## 17-bit SL Syntheses (100% Complete!)

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

### Re: 17-bit SL Syntheses

Either way, #113 from a 14-bitter:
`x = 163, y = 31, rule = B3/S2319bo\$20bo\$18b3o3\$22bo3bo8bo\$20bobob2o7b2o\$21b2o2b2o7b2o4\$11b2o39b2o31b2o18bo15b2o\$11bobo38bobo30bobo17bobo13bobo\$13bo40bo2b2o28bo2b2o13b2o16bo2b2o27b2o2b2o\$12b2ob2o36b2obo2bo26b2obo2bo29b2obo2bo9bobobo12bo2bo2bo\$15bobo38bobobo28bobobo31bobobo26bobobobo\$15bobo38bo2bo29bo2bo32bo2bo26b2obo2bo\$16bo38b2o19bobo2b3o4b2o36b2o31b2o\$77b2o2bo\$77bo4bo10b2o\$60b2o30bo2bo\$61b2ob3o13b2o10bo2bo\$60bo3bo16b2o10b2o\$65bo14bo2\$3o27b2o\$2bo27bobo\$bo28bo50b2o\$25b2o53bobo\$25bobo54bo\$25bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1690
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#241 and #242 done in the obvious way:
`x = 56, y = 55, rule = B3/S239bo\$8bo\$8b3o\$6bo\$4bobo\$5b2o4\$41b2o\$11b2o2b2obo23bo2b2obo\$11bo3bob2o22bo3bob2o\$12b3o27b3o\$10bobo22bo4bobo\$10b2o21bobo4b2o\$34b2o\$3o\$2bo33b3o\$bo36bo\$37bo16\$51bo\$27bo22bo\$26bo23b3o\$26b3o\$53b2o\$10bob2o3b2o21bob2o3b2o4bobo\$10b2obo2bobo21b2obo2bobo4bo\$14b3o27b3o\$17bo29bo\$16b2o28bo\$46b2o4\$22b2o\$22bobo\$22bo\$18b3o\$20bo\$19bo!`

Edit: #211:
`x = 93, y = 40, rule = B3/S2358bo\$56bobo\$26bo30b2o\$25bo\$25b3o41bo\$70bo\$10bo57b3o\$11bo17bo48bo\$9b3o16bo33bo15bobo\$28b3o32bo14b2o\$61b3o2\$obo\$b2o53bo\$bo55bo\$55b3o3\$52bobo21b2o\$19b2o32b2o20bo2bo\$18bobo32bo21bo2bo\$18bo57b2o\$10b2o5b2o\$9bo2bo8bo48b2o\$10bobo7bobob2o43bo2bob2o\$11bo8bob2o2bo43bob2o2bo\$21bo3b2o44bo3b2o\$22b3o47b3o\$24bo49bo2\$90b3o\$90bo\$5b2o3b2o2b2o75bo\$4bobo4b2obobo\$6bo3bo3bo\$54b3o\$56bo\$16b3o36bo\$16bo\$17bo!`

#216 can be constructed from #223 which was solved earlier by Extrementhusiast:
`x = 20, y = 32, rule = B3/S237bo\$8b2o\$7b2o2\$11bobo4bo\$7b2o2b2o4bo\$7bobo2bo4b3o\$7bo5\$2o2bo2bo\$o3b4o\$b3o\$3bobo\$4bobo3b2o\$5bo3bo2bo\$9bo2bo\$10b2o10\$b3o\$3bo\$2bo!`

Extrementhusiast wrote:#171 from a 17-bitter apparently not on the list

That's actually an 18-bitter, but it can easily be constructed based on my synthesis of #173. Here's a synthesis from a 13-cell still life:
`x = 251, y = 43, rule = B3/S2324bo\$24bobo\$24b2o2\$4bo\$2bobo\$3b2o18bo167b2o\$23bobo38bo122bo3bobo\$23b2o38bo124bo2bo9bo\$63b3o4bo79bo35b3o12bobo\$34bo33b2o81b2o48b2o\$33bo28bo6b2o79b2o\$33b3o25b2o122bo\$61bobo90bobo4bo24bo\$150b2o2b2o4bo23b3o\$150bobo2bo4b3o\$150bo\$o81bobo94bo\$b2o79b2o96bo\$2o53b2o26bo21b2o38b2o31b3o14b2o\$15bo38bo2bo46bo2bo36bo2bo46bo2bo26b2obo16b2obo\$15b3o37b3o47b3o2bo34b3o2bo44b3o26bob2o16bob2o\$18bo39b2o48b3o37b3o47b2o5b2o21b2o18b2o\$15b3obo35b3o2bo44b3o37b3o47b3o2bo3b2o19b3o2bo14b3o2bo\$15bo2bo36bo2b2o21bo2bo20bo2bo36bo2bo46bo2bobo5bo18bo2bobo14bo2bobo\$16b2o39bo22bo25b2o39bobo3b2o42bobo27bobo18b2o\$56b2o22bo3bo32b2o29bo3bo2bo42bo29bo\$80b4o34b2o32bo2bo\$117bo3b2o30b2o71b2ob2o\$121bobo101bobobobo\$121bo59b3o12b2o29bobo\$31b3o149bo11b2o\$31bo5b3o142bo14bo\$32bo4bo82bo\$38bo28b2o50b2o\$67bobo49bobo76b3o\$67bo43b2o85bo\$19bo31b3o23b2o32bobo85bo\$16bo2bobo31bo23bobo13b2o16bo32b3o\$14bobo2b2o31bo24bo14bobo51bo\$15b2o77bo20b2o28bo\$115bobo\$115bo!`

Speaking of #173, here's a slight reduction of my previous synthesis:
`x = 129, y = 42, rule = B3/S2324bo101bobo\$24bobo94bo4b2o\$24b2o95bobo3bo\$121b2o\$4bo89bo20bo\$2bobo87bobo19bo\$3b2o18bo69b2o19b3o\$23bobo38bo\$23b2o38bo\$63b3o4bo21bo28bo\$34bo33b2o20bobo11b3o13bo\$33bo28bo6b2o20b2o11bo15b3o\$33b3o25b2o42bo\$61bobo\$86bo\$84bobo\$85b2o34bo\$o120bobo\$b2o114b2o2b2o\$2o53b2o16bo31b2o9b2o\$15bo38bo2bo14bo31bo2bo10bo\$15b3o37b3o14b3o30b3o2bo\$18bo39b2o48b3o\$15b3obo35b3o2bo44b3o\$15bo2bo36bo2b2o45bo2bo\$16b2o39bo49b2o\$56b2o5\$31b3o33b2o\$31bo5b3o26bobo\$32bo4bo30bo19b2o20bo\$38bo48bobo19b2o\$89bo19bobo2\$19bo\$16bo2bobo43b2o45b2o\$14bobo2b2o22b2o19b2o46bobo\$15b2o25bobo21bo45bo\$44bo!`

