2b2o2bo16b2o2bo12b2o2bo36b2o2bo
11b2o4b2o2bo24b2o5bo2bo3b2o2bo18b2o2bo\$9b2o2bo10b2o9b2o2bo24b2o15b2o
27b2o10b2o18b2o19bobo10b2o5bobo23b2o22b2o13bobo5b2o19b2o15b2o39b2o10bo
bo7b2o25b2o4bo2bo6b2o21b2o\$12b2o13b2o9b2o21b3o14b3o26b3o12bobo14b3o23b
o7b3o30b3o21b3o16b2o2b3o17bob2o13bob2o37bob2o18bob2o22b3o9b2o3bob2o19b
ob2o\$9b3o16b2o5b3o22bo2bo13bo2bo25bo2bo12bo15bo2bo30bo2bo29bo2bo20bo2b
o19bo2bo17b2obo13b2obo37b2obo18b2obo24bo14b2obo19b2obo\$8bo2bo15bo6bo2b
o23b2o15b2o27b2o30b2o32b2o31b2o21b2o20bobo126bo\$9b2o24b2o13b2o173bo22b
2o2bo\$51b2o173b2o19bobo\$50bo174b2o8b2o12bo\$208b2o21bo2b2o16b2o\$207bobo
21b2o3bo14b2o\$172b2o35bo2b2o16bobo20bo\$172bobo37bobo8b3o\$172bo31b2o6bo
12bo\$203bobo18bo\$205bo20b3o\$226bo\$227bo!
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1723
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:#289 from a 14-bitter:

This is so simple and obvious that I'm extremely embarrassed that it hadn't occurred to me, and I was looking at much more complex methods instead!

Extrementhusiast wrote:This finishes #108:

Very impressive! There is a slight bug in step #12 (add inducting ship). One of the gliders passes through the object. I didn't know about this way to add an inducting ship; unfortunately, it can never work for this purpose, as the glider must always pass though the object - unless the object is created after the glider passes through it. This can easily be fixed by using the standard 4-glider ship-adder (+1 glider). Also, in step #20, the two 3-glider sparks can both be replaced by 2-glider sparks (-2 gliders):
x = 109, y = 74, rule = B3/S23
8bo\$9bo65bo\$7b3o65bobo\$75boo\$\$71bobo\$72boo\$boo3boo23boo3boo23boo3boo4b
o18boo3boo\$obobbobbo21bobobbobbo3boo16bobobbobbo21bobobbobbo3boo\$obobo
bbobo20bobobobbobobobo16bobobobbobo5bo14bobobobbobobobo\$bobboobobo21bo
bbooboboboo18bobboobobo4bo16bobbooboboboo\$4bobboo25bobboo25bobboo5b3o
17bobboo\$5boo28boo28boo28boo\$6bo29bo29bo8b3o18bo\$4bo11bo17bo29bo12bo
16bo\$4boo7bobbobo15boo28boo10bo17boo\$11bobobboo\$12boo15\$68bobo\$68boo\$
69bo\$\$68b3o\$68bo\$69bo6\$80bo\$78boo\$79boo\$66boo28boo5bo3bo\$65bobbo3bobo
20bobbo3bobobobo\$61boobobboboboboo16boobobbobobobooboo\$62boboobobobo
20boboobobobo\$60bobobobboboboboo15bobobobbobobobooboo\$60boo3bobbo3bobo
15boo3bobbo3bobobobo\$66boo28boo5bo3bo\$79boo\$78boo\$80bo\$74bo\$73bo\$73b3o
12\$74bo\$73boo\$73bobo!

Wow! With #143 from 109 gliders and #108 from 110, I think these two are the most complicated still-life syntheses to date!

This older way to make a broken eater (from at least 2013-07-10) adds pre-block from the corner bit, making both side bits appear simultaneously:
x = 39, y = 24
10bobo\$13bo\$9bo3bo\$6bo6bo\$7boobobbo\$6boo3b3o3\$3boo3bo9bo\$3oboo3boo6bo\$
5o3boo7b3o\$b3o\$\$22bo\$11bo9boo14bo\$3bobo4bobo4bo3bobo12bobo\$4boo4bobo3b
obo13boobobbo\$4bo6bo4boo14bo3boo\$14boo18boo\$15bo19bo\$15bobo17bobo\$7boo
7boo18boo\$6bobo\$8bo!

I have seen several situations where a tool like this could have come in useful. This could also have been used to make #352 (although with more gliders). In fact, it should have done so (so #352 should never have been on the list, as this tool has been in the database a long time). Missing it was likely human error.

I noticed this when attempting to do a computer verification of all unknown 17s. It turned up one (#352) that should not have been on the list, plus one other that should have been on the list (between #339 and #340); fortunately, that one can easily be made from another recently-built one.

