## 17-bit SL Syntheses (100% Complete!)

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

### Re: 17-bit SL Syntheses

Also, something's telling me that #170 should be solved from the corresponding 18-bitter with tubs on both ends.

EDIT: #374 from a (presumably) trivial 19-bitter:
`x = 27, y = 33, rule = B3/S235bo\$6bo\$4b3o3\$2bo\$obo6bo\$b2o5bo\$8b3o4bo\$15bobo\$15b2o\$6b2o\$7b2o2bo\$6bo4b3o\$14bo\$13bobobo\$6b2o4bo2b2obo\$7b2o3bobo3bo\$6bo6b2o3b2o3bobo\$23b2o\$24bo\$10bo\$10b2o4b2o\$9bobo5b2o\$16bo8bo\$24b2o\$17b2o5bobo\$17bobo\$17bo2\$20b2o\$20bobo\$20bo!`

EDIT 2: #217 from a trivial 21-bitter:
`x = 101, y = 46, rule = B3/S2310b2o\$10b3o\$9bob2o\$9b3o\$10bo6\$26bo\$8bobo13b2o\$9b2o14b2o\$9bo4\$79bo\$19b2o56b2o\$5bo12bo2bo56b2o\$3bobo13b2o\$4b2o9bo35b2o16bobo3b2o\$14bobo26bo8bo17b2o4bo\$6b3o4bobo25bobo7bo18bo4bo\$8bo4bo4b3o21b2o7b2o22b2o18b2o\$7bo6bo30b2o6bo16b2o5bo16bo2bo\$13b2o29bobo4b2obo15b2o3b2obo14bob2obo\$12bo2b2o29bo3bo2bobo18bo2bobo14bo2bobo\$13bobobo33bobo2bo18bobo2bo14bobo2bo\$2bo11bo2bo34bo2b2o19bo2b2o15bo2b2o\$2b2o13bobob2o\$bobo14b2ob2o5b3o\$28bo\$29bo\$9b3o\$9bo\$10bo\$3o\$2bo\$bo16b3o\$20bo\$12b2o5bo\$11bobo\$13bo12b2o\$25b2o\$27bo!`

EDIT 3: Very good partial of #191:
`x = 8, y = 10, rule = B3/S232b2o\$bo2bob2o\$obobobo\$bobo2bo\$2bo3b2o2\$b2o4bo\$b2o\$2o\$2o!`

EDIT 4: #297 from a 22-bit pseudo, using a method similar to that of #146:
`x = 55, y = 53, rule = B3/S239bo35bo\$10bo33bo\$8b3o33b3o6\$32bo\$22b2o9bo\$21b2o8b3o\$17bobo3bo12b2o\$18b2o16bobo\$18bo18bo2\$4bo45bo\$5b2o41b2o\$4b2o43b2o3\$10bo33bo\$11bo31bo\$9b3o31b3o4\$25b2ob2o\$24bobobobo\$24bo5bo\$25bo3bo\$26bobo\$24bobobobo\$24b2o3b2o4\$2o51b2o\$b2o49b2o\$o53bo4\$b2o49b2o\$obo49bobo\$2bo49bo\$17b2o\$10b3o3bobo23b3o\$12bo5bo23bo\$11bo31bo2\$20b3o\$22bo\$21bo!`

I'm leaving it on the list for now, at least until I see a synthesis of that 22-bit pseudo.
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1669
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:#140 from a trivial 17-bitter:

The base 17-bit stillife is formed via eater-to-integral applied to a 15. The block can be added while this is forming, saving one glider:
`x = 44, y = 16, rule = B3/S23bo19bo\$bbo18bobo\$3o18boo\$\$4bo\$4bobo\$3oboo\$bbo\$bo37booboo\$9bo30boboo\$7b3o27b3o\$6bo29bo\$5boboobo24boboobo\$4bobboboo7boo14bobboboo\$5boo11bobo14boo\$18bo!`

Extrementhusiast wrote:#297 from a 22-bit pseudo, using a method similar to that of

#146:

I'll have to look at the predecessor; pseudo-objects with multiple bonding sites tend to

be much more difficult to synthesize than ones with only one.

Despite limited time this week, I found (and/or dredged up) a few mechanisms that were of general use, solving 8 items from the list.

The following 17 (top row) is not on the list, because it is a trivial cousin of #117. #117 does not yet have a synthesis, but this fairly obvious method can be used instead, removing 4 of the 21 remaining trivial derived still-lifes (this plus three other cousins, w/bun and/or carrier). After some finagling, I was also able to synthesize #117 (and its remaining trivial cousin w/carrier) from it:
`x = 158, y = 81, rule = B3/S2386bobo\$87boo\$87bo\$90bobo\$90boo\$91bo\$137bo\$90bo46bobo\$88bobo46boo\$89boo\$\$6bobo92bo14boo18boo18boo\$6boo18bo19bo19bo22bo6bo4bobo11bobbo16bobbob3o12bobo\$7bo17bobo17bobo17bobo22bo4bobo3boo12bobo17bobobbo14bo\$25boo12bobo3boo18boo21b3o4boo15booboo15booboo4bo10booboo\$5b3o32boo71bo19bo19bo\$7bo32bo72bo19bo19bo\$6bo36bo20boo15boo5b3o3boo18boo18boo18boo\$43boo20bo16boo6bo4bo19bo19bo19bo\$42bobo19bo16bo7bo4bo19bo19bo19bo\$48bo15boo28boo18boo18boo18boo\$46boo\$43boobboo\$43bobo\$43bo9\$7bo\$7bobo\$7boo\$5bo29bo\$6bo29bo\$4b3obbo24b3o\$bo7bobo\$bbo6boo11bo14boo3bo\$3o3boo13boboboo9bobobboboboo15booboo15booboo15booboo\$5bobo14boobobo10bo3boobobo15bobobo15bobobo15bobobo\$5bo19bobo17bobo15bobobo15bobobo15bobobo\$bbooboo15booboo15booboo15booboo15booboo15booboo\$3bo19bo19bo15bo3bo15bo3bo19bo\$3bo19bo19bo15bo3bo15bo3bo19bo\$4boo18boo10boo6boo13bo4boo13bo4boo18boo\$5bo19bo11boo6bo19bo19bo19bo\$4bo19bo11bo7bo19bo12boo5bo19bo\$4boo18boo18boo18boo10bobo5boo18boo\$78bo12\$78bo\$79boo\$5bo72boo52bo\$5bobo75bo48bobo\$5boo3bobo68boo49boo\$10boo70boo3bobo20bo19bo\$11bo38bo36boo20bobo17bobo\$48boo38bo20bobo17bobo\$bbooboo3b3o9boo18boo5boo11boo18boo6b3o11bo5bo13bo5bo13bo\$3bobobobbo12bo19bo10bo8bobbo16bobbo3bo12bobo17bobo17bobo\$3bobobo3bo11boboo16boboo3bobbo9bobobo15bobobo3bo11bobo17bobo17bobo\$bbooboo15booboo15booboobboobb3o6booboo15booboo15booboo15booboo15booboo\$3bo19bo19bo5bobo11bo19bo19bo19bo19bo\$3bo19bo19bo19bo19bo19bo19bo19bo\$4boo18boo18boo18boo18boo18boo18boo18boo\$5bo19bo19bo19bo19bo19bo19bo19bo\$4bo19bo19bo19bo19bo19bo19bo19bo\$4boo18boo18boo18boo18boo18boo18boo18boo!`

It turns out that the related #123 was implicitly known long ago. Dave Buckingham's old original synthesis of 14.78 builds two inducting copies of the snake w/tail (as in the above synthesis) and then welds both ends. Welding only one of the two end yields #123 from 72 gliders. Streamlining some of the steps reduces this to 63:
`x = 229, y = 115, rule = B3/S23194bo\$148bo46boo\$149boo43boo\$148boo10bobo\$105bo54boo30bo26bo\$103bobo55bo30boo25bo\$104boo27bo19bo5bo31bobo25bo\$21bo88bobo19bobo17bobo3boo5bo18boo18boo18boo\$22boo86boo19bobo17bobo4bobo3boo15bobobo15bobobo15bobobo\$14bo6boobbo85bo19boo18boo11bobo14boo18boo18boo\$15boo8bobo\$14boo9boo11boo18boo18boo18boo9b3o16boo18boo28boo18boo18boo\$35bobobo15bobobo15bobobo15bobobo9bo15bobobo15bobobo25bobobo15bobobo15bobobo\$35boo3boo13boo3boo13boo3boo13boo3boo8bo14boo3boo13boo3boo23boo3boo13boo3boo13boo3boo\$12boo27bo19bo19bo19bo29bo19bo29bo19bo19bo\$11bobo26bo19bo19bo19bo29bo19bo29bo19bo19bo\$13bo8bo16bo19bo20boo18boo28boo18boo28boo18boo18boo\$21boo16boo18boo\$21bobo\$16b3o45bo\$18bo36boo6boo\$17bo36bobo6bobo\$56bo\$60b3o\$62bo\$61bo13\$25bo\$24bo\$24b3o\$189bobo\$10bo17bo161boo\$8bobo16bo162bo\$9boo16b3o\$\$194bo\$187bo5bo\$188boo3b3o\$11bo175boo\$12boo182boo\$11boo108bobo72bobo\$121boo22bo50bo4bo\$9bo112bo20boo56bobo\$9boo8bo29boo18boo28boo28boo13boo13boo28boo10boo16boo\$8bobo8bo30bo19bo29bo29bo29bo29bo29bo\$19bo29bo19bo29bo29bo29bo29bo29bo\$24boo23boo3boo8bo4boo3boo23boo3boo7bo15boo3boo18bo4boo3boo18bo4boo3boo18bo4boo3booboo\$21bobobo25bobobo6bobo6bobobo3bo14boo5bobobo8bo9boo5bobobo7bo9bobo5bobobo17bobo5bobobo17bobo5boboboboo\$21boo28boo10boo6boo6bobo12boo5boo9b3o9boo5boo9bo11boo5boo21boo5boo21boo5boo\$60boo17boo35b3o23b3o\$18boo28boo9bobo6boo6boo20boo5boo11bo9boo5boo9b3o9boo5boo21boo5boo21boo5boo\$15bobobo25bobobo11bo3bobobo6bobo16bobobo5boo10bo7bobobo5boo9bo8bobobo5bobo17bobobo5bobo14boobobobo5bobo\$15boo3boo23boo3boo13boo3boo4bo18boo3boo23boo3boo15bo7boo3boo4bo18boo3boo4bo15booboo3boo4bo\$21bo29bo19bo29bo29bo29bo29bo29bo\$20bo29bo19bo29bo29bo29bo29bo29bo\$20boo28boo18boo28boo13boo13boo28boo16boo10boo28boo\$116boo20bo38bobo\$115bo22boo39bo4bo\$137bobo42bobo\$183boo\$192boo\$185b3o3boo\$187bo5bo\$186bo3\$190bo\$189boo\$189bobo7\$78bo\$76bobo\$77boo\$\$19bo61bo81bo\$14bo3bo25boo28boo3boo80boo\$15boob3o22bobbo26bobbo3boo80boo\$14boo27bobbo16bo9bobbo78bo\$9boo28boo3boo15bobo5boo3boo23boo9bo8boo18boo12bobo3boo\$10bo29bo21boo6bo29bo7bobobbobo4bo19bo13boo4bo\$9bo29bo29bo29bo9boo3boo3bo19bo19bo\$4bo4boo3booboo15bo4boo3booboo10bo4bo4boo3booboo20boo13bo4boo14bo3boo14bo3boo19bo\$3bobo5boboboboo14bobo5boboboboo8bobo3bobo5boboboboo22bo19bo12bobo4bo12bobo4bo17bobo\$4boo5boo21boo5boo15boo4boo5boo28bo10boo7bo11bobo5bo11bobo5bo16bobbo\$98booboo8bobo4booboo11bo3booboo11bo3booboo15booboo\$8boo5boo21boo5boo21boo5boo4boo16bo13bo5bo19bo19bo19bo\$bboobobobo5bobo14boobobobo5bobo14boobobobo5bobo3bobo15bo19bo19bo12boo5bo19bo\$bbooboo3boo4bo15booboo3boo4bo15booboo3boo4bo4bo18boo18boo18boo9bobo6boo18boo\$11bo29bo29bo29bo19bo19bo11bo7bo19bo\$10bo29bo29bo6boo21bo19bo19bo19bo19bo\$10boo23boo3boo23boo3boo5bobo20boo18boo18boo18boo18boo\$5boo27bobbo26bobbo9bo\$3oboo28bobbo21boo3bobbo\$bbo3bo28boo23boo3boo\$bo57bo\$\$62boo\$62bobo\$62bo!`

(The original method did the welds with tub+blinker+2 gliders, with the blinker coming from a glider into a block-pair. If only one weld is done at once, the blinker can be made directly from two gliders, saving one glider. Furthermore, as shown above, barge+3 gliders removes another glider, and also works with an attached table, as shown below).