#100 could possibly be done by a method somewhat like this:
`x = 71, y = 17, rule = B3/S2316bobo\$16b2o\$17bo17b3ob3o\$37bo3bo\$35b3o3bo\$35bo5bo\$35b3o3bo\$57b2o\$6bo52bo\$2bob2o34bo15bobo\$obo2b2o6b2o26bo14bob2o3b2o\$b2o6b2obo2bob2obo13b9o16b2obo2bob2obo\$9b2obo2bobob2o20bo17b2obo2bobob2o\$13b2o25bo22b2o2\$57b6o2b2o\$62bo2bob2o!`

Edit 2: In the same vein as some of the recent syntheses, #122 and #163 can be constructed from 17-bit still lifes that don't seem to be on the list:
`x = 33, y = 60, rule = B3/S236bo20bo\$4bobo20bobo\$5b2o20b2o4\$4bo\$5b2o\$4b2o10b2o\$16b2o\$bo4bo\$b2o2bo\$obo2b3o4b2o\$13bo2bo\$13bobobob2obo\$14b2obobob2o\$18bo12b2o\$30b2o\$32bo23\$30bo\$12b2o2bo13bobo\$12bo2bobo12b2o\$13b2obobo\$14bobobo\$14bo2bo\$bobo2b3o4b2o\$2b2o2bo\$2bo4bo10b2o\$17bo2bo\$5b2o10bo2bo\$6b2o10b2o\$5bo4\$6b2o\$5bobo\$7bo!`

#201, #202, and #209 from the still unsolved #210:
`x = 32, y = 85, rule = B3/S2311bo\$10bo\$10b3o\$8bo\$6bobo\$7b2o2\$11b2o\$11bo2bo2b2o\$12b2obo2bo\$13bobobo\$13bo2bo\$12b2o24\$29bo\$12b2o15bobo\$11bo2bo2b2o10b2o\$12b2obo2bo\$13bobobo\$13bo2bo\$obo2b3o4b2o\$b2o2bo\$bo4bo10b2o\$16bo2bo\$4b2o10bo2bo\$5b2o10b2o\$4bo4\$5b2o\$4bobo\$6bo12\$29bo\$11b2o16bobo\$11bo2bo2b2o10b2o\$12b2obo2bo\$13bobobo\$13bo2bo\$obo2b3o4b2o\$b2o2bo\$bo4bo10b2o\$16bo2bo\$4b2o10bo2bo\$5b2o10b2o\$4bo4\$5b2o\$4bobo\$6bo!`

The synthesis of #171 can be improved by using Buckingham's 2-glider bun-to-bookend:
`x = 33, y = 24, rule = B3/S23obo\$b2o\$bo2\$14b2o\$13bo2bo\$14b3o2bo\$17b3o\$14b3o\$14bo2bo\$15b2o\$26b2o\$27b2o\$26bo3b2o\$30bobo\$30bo3\$29bo\$28b2o\$28bobo\$3b2o\$4b2o\$3bo!`

Edit 3: #286 from a 19-cell still life that I think can be constructed:
`x = 74, y = 39, rule = B3/S2343bo\$44b2o\$43b2o\$40bo\$41bo\$39b3o6\$14bobo\$15b2o\$3b2o10bo37b2o\$3bo2b2o45bo2b2o\$4b2o2bo11bo33b2o2bo12bobo\$6bobo5b2o2b2o36bobo12b2o\$6bo2b2o3b2o3b2o35bo2b2o11bo\$obo4b2o2bo31bo13b2o2bo\$b2o7bobo28bobo16bo\$bo9bo30b2o3bo9b3o\$17bo30bo8bo\$16b2o28b3o\$5b2o2bo2bo3bobo\$5b2o2b4o34bo\$47b2o\$11b2o33bobo\$b2o8b2o\$o2bo2b2o\$o2bo2bobo4b3o\$b2o3bo6bo\$14bo\$47b3o18b2o\$49bo18bobo\$15b3o30bo19bo\$15bo\$16bo46b2o7b2o\$63bobo5b2o\$63bo9bo!`

Edit 4:
I wrote:#286 from a 19-cell still life that I think can be constructed

It certainly can be:
`x = 62, y = 28, rule = B3/S2344bobo\$45b2o\$35bo9bo\$33bobo19bo\$34b2o6bo11bo\$40bobo11b3o\$41b2o6\$7bo7b2o27bo5b2o3b2o\$8bo5bo2bo27bo4bobobo2bo\$o5b3o6bobo25b3o5bo3bobo\$b2o13bob2o36bob2o\$2o15bo2bo36bo2bo\$5b3o11bobo24b2o11bobo\$7bo12bo24bobo12bo\$6bo40bo3\$57b2o\$48b2o7bobo\$47bobo7bo\$49bo3b2o\$52b2o\$54bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1243
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

#107 from a presumably trivial 21-bitter:
`x = 17, y = 27, rule = B3/S236bo\$7bo\$5b3o2\$9bo6bo\$7b2o5b2o\$8b2o5b2o2\$5bo\$6bo\$4b3o2\$10bo3b3o\$9bobo2bo\$2obo2bo3bobo2bo\$ob5o4bo2\$b2obo\$b2ob3o\$7bo\$6b2o\$12b3o\$12bo\$13bo\$9b2o\$8b2o\$10bo!`

Also, I kept #202 in there because it could lead to #210, not necessarily the other way round.

EDIT: #230 from a hopefully trivial 19-bitter (which I could draft up a process for if need be):
`x = 59, y = 16, rule = B3/S2312bo\$10b2o20bobo\$11b2o20b2o\$33bo\$2ob2o3b2o15b2ob2o6bo14b2ob2o\$bobobo2bobo15bobo2bo3b2o15bobo\$bo2bo3bo17bo2b3o3bobo14bo2b3o\$2b2o23b2o24b2o3bo\$4b3o22b3o23b3o\$4bo2bo21bo2bo22bo\$5bobo22bobo\$6bo24bo2\$34b2o\$33b2o\$35bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1690
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Path to #351 (I think the 19-cell still life is constructible):
`x = 65, y = 14, rule = B3/S2363bo\$61b2o\$37b2o18b2o3b2o\$b2o18bo9b2o3bo2bo11b2o3bo2bo\$o2bo3b2o13bo7bo2bo2bob2o10bo2bo2bob2o\$b2obobobo7b8o7b2obobo14b2obobo\$2bobobo15bo9bobobo15bobobo\$2bobob2o13bo10bobob2o14bobob2o4bo\$3bo29bo19bo8bobo\$62b2o2\$54b2o2b2o\$54b2o2bobo\$58bo!`

Edit: Full synthesis of #351 from 18 gliders (the 8-glider synthesis of the 19-cell still life is from Lewis' soup results):
`x = 189, y = 40, rule = B3/S2396bo\$95bo\$95b3o4\$36bo\$36bobo\$36b2o56b2o\$93bobo2b2o\$95bo2bobo\$98bo3\$163bo\$162bo\$128b2o28b2o2b3o\$62b2o28b2o28b2o3bo2bo21b2o3bo2bo21b2o\$7bo53bo2bo8bo17bo2bo3b2o21bo2bo2bob2o20bo2bo2bob2o20bo2bo\$8bo29bo23b2obob2o2b2o19b2obobobo22b2obobo24b2obobo24b2obo\$6b3o28bobo23bobobobo2b2o19bobobo25bobobo25bobobo25bobo\$37bobo23bobobobo23bobob2o24bobob2o24bobob2o5bo18bobob2o\$3b3o24bo7bo25bo3bo4bo20bo29bo29bo7b2o20bobobo\$5bo22bobo41b2o89b2o20bo\$4bo24b2o41bobo\$155b2o2b2o\$28bo96b3o27b2ob2o\$28b2o95bo34bo\$27bobo96bo\$122b3o\$124bo\$32b2o89bo\$b2o28bo2bo\$obo29b2o\$2bo\$4b2o\$4bobo\$4bo12b3o\$19bo\$18bo!`