I was just trying to verify that all 17s either have explicit syntheses, have immediate predecessors of less than 17 bits, or their predecessors can ultimately be traced back to ancestors of less than 17 bits. As of this moment, I count 125 unbuildable 17s on the list, plus an additional 56 trivial unbuildable 17s derived from ones on the list plus a trivial conversion (snake to carrier, claw to beehive, etc.). I similarly re-verified the 15s and 16s, and there were no surprises. Of course, nothing lower needs to be verified, as explicit syntheses already exist for all of them.
mniemiec

Posts: 948
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

#180 from a 17-bitter that I do not see on the list:
x = 127, y = 29, rule = B3/S23
102bo\$103bo\$90bo10b3o3bo\$91b2o4bo7b2o\$90b2o6b2o6b2o\$97b2o4\$23b2o46bo\$
23b2o47bo4b2o17b2o\$24b2o44b3o4bobo16bobo\$24b2o53bo18bo\$9b2o17b2o14b2ob
2o29b2ob2o14b2ob2o18b2ob2o\$6bo2bo2bo12bo2bo2bo13bobo2bo26bo3bo2bo13bob
o2bo4bo12bobo2bo\$5bobobob2o11bobobob2o11bobobob2o27b2obob2o12bo2bob2o
3bo12bo2bob2o\$o5bo2bobo12b2o2bobo12b2o2bobo8bobobo16bobobo13b2obobo4b
3o10b2obo\$b2o6bo2bo15bo2bo15bo2bo20b3o3bobobo2bo15bobo20bo\$2o8b2o17b2o
17b2o23bo3b2o3b2o16b2o3b2o16b2o\$72bo32bobo\$2bo102bo\$2b2o\$bobo69b2o9b2o
\$72bobo10b2o\$74bo9bo3b2o\$87b2o\$80b2o7bo\$81b2o\$80bo!

The skipped intermediate steps are already known.

EDIT: #257 from a 15-bitter:
x = 77, y = 30, rule = B3/S23
23bo\$24bo\$22b3o7bo\$18bo11b2o\$o18b2o10b2o\$b2o15b2o\$2o4\$7bo\$8b2o\$7b2o\$
24bo23b2o22b2o\$23bobo22bobo21bobo\$22bo2bo20b2o2bo19b2o2bo\$22bobob2o19b
obob2o18bobob2o\$21b2obo2bo17bobobo2bo18bobo2bo\$25b2o18b2o3b2o4bo15bobo
\$56bobo14bo\$56b2o\$54bo5bo\$11b3o35bo3b2o4b2o\$13bo34b2o3bobo3bobo\$12bo9b
2o24bobo\$21b2o18b2o\$17bo5bo16bobo\$17b2o23bo5bo\$16bobo29b2o\$47bobo!

EDIT 2: #256 from a 16-bitter:
x = 80, y = 16, rule = B3/S23
3b2o20b2o17b2o14b2o13b2o\$3bobo19bobo16bobo13bobo12bobo\$2obo2bo15b2obo
2bo8bo3b2obo2bo9b2obo2bo9bobo2bo\$obobobo15bobobobo9bo2bobobobo9bobobob
o9b2obobo\$3b2ob2o16bobob2o6b3o4bobob2o9bo2bob2o11bob2o\$13bo10b2o17bobo
9b2o4bo14bo\$11b2o26b2o3b2o8bobo3b2o13b2o\$3b2o7b2o24bobo15bo\$2bo2bo2b2o
30bo\$2bo2bob2o11bobo\$3b2o4bo11b2o\$21bo3b3o\$25bo\$20b2o4bo\$19bobo\$21bo!

EDIT 3: #394 from the corresponding 16-bitter:
x = 24, y = 26, rule = B3/S23
9bo\$10b2o3bo2b2o\$9b2o2bobob2o\$14b2o3bo5\$5b2o\$5bobo2b2o\$7bo2bo4b2o\$o6b
2obo3bo2bo\$b2o6bo4bo2bo\$2o7bobo3b2o4bobo\$10b2o9b2o\$22bo2\$13bo\$12bobo\$
12bo2bo\$13b2o2\$4b2o\$5b2o15bo\$4bo16b2o\$21bobo!

EDIT 4: #205 from the corresponding 16-bitter (and trivial operations):
x = 27, y = 27, rule = B3/S23
bo\$2bo\$3o4\$10bo3b2o\$10b3o2bo\$8b2o3b2o9bobo\$7bobo2bo2b3o6b2o\$7b2o3b2o3b
o7bo2\$24bo\$8b2o4b2o7bo\$8bobo2bo2bo6b3o\$9bo3bo2bo\$14b2o8bo\$24b2o\$23bobo
2\$7b2o\$6bobo\$8bo2\$b2o7bo\$2b2o5b2o\$bo7bobo!

However, based on the way I made that 16-bitter, I think that there is a much cheaper solution available.

EDIT 5: #103 from #101, which is already solved:
x = 21, y = 11, rule = B3/S23
10b2o4bo\$9bo2bob2o\$3bo5bo2bo2b2o\$4b2o4b2o7b2o\$3b2o13b2o\$20bo\$9bob2o\$9b
2ob3o\$3o12bo\$2bo6b2ob3o\$bo7bob2o!