Combining the above two techniques gives us #151 from 43 gliders:
`x = 118, y = 51, rule = B3/S2320bo\$19bo41bo\$10bo8b3o39bobo\$10bobo48boo\$10boo\$bbobo34boo18boo39bo\$3boo34boo18boo37boo\$3bo8boo17boo18boo18boo18boo6boo10boo\$13bo10boo5bo19bo19bo19bo12bo6bo4bo\$3o10boboo7bobo6boboo16boboo16boboo16boboo3bobbo9bobobo\$bbo9booboo7bo7booboo15booboo15booboo15booboobboobb3o6booboo\$bo11bo19bo19bo19bo19bo5bobo11bo\$13bo19bo19bo19bo19bo19bo\$14boo18boo18boo18boo18boo18boo\$15bo19bo19bo19bo19bo19bo\$14bo19bo19bo19bo19bo19bo\$14boo18boo18boo18boo18boo18boo16\$20b3o\$17bobbo\$18bobbo\$16b3o\$101bo\$11boo18boobboo14boobboo14boobboo14boobboo4bobo7boobboo\$11bo4bo14bo3bo15bo3bo15bo3bo15bo3bo5boo8bo3bo\$13bobobo15bobo17bobo5bo11bobo17bobo17bobo\$12booboo15booboo15booboo4bobo8booboo3bo11booboo3bo11booboo\$13bo19bo19bo7boo10bo5bobo11bo5bobo11bobbo\$13bo19bo19bo19bo4bobo12bo4bobo12bobo\$14boo18boo18boo4bo13boo3bo14boo3bo14bo\$15bo19bo19bo3boo3boo9bo19bo\$14bo19bo19bo4bobobbobo7bo19bo4boo\$14boo18boo18boo8bo9boo18boo3bobo\$99bo\$91boo\$92boo\$91bo!`

This also gives us #306 from 41 gliders, from a 16:
`x = 107, y = 28, rule = B3/S236bo77bo\$4bobo76bo\$5boo72bo3b3o\$80boo7bo\$79boo6boo\$88boo\$\$93bobo\$93boo\$94bo\$12bo\$12bobo10bo19bo19bo19bo19boo\$oo10boo6boobbobo13boobbobo13boobbobo13boobbobo13boobbobo\$obboo15bobbobbo13bobbobbo3bo9bobbobbo13bobbobbo13bobbo\$boobo4b3o9booboo15booboo4bobo8booboo3bo11booboo3bo11booboo\$bbo6bo12bo19bo7boo10bo5bobo11bo5bobo11bobbo\$bbo7bo11bo19bo19bo4bobo12bo4bobo12bobo\$3boo18boo18boo4bo13boo3bo14boo3bo14bo\$4bo19bo19bo3boo3boo9bo19bo\$3bo19bo19bo4bobobbobo7bo19bo\$3boo18boo18boo8bo9boo18boo\$\$92bo\$91boo\$91bobo\$77boo\$76bobo\$78bo!`

This could also potentially give us #110, if a way could be devised to turn a hat or something similar into a pair of inducting snakes:
`x = 65, y = 15, rule = B3/S2349bo\$ooboo15booboo15booboo4bobo8booboo\$o3bo15bo3bo15bo3bo4boo9bo3bo\$bobo5bo11bobo17bobo17bobo\$ooboo4bobo8booboo3bo11booboo3bo11booboo\$bo7boo10bo5bobo11bo5bobo11bobbo\$bo19bo4bobo12bo4bobo12bobo\$bboo4bo13boo3bo14boo3bo14bo\$3bo3boo3boo9bo19bo\$bbo4bobobbobo7bo19bo4boo\$bboo8bo9boo18boo3bobo\$47bo\$39boo\$40boo\$39bo!`

By using loaf+5 gliders, the above mechanism can be extended to also work with an attached carrier, giving us #155 from 44 gliders, and #310 from 50:
`x = 168, y = 113, rule = B3/S23117bo\$117bobo\$117boo\$82bo\$81bo19bo14bo4bo\$81b3o16bobo14boobobo\$100bobo13boobbobo\$84b3o14bo19bo\$12boo38boo18boo10bo7boo18boo18boobboo\$13bo7bo3bo27bo19bo11bo7bo19bo9bo9bo3bo\$13boboo5boobobo25bobooboo13bobooboo13bobooboo13bobooboobbo10bobo\$12booboo4boobboo25boobooboo12boobooboo12boobooboo12boobooboobb3o7booboo\$13bo39bo19bo19bo19bo19bo\$13bo39bo19bo19bo19bo13boo4bo\$14boo38boo18boo18boo18boo5boo3boo6boo\$15bo39bo19bo19bo19bo4boo6bo6bo\$14bo39bo19bo19bo19bo7bo11bo\$14boo38boo18boo18boo18boo18boo8\$41b3o\$41bo\$42bo11\$12boobboo12bo11boobboo14boobboo4bo9boobboo\$13bo3bo10boo13bo3bo15bo3bo4bobo8bo3bo\$13bobo13boo12bobo17bobo6boo9bobo\$12booboo25booboo15booboo15booboo\$13bo11bo17bo5boo12bo5boo12bobbo\$13bo10bo18bo4bobbo11bo4bobbobboo7bobo\$14boo8b3o17boobbobo13boobbobobboo9bo\$15bo29bo3bo15bo3bo5bo\$14bo29bo19bo\$14boo9b3o16boo18boo4boo\$25bo44bobo\$26bo34boo7bo\$60bobo4bo\$62bo4boo\$66bobo9\$20bo\$19bo41bo\$10bo8b3o39bobo\$10bobo48boo\$10boo\$bbobo34boo18boo\$3boo34boo18boo\$3bo8boo17boo18boo18boo18boo38boo\$13bo10boo5bo19bo19bo19bo9bo3bo25bo\$3o10boboo7bobo6boboo16boboo16boboo16boboo5boobobo25bobooboo\$bbo9booboo7bo7booboo15booboo15booboo15booboo4boobboo25boobooboo\$bo11bo19bo19bo19bo19bo39bo\$13bo19bo19bo19bo19bo39bo\$14boo18boo18boo18boo18boo38boo\$15bo19bo19bo19bo19bo39bo\$14bo19bo19bo19bo19bo39bo\$14boo18boo18boo18boo18boo38boo8\$121b3o\$121bo\$122bo3\$57bo\$57bobo\$57boo\$22bo\$21bo19bo14bo4bo\$21b3o16bobo14boobobo\$40bobo13boobbobo\$24b3o14bo19bo\$11boo11bo6boo18boo18boo3boo13boo3boo12bo10boo3boo13boo3boo4bo8boo3boo\$11bo13bo5bo19bo11bo7bo5bo13bo5bo10boo11bo5bo13bo5bo4bobo6bo5bo\$13bobooboo13bobooboo13bobooboobbo10bobo17bobo13boo12bobo17bobo6boo9bobo\$12boobooboo12boobooboo12boobooboobb3o7booboo15booboo25booboo15booboo15booboo\$13bo19bo19bo19bo19bo11bo17bo5boo12bo5boo12bobbo\$13bo19bo19bo13boo4bo19bo10bo18bo4bobbo11bo4bobbobboo7bobo\$14boo18boo18boo5boo3boo6boo18boo8b3o17boobbobo13boobbobobboo9bo\$15bo19bo19bo4boo6bo6bo19bo29bo3bo15bo3bo5bo\$14bo19bo19bo7bo11bo19bo29bo19bo\$14boo18boo18boo18boo18boo9b3o16boo18boo4boo\$105bo44bobo\$106bo34boo7bo\$140bobo4bo\$142bo4boo\$146bobo!`

Extrementhusiast wrote:This solves #100:

By combining this with the above mechanisms, we can also make #125 from 33 gliders:
`x = 176, y = 108, rule = B3/S23139bo\$137bobo\$138boo14\$114bo39bo\$99bo14bobo36bo\$100bo13boo37b3o\$98b3o\$154bo\$153boo\$153bobo\$81bo\$79bobo91boo\$80boo91boo\$\$51bo35boo34boo28boo18boo\$52booboo16bo12bobo14bo18bobbo26bobbo16bobbo\$14bo36boobbobo14bobo13bo13bobo17bobbo26bobbo16bobbo\$12bobo40bo17boo15b3o10boo15booboo25booboo15booboo\$9boobboo75bo30bo29bo19bo\$10boo79bo29bo29bo19bo\$9bo22boo18boo18boo28boo18boo28boo18boo\$13bobo17bo19bo19bo29bo19bo29bo19bo\$13boo17bo19bo19bo29bo19bo29bo19bo\$14bo17boo18boo18boo19boo7boo18boo28boo18boo\$17bo75bobo\$16boo75bo\$16bobo5\$90b3o\$92bo\$91bo15\$80bobo\$80boo\$81bo7\$71bobo\$71boo\$67boo3bo\$66bobo\$67bo\$62bo\$63bo\$61b3o92bobo\$75bo81boo\$61bo11boo82bo\$61boo11boo\$60bobo\$155b3o\$90boo18boo18boo18boo3bo\$3boo28boo28boo25bobo17bobo17bobo13bo3bobo3bo16boo\$3boo28boo28boo28bo19bo19bo13boo4bo19bo\$94bo19bo19bo11boo6bo19bo\$3boo13bo14boo28boo28boo18boo18boo18boo18boo\$bbobbo10boo14bobbo26bobbo26bo19bo19bo19bo19bo\$bbobbo11boo13bobbo26bobbo26bo19bo19bo19bo19bo\$ooboo25booboo25booboo25booboo15booboo15booboo15booboo15booboo\$bo11bo17bo5boo13boo7bo5boo22bobbo16bobbo16bobbo16bobbo16bobbo\$bo10bo18bo4bobbo13boo6bo4bobbo21bobo17bobo17bobo17bobo17bobo\$bboo8b3o17boobbobo13bo9boobbobo23bo19bo19bo19bo19bo\$3bo29bo3bo25bo3bo\$bbo29bo29bo\$bboo9b3o16boo28boo\$13bo64bo\$14bo62boo\$77bobo\$94boo18boo\$94boo18boo\$74boo\$73boo41boo\$53boo20bo40bobo\$54boo3boo55bo\$53bo4bobo\$60bo!`

Back around 2000 or so, I devised a complicated 34-glider shillelagh to very-long-hat converter, specifically for the purpose of eliminating two of the last remaining difficult 17-bit pseudo-still-lifes (bottom three rows). This has subsequently been used in the syntheses of many of the difficult 15- through 17-bit still-lifes. I was just going through some of my converter files, and found one from 2011 that does the same thing in only 10 gliders (top row). I'm mystified as to why I never noticed that this would improve the above-mentioned pseudo-still-lifes (from which all the other variations were cut and pasted) but this should vastly improve several of the objects synthesized in the past year. This also improves two related 15-bit still-lifes (see subsequent section), two 16s, nine 17s, and one 19:
`x = 162, y = 140, rule = B3/S23135bo\$133boo\$130bo3boo\$131boo\$130boo\$\$17booboo15booboo15booboo15booboo15booboo15booboo15booboo12boobooboo\$17bo3bo15bo3bo8bobo4bo3bo10bo4bo3bo10bo4bo3bo10bo4bo3bo10bo4bo3bo13bobo3bo\$18bobo17bobo10boo5bobo10bobo4bobo10bobo4bobo10bobo4bobo10bobo4bobo14bobbobo\$5bo5bo4boboboo14boboboo9bo4boboboo10boobboboboo10boobboboboo10boobboboboo10boobboboboo14boboboo\$6boobobo4boo18boo18boo18boo18boo18boo18boo19bo\$5boo3boo20boo18boo18boo18boo18boo18boo\$33bo19bo19bo19bo17bobo11boo4bobo\$7bo22b3o17b3o17b3o17b3o19bo13boo4bo\$7boo21bo19bo19bo15bo3bo34bo\$3o3bobo78boo41boo\$bbo83boo41bobo\$bo129bo24\$62bo\$60boo\$11bobo47boo\$12boo44bo\$12bo46bo\$17booboo15booboo15b3o7booboo15booboo25booboo15booboo\$10boo5bo3bo15bo3bo25bo3bo15bo3bo25bo3bo15bo3bo\$11boo5bobo17bobo27bobo7booboo5bobo17booboo5bobo7booboo5bobo\$10bo5boboboo14boboboo24boboboo7bobo4boboboo17bobo4boboboo6boobo4boboboo\$16boo17bobo27bobo11bobo3bobo21bobo3bobo13bo3bobo\$6bo29bo29bo13bo5bo23bo5bo14boo3bo\$4bobo7bo43bo\$5boo6boo43boo\$8boo3bobo41bobo\$7bobo\$9bo50b3o40boo5boo\$60bo43boo5boo6boo\$61bo41bo6bo7boo\$114b3o3bo\$116bo\$115bo17\$58bo\$57bo56bo\$57b3o53bo\$55bo57b3o\$5bobo41bo3bobo55bo\$5boo43bo3boo56bo\$6bo41b3o59b3o18boo\$4bo126boo\$5bo11booboo15booboo25booboo15booboo25booboo15booboo\$3b3o11bo3bo15bo3bo25bo3bo15bo3bo25bo3bo15bo3bo\$8booboo5bobo7booboo5bobo17booboo5bobo10boo5bobo20boo5bobo10boo5bobo\$8boobo4boboboo5bobobo4boboboo15bobobo4boboboo9bo4boboboo19bo4boboboo9bo4boboboo\$4bo6bo3bobo10bobbo3bobo20bobbo3bobo10boobo3bobo20boobo3bobo10boobo3bobo\$4boo5boo3bo14boo3bo24boo3bo11booboo3bo21booboo3bo11booboo3bo\$3bobo5\$52boo\$51bobo\$53bo\$\$63boo\$62boo\$64bo16\$26boo28boo18boo28boo9bo\$5bobo17bobbo26bobbo16bobbo26bobbo6boo\$6boo17bobbo26bobbo16bobbo26bobbo7boo\$6bo19boo28boo18boo28boo\$\$5boo4boo18boo28boo18boo28boo\$4bobo4boo18boo28boo18boo22b3o3boo\$6bo10booboo15booboo25booboo15booboo15bo9booboo12boobooboo\$17bo3bo15bo3bo25bo3bo15bo3bo14bo10bo3bo13bobo3bo\$11boo5bobo10boo5bobo20boo5bobo10boo5bobo20boo5bobo14bobbobo\$11bo4boboboo9bo4boboboo19bo4boboboo9bo4boboboo19bo4boboboo14boboboo\$8boobo3bobo10boobo3bobo20boobo3bobo10boobo3bobo20boobo3bobo19bo\$8booboo3bo11booboo3bo21booboo3bo11booboo3bo21booboo3bo\$105boo\$88boo14bobo11boo4bo\$68b3o17boo10boo4bo11boobboo\$68bo30bobo10boo9boo\$69bo31bo11boo\$65b3o44bo6bo\$67bo50boo\$66bo51bobo!`