Edit 2: A 14-glider synthesis of #214 with the block moved to the other side:
`x = 137, y = 34, rule = B3/S2336bo\$36bobo22bo\$36b2o21bobo\$60b2o6bo\$68bobo63bo\$65bo2b2o64bobo\$63bobo68b2o\$64b2o32bo\$99bo32bo\$97b3o32bo\$101bo30bo\$62b2o27b2o8bobo17b2o\$7bo53bo2bo26bo2bo6b2o18bo2b2o\$8bo29bo23b2obob2o23b2obob2o23b2obo\$6b3o28bobo23bobobobo23bobobobo23bobob2o\$37bobo23bobobobo23bobobobo23bobob2o\$3b3o24bo7bo25bo3bo25bo3bo25bo\$5bo22bobo\$4bo24b2o2\$28bo\$28b2o\$27bobo3\$32b2o\$b2o28bo2bo\$obo29b2o\$2bo\$4b2o\$4bobo\$4bo12b3o\$19bo\$18bo!`

Unfortunately, this does not improve the synthesis of #214.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1243
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

#143 from #232:
`x = 602, y = 45, rule = B3/S2396bo382bo\$94b2o365bo16bo\$95b2o365bo15b3o\$455bo4b3o\$195bo260b2o\$10bo183bo260b2o6bo18bo\$10bobo40bo140b3o14bo60bo190b2o16bo69bo27bo\$10b2o34bo5bo139bo19bo60bo188bobo16b3o68b2o23b2o\$47b2o3b3o37bo100bo16b3o58b3o28bo248b2o25b2o\$46b2o39bo2b2o53bo18bo26b3o81bo24bobo41bo7bo7bo89bo\$55b2o20bo10bo2b2o10bo39bobo17bo51bobo56bo26b2o16b2o24b2o5bobo4bo91b2o102bobo15bobo\$55bobo20b2o6b3o12b2o41b2o17b3o49b2o57b3o43b2o3bo18b2o6b2o5b3o88b2o104b2o15b2o\$55bo4bo16b2o23b2o18bo70bobo20bo86bo15bo3b2o205bo25bo17bo\$60bobo54bo3bo13bo4b2o4bo13bobo24bo5b2o27bobo5bo52bobo11bobob2o21b2o4bo31b2o84bo79bobo\$obo28bobo26b2o56b2ob3o12b2obo2bob2o15b2o25bo5bo27b2o5bo42bobo8b2o13b2o2b2o26bobo3bo25bobo84bo79b2o\$b2o29b2o83b2o16b2o2bo2bo2b2o14bo24b3o34bo5b3o13bo27b2o9bo13bo31b2o4bobo14b2ob2o4bo31b2o19b2o30b3o17b2o84bo23bo\$bo23bo6bo16bo3bo26bo5bo3bo3bo5bo30b2o7b2o104bo26bo51bo10b2o16bob2o35bobo18bobo11bo37bobo37bo24b4o19bo21bo\$24bobob2o4bo13bobobobo25b2o3bobobobobobo3b2o31b2o56b2o19b2ob2o10b3o15b3o10bo22bo20b2o21bobo6b2o19bo38bo20bo13bobo35bo33bobob2o20bo4bo3bo16b3o8bo3bo8b3o\$2b3o20b2ob2o3bo15b2obobo24bobo4b2obobob2o4bobo29bo33bo23bobo18bobobobo9bo24b2o3bobo20bobo19b2o22b2o6bobo17b2o37b2o19b2o13b2o2b2o31b2o34b2o2b2o19bo4bo31bo3bo\$4bo28b3o17bo10bo25bo24b2ob2o18b2ob2o21bobob2o19bobob2o15bo5bo10bo19b2o2bo2bo2bo19bo2bo5b2o17bo23bo3bo23bo38bo15bo4bo14bobo29bo4bo31bo24bo5bo2bo27bo3bo\$3bo59b2o50b2ob2o18b2ob2o22b2ob2o20b2ob2o16b5o32b2o2b5o18b5o5b2o14b5o19b5o23b5o34b5o16b5o14bo32b5o\$63bobo12b2o21b2o144bo26bo12bo12bo23bo27bo38bo36b2o49bo28bo19bo36bo\$7b2ob2o15b2ob2o19b2ob2o21bobo8b2ob2o8bobo11b2ob2o18b2ob2o22b2ob2o20b2ob2o16b2ob2o36b2ob2o18b2ob2o21b2ob2o19b2ob2o23b2ob2o34b2ob2o16b2ob2o9b2o36b2ob2o8bobo23b2obobob2o11b2obobob2o28b2obobob2o26b2ob2o\$8bobo2b2o13bobo2b2o17bobo2b2o20bo9bobo2b2o5bo14bobo2b2o16bobo2b2o20bobo2b2o18bobo2b2o14bobo2b2o11b3o20bobo2b2o16bobo2b2o19bobo2b2o17bobo2b2o21bobo2b2o32bobo2b2o14bobo2b2o8bo36bobo2b2o5bo2bo23bobobobo13bobobobo30bobobobo26bobobobo\$8bo2bobo14bo2bobo18bo2bobo31bo2bobo21bo2bobo17bo2bobo21bo2bobo19bo2bobo15bo2bobo12bo22bo2bobo17bo2bobo20bo2bobo18bo2bobo22bo2bobo33bo2bobo15bo2bobo46bo2bobo7b2o24bo2bo2bo13bo2bo2bo16b2o12bo2bo2bo12b2o12bo2bo2bo\$9bobobo15bobobo19bobobo32bobobo22bobobo18bobobo22bobobo20bobobo16bobobo13bo22bobobo18bobobo21bobobo19bobobo23bobobo34bobobo16bobobo47bobobo34bobobo15bobobo16bobo13bobobo13bobo12bobobo\$10bobo17bobo21bobo34bobo24bobo20bobo24bobo22bobo18bobo38bobo20bobo23bobo21bobo25bobo36bobo18bobo49bobo36bobo17bobo19bo14bobo14bo15bobo\$11bo19bo23bo36bo26bo22bo26bo24bo20bo40bo22bo25bo23bo27bo38bo20bo51bo38bo19bo36bo32bo2\$552b2o23b2o\$375bo175bobo23bobo\$375b2o8bobo125bo17b2o20bo14b2o7bo\$374bobo9b2o121b2o2bobo14bobo30bo3bobo\$386bo102bo20b2ob2o16bo16b2o12b2o4bo12b2o\$445b2o41b2o19bo39b2o11bobo15b2o\$386b2o58b2o40bobo57bo33bo\$385bobo57bo120b3o\$387bo178bo\$567bo\$563b3o\$565bo\$564bo\$396bo\$395b2o\$395bobo!`

I do seem to remember a three-glider finger spark, in which the gliders were coming from two quadrants instead of three. (The mounting of the blocks can be simplified depending on how the construction of #232 goes.)