EDIT 6: #102 from a trivial 19-bit pseudo:
x = 84, y = 35, rule = B3/S23
34bo\$27bobo3bo\$27b2o4b3o\$2bobo23bo\$3b2o\$3bo3\$51bo\$52bo\$50b3o\$15b2o4bo
35b2o\$15bo2bobobo30b2o2bo2bo2bo16bo2bo\$b2o13b3ob2o32b2o2b6o14b6o\$obo
50bo23bo\$2bo11b3o18bo22b2o2b2o13bobo2b2o\$13bo2bo17b2o22b2o2b2o14b2o2b
2o\$4bo8b2o19bobo\$4b2o16b2o\$3bobo17b2o\$22bo2\$16b2o\$15bobo5b2o4b2o\$17bo
4b2o4b2o\$3b2o19bo5bo\$4b2o\$3bo\$7b2o\$8b2o\$7bo2\$23b3o\$23bo\$24bo!
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1723
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:#257 from a 15-bitter

This can be reduced slightly:
x = 48, y = 24, rule = B3/S23
13bo\$8bo4bobo\$9bo3b2o\$7b3o3\$15bo18b2o\$bo12bobo17bobo\$2bo4bo5bo2bo15b2o
2bo\$3o5bo4bobob2o12bobobob2o\$6b3o3b2obo2bo12bobobo2bo\$16b2o14bo3b2o4bo
bo\$42b2o\$4b3o36bo\$6bo\$5bo27b2o4b3o3b3o\$33bobo3bo5bo\$33bo6bo5bo4\$33b3o\$
35bo\$34bo!
-Matthias Merzenich
Sokwe
Moderator

Posts: 1334
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

#181 from a presumably trivial 19-bitter:
x = 76, y = 25, rule = B3/S23
29bo\$27b2o9bobo\$28b2o8b2o\$23bobo13bo13bobo\$24b2o28b2o\$24bo29bo2\$18bo
33b2ob2o\$16bobo33b2ob2o\$obo14b2o21b2o\$b2o4b2o17b2o12bobo9b2ob2o12b2ob
2o\$bo4bo2bo9b3o3bo2bo11bo11bo3bo12bo3bo\$5bobobo11bo3b2obo24b2obobo11b
2obobo\$b2o2bobo2b2o8bo5bo2b2o7bo15bo2b2o12bo2b2o\$2b2o2b2o3bo12bobo3bo
6b2o13bobo14bobo\$bo8bo13b2o3bo7bobo12b2o15b2o\$9bo18bo\$8bo18bo\$8b2o17b
2o4\$37b2o\$36b2o\$38bo!

If need be, I can draft up a process to create that 19-bitter.

EDIT: #268 from #187:
x = 37, y = 34, rule = B3/S23
4bobo\$5b2o\$5bo26bobo\$22bo9b2o\$22bobo8bo\$22b2o2\$34bo\$34bobo\$30bo3b2o\$
31b2o\$30b2o2\$bo18b2o\$2bo16bo2bo\$3o15bob2o2b2o\$19bo5bo\$20b5o\$22bo2\$4b2o
13b2o\$4bobo10bo2bo\$5bo10bob2o\$16bo\$15b2o7\$b3o27bo\$3bo26b2o\$2bo27bobo!

EDIT 2: #348 can be solved the same way as #333 was:
x = 31, y = 36, rule = B3/S23
16bo\$17bo\$15b3o3\$19bo3bo\$17bobob2o\$18b2o2b2o4\$27bobo\$27b2o\$28bo\$11bo\$
8bobobo3b2o\$8b2obobo2b2o\$11bobo\$11b2o2\$11b4o\$11bo3bob2o\$14b2obo\$17bo\$
17b2o5\$2bo\$obo\$b2o\$5b2o22b2o\$4bobo6b2o13b2o\$6bo6bobo14bo\$13bo!
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1723
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#183 from a constructable 17-cell still life:
x = 135, y = 22, rule = B3/S23
5bo27bobo24b3o\$4bo28b2o27bo2bo\$4b3o27bo26bo2bo\$bo62b3o45bobo\$2bo27bobo
80b2o6bo\$3o6b2o20b2o6b2o28b2o25b2ob2o12bo5bobo4b2ob2o\$5b2o2bo21bo7bo
26bo2bo27bobo16bo3b2o5bobo\$5bobobo26b2obo25bobobo27bobo16b2o9bobo\$7bob
2o20b2o3b2ob2o25b2ob2o25b2ob2o14bobo8b2ob2o\$7bobo2bo17bo2bo5bo2bo26bo
2bo15bo10bo2bo23bo2bo2bo\$4bo3bo2b2o17bo2bo2b3o2b2o23b3o2b2o16b2o5b3o2b
2o24b2o2b2o\$5bo25b2o3bo29bo21b2o6bo\$3b3o21bo64b2o\$28bo2bo60bobo\$26b3o
2b2o59bo\$2b2o26bobo94b2o\$3b2o114bo6b2o4b3o\$2bo116b2o7bo3bo\$5b3o110bobo
12bo\$5bo119b2o\$6bo117bobo\$126bo!
-Matthias Merzenich
Sokwe
Moderator