Upon closer examination, this also appears to be equivalant than the unzip-to-tail converter, of which I found 3 similar variations all costing 11 gliders (bottom row), so this is slightly cheaper. This likely affects quite a few objects, but I haven't had the time to find them all yet:
`x = 167, y = 66, rule = B3/S2319bo59bo59bo\$17boo58boo58boo\$14bo3boo54bo3boo54bo3boo\$15boo58boo58boo\$14boo58boo58boo\$\$38boo58boo58boo\$16bo22bo36bo22bo36bo6bo15bo3bo\$15bobo3boo16boboo32bobo3boo16boboo32bobo3b3o15bob3o\$16boobbobbo16bobbo32boobbobbo16bobbo32boobbo3boo14bo3boo\$20boboboboo14boboboo32bobo19bo37boboobbo14b3obbo\$16boo3booboobo13booboobo28boo3boobo16boobo31boo3boboboo16boboo\$9boo4bobo51boo4bobo5bobo17bobo23boo4bobo5bo19bo\$10boo4bo53boo4bo6bobo17bobo24boo4bo5boo18boo\$9bo59bo14bo19bo24bo\$14boo58boo58boo\$13bobo57bobo57bobo\$15bo59bo59bo19\$16bobo57bobo57bobo\$16boo58boo58boo\$17bo59bo59bo\$11bo59bo59bo\$9bobo10bo46bobo10bo46bobo10bo\$10boo8boo48boo8boo48boo8boo\$21boo58boo58boo\$\$13bo59bo59bo\$11bobo57bobo57bobo\$12boo24boo32boo24boo32boo24boo\$bboo35bo22boo35bo22boo19bo15bo3bo\$o4bo15boo16boboo17bo4bo15boo16boboo17bo4bo15b3o15bob3o\$6bo13bobbo16bobbo22bo13bobbo11boo3bobbo22bo13bo3boo14bo3boo\$o5bo13boboboboo14boboboo12bo5bo13bobo12boo5bo17bo5bo13boboobbo14b3obbo\$b6o6boo6booboobo13booboobo13b6o6boo6boobo16boobo16b6o6boo6boboboo16boboo\$12bobo57bobo8bobo17bobo26bobo8bo19bo\$14bo59bo8bobo17bobo28bo7boo18boo\$16b3o57b3o5bo19bo31b3o\$16bo24boo33bo59bo\$17bo23boo34bo59bo\$\$24boo58bo\$24bobo56boo\$24bo58bobo\$134boo\$133bobo\$135bo8b3o\$144bo\$145bo!`

Unfortunately, this can't be used with #189, #190, nor #191, because the required predecessors wouldn't be stable.

This converter gives us 15.410 from 19 gliders, 15.390 (which is derived from it) from 28, and, ironically, if we use this method a second time (as unzip-to-tail) during the final stage of 15.390, and wiggle the cleanup glider, we get #390 from 36 gliders:
`x = 212, y = 139, rule = B3/S23152bo\$153bo\$151b3o\$\$107bo46bobo\$107bobo17boo18boo5boo11boo18boo18boo\$103b3oboo17bobbo16bobbo5bo10bobbo16bobbo16bobbo\$105bo20bobo17bobo9b3o5boboo16boboo16boboo\$104bo22bo19bo10bo8bo19bo19bo\$159bo5bobo17bobo17bobo\$154bo10boo18boo18boo\$153bo\$153b3o9boo18boo\$141bo4b3o16boo18boo\$141boo5bo\$140bobo4bo35boo\$182bobo\$184bo13\$184bo\$182boo\$179bo3boo\$180boo\$179boo\$67boo18boo18boo18boo18boo18boo18boo18boo\$66bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo13boobobbo\$66boboo16boboo9bobo4boboo11bo4boboo11bo4boboo11bo4boboo11bo4boboo14boboboo\$67bo19bo12boo5bo12bobo4bo12bobo4bo12bobo4bo12bobo4bo16bobbo\$54bo5bo4bobo17bobo12bo4bobo13boobbobo13boobbobo13boobbobo13boobbobo17bobo\$55boobobo4boo18boo18boo18boo18boo18boo18boo19bo\$54boo3boo20boo18boo18boo18boo18boo18boo\$82bo19bo19bo19bo17bobo11boo4bobo\$56bo22b3o17b3o17b3o17b3o19bo13boo4bo\$56boo21bo19bo19bo15bo3bo34bo\$49b3o3bobo78boo41boo\$51bo83boo41bobo\$50bo129bo13\$128boo\$124boobbobo\$123bobobbo\$125bo\$110bo\$111bo\$109b3o8\$167boo18boo18boo\$127boo38bo19bo19bo\$123boobobbo35boobbo15boobbo15boobbo\$124boboboo34boboboo14boboboo14boboboo\$124bobbo36bobbo16bobbo16bobbo\$125bobo37bobo17bobo17bobo\$126bo39bo19bo19bo\$143boo\$142boo\$105boo37bo\$104bobo51b3o17b3o\$106bo67b3o\$176bo\$175bo\$109boo\$108bobo\$110bo\$130bo\$129boo\$129bobo\$108boo\$107bobo\$109bo13\$bbo\$obo\$boo130bo\$131bobo\$132boo\$6bobo\$bbo3boo73bobo50bobo\$3boobbo73boo51boo\$bboo78bo52bo\$7bo121bobo12bo\$6bo16boo18boo5bo12boo18boo45boo12bobo\$6b3o15bo19bo3boo14bo4bo14bo4bo15bo3bo20bo4bo3bo4boo\$24bobo17bobobboo13bobobobo13bobobobo13bobobobo23bobobobo\$25boo18boo18booboo15booboo15booboo25booboo\$129bo16boo23bo19bo19bo\$127bobo16bobo20b3o17b3o17b3o\$7boo18boo18boo18boo18boo18boo14b3obboo7boo7bo21bo19bo19bo\$3boobobbo13boobobbo13boobobbo13boobobbo13boobobbo13boobobbo15bo7boobobbo25boobbo15boobbo15boobbo\$4boboboo14boboboo14boboboo14boboboo14boboboo14boboboo14bo9boboboo24boboboo14boboboo14boboboo\$4bobbo16bobbo16bobbo16bobbo16bobbo16bobbo26bobbo26bobbo16bobbo16bobbo\$5bobo17bobo17bobo17bobo17bobo17bobo27bobo27bobo17bobo17bobo\$6bo19bo19bo19bo19bo19bo20b3o6bo29bo19bo19bo\$129bo\$128bo\$131boo\$130boo26b3o17b3o\$132bo41b3o\$126b3o47bo\$128bo46bo\$127bo!`
mniemiec

Posts: 877
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

#174 from a trivial 21-bitter:
`x = 169, y = 37, rule = B3/S2378bo73bo\$76bobo71b2o\$77b2o72b2o5\$2bobo4b2o36b2o29b2o42bo\$3b2o4bo37bo30bo44b2o\$3bo6bo4b2o31bo4b2o17bobo4bo4b2o19b2o15b2o14b2o\$11bobo2bo27bo4bobo2bo18b2o5bobo2bo14b2obo2bo26b2obo2bo22b2obo\$b2o9b4o29b2o3b4o19bo7b4o15bob4o27bob4o23bob4o\$obo41b2o122bo\$2bo11b2o3bo21b2o9b2o17bo11b2o19b2o11bo19b2o27b2o\$13bo2bo2bo20bobo8bo2bo14bobo8bobo2bo15bobo2bo8bobo5bo10bobo2bo22b2obo\$4bo7bo2bo3bo22bo5bobo2b2o15b2o8b2o2b2o7bo7b2o2b2o9b2o6b2o8b2o2b2o22bob2o\$4b2o7b2o33b2o44bo24b2o2b2o23b2o\$3bobo66bo19b3o23bobo9bo17bobo\$22b2o48b2o46bo8bobo16bo\$21b2ob4o15b3o25bobo21b3o31bobo\$22b6o17bo51bo32bo\$23b4o17bo51bo2\$148b3o\$11bo10b2o5bo102b3o13bo\$10b3o8b2o5b2o104bo14bo\$10bob2o9bo4bobo102bo\$11b3o\$11b2o3\$135b2o\$134b2o\$136bo\$33b2o\$33bobo\$33bo!`

EDIT: #302 from a trivial variant of #115:
`x = 349, y = 90, rule = B3/S23124bo\$122b2o\$69bo53b2o\$67bobo\$68b2o8\$obo23bo\$b2o22bo\$bo23b3o\$30bo\$29bo283bo\$25bo3b3o282bo\$9bobo12bo282bo4b3o\$10b2o12b3o281b2o\$10bo160bo135b2o6bo\$171bobo141b2o\$13bo6b3o148b2o141bobo\$14b2o40bo\$13b2o12b2o26bo112bo21bobo84bo24bo\$28bo26b3o111b2o3bobo14b2o82b2o23bobo\$4b4o20bobo21b2o87bo26b2o4b2o15bo84b2o23b2o\$3bo3bo21b2o20bo2bo51b2o31bobo11b2o20bo3b2o34b2o19bo13b2o31b2o37b2o23b2o\$7bo14b2ob2o23bobobo50bobo32b2o10bobo23bobo33bobo19bobo10bobo16bo13bobo36bobo22bobo\$3bo2bo16bob2o23bo2bo2b3o46bo46bo25bo28bo6bo21b2o4bo6bo16bobo6bo6bo38bo24bo\$20b3o26b2o5bo47b2o33b2o3b2o5b2o17b2o5b2o27bobo4b2o16bobo7bobo4b2o13b2o2b2o5bobo4b2o37b2o20b2ob2o\$19bo27bo9bo44bo35bobo2bobo3bo20b2o3bo30b2o3bo15b3o2b2o7b2o3bo17b2o8b2o3bo38bo23bo\$15b2obob2obo19b2obob2obo46b2obob2obo33bo2bo4bob2obo20bob2obo30bob2obo13bo2bo12bob2obo12bo5bo8bob2obo33bob2obo21b2obo\$15bob2obob2o19bob2obob2o46bob2obob2o37b5obob2o16b5obob2o18b2o6b5obob2o12bo7b2o3b5obob2o17bobo3b5obob2o31b3obob2o20b2ob2o\$32b2o136bo26b2o7bo29bobo2bo27bobo2bo39bo\$31b2o113bo25bo26bo8bo29bo4bo27bo4bo37b2o\$33bo111bobo23b2o34b2o29b2o2b2o27b2o2b2o\$144bobo50b2o\$145bo50bobo\$148bo49bo82b2o\$147b2o125b2o4b2o\$147bobo125b2o5bo\$274bo3\$201b2o94b2o\$109bo91bobo92bobo\$109bobo89bo96bo\$109b2o\$93b2o\$92b2o\$94bo\$90b2o98b2o\$89bobo97bobo\$91bo99bo33\$125b2o\$125bobo\$125bo!`

EDIT 2: Trivial variant of #387 from a 12-bit pseudo:
`x = 30, y = 30, rule = B3/S2323bo\$21b2o\$bo20b2o\$2bo\$3o3\$11b2o\$10bo2bo15bo\$11b2o14b2o\$28b2o\$18b2o\$17bo2bo\$16bo2bo\$17b2o2\$17b2o\$17b2o3\$19bobo\$19b2o\$20bo2\$10b3o5b3o\$10bo2bo4bo\$10bo8bo\$10bo3bo\$10bo\$11bobo!`

Also, a partial for #175:
`x = 10, y = 10, rule = B3/S232obo\$ob4o\$6bo\$b2o2bo\$bo2bo3b2o\$2b2o3b3o\$6bobo\$2o3b3o\$2b3obo\$3bo!`

EDIT 3: EXTREMELY ugly synthesis of #331:
`x = 186, y = 153, rule = B3/S234bobo\$5b2o\$5bo8\$10bobo\$11b2o\$11bo13\$121bo\$121bobo\$121b2o13\$103bo\$103bobo\$103b2o\$62bo\$54bobo3bobo\$48bobo4b2o4b2o\$49b2o4bo\$49bo23bobo\$74b2o\$74bo9\$68bo9bo\$69bo8b2o12bo\$67b3o8b2o10bo2bo63b2o26bo\$79bo10bo2bo55b2o2b2o2bo21b2o2b3o\$91bo57bo2bo2bobobo19bo2bo\$151b2ob2o2b2o7bobobo9b2ob2o\$152bo2bo26bo2bo\$152bobo27bobo\$113bo2bo36bo29bo\$112bo\$112bo3bo\$112b4o4\$86b3o\$85b5o\$84b2ob3o\$60b2o23b2o\$59bobo\$52bo8bo\$52b2o21b2o\$51bobo2b3o15bo2bo\$58bo16b2o\$57bo6\$47bo\$45bobo8b3ob3ob3ob3ob3ob3ob3ob3ob3ob3o\$46b2o2\$48b3o\$50bo\$49bo6\$38b3o\$40bo\$39bo6\$106b3o\$106bo\$107bo\$57bo7bo7bo7bo7bo\$56b3o5b3o5b3o5b3o5b3o\$55b2obo4b2obo4b2obo4b2obo4b2obo\$55b3o5b3o5b3o5b3o5b3o\$56b2o6b2o6b2o6b2o6b2o13\$42b2o\$43b2o\$42bo5\$5b3o\$7bo\$6bo13\$3o\$2bo\$bo!`

I have a feeling that this synthesis could be reduced by 90 or even 95 percent. But at least this pushes it off the unsynthesized list!