But, above all, my more unusual component finally gets used!

EDIT: #232 from an 11-bitter:
`x = 25, y = 25, rule = B3/S2310bo\$8bobo3bo\$9b2o3bobo\$14b2o\$12bo\$11b2o\$11bobo\$18bo\$18bobo\$b2ob2o12b2o\$2bobo\$2bo2bo2b2o\$3bobo2b2o\$4bo3\$23bo\$22b2o\$3bobo16bobo\$4b2o\$4bo\$b2o\$obo3b2o\$2bo3bobo\$6bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1690
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#222 from 21 gliders using the same converter as the one used for #351:
`x = 219, y = 35, rule = B3/S2336bo\$36bobo22bo\$36b2o21bobo\$60b2o6bo84bo\$68bobo83bo\$65bo2b2o82b3o\$63bobo90bo\$64b2o89bo34bo\$99bo55b3o27b2ob2o\$97bobo85b2o2b2o\$98b2o2bo\$62b2o27b2o8bo19b2o28b2o28b2o10b2o16b2o2bo\$7bo53bo2bo26bo2bo6b3o17bo2bo26bo2bo26bo2bo7b2o17bo2bobobo\$8bo29bo23b2obob2o23b2obob2o23b2obob2o23b2obob2o23b2obob2o5bo17b2obob2o\$6b3o28bobo23bobobobo23bobobobo23bobobo25bobobo25bobobo25bobo\$37bobo23bobobobo23bobobobo23bobobobo23bobobo25bobobo25bobo\$3b3o24bo7bo25bo3bo25bo3bo25bo3b2o24bo2bob2o23bo2bob2o23bo\$5bo22bobo126bo2bo26bo2bo\$4bo24b2o127b2o28b2o2b3o\$192bo\$28bo164bo\$28b2o\$27bobo\$128bo\$125bo2bobo\$32b2o89bobo2b2o\$b2o28bo2bo89b2o\$obo29b2o\$2bo\$4b2o\$4bobo\$4bo12b3o\$19bo105b3o\$18bo106bo\$126bo!`

#392:
`x = 62, y = 20, rule = B3/S232o38b2o\$bo39bo17bo\$bob2o36bob2o14bobo\$2bobo37bobo14b2o\$4bobo37bobo\$3bob2o7bo28bobobo\$3bo10bobo26bo2bo\$2b2o6b2o2b2o14bobo2b3o4b2o\$9b2o20b2o2bo\$11bo19bo4bo10b2o\$4b3o39bo2bo\$6bo27b2o10bo2bo\$5bo29b2o10b2o\$34bo4\$35b2o\$34bobo\$36bo!`

#291 from the unsolved #357:
`x = 32, y = 19, rule = B3/S236bo\$4bobo\$5b2o4\$4bo\$5b2o10b2o\$4b2o10bo2bo\$16bo2bo\$bo4bo10b2o\$b2o2bo\$obo2b3o4b2o\$13bo2bo\$13bobobo\$14bobobo\$16bobo10b2o\$15bo2b2o9bobo\$15b2o12bo!`

Edit: #371:
`x = 52, y = 19, rule = B3/S232o28b2o17bo\$obo27bobo16bobo\$2bo2bo26bo2bo13b2o\$b2obobo3b2o19b2obobo\$3bobo3b2o22bobobo\$3bo7bo21bo2bo\$2b2o16bobo2b3o4b2o\$7b3o11b2o2bo\$9bo11bo4bo10b2o\$8bo27bo2bo\$24b2o10bo2bo\$25b2o10b2o\$24bo4\$25b2o\$24bobo\$26bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1243
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

#197 from a 16-bitter:
`x = 60, y = 25, rule = B3/S2313bo\$3bo7b2o24bobo\$4bo2bo4b2o21bobobobo\$2b3obobo6b2o19b2ob2o\$7b2o6bobo\$15bo22bo\$10b2o25bobo13bobo\$bo8bobo24b2obo12b2obo\$2bo2bo6bo27bo15bo\$3obobob4ob2o20b3obob2o9bob2ob2o\$5b2obo2bobobo18bo2bobobobo8b2obobobo\$14bo19b2o2bo3bo15bo2\$b2o26b3o\$2b2o8bo18bo3b2o\$bo9b2o17bo3bobo3b2o\$11bobo22bo3bobo\$40bo2\$9b3o\$11bo\$10bo\$12b3o\$12bo\$13bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1690
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

I apologize in advance for the length of this post. I had a sudden surge of inspiration on Tuesday and Wednesday, and I usually find that I can get a lot accomplished in a short time if I just go with it. I've arranged them in order by synthesis methods, rather than numerically or chronologically.

There was a standard converter (bit+snake to teardrop) that should have been in the automatic synthesis database, but wasn't, so the following three objects should never have been on the "hard" list:

#122 from 40 gliders:
`x = 168, y = 98, rule = B3/S2347bobo\$48boo3bo\$13bobo32bobboo\$13boo37boo\$4bo9bo\$5bobbo46bo\$3b3o3boobbo41bobo42bo\$8boobbo42boo15bo19bo6bo12bo19bo19bo\$12b3o13boobo16boobo16boobobo14boobobo5b3o6boobobo14boobobo14boobobo\$28boboo16boboo16boboobobboo10boboobobboo10boboobo14boboobo14boboobo\$72bo3boo14bo3boo14bo19bo19bo\$11bo17b3o17b3o17b3o17b3o17b3o17b3o17b3o\$10bo18bobbo16bobbo4b3o9bo19bo19bo19bo18bo\$10b3o17bobo17bobo4bo79bo10boo\$4bo26bo19bo6bo77bo\$4boo127boob3o\$3bobo5bo43bo76bobo\$10boo42boo78bo\$10bobo41bobo\$136b3o\$136bo\$137bo11\$49bo\$48bo\$48b3o5\$87bo\$85bobo\$86boo3\$97bo\$96bo\$96b3o\$22bo39bo19bo29bo\$18boobobo4boobboo24booboboboo11booboboboo5bo15booboboboobo\$18boboobo5boobobo23bobooboboo11bobooboboo6boo13bobooboboboo\$22bo5bo3bo29bo19bo9boo18bo\$19b3o37b3o17b3o6b3o18b3o\$18bo39bo19bo11bo17bo\$18boo38boo18boo9bo18boo19\$115bo\$114bo\$114b3o\$25bobo\$25boo\$12bo13bo15bo19bo19bo19bo19bo19bo19bo\$8booboboboobo19booboboboobo9booboboboobo9booboboboobo9booboboboobo3boo4booboboboo11booboboboo11booboboboo\$8bobooboboboo19bobooboboboo9bobooboboboo9bobooboboboo9bobooboboboobboo5boboobobobo10boboobobobo10boboobobobo\$12bo10bo4bobo13bo19bo19bo19bo8bo10bobbo16bobbo16bobbo\$9b3o9boo5boo7bo19bo67boo18boo18boo\$8bo13boo5bo6bobo17bobo\$8boo26bobo17bobo48boo\$24bo12bo8boo9bo8boo38boo\$23boo21boo6boo10boo40bobb3o11bo19bo\$oo15boo4bobo27bobo55bo12bobo17bobo\$boo14bobo35bo12b3o35boo4bo11bobbo16bobbo\$o16bo50bo36bobo17boo18boo\$11boo56bo37bo40b3o\$10boo136bo\$12bo6b3o127bo\$19bo\$20bo\$\$14boo\$15boo\$14bo!`