Posts: 1334
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

#207 from a 17-bitter not on the list:
x = 77, y = 13, rule = B3/S23
20bob2ob2o18bob2ob2o4bo12bob2ob2o\$20b2obobo19b2obobo4bo13b2obobo\$25bob
o22bobo2b3o16bo\$obobo19bobobo20bobobo19bob2o\$11bobo10bo2bo7bo13bo2bo2b
3o15bo2bo\$12b2o3bobo3b2o9bo15b2o3bo18b2o\$12bo5b2o14b3o19bo\$18bo9b2o\$
16bo10bo2bo\$16b2o9bo2bo\$15bobo3b3o4b2o\$23bo\$22bo!

EDIT: #200 tweezed from the given soup:
x = 47, y = 50, rule = B3/S23
29bobo\$29b2o\$o29bo\$b2o\$2o4\$40bo\$40bobo\$40b2o12\$19bo\$18bobo\$17bo2bo\$18b
2o\$30bo3bo\$31b2obobo\$22bo7b2o2b2o\$21bobob2o\$21bobob2o\$22bo3\$22b2o\$22b
2o12\$45bo\$44b2o\$44bobo!

"BINGO!"
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1723
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#154:
x = 146, y = 34, rule = B3/S23
80bo\$78bobo\$79b2o\$89bobo18bobo\$90b2o18b2o\$90bo20bo3\$77b2o58bo\$76b4o58b
o\$76b2ob2o55b3o\$78b2o60bo\$140bobo\$85bo54b2o\$2o28b2o28b2o24bo13b2o\$o4b
2o23bo4b2o23bo4b2o17b3o13bo4b2o22b2o4b2o\$2bo2b2o25bobobo25bobobo22bo5b
2o5bobobo22bo2bobobo\$b2o28b2obo23bo2b2obo22b2o5bo2bo3b2obo26b2obo\$10b
2o22b2o20bobo5b2o22b2o4bo2bo6b2o28b2o\$5b2o2b2o20b3o23b2o2b3o19b3o9b2o
3bob2o26bob2o10bo\$2o2bo2bo3bo18bo2bo26bo2bo21bo14b2obo26b2obo9bo\$2o2bo
2bo22b2o27bobo22bo58b3o\$5b2o19bo29b2o2bo\$27b2o26bobo\$4bo21b2o8b2o19bo
75b2o\$3b2o27bo2b2o23b2o72b2o\$3bobo26b2o3bo21b2o72bo\$31bobo27bo\$24b3o\$
26bo\$25bo\$27b3o\$27bo\$28bo!

The syntheses for #137 and #138 can be improved using this reaction:
x = 45, y = 10, rule = B3/S23
4bo29bo\$4bobo27bobo\$4b2o28b2o\$2o6bo21b2o6bo\$b2o5b3o20b2o5b3o\$o10bo18bo
10bo2bo\$8b2ob3o24b2ob4o\$9bo4bo24bo\$9bob3o25bob2o\$10b2o28bobo!
-Matthias Merzenich
Sokwe
Moderator

Posts: 1334
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

This solves #354:
x = 21, y = 31, rule = B3/S23
2bo\$obo\$b2o\$4bo14bo\$4bobo11bo\$4b2o12b3o2\$o\$b2o\$2o\$16bo\$15b2o\$9b2o4bobo
\$9b2o2\$4b2o3b2o3bo\$3bo2bo2bobobobo\$3bo2bo3bo3bo\$4b2o5b3o\$9bobo\$9b2o4\$
2o\$b2o\$o2\$10b2o\$9b2o\$11bo!

EDIT: #212 from a trivial variant of a 17-bitter not on the list:
x = 94, y = 28, rule = B3/S23
64bo\$65b2o\$39bo24b2o4bo\$38bo30bo\$o22b2o13b3o15b2o11b3o14b2o\$b2o20bo2b
2o28bo2b2o25bo2b2o\$2o22b2o2bo28b2o2bo6bo18b2o2bobo\$25bobobo28bobobo4b
2o19bobob2o\$23bobob2o29bobobo4bobo18bobo\$22bobo32b2ob2o27b2o\$23bo\$55bo
\$56bo8b2o\$54b3o8bobo\$7b3o2b2o51bo\$9bob2o45bo\$8bo4bo43b2o\$57bobo3\$37b2o
\$37bobo\$37bo3\$12b2o\$13b2o\$12bo!