EDIT 4: #172 from a 15-bitter:
`x = 398, y = 63, rule = B3/S23112bobo\$113b2o\$113bo\$95bo\$8bo87bo5bo19bo\$9b2o83b3o6bo5bobo10bobo\$8b2o91b3o6b2o10b2o\$110bo16bo\$27bo45bo40bo12bobo\$27bobo44bo40b2o10b2o\$27b2o43b3o39b2o\$76bo\$76bobo29bo\$76b2o31bo\$102b2o3b3o\$40b2o61b2o\$39b4o23bo35bo41b2o46b2o\$7bo30b2ob2o21b2o43b2o7b2o24bo47bo\$5bobo31b2o24b2o3b2o36bobo7bo26bobo45bobo69bo\$6b2o61bo2bo37bo9bo27bo47bo37b2obo28bo7b2obo26b2obo24b2obo29b2obo22b2obo\$70b3o46b2o26b2o46b2o37bob2o26b3o7bob2o26bob2o24bob2o29bob2o22bob2o\$18b2o53b2o7b2o37b2o26b2o11bobobo30b2o39b2o38b2o28b2o11bobo12b2o31b2o24b2o\$17bo2bo51bo2bo6bobo34b2o2bo23b2o2bo43b2o2bo35b3o2bo34b3o2bo24b3o2bo11b2o9b3o2bo27b3o2bo20b3o2bo\$16bo2bo51bo2bo7bo36bo2bo24bo2bo44bo2bo36bo3bo35bo3bo24bo4bo12bo9bo4bo27bo4bo20bo4b2o\$10b2o5b2o53b2o46b2o26b2o46b2o38b3o37b3o9bo16b4o24b4o29b4o4bobo14b2o\$10bobo6b3o40bo11b3o45b3o25b3o45b3o38b3o37b3o5bo86b2o\$10bo8bo2bo39b2o10bo2bo44bo2bo24bo2bo44bo2bo36bo2bo36bo3bo4b3o17b2o26b2o7bo21b2o7bo\$21b2o38bobo12b2o46b2o26b2o46b2o36b2o38b2ob2o24b2o25bobo7bobo19b2o\$8b2o325bo8b2o\$7bobo\$9bo184bobo93b2o11bo37b3o32b3o\$16b2o177b2o93bobo10b2o4b2o30bo19b2o13bo\$15b2o44b2o132bo40b2o52bo11bobo3b2o15b3o14bo17bobo14bo\$2o15bo44b2o136b2o33bobo6b2o64bo16bo34bo5b2o\$b2o58bo114b2o21bo37bo6bobo19b2o58bo42b2o\$o7b2o165bobo11bo12bo41bo20bobo38b2o32b2o26bo\$9b2o166bo10bobo9b2o65bo5b2o30bobo32bobo\$8bo180b2o49b2o30bobo32bo32bo35b3o\$240bobo31bo101bo\$172b2o20bo45bo136bo\$173b2o17bo2bo89bo\$172bo19bo2bo88b2o\$193bo90bobo2b3o\$289bo\$174b2o114bo\$173bobo26b2o\$175bo25bo2bo3bo\$202b2o2b2o\$207b2o12\$216b2o\$215b2o\$217bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1669
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote: EXTREMELY ugly synthesis of #331:

The row of 10 blinkers costs 20 gliders if made the usual way, and 19 if the first two are made simultaneously, but a row of any number of blinkers can be extruded for only 11, making this the method of choice for 7 or more in a row. My instantiation of this synthesis costs 94 gliders (with the above two improvements reducing it to 93 and 85 respectively):
`x = 59, y = 106, rule = B3/S23obo\$boo\$bo40\$58bo\$58bo\$58bo\$\$58bo\$58bo\$58bo\$\$58bo\$58bo\$58bo\$\$58bo\$58bo\$58bo\$\$58bo\$58bo\$58bo\$\$35bobo20bo\$35boo21bo\$36bo21bo\$\$58bo\$58bo\$58bo\$19bo\$bbo17boo36bo\$obo16boo37bo\$boo55bo\$36bo\$35bo22bo\$35b3o20bo\$10boobboo42bo\$11boobobo\$10bo3bo43bo\$58bo\$58bo12\$17boo\$18boo\$17bo6\$34b3o\$34bobbo\$34bo\$34bo3bo\$34bo\$35bobo!`

Extrementhusiast wrote:I have a feeling that this synthesis could be reduced by 90 or even 95 percent.

I think that getting it down from 94 to 10 (let alone 5) would be quite a feat, as even the "easy" hard 17s are usually much more expensive.

Extrementhusiast wrote:#172 from a 15-bitter:

Wow! I don't recall ever seeing that tie-bun mechanism; I have been looking for something that would tie a bun or bookend onto the corner of a beehive/loaf/pond/mango/mold/jam etc. for a long time. This works on mangos; a simpler reduction works on beehives (and the narrow side of loaves). I am working on tweaking it to work on ponds (and the wide side of loaves, molds, jams, etc.) but haven't had time to find a working solution.
mniemiec

Posts: 877
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

mniemiec wrote:I am working on tweaking it to work on ponds (and the wide side of loaves, molds, jams, etc.) but haven't had time to find a working solution.

Done, by forming the boat predecessor further on down the line:
`x = 28, y = 16, rule = B3/S238bo\$6bobo\$bobo3b2o\$2b2o\$2bo13bobo\$16b2o\$2o7bo7bo\$b2o6bobo11b4o\$o8b2o12bo3bo\$23bo\$7b2o15bo2bo\$6bo2bo\$7b2o3b2o\$11bo2bo\$11bo2bo\$12b2o!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1669
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#227 from 41 gliders, based on one of the hard 15s. Sadly, although this method solves many larger still-lifes with feathers, it doesn't work for any of the other remaining 17-bit ones, nor does it improve any of the already-solved ones:
`x = 40, y = 24, rule = B3/S2310bobo\$13bo\$9bo3bo\$6bo6bo\$7boobobbo\$6boo3b3o3\$3boo3bo\$3oboo3boo\$5o3boo\$b3o3\$11bo\$3bobo4bobo\$4boo4bobo3boo14boobboo\$4bo6bo3bobbo13bobbobbo\$15boobbo13boboobbo\$13boobboo15bobboo\$13bobbo9b3o7bo\$7boo6boo18boo\$6bobo\$8bo!`

Incomplete partial synthesis of #350 based on a trivial (but expensive at 41 gliders) 19-bit pseudo-still-life:
`x = 58, y = 31, rule = B3/S2317bo\$16bo\$bbo9boobb3o13bo3bo15bo\$boboboo5bobo16boboboboo12bobo\$obboobo5bo17bobb6o11bobbo\$boo17boo9boo3bo14boo\$bboboo13boo11boboo16bobobo\$bobboo15bo9bobboo15bobboo\$boo28boo18boo14\$11b3o18bo3bo15bo\$10bo3bo16boboboboo12bobo\$14bo15bobb7o10bobbo\$12boo17boo3bobboo10boo\$12bo19boboobboo12boboboo\$31bobboobboo11bobboobo\$12bo18boo5b3o10boo\$39boo\$39boo!`
mniemiec

Posts: 877
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

mniemiec wrote:#227 from 41 gliders, based on one of the hard 15s.

Looks like there are ways to reduce the construction cost by at least one MWSS:

`#C found with Paul Chapman's Seeds of Destruction Gamex = 40, y = 34, rule = B3/S2338bo\$37bo\$37b3o2\$23bo\$24b2o\$23b2o3\$13b2o\$10b3ob2o\$10b5o3bobo\$11b3o5b2o\$19bo2\$31bo\$30bobo\$30bobo3b2o\$31bo3bo2bo\$35b2o2bo\$33b2o2b2o\$33bo2bo\$12b2o21b2o\$11bobo\$13bo3\$22b2o\$21bobo\$23bo2\$b2o\$obo\$2bo!`

dvgrn
Moderator

Posts: 4249
Joined: May 17th, 2009, 11:00 pm

### Re: 17-bit SL Syntheses

dvgrn wrote:Looks like there are ways to reduce the construction cost by at least one MWSS:

Nice! This is also the unaltered put-pre-block mechanism I have used in many other syntheses (that, in this case, interferes with the still-life in such a way that it just happens to obviate the other spark that would otherwise be necessary). I will have to look at all the other syntheses to see how many can benefit from this improvement! (the downside is the mixed blessing in all such improvements - I will have to look at many syntheses!)
mniemiec

Posts: 877
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

mniemiec wrote:Nice! This is also the unaltered put-pre-block mechanism I have used in many other syntheses...

This particular variant takes advantage of the extra blinker in the southwest, so it may not be generally useful. But there are quite a few other gliders, from three different directions, that do basically the same thing. Here are two variants that tighten up the post-construction sparks, and one of them doesn't affect the blinker:

`x = 64, y = 22, rule = B3/S2348bo\$47bo\$47b3o\$16bo39bo\$16bobo37bobo\$6b3o7b2o28b3o7b2o\$5b5o35b5o\$5b3ob2obobo30b3ob2obobo\$8b2o3b2o33b2o3b2o\$13bo39bo3\$15bo39bo\$2o6bo5bobo31bo5bobo\$b2o6b2o3bobo3b2o27b2o3bobo3b2o\$o7b2o5bo3bo2bo25b2o5bo3bo2bo\$19b2o2bo35b2o2bo\$17b2o2b2o34b2o2b2o\$17bo2bo36bo2bo\$11b3o5b2o30b3o5b2o\$13bo39bo\$12bo39bo!`

Most of the other reactions that I saw left a little more junk behind. But I'm just looking around manually using the SODGame, which is not really designed for this kind of thing -- e.g., I can only check two out of four glider phases at a time (!) So there could still be a lucky single glider that cleans up everything.

Synthesizing #227 takes out another row in the index table -- and if you've done about a third of #350, that's a significant milestone: 90% of the original 297 17-bit still lifes are now solved.

dvgrn
Moderator

Posts: 4249
Joined: May 17th, 2009, 11:00 pm

### Re: 17-bit SL Syntheses

dvgrn wrote:So there could still be a lucky single glider that cleans up everything.

Hey, wait a minute! What's wrong with this option for #227?

`x = 19, y = 19, rule = B3/S237bobo\$8b2o\$8bo3\$10bo\$3bo5bobo\$4b2o3bobo3b2o\$3b2o5bo3bo2bo\$14b2o2bo\$12b2o2b2o\$12bo2bo\$6b3o5b2o\$8bo\$7bo2\$3o\$2bo\$bo!`

dvgrn
Moderator

Posts: 4249
Joined: May 17th, 2009, 11:00 pm

### Re: 17-bit SL Syntheses

dvgrn wrote:Most of the other reactions that I saw left a little more junk behind. But I'm just looking around manually using the SODGame, which is not really designed for this kind of thing -- e.g., I can only check two out of four glider phases at a time (!) So there could still be a lucky single glider that cleans up everything.

I typically solve that problem by moving the whole pattern back four generations to start, and then forward two to get the other two phases of glider.