#156 and #167 from 21 gliders each:
`x = 190, y = 93, rule = B3/S2313bobo\$14boo75bobo\$14bo76boo\$92bo77bo\$79bobo87bo\$79boo7bobo37bo40b3o\$31bobo42bo3bo7boo36bobo17boo18boo\$31boo41bobo12bo37boo4bo11bobbo16bobbo\$32bo42boo55bo12bobo17bobo\$129bobb3o11bo19bo\$76bo15b3o32boo\$76boo14bo35boo\$45bo29bobo15bo8boo18boo18boo18boo18boo\$44bo19bo19bo18bo19bo19bobboo15bobboo15bobboo\$34bo9b3o16bobo17bobo17bobo17bobo8bo8bobobbo14bobobbo14bobobbo\$33bo30boboboo14boboboo14boboboo14boboboobboo10bobobo15bobobo15bobobo\$33b3o26boboboobo12boboboobo12boboboobo12boboboobo3boo7boboboo14boboboo14boboboo\$62boo18boo18boo18boo18boo18boo18boo\$36boo\$36bobo\$11boo23bo98b3o\$10bobo122bo\$12bo123bo\$\$30boo\$30bobo\$30bo\$\$12boo\$11bobo\$13bo\$31bo\$30boo\$30bobo14\$167bo\$167bobo\$161bo5boo15boo\$15bo146bo21boo\$16boo142b3o\$15boo\$156bobo24boo\$157boo23bobbo\$43booboboo23booboboo23booboboo13booboboo13booboboo7bo5booboboo13booboboo\$42boboboobo7boo13boboboobo7boo13boboboobo12boboboobo14boboobo14boboobo14boboobo\$24bo18bo13boo14bo13boo14bo19bo20bo10boo7bo19bo\$22bobobbo62b3o50boo11boo5boo18boo\$23boobbobo60bo64bo\$27boo62bo29b3o\$118bobbo\$119bobbo\$117b3o5\$oo\$boo\$o3\$170bo\$169bo\$46bo37boo42bo40b3o\$46bobo34bobo3bo36bobo17boo18boo\$46boo37bo3bobo35boo4bo11bobbo16bobbo\$89boo41bo12bobo17bobo\$44boo46b3o34bobb3o11bo19bo\$44boo46bo34boo\$93bo34boo\$\$43boo18boo18boo17boo18boo18boobboo14boobboo14boobboo\$42bobbo16bobbo16bobbo16bobbo16bobbo8bo7bobbobbo13bobbobbo13bobbobbo\$43booboboo13booboboo13booboboo13booboboo13booboboobboo9boobobo14boobobo14boobobo\$44boboobo14boboobo14boboobo14boboobo14boboobo3boo9boboo16boboo16boboo\$44bo19bo19bo19bo19bo19bo19bo19bo\$43boo18boo18boo18boo18boo18boo18boo18boo\$\$135b3o\$135bo\$136bo!`

The following syntheses involve flipping the end of a bookend to attach it to something else:

Sokwe wrote:#109 and #320

mniemiec wrote:Ship to boat can be done more cheaply (2 gliders), reducing this by two.

#320 can be further reduced from 24 to 21 gliders by basing it off a boat, rather than a ship:
`x = 152, y = 49, rule = B3/S23128bobo\$128boo\$129bo\$46bo\$47bo3bo18boo13bo4boo18boo18boo\$45b3oboo18bobbo10bobo3bobbo12boobbobbo12boobbobbo12boo\$50boo17bobbo11boo3bobbo12boobbobbo12boobbobbo3bo8bobbo\$70boo9boo7boo18boo18boobboo10b3o\$7bo72bobo52boo12boo\$7bobo16boo18boo18boo14bo3boo18boo18boo18boobo\$3boobboo16bobobboo13bobobboo13bobobboo13bobobboo13bobobboo13bobobboo13bobobobo\$bbobo5b3o13bo3boo14bo3boo14bo3boo14bo3boo14bo3boo14bo3boo14bo3boo\$4bo5bo\$11bo10\$52bo\$52bobo\$52boo\$47bobo\$48boo\$5bo42bo\$4bo\$4b3o43bo\$bbo39bo5boo\$obo40bo5boo\$boo38b3o\$\$5boo19boo18boo19bo19bo19bo19bo19bo\$5bobbo16bobbo16bobbo17bobo17bobo17bobo17bobo17bobo\$6b3o17b3o17b3o18boo18boo18boo18boo18boo\$9boo18boo18boo18boo18boo18boo18boo18boo\$6boobo16boobo16boobo15b3obo15b3obo15b3obo15b3obo15b3obo\$5bobobobo13bobobobo13bobobobo12bobbobobo12bobbobobo12bobbobobo12bobbobobo12bobbobo\$6bo3boo14bo3boo8bobo3bo3boo12bobo3boo7b3obbobo3boo12boo4boo12boo4boo12boobbo\$41boo22bo15bo3bo\$41bo38bo48bo\$85boo42boo\$39boo44bobo40bobo\$40boo43bo46boo\$39bo92bobo\$132bo!`