Also, that component allows for predecessors for #140, #150, #165, and #166:
x = 108, y = 62, rule = B3/S23
6bo\$6bobo26bo38bo28bo\$6b2o27bobo34bobo26bobo\$35b2o36b2o27b2o\$9bo21b2o
6bo30bo6b2o20bo6b2o\$2o7b3o20b2o5b3o22b2o2b3o5b2o15b2o2b3o5b2o\$b2o9bob
2o15bo10bo21bo2bo10bo14bo2bo10bo\$o8b2ob2obo23b2obo2bo20b2ob2o24b2ob2o\$
8bo2bo28bob4o21bobo26bobo\$9bobob2o25bo26bo2bo24bo2bo\$10bobobo26b3o24b
2o26b2o\$11bo31bo2\$2b3o\$4bo2b2o\$3bo2b2o\$8bo4\$b3o\$3bo32bo\$2bo34bo12bo\$
35b3o11bo\$49b3o5\$31bo\$29bobo\$10b2o18b2o8b2o22b2o2b2o23b2o2b2o\$9bo2bob
2o23bo2bo21bo2bo2bo22bo2bo2bo\$9b2ob2obo16b3o4b2obo2bo20b2ob2o24b2ob2o\$
11bo22bo7b4o21bobo26bobo\$11bob2o18bo5b2o26bo2bo24bo2bo\$12bobo24bob3o
24b2o26b2o\$43bo19\$39bobo\$39b2obo2bo\$42b4o\$39b2o\$39bob3o\$43bo!

EDIT 2: #164 from a 17-bitter not on the list:
x = 23, y = 30, rule = B3/S23
9bo\$7b2o\$4bo3b2o\$2bobo7bo\$3b2o7bobo\$12b2o4bobo\$18b2o\$19bo2\$20b2o\$20bob
o\$5b2o2bo10bo\$5bo2bobo\$7b2obo7bo\$8bob2o5b2o\$8bo8bobo\$obo6b3o\$b2o8bo\$bo
5\$4b2o8b3o\$3bobo8bo\$5bo9bo2\$2o7b2o\$b2o5bobo\$o9bo!
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1723
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:#164 from a 17-bitter not on the list

Here's an improvement as well as a solution to the related #165 from a 17-bitter not on the list:
x = 41, y = 111, rule = B3/S23
27bo\$26bo\$o25b3o\$b2o29bo\$2o28b2o\$31b2o4bo\$37bobo\$37b2o15\$13b2o2bo\$13bo
2bobo\$15b2obo\$16bob2o\$16bo\$17b3o\$19bo3\$39b2o\$38b2o\$40bo2\$36b2o\$23b2o
11bobo\$23bobo10bo\$23bo\$19b2o\$18bobo\$20bo\$23bo\$22b2o\$22bobo22\$22bobo\$
22b2o\$23bo\$20bo\$18bobo\$19b2o\$23bo\$23bobo10bo\$23b2o11bobo\$36b2o2\$40bo\$
38b2o\$39b2o3\$19bo\$13b2o2b3o\$13bo2bo\$15b2ob2o\$16bobo\$16bobo\$17bo15\$37b
2o\$37bobo\$31b2o4bo\$2o28b2o\$b2o29bo\$o25b3o\$26bo\$27bo!

Here are some other ways to achieve this reaction:
x = 102, y = 18, rule = B3/S23
7b2o28b2o28b2o28b2o\$8bo29bo29bo29bo\$8bob2o26bob2o26bob2o26bob2o\$7b2obo
26b2obo26b2obo26b2obo\$10bo29bo29bo29bo\$2b2o3b3o27b3o22b2o3b3o27b3o\$bob
o3bo24b2o3bo23bobo3bo29bo\$3bo27bobo29bo\$33bo\$4b2o59b3o21b2o\$4bobo28b2o
28bo19b2o2bobo\$4bo30bobo28bo17bobo2bo\$2o33bo26b3o21bo\$b2o28b3o30bo\$o
32bo29bo\$32bo55b2o\$89b2o\$88bo!
-Matthias Merzenich
Sokwe
Moderator

Posts: 1334
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

mniemiec wrote:By subsequently sliding the block over, this gives #214 from 22 gliders, compared to the previous method from 25.

Sokwe wrote:Extrementhusiast's synthesis (the only other synthesis of this object that I know of) takes only 20 gliders:

I figured out what the confusion was. His synthesis was partial (based on 15.362) so I had filled that part in. I had 15.362 built a different way, from 12 gliders - but it should really only take 7, as you've shown. I've now updated both still-lifes.