EDIT: #136 from a trivial variant of #181 (which is already solved):
`x = 831, y = 55, rule = B3/S23266bobo\$266b2o\$267bo\$632bo\$633bo\$631b3o2\$258bo\$209bo46bobo\$210bo46b2o400bo\$208b3o439bobo6bobo\$100bo156bo392b2o7b2o\$101bo143bobo9b2o392bo\$99b3o85bo18bo39b2o8bobo\$150bo35bo20b2o37bo\$39bo111b2o33b3o17b2o20bo126bo285b3o\$37bobo110b2o32bo42bo127bobo308bo\$38b2o117bo27bo23b2o7bo8b3o125b2o48bo227bo30b2o\$157bobo23b3o22bobo2b2ob2o129bobo24bo28bobo228b2o16b2o11b2o\$157b2o51bo2b2o2b2o129b2o22b2o30b2o227b2o6b2o3bo4bobo\$161bo60bobo123bo24b2o254b2o9bobo2bobo3bo\$161bobo58b2o121bo282bobo10bo4b2o2b2o\$bo33bo28bo4bo29bo4bo20bo21bo13b2o19bo6b2o20bo6b2o3bo39bo79bobo28bo255bo6bo57b2o19b2o28b2o26b2o28b2o19b2o\$obo2b2o27bobo2b2o6b2o14bobo2bobo27bobo2bobo19bobo18bobo2b2o2bo25bobo2b2o2bo19bobo2b2o2bo42bobo2b2o28b2o23b2o20b2o9b2o17b2o3b2o2b2o29b2o2b2o16b2o19b2o21b2o44b2o22b2o15b2o26b2o41bo11b2o42bo2bo17bo2bo26bo2bo24bo2bo26bo2bo17bo2bo\$bo2bobo28bo2bobo6bobo14bo2bob2o4bo23bo2bob2o19b2o20bo2bob4o26bo2bob3o21bo2bob3o44bo2bob3o22bo2bob3o17bo2bob3o15bo9bo2bob3o14bobo3bo2bob3o27bo2bob3o13bob3o16bob3o18bob3o41bob3o19bob3o12bob3o23bob3o37b3o10bob3o41bob3o16bob3o25bob3o7bobo13bob3o25bob3o16bob3o\$2b3o31b3o8bo17b3o7bobo22b3o17bo27b3o32b3o26b3o7bo41b3o4bo21b4o4bo16b4o4bo14b2o8b4o4bo20b3o4bo27b3o4bo10b3o4bo13b3o4bo15b3o4bo27bo10b3o4bo16b3o4bo9b3o4bo20b3o4bo47b3o4bo39b2o4bo14b2o4bo23b2o4bo6b2o13b2o4bo23b2o4bo14b2o4bo\$6bo33bo28b2o4b2o27b2o13b2o31b4o31b3o26b3o3bobo43b3o27b3o22b3o14bobo13b3o25b3o17bo4b2o8b3o10bo4b3o13bo4b3o15bo4b3o4bo22bo10bo4b3o16bo4b3o9bo4b3o20bo4b3o14bobobo28bo4b3o6b3o4b2o28b3o14bo3b3o23bo3b3o8bo12bo3b3o17bo5bo3b3o15bo2b3o\$4b3o31b3o26b2obo31b2obo13bobo28b3o2bo29b3o2bo23b3o2bo2b2o42b3o26b4o21b4o29b4o23b5o20bo2bobo4b5o12b6o15b6o17b6o6bobo13b2o5b3o8b6o18b6o11b6o22b6o49b6o8bo5b2o26b4o17b4o26b4o24b4o20b2o4b4o19b2o\$3bo33bo28bo2bo5bo25bo2bo4b2o38bo11b2o21bo4b2o22bo4b2o45bo29bo24bo24bobo5bo26bo22b3o3bo5bo72b2o13bobo155bo6bo21bo2bo102b2o\$3b2o4b2ob2o23b2o4b2ob2o18b2o6b2o25b2o5bo2bo37b2o10bobo20b2o27b2o10b2o38b2o29bo24bo24b2o6b3o14bo11b2o33b2o12b2o2b2o15b2o2b2o17b2o2b2o23bo16b6o16b8o13b4o7bo16b2o53b2o38bobo2bobo19b2o20bo7b2o28b2o28b2o\$8bobobobo28b2ob2o26bobo31bo2bo49bo62b2o69b2o25bo3bobo17bo9bo14b2o10b2o33b2o12b2o2b2o15b2o2bobo15bobo2bobo29b3o6bo2bo2bo15bo4bo2bo13bo2bo7bobo14b2o53b2o39b2o3b2o19b2o18bobo7bobo27b2o18bo8bobo\$10bobo76bo19b2o46b2o67bo94b2o3b2o42bobo27b3o4bo50bo17bo4bo30bo8b2o20bobo30b2o54b2o102b2o8bo47b2o9bo\$87bobo14b2o51bobo142bobo22bo19b2o53bo5b2o30bo9bo62bo30b2o87b2o55b2o102bobo\$34bo15b2o17b2o17b2o3bo9bo2bo50bo144b2o42b2o53bo5b2o26b2o2b2o9b2o2b2o117b3o56bo56bobo28bo17b3o30bo41b2o\$35b2o13bobo11b3ob2o24bo8bo2bo14b2o27b2o151bo24b3o17bo87b2obobo7bobob2o17bo69b2o29bo117bo21b2o4b2o19bo30b2o4b2o34bobo\$34b2o14bo15bo3bo21b3o9b2o14b2o6b2o21b2o163b3o9bo25bo59b2o19bo19bo16b2o11b3o53bobo30bo139b2o3bobo17bo14b3o13bobo3b2o35bo\$65bo56bo5bobo19bo137b3o12b2o13bo4b2o4bo23b2o54b3ob2o56bobo11bo57bo169bo40bo23bo\$41b2o50bo34bo161bo12bobo11bo6b2o27bobo55bo3bo20b2o15b2o24b3o4bo268bo51b3o\$36b3ob2o51b2o161b2o31bo9bo3bo19bo86bo25bobo13bobo19b3o2bo79b2o11bo143b2o22b2o32b2o31bo\$38bo3bo49bobo162b2o40b2o135bo17bo19bo5bo77bobo10b2o143bobo20bobo31bobo32bo\$37bo218bo41bobo174bo84bo10bobo142bo24bo33bo12b3o\$271b2o517bo\$270b2o211b3o76bo226bo\$272bo210bo78b2o\$484bo76bobo\$109b3o\$109bo\$110bo2\$97b2o\$98b2o\$97bo\$111b2o\$110b2o\$112bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1669
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:I typically solve that problem by moving the whole pattern back four generations to start, and then forward two to get the other two phases of glider.

That's basically what I did, using the glider rewinder (which rewinds blinkers and *WSS with no trouble, too). Just finally got around to assigning a keyboard shortcut to that script -- I'm making a New Year's resolution to be more efficient about this kind of thing.

Extrementhusiast wrote:#136 from a trivial variant of #181 (which is already solved):

Ah, good -- now we're safely above the 90%-complete mark for the indexed 17-bitters, without any of my questionable fractional math. Looks like the last 10% will be quite a challenge...!

dvgrn
Moderator

Posts: 4249
Joined: May 17th, 2009, 11:00 pm

### Re: 17-bit SL Syntheses

Possible predecessor for #243:
`x = 33, y = 25, rule = B3/S2314bobo5bo\$15b2o3b2o\$15bo5b2o2\$8bo11bo\$9b2o10bo\$8b2o9b3o\$3bo\$4b2o\$3b2o8b2o12bo\$13b2o12bobo\$9b2o8b2o6b2o\$9b2o2b4obobo\$2o3bo7bo2bobo\$b2o3b2o6b2o2bo\$o4b2o4b3o2b2o\$11bo2bo15b2o\$12b2o10b2o4bobo\$24bobo3bo\$24bo2\$6b2o\$7b2o7b3o\$6bo9bo\$17bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1669
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#281 from 86 gliders, based on #237 (and thus also one of the three remaining unsolved 22-bit molds):
`x = 176, y = 82, rule = B3/S2358bo\$57bo\$57b3o\$55bo\$53bobo\$54boo7bobo\$63boo\$64bo3\$45bo\$43bobo52bobo39bo\$44boo53boo40bo\$o98bo39b3o\$boo3bo\$oobboo37bobo76boo18boo\$5boo37boo29boo28boo15boo18boo\$44bo30bobo21bo5bobo18boo18boo18boo\$13bo11boo6bo21boo6bo13bo5bo16boo5bo5bo13bo5bo13bo5bo13bo5bo\$bbobobboboobobo11bobboobobo21bobboobobo11booboobobo14boo5booboobobo12boboobobo12boboobobo12boboobobo\$3boobboobobobbo10bobobobobbo20bobobobobbo9bobbobobobbo19bobbobobobbo12bobobobbo12bobobobbo12bobobobbo\$3bo8b3o12bo4b3o22bo4b3o11boo4b3o21boo4b3o17b3o17b3o17b3o\$11bo19bo29bo19bo29bo19bo19bo19bo\$4b3o4boo18boo28boo18boo12b3o13boo18boo18boo18boo\$4bo92bo\$5bo90bo\$\$101bobo\$102boobboo\$102bobboo\$107bo\$\$47b3o\$49bo\$48bo15\$138bobo\$139boo\$139bo\$142bo\$142bobo\$142boo\$\$141bo\$96boo18boo24bo3boo\$97bo5bo13bo5bo16b3o4bo5bo19bo\$97boboobobo12boboobobo22boboobobo14boobobo\$98bobobobbo12bobobobbo22bobobobbo14bobobbo\$102b3o17b3o15bobbo8b3o14bobb3o\$101bo19bo22bo6bo17bobo\$101boo17bobo17bo3bo5bobo17bobo\$121bo19b4o6bo19bo4\$147boo\$97bo43b3o3bobo\$95bobobbo42bo3bo\$96boobbobo39bo\$100boo7\$94bo\$94boo\$93bobo!`

The same final step also gives us #342 from 29 gliders:
`x = 168, y = 69, rule = B3/S2328bo\$27bo\$27b3o\$\$135bo\$134bo\$134b3o\$\$131bobo\$132boo5bo\$132bo6bobo\$139boo\$\$43bo19bo19bo19bo19bo9bobo7bo14boo3bo\$oobboo37b3o17b3o6bo10b3o17b3o17b3o8boo7b3o13bo3b3o\$boobobo34boo3bo14boo3bo4bo9boo3bo14boo3bo14boo3bo7bo6boo3bo12boboo3bo\$o3bo35bobobboo13bobobboo4b3o6bobobbobo12bobobbobo12bobobbobo12bobobbobo12bobobbobo\$41bo19bo19bo4bo7boo5bo4bo13bo5bo13bo5bo19bo\$95boo22boo18boo\$69bo24bo\$68boo20boo\$68bobo20boobboo6boo30boo\$90bo4bobo4boo30bobo\$65b3o27bo8bo31bo5boo\$67bo74bobo\$66bo75bo\$\$136boo\$137boo\$30boo104bo\$29boo\$31bo14\$130bobo\$131boo\$131bo\$134bo\$134bobo\$134boo\$\$133bo\$48boo3bo14boo3bo14boo3bo14boo3bo20bo3boo3bo19bo\$49bo3b3o13bo3b3o13bo3b3o13bo3b3o16b3o4bo3b3o17b3o\$49boboo3bo12boboo3bo12boboo3bo12boboo3bo22boboo3bo14boo3bo\$50bobobbobo12bobobbobo12bobobbobo12bobobbobo22bobobbobo14bobbobo\$56bo19bo19bo19bo15bobbo10bo14bo4bo\$113bo22bo6bo17bobo\$112bobo17bo3bo5bobo17bobo\$113bo19b4o6bo19bo3\$96boo\$71boo18boobboo42boo\$51boo17bobbo16bobbo3bo35b3o3bobo\$52boob3o12bobbo16bobbo41bo3bo\$51bo3bo15boo18boo41bo\$56bo!`

This might also be useful for #142, although it would likely take a lot more work.

All of these could be done much more cheaply if a way were found to do this from the snake, without having to convert it into a hook-w/tail.
mniemiec

Posts: 877
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

This removes the dependency of #268 on #187, via a method like that of #260 and #336:
`x = 27, y = 32, rule = B3/S2316bobo\$16b2o\$17bo\$11bobo\$12b2o\$12bo3\$14bo\$13bobo\$2bo11b2o\$obo5bo15b3o\$b2o6b2o3b2o2b2obo2bo\$4b2o2b2o4bo3bob2o3bo\$3bobo9b3o\$5bo10bo\$16bo\$15b3o\$14bo3bo\$14b2ob2o4\$12b3o3b3o\$14bo3bo\$13bo5bo4\$7b3o\$9bo\$8bo!`

However, I think #187 can be solved in a similar way.

Also, that RLE zip really needs to be updated.