#162 from 44 gliders:
`x = 173, y = 104, rule = B3/S23104bo\$105boo\$104boo3\$100bo\$98bobobbo\$99boobbobo\$103boo7\$10boo120bo19bo19bo\$6bobboo19bo29bo19bo19bo7bobo19b3o17b3o17b3o\$4boo5bo17bobo27bobo17bobo17bobo6boo19bo19bo19bo\$5boo21bobbo26bobbo16bobbo16bobbo7bo18bobboo15bobboo15bobboo\$b3o23boboo14bo11boboo16boboo16boboo26boboobo14boboobo14boboobo\$3bo22bobo17bo9bobo4bobo10bobo17bobo12bo14bobo17bobo17bobo\$bbo22bobbo15b3o8bobbo4boo10bobbo16bobbo12bobo11bobbo16bobbo16bobboboo\$26boo28boo6bo10bobo17bobo13boo12bobo17bobo3boo12bobobbobo\$74booboo15booboo25booboo15boobooboo12booboobbo\$45b3o104bo\$39bobo5bo\$40boo4bo63bo\$40bo68boo\$109bobo4\$57boo\$56bobo\$58bo8\$15boo\$15b3o\$14boboo\$14b3o\$15bo8bobo\$24boo\$25bo39bo\$63bobo\$28bo35boo\$27bo\$27b3o16boo18boo\$5bobo38boo18boo\$6boo22boo\$6bo15bo7bobo\$20b3o7bo\$19bo\$18bobboo26boboo16boboo16boboo16boboo16boboo16boboo16boboo\$17boboobo26boobo16boobo16boobo16boobo16boobo16boobo16boobo\$16bobo28boo18boo18boo18boo18boo18boo18boo\$15bobboboo26boboo16boboo16boboo16boboo16boboo16boboo16boboo\$15bobobbobo24bobbobo14bobbobo14bobbobo14bobbobo14bobbobo14bobbobo14bobbobo\$14booboobbo25boobbo15boobbo15boobbo15boobbo15boobboo14boobboo14boobboo\$144bo\$117boo26bo21boo\$113bobboo25b3o21bobo\$113boo3bo29b3o17bo\$10bo101bobo33bo\$10boo133boobbo\$9bobo132bobo\$14boo130bo\$13boo\$15bo12\$38bobo\$39boo\$39bo\$bbo6boboo16boboo16boboo16boboo16boboo16boboo16boboo16boboo\$obo6boobo16boobo4boo10boobo16boobo16boobo5bo10boobo16boobo16boobo\$boo4boo18boo9boo7boo18boo18boo9bobo6boo18boo18boo\$8boboo16boboo5bo10boboo16boboo16boboo6boo8boboo16boboo16boboo\$bbo4bobbobo9boo3bobbobo9boo3bobbobo13bobobobo13bobobobo13bobobobbo12bobobobbo14bobobbo\$bboo3boobboo8bobbobboobboo8bobbobboobboo13boo3boo13boo3boo13boo4boo12boo4boo15bobboo\$bobo17bobbo16bobbo55bo\$7boo13boo3boo13boo3boo47bobbo28bo\$7bobo17bobo17bobo45boobb3o25boo\$8bo19bo19bo46bobo29bobo\$88b3o11b3o19boo\$42boo8boo36bo11bo20bobo\$42bobo7bobo34bo13bo21bo\$42bo9bo41b3o\$94bo\$95bo!`

Using a slightly different spark (that can probably be improved), many forming 16s can be changed into 17s by forming a loop-like projection rather than a hat-like one:

52-glider 16-bit still-life gives us #286 from 56 gliders (final step of both 16 and 17):
`x = 122, y = 39, rule = B3/S2310bo69bo\$8bobo67bobo\$9boo68boo\$21bo69bo\$21bobo67bobo\$21boo68boo7bo\$99bo\$10bo69bo18b3o\$11boo68boo\$10boo68boo\$\$105bo\$4bobo67bobo22bo5bobo\$5boo22bo45boo22bobo3boo\$5bo22bo27boo17bo23boo\$28b3o25bobo32boo\$25bo31boo32boo\$26boo20bo69bobo\$18boo5boo21b3o37boo28boobo\$14boobobbo8b3o14boo3bo32boobobbo25boo3bo\$15boboboo8bo15boboboo34boboboo24boboboo\$15bobbo11bo14bobbo36bobbo26bobbo\$oo14bobo27bobo21boo14bobo27bobo\$boo14bo29bo23boo14bo12b3o14bo\$o69bo29bo\$101bo\$40bo69bo\$4boo34bo33boo34bo\$5boo33bo34boo33bo\$4bo69bo\$16boo14boo52boo\$16bobo12boo53bobo\$16bo16bo52bo\$3boo68boo\$4boo68boo16b3o\$3bo69bo18bobbo\$92bo\$92bo\$93bobo!`

#198 from 23 gliders:
`x = 139, y = 45, rule = B3/S2388bo\$86bobo\$87boo17bobo\$82bobo21boo\$83boo22bo\$83bo7\$44bobo3bobo\$45boo3boo\$bbo42bo5bo24boobboo\$3bo52bo20boobobo\$b3o51bo20bo3bo\$48b3o4b3o\$4bobo17bo19bo3bo15bo29bo38boo\$4boo17bobo17bobo3bo13boboboo24boboboo34boboboo\$5bo16bobo12b3obbobo17bobboobo23bobboobo32boobboobo\$21bobo15bobobo9boo7bobo27bobo37bobo\$3o19bo15bo3bo3b3o3boo9boo28boo36bobbo\$bbo45bo5bo34boo41boo\$bo35bo9bo41boo28boo\$37boo79booboo\$36bobo80b4o\$120boo9\$75bo5boo\$75boo5boo19bo\$74bobo4bo20boo\$102bobo3\$80boo\$81boo\$80bo!`

These use a known long-bookend-to-tub welder:

#344 and #216 from other 17s:
`x = 168, y = 101, rule = B3/S2311bo\$12bo\$10b3o\$21bo\$20bo\$20b3o3\$12bobo\$13boo\$13bo10bo\$23bo85bo34bobo\$23b3o83bobo33boo\$109boo34bo4bo\$26boo123boobobo\$26bobo12bobboo15bobboo15bobboo15bobboobboo11bo19bo8boobboo5bo\$26bo13bobobbo14bobobbo14bobobbo14bobobbobbobo9bobobobbo12bobobobbo7bo4bobobobbo\$10bo30boobo16boobo16boobo16boobo3bo12boob4o13boob4o13boob4o\$10boo4b3o24bo19bo19bo19bo19bo19bo19bo\$9bobo6bo15bo8bobo17bobo17bobo17bobo17bobo17bobo17bobo\$17bo15bo10boo18boo18boo18boo18boo18boo7bo10bobo\$33b3o117bobo9bo\$44boo18boo83boobboo\$44boo18boo82boo\$19bo4b3o123bo\$19boo5bo39b3o74b3o\$18bobo4bo40bo78bo\$67bo76bo7\$8bo126bo\$6boo125bobo\$7boo125boo16bobo\$152boo\$3bo149bo\$bobo\$bboobbo\$6bobo\$6boo\$53bo\$51bobo\$bo19bo5boo12bo5boo3boo17bo5boo3boo7bo5boo3boo7bo5boo3boo7bo5boo3boo5bo11bo\$obobobbo12bobobo3bo11bobobo3bo21bobobo3bo3boo6bobobo3bo3boo6bobobo3bo3boo6bobobo3bo3boo4bo11bobobo\$boob4o13boob4o13boob4o6bo16boob4o13boob4o13boob4o13boob4o10b3o10boob3o\$3bo19bo19bo10bobo16bo19bo19bo19bo29bo3bo\$3bobo17bobo17bobo8boo17bobo5boo10bobo5boo10bobo5boo10bobo5boo8boo10bobobo\$4bobo17bobo17bobo11boo14bobo4boo11bobo4boo11bobo4boo11bobo4boo8bobo10bobo\$5bo19bo19bo12bobo14bo19bo19bo19bo15bo13bo\$58bo46bo\$103boo17boo18boo\$104boo15bobo17bobo\$121boo18boo\$\$102b3o\$104bo3bo\$103bobboo\$107boo14\$8bo126bo\$6boo125bobo\$7boo125boo16bobo\$152boo\$3bo149bo\$bobo\$bboobbo\$6bobo\$6boo\$53bo\$51bobo\$27boo18boo3boo23boo3boo13boo3boo13boo3boo13boo3boo5bo\$oobbobbo12boobbo3bo11boobbo3bo21boobbo3bo3boo6boobbo3bo3boo6boobbo3bo3boo6boobbo3bo3boo4bo11boobbo\$o3b4o12bo3b4o12bo3b4o6bo15bo3b4o12bo3b4o12bo3b4o12bo3b4o10b3o9bo3b3o\$b3o17b3o17b3o10bobo14b3o17b3o17b3o17b3o27b3o3bo\$3bobo17bobo17bobo8boo17bobo5boo10bobo5boo10bobo5boo10bobo5boo8boo10bobobo\$4bobo17bobo17bobo11boo14bobo4boo11bobo4boo11bobo4boo11bobo4boo8bobo10bobo\$5bo19bo19bo12bobo14bo19bo19bo19bo15bo13bo\$58bo46bo\$103boo17boo18boo\$104boo15bobo17bobo\$121boo18boo\$\$102b3o\$104bo3bo\$103bobboo\$107boo!`