#354 from 25 gliders, based on its cousin from 22 gliders:
x = 167, y = 50, rule = B3/S23
18bo8bo\$18bobo5bo\$18boo6b3o\$\$15bo\$13bobo72bo\$14boo72bobo17boo28boo18b
oo\$84b3oboo17bobbo18bo7bobbo16bobbo\$10bo24boo18boo18boo9bo8boo10bobo5b
oo13boo5bobo5boo10bobo5boo\$8bobo21boobbo15boobbo15boobbo8bo6boobbo11bo
3boobbo12boo7bo3boobbo11bo3boobbo\$9boo13bo7boboo16boboo16boboo16boboo
16boboo26boboo16boboo\$24bobo7bo19bo19bo19bo19bo12bo16bo9bo9bo\$8bo4boo
9boo6bobo17bobo17bobo17bobo17bobo12boo13bobo9bo7bobo\$8boobboo18boo11bo
6boo14bo3boo14bo3boo14bo3boo12bobo9bo3boo10bo3bo3boo\$7bobo4bo5boo24bo
20bobo17bobo17bobo27bobo17bobo\$19boo23b3oboo17bobbo16bobbo16bobbo26bo
bbo16bobbo\$21bo26bobo17boo18boo18boo28boo18boo\$48bo11\$90bo\$89bo\$89b3o\$
95bo40bo\$45bo40bobo6bobo39bo\$4bobo39bo40boo6boo38b3o\$5boo37b3o3bo36bo
51bo\$5bo42boo89bobo\$8boo31b3o5boo20boo18boo46boo\$7bobbo32bo28bo19bo17b
oo18boo18boo\$bbo4bobo5boo15bobboo5bo9bobboo14bo3boo14bo3boo14bo3boo14b
o3boo14bobboo\$obo5bo3boobbo14bobobbo14bobobbo14bobobbo14bobobbo14bobo
bbo14bobobbo14bobobbo\$boo9boboo16boboo16boboo16boboo16boboo16boboo16bo
boo16boboo\$4bo9bo19bo19bo19bo19bo19bo19bo19bo\$4bo7bobo17bobo17bobo17bo
bo17bobo17bobo17bobo17bobo\$4bo3bo3boo17bobo17bobo17bobo17bobo17bobo17b
obo17bobo\$7bobo22bo19bo19bo19bo19bo19bo19bo\$7bobbo\$8boo\$5bo\$5boo\$4bobo
!