EDIT: Looking back through my old posts, I found this excellent predecessor for #279:
`x = 8, y = 7, rule = B3/S233bo\$2bobo\$2bobo\$b2ob2o\$o2bo3bo\$bobo3bo\$2bo2bo!`

EDIT 2: And the synthesis for that step:
`x = 29, y = 29, rule = B3/S2326bo\$26bobo\$26b2o\$9bo\$8bobo\$8bobo\$7b2ob2o14b2o\$6bo2bo15b2o\$7bobo17bo\$8bo14b2o\$22bobo\$24bo10\$2o20b2o\$b2o19bobo\$o21bo2\$16b2o\$16bobo3b2o\$16bo5bobo\$22bo!`

Also, I found that spark I was looking for:
`x = 13, y = 8, rule = B3/S235bo\$4bo\$4b3o\$2bo\$obo\$b2o7bobo\$10b2o\$11bo!`

...which improves this step in #143, and probably several others:
`x = 29, y = 26, rule = B3/S232bo\$obo\$b2o\$16bo\$14b2o\$15b2o\$23bo\$21b2o\$22b2o4\$26bo\$26bobo\$26b2o\$6b2ob2o\$5bobobobo11b3o\$5bo5bo11bo\$6b5o13bo2\$6b2ob2o\$7bobo2b2o\$7bo2bobo\$8bobobo\$9bobo\$10bo!`

EDIT 3: #187, again using the same general method:
`x = 152, y = 42, rule = B3/S2365b2o\$65b3o\$64bob2o\$64b3o\$65bo6\$81bo\$63bobo13b2o\$64b2o14b2o\$64bo\$43bo\$41bobo\$8bo33b2o\$8bobo34bo85bo\$8b2o35bobo26b2o53b2o\$45b2o13bo12bo2bo53b2o\$5bo52bobo13b2o\$3bobo6bo27bo18b2o9bo31b2o17bobo3b2o\$4b2o5bobo25bobo27bobo22bo8bo18b2o4bo\$10bobo25bobo20b3o4bobo21bobo7bo19bo4bo\$10bo9b2o16bo24bo4bo24b2o7b2o23b2o17b2o\$5b2o4bo8bobo16bo22bo6bo26b2o6bo17b2o5bo15bo2bo\$5b2o3b2o2b2obo2bo17b2o2b2o24b2o2b2o21bobo4b2o2b2o14b2o3b2o2b2o11bob2o2b2o\$10bo3bob2o19bo5bo23bo5bo23bo3bo5bo18bo5bo12bo5bo\$11b3o24b5o25b5o29b5o20b5o14b5o\$2o3b2o5bo27bo16bo12bo33bo24bo18bo\$b2obobo5bo44b2o\$o3b2o5b3o42bobo\$10bo3bo\$10b2ob2o\$64b3o\$64bo\$9b2o3b2o49bo\$8bobo3bobo38b3o\$10bo3bo42bo\$2b3o51bo\$4bo\$3bo!`

EDIT 4: #110 from a 15-bitter:
`x = 26, y = 13, rule = B3/S235bo\$6bo\$4b3o3bob2o\$9bob2obo\$9bo5bo\$10b5o\$5b2o5bo8bo\$5bobo9bo2bo\$5bo6bo3b2o2b3o\$2o9b2o3bobo\$b2o8bobo9b3o\$o22bo\$24bo!`

EDIT 5: #244 can be trivially derived from #245:
`x = 79, y = 16, rule = B3/S234b2o25b2o20b2o15b2o\$4bo2b2o22bo2b2o17bo2b2o12bo2b2o\$5b2o2bob2o19b2o2bob2o14b2o2bob2o9b2o2bob2o\$6bo2b2obo20bo2b2obo15bo2b2obo10bo2b2obo\$4bo27bo21bo16bo\$4b2o25bo21bo17b2o\$o29bo22b2o\$b2o27b2o\$2o56bo\$35bo13b2o6b2o\$2bo23b2o6b2o12bobo6bobo\$2b2o21bobo6bobo13bo\$bobo23bo26b3o\$31b3o22bo\$33bo21bo\$32bo!`

EDIT 6: Possible method for #196:
`x = 121, y = 20, rule = B3/S236bobo43bo19bo\$7b2o42bo21bo\$7bo42bo23bo\$50bo23bo\$16b2o16b2o13bo9b2o2b2o10bo19b2o2b2o13bo2b2o\$17bo17bo13bo8bobo3bo10bo18bo2bo2bo12bobo2bo\$11b2o3bo13b2o2bo14bo9b2o2bo11bo18bob2obo14b2obo\$5bo4bobo2bob3o10bo2bob3o11bo9bo2bob3o8bo19bo2bob3o13bob3o\$6bo4bo3bo3bo11bobo3bo11bo10bobo3bo8bo14bobo3bobo3bo13bo3bo\$4b3o7b2o16b2o15bo11b2o12bo15b2o4b2o16b2o\$3o46bo25bo15bo\$2bo47bo23bo\$bo48bo23bo16b2o\$8b3o40bo21bo16bobo\$10bo41bo19bo19bo\$9bo73b2o\$82bobo\$14b2o68bo\$14bobo\$14bo!`

EDIT 7: #243 from #244 (which is itself from #245):
`x = 46, y = 37, rule = B3/S233bo36bo\$4b2o33bo\$3b2o34b3o5\$19b2o\$19bo2b2o\$20b2o2bob2o\$21bo2b2obo\$15b2o3bo\$15bobo2b2o8b2o\$17bo11bo2bo\$17b2o4b2o4bo2bo\$23bobo4b2o\$24b2o\$10bo\$2o6bobo\$b2o6b2o3bo9b2o\$o14bo7bobo\$13b3o8bo19bo\$43b2o\$43bobo2\$14bo\$14b2o\$13bobo2\$42b2o\$37b2o2b2o\$29b3o5bobo3bo\$29bo7bo\$30bo\$12b3o\$14bo\$13bo!`

EDIT 8: This actually solves #196:
`x = 33, y = 34, rule = B3/S23obo\$b2o6bo9bo\$bo8b2o7bobo\$9b2o8b2o3\$bo\$2b2o23bobo\$b2o17b2o5b2o\$20bobo5bo\$21bo2\$14bo2bo\$14b4o2b2o\$5b3o13bo9bo\$7bo8b2o2bo9b2o\$6bo5b2o2bo2bob3o6bobo\$11bobo3bobo3bo\$11bo6b2o\$10b2o5\$4bo15bo\$4b2o13b2o\$3bobo13bobo\$14b2o\$13b2o\$15bo2\$6b2o\$7b2o\$6bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1669
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementusiast wrote:This removes the dependency of #268 on #187, via a method like that of #260 and #336:

Extrementusiast wrote:#187, again using the same general method:

I can get to the spark-coil with eater, but I'm not sure how to get from the eater to the snake, as the usual method involves a glider passing through the other half of the spark coil.

It might also be possible to somehow get to #244 by adapting the synthesis of 20.5655:
`x = 122, y = 22, rule = B3/S2379bo16bo\$10bo69bo14bo\$9bo68b3o14b3o\$9b3o\$7bo106b2o4b2o\$8bo66b3o20b3o13bo2b2o2bo\$6b3o18b2o18b2o18b2o8bo3b3o3b2o3b3o3bo16b2o2b2o\$bo12bo12b2o18b2o18b2o7bo6bo3b2o3bo6bo16bo2bo\$2bo10bo68bo10bo20bo6bo\$3o10b3o9bo4bo14bo4bo14bo4bo14bo4bo23b2o4b2o\$24bobo2bobo12bobo2bobo12bobo2bobo12bobo2bobo\$3b3o4b3o11bobo2bobo12bobo2bobo12bobo2bobo12bobo2bobo\$5bo4bo14bo4bo14bo4bo14bo4bo14bo4bo\$4bo6bo68b2o12b2o\$40bo40b2o10b2o\$41bo38bo14bo\$39b3o22bo19bo\$63bobo17bobo4b2o\$42b3o18bobo17bobo5b2o\$44bo19bo14b3o2bo5bo\$43bo37bo\$80bo!`

One glider can be saved in #193 (and similar syntheses) by clipping the carrier directly, rather than first turning it into a very long snake (5 gliders new way, 6 gliders old way):
`x = 129, y = 18, rule = B3/S2314boo18boo18boo18boo28boo18boo\$bbo11bobo17bobo17bobo17bobo15bo11bobo17bobo\$obo5bo7bo19bo19bo19bo13bobo5bo7bo19bo\$boo6boo4boboo16boboo16boboo16boboo12boo6boo4boboo16boboo\$4boobboo5bobbo16bobbo16bobbo16bobbo15boobboo5bobbo16bobbo\$3bobo8boobo16boobo16boobo16boobo15bobo8boobo16boobo\$5bo10bo16bobbo19bo19bo18bo10bo16bobbo\$14boo18boo18boo18boo28boo18boo\$14bo39bo19bo29bo\$16bo39bo18bo29bo\$15boo38boo19bo29bo\$10bo49bo16bo29bo\$10boo46boo16boo22boo4boo\$9bobo7boo38boo40boo\$19bobo78bo\$19bo38bo\$57boo\$57bobo!`

Slightly altering the synthesis for #193 gives us #248 from 35 gliders:
`x = 149, y = 114, rule = B3/S2378bo\$78bobo\$53bo24boo\$51bobo\$52boo29bobo\$83boo\$84bo\$51bo\$52boo\$51boo5\$36boo28boo\$15boo18bobbo26bobbo\$14bobo19boo28boo\$16bo\$18boo\$18bobo63bo3boo\$18bo65boobbobo\$83bobobbo12bo19bo19bo\$100bobo17bobo17bobo\$99bobbo16bobbo16bobbo\$100booboo15booboo15booboo\$101bobo17bobo17bobo\$101bobo17bobo17bobo\$102bo19bo19bo4\$71bobo\$53b3o16boo\$55bo16bo\$54bo\$72boo29boo18boo\$71bobo29boo18boo\$73bo\$125boo\$125bobo\$125bo7\$27bobo\$5bo21boo\$6boo20bo\$5boo3\$4bo\$bbobo121bo\$3boo122boo\$126boo\$130bobo\$130boo\$37bo93bo\$36bo\$21bo14b3o11boo28boo18boo18boo18boo\$20bobo27bobo15bo11bobo17bobo17bobo17bobo3b3o\$19bobbo29bo13bobo5bo7bo19bo19bo19bo\$20booboo26boboo12boo6boo4boboo16boboo16boboo16boboo\$21bobo27bobo16boobboo5bobo17bobo17bobo17bobo\$21bobo26boobo15bobo8boobo16boobo16boobo16boobo\$22bo29bo18bo10bo16bobbo16bobbo16bobbo\$50boo28boo18boo18boo18boo\$50bo29bo\$52bo29bo\$51boo28boo\$76bo\$76boo\$75bobo7boo\$85bobo\$3o3b3o76bo\$bbo5bo\$bo5bo3\$20bobo\$20boo\$21bo\$13bo\$14boo4boo\$13boo5bobo\$20bo4\$37bo11bo\$38boo8bo\$37boo9b3o\$41bobo\$41boo\$42bo5\$30boo28boo18boo18boo18boo18boo\$30bobo3b3o21bobobboobo11bobobboobo11bobobboobo11bobobboobo11bobobboobo\$32bo29bobboboo13bobboboo13bobboboo13bobboboo13bobboboo\$31boboo26boboo16boboo16boboo16boboo16boboo\$31bobo27bobo17bobo17bobo17bobo17bo\$30boobo26boobo16boobo16boobo16boobo16boo\$29bobbo19boo5bobbo16bobbo6bo9bobbo3bo12bobbo3bo\$30boo20bobo5boo18boo6bo11boo3bobo12boo3bobo\$52bo32boob3o13bobbo16bobbo\$48boo34bobo18boo8boo8boo\$48bobo35bo29boo10b3o\$48bo66bo12bo\$129bo!`
mniemiec

Posts: 877
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

mniemiec wrote:
Extrementhusiast wrote:This removes the dependency of #268 on #187, via a method like that of #260 and #336:

Extrementhusiast wrote:#187, again using the same general method:

I can get to the spark-coil with eater, but I'm not sure how to get from the eater to the snake, as the usual method involves a glider passing through the other half of the spark coil.