#113 from 74 gliders:
`x = 225, y = 133, rule = B3/S23139bobo\$140boo\$140bo\$4bo22bobo\$5bo21boo64bo\$3b3o22bo58bo3bobo45bo\$88boobboo46bo\$87boo27bo21b3o5bo\$42bo19bo19bo19bo12bobo4bo22bobo4bo19bo10bo8bo19bo\$5boobboo30bobo17bobo17bobo17bobo10bobbo3bobo20bobbo3bobo17bobo10bo6bobo17bobo\$6boobobo28bobo17bobo17bobo17bobo12boo3bobo22boo3bobo17bobo9b3o5bobo17bobo\$5bo3bo31bo19bo19bo7boo10bo19bo29bo18bo19bo19bo\$42b3o17b3o17b3o3bobo11b3o17b3o7bobo17b3o10boo4b4o10boo4b4o16b4o\$44bo19bo5bo13bo5bo13bo19bo8boo6bo12bo10boo7bo10boo7bo19bo\$68boo9boo18boo18boo12bo5bobo7boo18b3o17b3o17b3o\$69boo7bobo17bobo17bobo19boo6bobo17bobbo16bobbo16bobbo\$78boo18boo18boo28boo17bobo17bobo17bobo\$168bo19bo19bo\$\$64boo70bo\$64bobo69boo\$64bo70bobo\$60b3o83bobo\$62bo84boo\$24boo35bo85bo\$23boo\$25bo122boo\$149boo\$148bo3\$147bo\$147boo\$146bobo6\$124boo\$120bobboo\$22bobo96bo3bo\$22boo95b3o\$23bo\$138boo18boo\$121boo15bobo17bobo\$120boo17boo18boo\$75bo46bo\$12bo29bo19bo12bobo14bo19bo19bo19bo15bo13bo19bo19bo\$11bobo27bobo17bobo11boo14bobo4boo11bobo4boo11bobo4boo11bobo4boo8bobo10bobo17bobo17bobo\$10bobo27bobo17bobo8boo17bobo5boo10bobo5boo10bobo5boo10bobo5boo8boo10bobobo15bobobo15bobobo\$10bo29bo19bo10bobo16bo19bo19bo19bo29bo3bo15bo3bo15bo3bo\$11b4o26b4o16b4o6bo19b4o16b4o16b4o16b4o10b3o13b3o17b3o17b3o\$14bo30bo19bo29bo3boo14bo3boo14bo3boo14bo3boo4bo\$9b3o27b3obboo13b3obboo3boo18b3obboo3boo8b3obboo3boo8b3obboo3boo8b3obboo3boo5bo12b3o17b3o17b3o\$8bobbo12boo12bobbo16bobbo6bobo17bobbo16bobbo16bobbo16bobbo26bobbo16bobbo17bobbo\$8boo13boo13boo18boo10bo17boo18boo18boo18boo28boo18boo21boo\$25bo4\$12b3o155bo\$14bo154boo27boo\$13bo137boo16bobo22boobbobo\$18boo130bobo40bobobbo\$18bobo131bo42bo\$14boobbo\$15boo182bo\$14bo184boo\$198bobo3\$121bo\$119bobobboo\$120boob3o\$123boobo\$124b3o\$125bo\$12bo19bo19bo19bo19bo19bo19bo19bo19bo19bo\$11bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo\$10bobobo15bobobo15bobobo15bobobo15bobobo15bobobo10bo4bobobo15bobobo15bobobo15bobobo\$10bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo8bobo4bo3bo15bo3bo15bo3bo15bo3bo\$11b3o17b3o17b3o17b3o17b3o17b3o10boo5b3o17b3o17b3o17b3o\$119b3o\$9b3o17b3o17b3o17b3o17b3o17b5o7bo7b5o17b3o17b3o17b3o\$9bobbo16bobbo16bobbo16bobbo16bobbo16bo4bo5bo8bo4bo16bobbo16bobbo15bo3bo\$11boo18bobo17bobo17bobo17bobo18bobo17bobo18boo18boo15booboo\$6bo9bo15bo19bo19bobo17bobob3o13boo18boo\$7boo5boo41bo15bo19bobbo27b3o\$6boo7boo38boo40bo28bo46boo\$52boobboo67bo3boo38boobbobo\$8bo43bobo75boo36bobobbo\$8boo42bo76bo40bo\$7bobo5b3o\$17bo155boo\$16bo155bobo\$174bo9\$170bobo\$171boo\$171bo\$12bo19bo19bo19bo19bo19bo19bo19bo29bo19bo\$11bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo15boo10bobo17bobo\$10bobobo15bobobo15bobobo15bobobo15bobobo15bobobo15bobobo15bobobo13bobo9bobobo15bobobo\$10bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo9bo3bo15bo3bo\$11b3o17b3o17b3o17b3o17b3o17b3o17b3o17b3o27b3o17b3o\$172bo\$11b3o15b7o13b7o13b3ob3o13b3ob3o13b3ob3o13b3ob3o13b4obo17boo5b4obo16boobo\$bbo7bo3bo7bo6bobbobbo13bobbobbo12bobbobobbo11bobbobobbo11bobbobobbo11bobbobobbo11bobboboo16bobo4bobboboo16boboo\$obo7booboo7bobo43boo5boo11boo5boo11boobbobboo11boobbobboo11boo28boo\$boo19boo115boo\$139bobo\$3b3o13b3o68bo42b3o3bo\$5bo13bo70boo37b3obo37bo\$4bo15bo68bobo39bobbo36boo\$52boo76bo39bobo\$48boobbobo\$47bobobbo38b3o\$oo21boo24bo41bo\$boo19boo68bo\$o23bo63b3o\$90bo\$89bo\$48b3o\$50bo\$49bo!`