Several siamese-loaf-w/feather still-lifes sharing the same basic mechanism:
#314, #315, #319 from 27, 28, and 29 gliders (which also takes care of 3 of the 7 remaining mold-capable still-lifes):
x = 168, y = 196, rule = B3/S23
144bo\$144bobo\$144boo\$\$136bobo\$137boo\$137bo\$45bo\$44bo\$44b3o\$131bobo25b
oo\$10bo22bo11b3o5bo19bo19bo29bo8boo9bo16bobbo\$11bo20bobo12bo4bobo14boo
bobo14boobobo24boobobo7bo6boobobo15bobobo\$9b3oboo17bobbo10bo5bobbo12bo
bobobbo12bobobobbo22bobobobbo12bobobobbo15boobbo\$13bobo17boo18boo14bo
3boo14bo3boo24bo3boo14bo3boo18boo\$13bo35bo98bobo12bo\$48boo71bo19bo6boo
10boobo\$48bobo68b3o17b3o7bo9bobbo\$118bo19bo21boo\$118boo18boo11bo\$151bo
bo\$98bo52boo4boo\$96boo59boo\$93bo3boo34boo7b3o5bo\$83boo9boo36bobo7bo6b
oo\$82bobo8boo9boo28bo8bo5bobo\$84bo18boo\$105bo8\$126bo\$124bobo5bo\$125boo
6boo\$128boobboo\$108boo17bobo8boo\$9boo18boo18boo18boo18boo17bobo18bo8bo
bo\$10bobbo16bobbo16bobbo16bobbo16bobbo16bobbo26bobbo15boobbo\$10bobobo
15bobobo15bobobo15bobobo15bobobo15bobobo17bobo5bobobo14bobbobo\$11boobb
o15boobbo15boobbo15boobbo9bo5boobbo15boobbo17boo6boobbo14bobobbo\$13boo
18boo18boo18boo11bo6boo18boo18bo9boo16boboo\$13bo19bo19bo19bo10b3o6bo
19bo29bo19bo\$10boobo16boobo16boobo17bobo17bobo17bobo27bobo17bobo\$9bobb
o16bobbo16bobbo18boo8boo3boo3boo18boo28boo18boo\$10boo18boo18boo28bobo
3bobo\$46b3o33bo3bo47boo\$48bo86boo\$7boo38bo86bo\$7boo\$\$5boo\$4bobo\$6bo11\$
97bo\$97bobo\$97boo\$\$83bobo\$84boo\$84bo4\$78bobo27bo\$79boo26bo\$79bo27b3o\$
119boo18boo18boo\$10bo22bo19bo19bo19bo26bobbo16bobbo16bobbo\$11bo20bobo
17bobo14boobobo14boobobo25bobobo15bobobo15bobobo\$9b3oboo17bobbo12boobb
obbo12bobobobbo12bobobobbo25boobbo15boobbo15boobbo\$13bobo17boo12bobo3b
oo14bo3boo14bo3boo28boo18boo18boo\$13bo35bo73bo19bo19bo\$73boo18boo29b3o
17b3o17b3o\$51b3o18bobo17bobo31bo19bo20bo\$53bo19bo19bo44bo27boo\$52bo86b
o\$137b3oboo\$104boo35bobo\$103boo36bo\$105bo\$137b3o\$139bo\$98boo38bo\$97boo
\$99bo7\$96bo\$94bobo5bo\$95boo6boo\$98boobboo\$28boo28boo18boo17bobo8boo\$9b
oo17bobo27bobo17bobo18bo8bobo\$10bobbo16bobbo26bobbo16bobbo26bobbo15boo
bbo\$10bobobo15bobobo20bo4bobobo15bobobo25bobobo14bobbobo\$5bo5boobbo15b
oobbo17bobo5boobbo9boo4boobbo19boo4boobbo14bobobbo\$6bo6boo18boo19boo7b
oo10boo6boo20boo6boo16boboo\$4b3o6bo19bo17boo10bo19bo29bo18bo\$14b3o17b
3o13bobo11b3o17b3o27b3o16bobo\$boo3boo9bo19bo14bo14bo19bo29bo16boo\$obo
3bobo7boo18boo28boo18boo28boo\$bbo3bo95b3o\$82boo20bo7boo\$62b3o17boo19bo
8boo\$62bo43boo11bo\$63bo41bobo10boo\$59b3o45bo10bobo\$61bo\$60bo\$116b3o\$
118bo\$117bo\$119b3o\$119bo\$120bo5\$97bo\$97bobo\$97boo\$\$83bobo\$84boo\$84bo4\$
78bobo\$79boo24bo\$79bo23boo\$104boo13boo18boo18boo\$10bo22bo19bo19bo19bo
26bobbo16bobbo16bobbo\$11bo20bobo17bobo14boobobo14boobobo25bobobo15bobo
bo15bobobo\$9b3oboo17bobbo12boobbobbo12bobobobbo12bobobobbo25boobbo15b
oobbo15boobbo\$13bobo17boo12bobo3boo14bo3boo14bo3boo28boo18boo18boo\$13b
o35bo73bo19bo6boo11bo\$73boo18boo29bo19bo4boo13bo\$51b3o19boo18boo30bobo
13bo3bobo3bo11boo\$53bo72boo14bo3boo\$52bo87b3o\$54b3o38bobo\$54bo40boo\$
55bo40bo43bo\$139boo\$94b3o42bobo\$94bo\$95bo9\$126bo\$124bobo5bo\$125boo6boo
\$128boobboo\$28boo18boo18boo18boo18boo17bobo8boo11bobo\$9boo17bobo17bobo
17bobo17bobo17bobo18bo8bobo10boo\$10bobbo16bobbo16bobbo16bobbo16bobbo
16bobbo26bobbo8bo6boobbo\$10bobobo15bobobo15bobobo15bobobo15bobobo15bob
obo17bobo5bobobo14bobbobo\$5bo5boobbo15boobbo15boobbo15boobbo15boobbo
15boobbo17boo6boobbo7boo5bobobbo\$6bo6boo18boo18boo18boo18boo18boo18bo
9boo7boo7boboo\$4b3o6bo19bo19bo19bo19bo19bo29bo10bo8bo\$14bo19bo19bo19bo
19bo19bo3boo24bo3boo13bobo\$boo3boo5boo18boo18boo18boo18boo3bobo12boobb
obbo22boobbobbo13boo\$obo3bobo89boo17bobbo26bobbo\$bbo3bo45bo20boo18boo
4bo13boo3boo14boo7boo3boo\$52boo18bobo17bobo17bobo20boo5bobo\$51bobo19bo
19bo5boo12bo20bo8bo\$99bobo\$99bo38boo8boo\$137bobo7bobo\$139bo9bo!

Here's a partial synthesis of #217 related to the above syntheses, and from that, 13 more gliders would give #316:
x = 152, y = 25, rule = B3/S23
bbo\$obo5bo\$boo6boo\$4boobboo\$3bobo8boo\$5bo8bobo\$16bobbo15boobbo6b3o6boo
bbo15boobbo15boobbo25boobbo15boobbo\$8bobo5bobobo14bobbobo4bo3bo5bobbob
o14bobbobo14bobbobo24bobbobo14bobbobo\$9boo6boobbo14bobobbo7bo6bobobbo
14bobobbo14bobobbo24bobobbo14bobobbo\$9bo9boo16boboo6boo8boboobo14boboo
bo14boboobo24boboobo14boboo\$19bo18bo8bo10bobbo16bobbo16bobbo26bobbo16b
o\$20bo18boo18boo18boo18boo10b5o13boo15bobo\$19boo26bo47boo13bo4bo9boo
19boo\$74boo18bobbo17bo8bobbo8boo\$10boo61bobo19boo13bo3bo4bo5boo8boo\$
11boo62bo36bo6boo16bo\$10bo13boo51boo35bo3bobo10b3o\$15boo7bobo50bobo34b
oo15bo\$14bobo7bo52bo35bobo16bo\$16bo102bo5boo\$118b3o5boo\$118boboo3bo\$
119b3o\$119b3o\$119boo!

Extrementhusiast wrote:#200 tweezed from the given soup:

Yay!

Extrementhusiast wrote:Also, that component allows for predecessors for #140, #150, #165, and #166:

I'll have to look at all the predecessors to see if they're buildable.