Then use the eater:
`x = 29, y = 66, rule = B3/S2316bobo\$16b2o\$17bo\$11bobo\$12b2o\$12bo3\$14bo\$13bobo8bo\$2bo11b2o8bobo\$obo5bo15b2o\$b2o6b2o3b2o2b2o\$4b2o2b2o4bo3bobo\$3bobo9b3o2bo\$5bo10bo3b2o4b3o\$16bo9bo\$15b3o9bo\$14bo3bo\$14b2ob2o4\$12b3o3b3o\$14bo3bo\$13bo5bo4\$7b3o\$9bo\$8bo9\$12bo\$12bobo\$12b2o2\$9bo\$7bobo6bo\$8b2o5bobo\$14bobo7bo\$14bo8bo\$9b2o4bo7b3o\$9b2o3b2o2b2o\$14bo3bobo\$15b3o2bo5b2o\$4b2o3b2o5bo3b2o4bobo\$5b2obobo5bo9bo\$4bo3b2o5b3o\$14bo3bo\$14b2ob2o3\$13b2o3b2o\$12bobo3bobo\$14bo3bo\$6b3o\$8bo\$7bo!`

EDIT:
mniemiec wrote:It might also be possible to somehow get to #244 by adapting the synthesis of 20.5655:
`x = 122, y = 22, rule = B3/S2379bo16bo\$10bo69bo14bo\$9bo68b3o14b3o\$9b3o\$7bo106b2o4b2o\$8bo66b3o20b3o13bo2b2o2bo\$6b3o18b2o18b2o18b2o8bo3b3o3b2o3b3o3bo16b2o2b2o\$bo12bo12b2o18b2o18b2o7bo6bo3b2o3bo6bo16bo2bo\$2bo10bo68bo10bo20bo6bo\$3o10b3o9bo4bo14bo4bo14bo4bo14bo4bo23b2o4b2o\$24bobo2bobo12bobo2bobo12bobo2bobo12bobo2bobo\$3b3o4b3o11bobo2bobo12bobo2bobo12bobo2bobo12bobo2bobo\$5bo4bo14bo4bo14bo4bo14bo4bo14bo4bo\$4bo6bo68b2o12b2o\$40bo40b2o10b2o\$41bo38bo14bo\$39b3o22bo19bo\$63bobo17bobo4b2o\$42b3o18bobo17bobo5b2o\$44bo19bo14b3o2bo5bo\$43bo37bo\$80bo!`

Sure enough:
`x = 68, y = 35, rule = B3/S234bo\$5bo8bobo\$3b3o9b2o9bo\$15bo8b2o\$25b2o2\$44bo\$35b2o7bobo3bo8b2o\$35bo2b2o4b2o4bobo6bo2b2o2b2o\$15b2o19b2o2bo9b2o8b2o2bo2bo\$15b2o20bo2bo6b2o12bo2b2o\$3o32bo5b2o4bobo9bo\$2bo3b3o4bo21b2o5bo4bo11b2o\$bo6bo3bobo3b2o22bobo\$7bo4bobo2bobo19bo3b2o\$13bo4bo20b2o\$38bobo2\$25b2o\$5b2o5bo5b2o5bobo\$6b2o3bobo4bobo4bo\$5bo5bobo4bo\$12bo2\$18b3o\$4b3o11bo2bo\$6bo11bo\$5bo12bo\$19bobo4\$26b2o\$26bobo\$26bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1669
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

By slightly altering the key step for #248, we can start from #305 and get #365 from 53 gliders:
`x = 106, y = 39, rule = B3/S235bobo\$6boo\$6bo\$\$4bo\$bbobo\$3boo4\$37bo\$36bo\$24boo10b3o15boo28boo18boo\$19boobbobo27bobo12bo14bobo17bobo\$19bobbo29bo13bobo5bo7bo19bo\$20booboo26boboo12boo6boo4boboo16boboo\$21bobbo26bobbo15boobboo5bobbo16bobbo\$21bobo26boobo15bobo8boobo16boobo\$22bo29bo18bo10bo16bobbo\$50boo28boo18boo\$50bo29bo\$52bo29bo\$51boo28boo\$76bo\$76boo\$75bobo7boo\$85bobo\$3o3b3o76bo\$bbo5bo\$bo5bo3\$20bobo\$20boo\$21bo\$13bo\$14boo4boo\$13boo5bobo\$20bo!`
mniemiec

Posts: 877
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

#120 from a trivial variant of #329:
`x = 545, y = 34, rule = B3/S23383bo14bo\$383bobo13bo97bo\$383b2o12b3o96bo\$496b3o\$254bobo22bobo98bo105bo\$191bobo60b2o23b2o25bo72b2o105bobo\$113bo77b2o62bo24bo3bo20bo38bo34bobo104b2o\$111b2o48bo30bo48bo42bobo18b3o37b2o\$76bo35b2o45bobo77bobo42b2o17bo40b2o31b2o\$75bo33bo50b2o3bo44bo29b2o3bobo53bobo72bobo102bo\$53bo21b3o29b2o54b2o23b2o7bo13bo34b2o54b2o74bo48b2o27b2o15b2o4bobo5b2o\$52bo20bo34b2o54b2o22bobo4b2o12b3o29bo4bo27b2o74b2o36b3o36bo28bo15b4o4b2o5bo\$52b3o19bo115bo5b2o28b2o12bobo10b2o18bobo30b2o28bo12bo2bo27b2o6bo39bo28bo14b2ob2o11bo18b2o\$26bo45b3o26b2o78bobo6b2o7b2o11b3o11bo2bo10bobo10bo2bo16bo4bo5bobo19bo2bo27bo12b3o27b2o7bo37b2o27b2o16b2o11b2o19b2o2bo\$4bo15bo4bo75b2o79b2o15bobo12bo12b3o11bo12b3o17b5o5b2o21b3o25b3o4bobo14bobo80bo64bo4bobo\$5bo12bobo4b3o27bo121b2o3bo16bo13bo71bo57b2o5b3o6b2o17b4o43b4o11bobo11b4o27b4o23b2o6b2o19b2o\$3b3o13b2o19b2ob2o9b2o11b2ob2o23b2ob2o34b2ob2o10bobo9b2ob2o12b2o7b2ob2o33b3o12b2o10b3o19b3o30b3o33bo5bobobo6bo16bo2bobo31b2o2b2o4bo2bobo11b2o7b2obo2bobo22b2obo2bobo26b2o2bobo12bob2o2bobo\$41bobobo8bobo11bobobo17bo5bobobo5bo28bobobo9b2o11bobobo10bo10bobobo31bobobo10bobo9bobobo17bobobo9bo18bobobo27b3o8bo4bo22bo5bo29bobob2o5bo5bo13b2o4b2obo5bo16b2o3b2obo5bo24bobo5bo11b2obo5bo\$b2o38bo2bo23bo3bo15bobo5bo3bo5bobo26bo4bo9bo11bo4bo20bo4bo30bo4bo11bo9bo4bo16bo4bo8bobo16bo4bo28bo9b4o7b2o15b5o32bo3bo5b5o13bobo8b5o17b2o7b5o24bo3b5o16b5o\$obo17b3o2b2o15b2o25b3o17b2o6b3o6b2o28b4o23b4o22b4o32b4o23b4o18b4o9b2o18b4o28bo20b2o18bo46bo17bo10bo30bo25bo6bo20bo\$2bo21b2o25b3o127b2o169b2o8bo150b2o\$26bo24bo76bo7b2o27b2o15b2o7b2o34b2o25b2o20b2o8bo22b2o41b2o2b2o121b2o\$52bo16b3o25b3o13bo12bobo7bobo26b2o14bo9b2o34b2o25b2o20b2o7b2o22b2o45b2o121bobo2b2o29bo\$68bo3bo23bo3bo12bobo11b2o8bo47b2o98bobo191bo4bobo28b2o\$68b2ob2o23b2ob2o8b2o2b2o62b3o5bobo288b2o6bo29bobo\$108b2o6b2o11b3o47bo5bo163bo12b2o111bobo\$110bo5bobo12bo46bo170b2o4b2o4b2o114bo\$39b2o75bo13bo14b3o200bobo5b2o5bo\$38bobo104bo209bo\$40bo64b2o39bo\$94b2o9bobo23b2o\$45b2o48b2o8bo24bobo\$45bobo46bo37bo\$45bo!`

However, there is the possibility of using this predecessor to dramatically reduce the cost:
`x = 17, y = 11, rule = B3/S2314bo\$12b2o\$14bo\$6bo4bo3bo\$4bo2bo2b3o2b2o\$o3b3o2b2obo3bo\$10b2o\$b2o\$b3o10b2o\$2b2o8b2o\$12bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1669
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

This brings us down to just 17 more to go (plus 5 additional trivial variants formed by adding a snake-to-carrier conversion).
mniemiec

Posts: 877
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

mniemiec wrote:This brings us down to just 17 more to go (plus 5 additional trivial variants formed by adding a snake-to-carrier conversion).

Since we have so few left, I've decided to compress the table, by removing all empty rows.

EDIT: #218 from a 12-bitter:
`x = 148, y = 33, rule = B3/S2372bobo\$73b2o4bobo\$73bo6b2o\$75bo4bo36bo\$50bo24b2o11bo29b2o\$5bobo6bo33bobo23bobo10bo29b2o4bo\$6b2o4b2o35b2o3bo32b3o31bobo5bo\$6bo6b2o37b2o13b2o10b2o13b2o26b2o3b2o\$53b2o13b2o9bobo11b2ob2o30b2o\$67bo13bo12b4o22bo\$obo78b2o12b2o22bobo\$2o72bo45b2o18b2o\$bo11bo19b2o21b2o16b2o8b2o25bo10b2o16bo2b2o\$12bobo14b2obo2bo16b2obo2bo14bobo4b2obo2bo22bobo8b2o2bo16b2o2bo\$2b2o7bobobo14bobobobo16bobobobo21bobobobo22b2o2b2o5bobobo16bobobo\$3b2o6bobo2bo11bobobobo2bo15bobobo2bo20bobobo2bo18b2o6b2o4bobo2bo15bobo2bo\$2bo9bo2b2o11b2o3bo2b2o12b2obo2bo2b2o17b2obo2bo2b2o17bobo5bo7bo2b2o16bo2b2o\$50bo2bo24bo2bo26bo\$51b2o26b2o2\$72b3o\$74bo\$33b2o38bo\$32b2o\$34bo2\$29b2o\$28bobo\$30bo\$32b2o\$23b2o7bobo\$22bobo7bo\$24bo!`

EDIT 2: A pretty good partial for #350:
`x = 148, y = 34, rule = B3/S237bo\$8bo\$6b3o\$3bo22bo\$4bo19b2o87bo\$2b3o3bo16b2o84bobo\$9bo102b2o\$7b3o\$88bo28bo\$86b2o22bo6bobo\$11b3o6bo66b2o19bobo6b2o\$18b2o16bo72b2o\$5b2o12b2o16bo\$5bo29b3o89bo\$3bobo33b2o84b2o\$3b2o33bo2bo32b2o31b2o4b2o11b2o12b2o\$7b2ob2o26bobobo31bobo14b2o14bobo3bobo24bobo\$7b2obo23b3o2bo2bo14bobo16bo13bo2bo15bo5bo6bobo17bo\$11b3o22bo5b2o13b2o17b2o12bo2bo15b2o4b2o5b2o18b2o\$14bo20bo9bo12bo20bo11b2o2b3o14bo10bo21b2o\$10bob2obo25bob2obo28bob2obo14bo12bob2obo27bob2o2bo\$10b2obobo6b2o17b2obobo11b2o15b2obobo15bo11b2obobo7b2o18b2obobo\$2o12bo6b2o22bo12bobo18bo32bo7b2o23bo\$b2o20bo34bo63bo\$o80b2o31b2o\$47b3o31b2o31b2o\$47bo\$48bo71b3o\$44b3o73bo\$46bo74bo\$45bo\$113b2o\$114b2o\$113bo!`

However, the eater then needs to be converted into a snake.
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1669
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:A pretty good partial for #350: ... However, the eater then needs to be converted into a snake.

I had tried this approach too - it makes one of the hard 18s, but there's no obvious way to reduce the eater to a snake or even a carrier. One thing that looked more promising is using a hook-w/tail instead of an eater. The beehive-to-loaf converter does attack it, but it might be possible to get this attack to leave a snake and nothing else.
mniemiec

Posts: 877
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

#142 from a 17-bitter not on the list:
`x = 198, y = 35, rule = B3/S23110bo\$110bobo\$95bo14b2o\$95bobo\$95b2o\$85bo20bo22bo\$86b2o16b2o21b2o\$85b2o18b2o13bo7b2o\$121b2o\$62bo57b2o3bo\$36bo7bo18bo3bo27b2o26b2o\$37b2o3bobo3bo12b3ob2o27bo2bo26b2o\$10bo25b2o5b2ob2o18b2o26bo2bo\$10bobo34b2o46b2o\$10b2o3b2o23b2o40bo\$2bobo9bobo22bobo38bobo43b2o\$3b2o9bo2b2o20bo2b2o20bo2b2o12b2o10bo2b2o27bo2bo2b2o17b2obo2b2o14b2obo2b2o12b2obo\$3bo9b2o3bo18b3o3bo18b3o3bo22b3o3bo26bob3o3bo16bo2b2o3bo13bo2b2o3bo11bo2b2o\$12bo2b3o18bo3b3o18bo3b3o15b3o4bo3b3o28bo3b3o12bo5bo3b3o14b2o3b3o2b3o7b2o3b2o\$3o10bobo21b2obo21b2obo19bo5b2obo31b2obo15b2o4b2obo18b2obo4bo11b2obo\$2bo11bo24bo24bo19bo8bo34bo15b2o7bo19bo2bo5bo10bo2bo\$bo4bo32bobo22bobo26bobo32bobo22bobo18b2o18b2o\$7bo32b2o23b2o27b2o33b2o15bo7b2o\$5b3o138b2o\$89b3o53bobo\$89bo62bo\$14b3o4bo68bo61b2o\$14bo5b2o129bobo\$15bo4bobo134b2o\$157bobo\$157bo2\$23b2o\$23bobo\$23bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1669
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Here are some possible predecessors for constructing #170 from the related 16. (This could also be used to turn one side of a house into a tub, although there are already much cheaper ways to do that.)
`x = 32, y = 43, rule = B3/S239b3o\$9b3o\$9b3o\$9b3o\$oobboo3b3o8boobboo\$obobbo3b3o8bobobbo\$bboo5b3o10boo\$obbobo3b3o8bobbobo\$oobboo3bo10boobbobo\$25bo\$4b7o\$bb4oboboo18boo\$bb7o20boo\$7bo\$6bo15\$10bo\$10bo\$10bo\$10bo\$10bo\$oobboo4bo9boobboo4boo\$obobbo4bo9bobobbo4boo\$bboo6bo11boo\$obbobo4bo9bobbobo\$oobboo4boo8boobbobo\$10boo13bo4bo\$4b4o21bobo\$3bo3bob3o17boo\$boo6boobo!`
mniemiec