Extrementhusiast wrote:This solves #354:

My synthesis above appears to start from the same path, but is less expensive.

I've noticed that we seem to think along different lines, so even though we are working independently, there seems relatively little overlap (e.g. this week, only one synthesis).
mniemiec

Posts: 948
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

#160 (and #168 and #169) from a constructable 19-bitter:
x = 21, y = 12, rule = B3/S23
bo6bo3bo6bo\$2bo6bobo6bo\$3o4b3ob3o4b3o2\$3b3o4bo4b3o\$5bo3bobo3bo\$4bo3bob
obo3bo\$7bo2bo2bo\$8b2ob2o\$9bobo\$9bo2bo\$10b2o!

Also, is the new site up yet?

EDIT: #159 from a 16-bitter:
x = 102, y = 28, rule = B3/S23
obo\$b2o\$bo11bo\$12bo\$12b3o5\$79bo\$b2o28b2o3bo25b2o3bo11bobo13b2o3bo\$bobo
b2obo22bobobobo24bobobobo10b2o14bobobobo\$3bobob2o24bobobo26bobobo28bob
obo\$2bobo27bobobo26bobobo28bobobo\$2bo29bo2bo27bo2bo29bo2bo\$b2o28b2o17b
obo2b3o4b2o33b2o\$9bobo39b2o2bo\$9b2o40bo4bo10b2o\$10bo25b2o28bo2bo\$31b3o
b2o17b2o10bo2bo\$8b3o22bo3bo17b2o10b2o\$8bo23bo21bo\$9bo2\$11b3o\$11bo43b2o
\$12bo41bobo\$56bo!
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1723
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:Also, is the new site up yet?

No, but It's getting a lot closer. i want to make sure things are right before rushing something half-finished out the door.
mniemiec

Posts: 948
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

A predecessor of #157 from two probably unsynthesized 8-bitters:
x = 86, y = 42, rule = B3/S23
59bo\$60bo\$58b3o2\$75bo\$56bo17bo\$3bobo51bo16b3o\$4b2o49b3o\$4bo2\$9bobo71bo
bo\$obo6b2o72b2o\$b2o7bo73bo\$bo79bo\$79b2o\$18bo61b2o\$18bobo\$5b2o11b2o45b
2o\$5bobo7bo49bobo\$7bo6bo52bo\$2o5b2o5b3o43b2o5b2o\$obobo55bobobo\$2b2obo
56b2obo\$bo3bo7b2o46bo3bo\$bob2o8bobo45bob2o\$2bobobo6bo48bo\$5b2o53bobo\$
60b2o\$79bo\$12b2o64b2o\$12bobo63bobo\$12bo\$68b2o2b2o\$9b2o56bobob2o\$8b2o
59bo3bo\$10bo37bo\$48b2o\$47bobo15b3o\$67bo\$51b2o13bo\$50bobo\$52bo!

A predecessor of #219 from a probably unsynthesized 21-bitter:
x = 200, y = 49, rule = B3/S23
194bo\$164bo27b2o\$165b2o26b2o\$164b2o32bo\$188bo8bo\$186b2o9b3o\$187b2o2\$
164bo\$165bo\$81bo81b3o\$79b2o32bo\$80b2o29bobo\$112b2o\$38bo47bobo\$39bo46b
2o\$37b3o47bo39bo6bo\$41bo83b2o5b2o\$40bo34b2o11b2o36b2o5b2o\$40b3o31bo2bo
10bobo23b2o41bo\$37bo36bo2bo10bo25bo43bo\$38bo36b2o38bo40b3o\$36b3o47bo
29bo\$44bo33b2o5b2o30bo\$42b2o34bo6bobo30bo\$43b2o34bo39bo\$2o2bo25b2o2bo
35b2o2bo3b2o30b2o2bo3b2o50b2o2bo3b2o\$o2bobob2obo19bo2bobob2obo29bo2bob
obo32bo2bobobo10bobo39bo2bobobobo\$bobobobob2o20bobobobob2o30bobobobo
33bobobobo10b2o41bobobobo\$2bobobo25bobobo5b2o28bobobo35bobobo12bo4bo
37bobob2o\$4bo29bo7bobo29bo39bo10b2o7bobo27b2o8bo\$3b2o28b2o7bo30b2o38b
2o9bo2bo6b2o28bobo6b2o\$125b2o37bo2\$163bo19bobo\$120bo42b2o18b2o\$119bobo
10b3o27bobo19bo\$119bobo10bo\$120bo12bo21b3o37b2o\$116b3o38bo36b2o\$118bo
37bo6b3o30bo\$117bo45bo\$164bo\$106b2o17b2o\$105bobo11bo4b2o65b2o\$107bo11b
2o5bo63b2o\$118bobo64b3o4bo\$185bo\$186bo!
-Matthias Merzenich
Sokwe
Moderator

Posts: 1334
Joined: July 9th, 2009, 2:44 pm

PreviousNext