Posts: 877
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

While messing around with one of the 16-bitters, I found this line:
`x = 432, y = 52, rule = B3/S23294bo\$294bobo\$294b2o2\$275bo\$273bobo\$274b2o97bo\$42bo329bo\$40bobo253bo31bo43b3o\$41b2o253bobo30bo\$296b2o29b3o23bo\$52bo18bo115bo143bo22bo\$52bobo14b2o117bo26bobo112bo21b3o11bo\$10bo32bo8b2o8bo7b2o114b3o12bo14b2o12bo99b3o34bo\$11bo29bobo19b2o135bo15bo12bo135b3o\$9b3o30b2o18b2o3bo121bo10b3o26b3o36bo35bobo62bo\$33bo31b2o122b2o7bo70bo35b2o21bobo37bo\$34b2o30b2o120bobo8bo17bo3bo45b3o35bo23b2o8bo28b3o\$33b2o132bo29b3o18bobobo2b2o46bo55bo7b2o26bo\$16bo119bo29bo49b3o2b2o2b2o44bobo64b2o26bo\$15bo119bo30b3o22b3o78b2o90b3o\$15b3o50b2o22b2o32b2o7b3o22b2o31bo57bo31bo42b2o42b2o4bo28b2o4bo11b2o4bo\$10bo35bo20bo2bo19bo2bo30bo2bo30bo2bo2b2o26bo6bo18bo7bo23bobo29bobo16b2o2b3o19bo3bob2o36bo3bobo21bo6bo3bobo11bo3bobo\$8b3o7b2o24b3o20b3o20b3o31b3o31b3o2b2o34b3o17b2o5b3o21bob3o27bob3o15b2obo21bob3obo2bo34bob3obo22bo5bob3obo11bob3obo\$7bo10bobo22bo21b2o21b2o32b2o32b2o7bo31b2o3bo15b2o4b2o3bo21bo3bo27bo3bo13bo4bo21bo3bo2b2o35bo3bo10bo10b3o6bo3bo13bo3bo\$7bob2o7bo24bob2o18bo2b2o18bo2b2o29bo2b2o29bo2b2o36bo2b2o22bo2b2o24b2o17b2o11b2o43b2o42b2o9b2o22b2o16b2o\$8b2obo24bo7b2o2bo18b2o2bo18b2o2bo29b2o2bo29b2o39b2o25b2o24b2o19b2o9b2o43b2o42b2o11b2o20b2o16b2o\$11bo22bobo10b2o21b2o21b2o32b2o4b2o26bo40bo26bo17bo7bo16bo10bo3bo40bo3bo6b3o11bo4bo13bo3bo26b2o2bo3bo13bo3bo\$8b3o24b2o7b3o20b3o20b3o31b3o5b2o24b3obo36b3obo22b3obo17b2o2b3obo27b3obo40b3obo5bo14bob2o15b3obo25bo2bob3obo11bob3obo\$8bo34bo2bo19bo2bo19bo2bo6bo23bo2bo7bo22bo2bobo35bo2bobo21bo2bobo16b2o2bo2bobo29bobo42bobo6bo11b3o2b2o16bobo27b2obo3bo11bobo3bo\$37b3o4b2o21b2o20b2o7bo24b2o32b2o2bo36b2o2bo12b3o7b2o2bo21b2o2bo31bo4b3o37bo43bo35b2o11bo4b2o\$39bo58b3o116bo26b3o45bo93b2o\$38bo87b2o2b2o2b3o20b2o57bo29bo46bo92bobo11b2o\$20b2o70b3o31b2o2bobobo22b2o86bo44b2o94bo14b2o7bo\$19b2o48b2o21bo8bobo17bo9bo3bo153bobo62bo35b3o7bo8b2o\$21bo48b2o21bo7b2o18b2o34b2o132bo61b2o35bo18bobo\$11b2o31bo24bo3b2o14b3o10bo17bobo34b2o194bobo35bo\$11bobo29b2o27b2o17bo44bo\$b2o8bo31bobo19b2o7bo15bo12b3o29b2o17b3o5b3o242b3o\$obo63b2o35bo18b3o10bobo18bo5bo142b3o2b3o96bo\$2bo62bo38bo17bo32bo7bo141bo4bo97bo\$123bo182bo4bo50b2o46b3o\$12b2o105b3o239bobo46bo\$12bobo106bo241bo47bo\$12bo107bo\$384b2o\$384bobo\$384bo2\$364b2o\$363bobo\$365bo!`

Another, shorter line:
`x = 65, y = 15, rule = B3/S2340bo\$15bo25bo2bo\$13bobo23b3obo\$14b2o2b2o23b3o\$17b2o\$7b2o10bo13b2o4b2o15b2o2bo\$7bo2bob2obo17bo2bobo2bo14bo2bobob2o\$4b2obob2obob2o14b2obob2obob2o11b2obob2obob2o\$4bob2obo2bo17bo2bobo2bo14b2obobo2bo\$o10b2o18b2o4b2o18bo2b2o\$b2o\$2o2b2o20b3o\$4bobo21bob3o\$4bo22bo2bo\$31bo!`

These might give some ideas for #170.

EDIT: #341 from the recently-synthesized trice tongs siamese loaf siamese tub:
`x = 21, y = 19, rule = B3/S232b2o\$bo2bo\$obob3o\$bobo3bo6bobo\$3bo2bo7b2o\$3bob2o8bo2b3o\$4bo2b2o9bo\$7b2o10bo4\$14b3o\$14bo\$15bo3\$7b3o\$9bo\$8bo!`

EDIT 2: #190 from a trivial 25-bitter:
`x = 447, y = 110, rule = B3/S23bo\$2bo\$3o13\$25bo\$26bo23bo\$24b3o21bobo\$49b2o34bo\$85bobo\$61bo23b2o\$62b2o17bo\$61b2o18bobo\$81b2o6\$16bo\$14bobo41bobo\$15b2o41b2o\$59bo4b2o\$18bobo44bo\$19b2o43bo\$19bo43bo\$62bo5bo\$61bo5bo\$48bo11bo6b3o\$48bobo8bo12bo\$48b2o8bo13bobo\$57bo14b2o\$10bobo43bo\$11b2o42bo\$11bo42bo\$53bo\$52bo\$51bo\$50bo79bo\$49bo81b2o\$48bo57bo23b2o32bo198bo\$47bo56bobo55bobo197bo\$46bo58b2o25bo30b2ob2o66bo7bo119b3o\$45bo86b2o6bobo23bobo66b2o5bobo115bo\$44bo63bobob4o15bobo6b2o24bo31bo35b2o3bo2b2o114bobo71bo\$43bo58bobo3b2o2bo3bo24bo19b2o34bobo12bo25bobo118b2o71bobo\$42bo60b2o4bo2bo15b2o5bo24bobo33bob2o5bobo4bobo22bob2o5bo123bo61b2o\$41bo61bo9bo2bo12b2o3bobo7b2o14bo35bo8b2o5b2o23bo8bobo121bobo53bobo\$41b2o85bo6b2o7bobo12b2o34b2o9bo29b2o8b2o122b2o19bo35b2o\$46b2o52b2o5b2o28b2o5bo16b2o34b2o39b2o4bo25b2o32b2o24b2o24b2o21b2o11b2o7b2o16b2o6bo13b2o\$33b3o2b2o6bo54b2o4bo2bo26bo2bo20bo2bo32bo2bo37bo2bobobo2b3o18bo2bob2o27bo2bob2o19bo2bob2o19bo2bob2o16bo2bob2o6b2o7bo2bob2o11bo2bob2o15bo2bob2o\$37bo2bo2b2obo53bo4b2o2b2o24b2o2b2o18b2o2b2o30b2o2b2o35b2o2b2ob2o3bo5b3o11bo2b2ob2o26bo2b2obobo17bo2b2obobo17bo2b2obobo14bo2b2obo15bo2b2obo4bo6bo2b2obo15bo2b2obo\$38b2o4bob2o56bo2b2o25bo2b2o19bo2b2o31bo2b2o31bo4bo2b2o9bo4bo14b2o32b2o5bo18b2o5bo18b2o5bo15b2o4bo8bo6b2o4bo3bo7b2o4bo2b2o11b2o3bo\$40b4o60b2o3b4o21b2o3b4o15b2o3b4o27b2o3b4o6bo20b2o3b2o3b5o10bo15b5o29b5o7bo13b5o21b5o18b4o8b2o8b4o4bo9b4o2bo2bo12b3o\$40bo68bo2bo26bo2bo20bo3bo31bo3bo5bobo2bo14bobo8bo4bo25bo4bo2bo25bo10bo14bo18bobo4bo22bo11bobo7bo17bo6bobo12bo\$41bo68bo55b2o3bo30bobo4b2o2b2o28bobo28bobo2bobo26b2o6b3o14bo17b2o6bo21bo21bo6b2o9bo6bo\$38b3o66b3o60bo31b2o9bobo17b3o7b2o29b2o3b2o27b2o22b2o17bo6b2o22bo21bo5bobo9bo\$38bo68bo62b3o62bo147bo21bo4bo12bo\$234bo43b2o102b2o20b2o16b2o6b3o\$110b3o55b3o107bobo149bo\$110bo32b2o25bo107bo22b3o58b2o5b2o60bo\$107b2o2bo31bobo23bo133bo32b3o23b2o5bobo49b2o\$106bobo26b2o6bo158bo11b2o20bo32bo50b2o\$108bo25bobo177bobo20bo84bo\$136bo167b3o7bo18b3o18bo\$304bo30bo18b2o\$144b2o155bo3bo28bo18bobo\$143b2o156b2o\$43bo101bo154bobo\$44bo\$42b3o23b3o\$68bo\$14b2o53bo\$13bobo292b2o\$15bo291b2o\$309bo3\$5b2o\$4bobo\$6bo3\$43bo\$43b2o\$27b2o13bobo\$28b2o\$27bo8\$15b2o\$16b2o\$15bo13b2o\$30b2o\$29bo!`

The portion that places the boat at the bottom could probably be improved by another two gliders.

EDIT 3: #186 from a known 22-bitter:
`x = 43, y = 55, rule = B3/S2334bo\$33bo\$33b3o7\$32bo\$31bo\$31b3o6\$14bo10bo\$7bo7bo8bo\$8bo4b3o8b3o\$6b3o2\$40bo\$bo8bobo26bo\$2bo8b2o26b3o\$3o8bo\$4b3o\$6bo\$5bo2\$22b2o\$22bo\$23bo2b2o\$24bo2bo\$22bob3o\$21bobo\$21bobob2o\$6b3o9bo3b2ob2o\$8bo8bobo\$7bo9bo2bo\$18b2o17b2o\$36b2o\$38bo4\$22bo14b2o\$8b2o12b2o13bobo\$7bobo11bobo13bo\$9bo2\$18b3o\$20bo19b3o\$19bo20bo\$41bo!`

EDIT 4: #361 from a trivial 20-bitter:
`x = 132, y = 38, rule = B3/S23108bo\$108bobo\$108b2o\$78bo15bo\$79bo13bo\$9bo67b3o13b3o9bo\$7bobo81bo12bo\$8b2o79bobo12b3o\$90b2o3\$88bo\$87bobo\$87b2o\$4bo7b2o80b2o\$5b2o5b2o2bo2bo23bo46bo2bo2bo\$4b2o10b4o21b3o44b3o2b4o27b2o\$2o38bo46bo36bo\$b2o15b2o2b2o17b3o2b2o12bobobo23b3o2b2o30b3o2b2o\$o16bobo3bo19bo3bo42bo3bo32bo3bo\$17bo2b3o5bo15b3o44b3o34b3o\$18bobo5b2o14bobo44bobo34bobo\$6b2o11bo7b2o13b2o45b2o35b2o\$7b2o\$6bo\$12bo91b2o\$11bobo6b2o82bobo\$12bo7bobo81bo\$20bo\$16b3o\$18bo71b3o\$17bo74bo\$91bo3\$110b2o\$110bobo\$110bo!`

EDIT 5: #350 from the suggested predecessor:
`x = 24, y = 39, rule = B3/S2310bo\$9bo\$9b3o6\$7b2ob2o\$7b2ob2o3\$2bo\$bobob2o\$o2b2obo\$b2o\$2bob2o\$bo2b2o\$b2o2\$16bo\$15b2o\$15bobo5\$9bo\$8bobo\$b3o5b2o2b2o\$3bo8b2o\$2bo11bo5\$22b2o\$21b2o\$23bo!`

EDIT 6: #292 from #294, which is already solved:
`x = 45, y = 50, rule = B3/S2315bo\$13bobo\$14b2o5\$42bo\$24bo17bobo\$24bobo15b2o\$24b2o2\$25bo\$24b2o\$24bobo4\$bo\$2bo10b2o\$3o9bo2bob2o\$5bo6bobo3bo\$6bo6bob2o\$4b3o8bo3bo\$13bobo2bobo\$13b2o3b2o\$36b2o\$35b2o\$16b2o19bo\$16b2o16\$21b3o\$21bo2bo\$21bo\$21bo\$22bobo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1669
Joined: June 16th, 2009, 11:24 pm
Location: USA

PreviousNext