#250 and #252 from 22 and 37 gliders (via their cheaper carrier-based cousins, rather than the other way around):
`x = 171, y = 118, rule = B3/S2391bo\$92bo\$90b3o\$25bo18bobo3bobo21boo18boo\$23boo20boo4boo20bobbo16bobbo\$24boo19bo5bo22boo18boo\$48boo\$47bobo\$13bobo3bo14boo3bo9bo4boo3bo15boo18boo18boo18boo18boo\$14booboo14bobbobobo12bobbobobo12bobbobbo13bobbobbo13bobbobbo13bobbobbo13bobbobbo\$14bo3boo13booboboo13booboboo13boobobobo12boobobobo12boobobobo12boobobobo3bo8boobobobo\$34bobo17bobo8boo7bobobboo13bobobboo13bobobboo13bobobbooboo10bobobbo\$15bo13boo3bobo17bobo7boo8bobo17bobo17bobo17bobo6boo9bobo\$14boo12boo5bo19bo4b3o3bo8bo19bo19bo19bo19bo\$14bobo13bo31bo82b3o\$61bo83bo\$146bo19\$61bo\$9bobo49bobo\$10boo49boo\$10bo4boo18boo15bo4bo7boo18boo\$7bo5bobbobbo16bobbo10bobo5boo6bobbo16bobbo\$5bobo5boobobobo15bobobo10boo4boo7bobobo15bobobo\$6boo6bobobbo13boobobbo14bo8boobobbo11boboobobbo\$3boo9bobo14bobbobo17boo5bobbobo14boobobo\$bbobo4boo4bo15boobbo17bobo5boobbo19bo\$4bo3bobo\$10bo46b3o\$59bo\$58bo14\$135bo\$136boo11bo\$135boo11bo\$148b3o\$60bo85bo\$59bo84bobo\$11bobo45b3o45bobo35boo\$12boo13bo80boo\$12bo12boo30bo50bo\$26boo30bo42bobo\$56b3o43boobboo\$3bo48b3o19boo18boo6bo3bobo5boo6boo20boo6boo\$4bo49bo19boobboo14boobboo6bo7boobboobbobo19boobboobbobo\$bb3o48bo24boo18boo18boo3boo23boo3boo\$\$bo\$boo31boo18boo18boo18boo18boo28boo\$obo3boo7boo17bobo17bobo17bobo17bobo17bobo27bobo20boo\$5bobo8bobbo16bobbo16bobbo16bobbo16bobbo16bobbo26bobbo16bobbo\$7bo8bobobo15bobobo15bobobo15bobobo15bobobo15bobobo12b3o10bobobo15bobobo\$13boobobbo13boobobbo13boobobbo13boobobbo13boobobbo13boobobbo15bo7boobobbo13boobobbo\$11bobbobo14bobbobo14bobbobo14bobbobo14bobbobo14bobbobo17bo6bobbobo14bobbobo\$11boobbo15boobbo15boobbo15boobbo15boobbo15boobbo25boobbo15boobbo22\$141bo\$141bobo\$141boo\$132bo4bo9boo18boo\$130bobo5boo6bobbo16bobbo\$131boo4boo7bobobo15bobobo\$134bo8boobobbo11boboobobbo\$134boo5bobbobo14boobobo\$133bobo5boobbo19bo\$\$137b3o\$139bo\$138bo!`

16s converted to 17s using a standard but convoluted carrier-to-eater converter, slightly adjusted at the end to accomodate inconvenient protrusions:

#334 from 33 gliders:
`x = 179, y = 33, rule = B3/S23119bo\$119bobo\$119boo\$97bobo\$98boo\$98bo51bo\$150bobo\$150boo\$93bo51bo\$94boo50boo\$8bo84boo50boo\$bbo6boo\$obo5boo\$boo41bobo\$11bo10booboobo16boo5booboobo13booboobo33booboobo8boo3booboobo8boo3booboobo13booboobo\$7bo3bobo9boboboo16bo7boboboo14boboboo34boboboo8bobo3boboboo8bobo3boboboo14boboboo\$b3obboo3boo9bo24bo4bo19bo39bo16bobbo16bobbo19bo\$3bobbobo14boo16bo5boo4boo16boboo36boboo13booboboo13booboboo18boo\$bbo21bo16boo3bobo5bo16bobbo36bobbo16bobbo8boo6bobbo19bo\$22bo17bobo9bo19boo38boo17boo11boo5boo21bobo\$22boo28boo89bo15boo14boo\$3o119bo35boo\$bbo118bo24boo6b3o3bo\$bo45boo40boo30b3o21bobo8bo\$4b3o41boo40boo26boo27bo7bo\$4bo42bo41bo24bo3bobo\$5bo91b3o12bobo3bo\$b3o95bo13boo\$3bo94bo\$bbo\$94boo\$93bobo\$95bo!`

#114 from 43 gliders:
`x = 137, y = 75, rule = B3/S239bo\$7bobo9bo\$8boo7bobo\$18boo\$25bobo\$25boo19bo19bo19bo7bobo9bo19bo\$26bo15boobobo14boobobo14boobobo7boo5boobobo14boobobo\$43bobobo15bobobo15bobobo7bo7bobobo15bobobo\$27b3o12bobboo15bobboo15bobboo10bo4bobboo15bobboo\$27bo15boo18boo18boo6bo5boo4boo16boboo\$20bo7bo15bo19bo19bo6boo3bobo5bo16bobbo\$8b3o8boo22bo19bo18bo7bobo9bo19boo\$10bo8bobo21boo12bobo3boo6bo10boo18boo\$9bo48boo11bobo\$58bo12boo\$68boo27boo\$8b3o56boo29boo\$10bo58bo27bo\$9bo46b3o\$18b3o37bo4boo\$18bo38bo6boo\$19bo43bo\$9b3o57boo\$11bo56boo\$10bo59bo15\$18bo\$16boo\$17boo\$5bo73bo\$6boo71bobo\$5boo72boo\$23bo33bobo\$21boo35boo\$22boo4bo29bo51bo\$26boo82bobo\$27boo81boo\$53bo51bo\$29bo24boo50boo\$29boo22boo50boo\$28bobo\$\$16bo28boo28boo18boo18boo18boo\$5boo5boobobo24boobbo25boobbo10boo3boobbo10boo3boobbo15boobbo\$4bobo6bobobo25bobo27bobo11bobo3bobo11bobo3bobo17bobo\$6bo5bobboo25bobboo25bobboo12bobbobboo12bobbobboo15bobboo\$oo9boboo26boboo26boboo13booboboo13booboboo18boo\$boo8bobbo26bobbo26bobbo16bobbo8boo6bobbo19bo\$o11boo13bo14boo28boo17boo11boo5boo21bobo\$26boo75bo15boo14boo\$26bobo53bo35boo\$81bo24boo6b3o3bo\$13boo34boo30b3o21bobo8bo\$12bobo35boo26boo27bo7bo\$14bo34bo24bo3bobo\$57b3o12bobo3bo\$59bo13boo\$58bo\$\$54boo\$53bobo\$55bo!`

The following use a more streamlined tie-boat mechanism. While this can be used in other places, here it is always used to attach a boat where the tie is only from one side, and the other side requires separate induction that is created simultaneously:

#229 from 28 gliders:
`x = 125, y = 65, rule = B3/S2343bo\$42bo\$42b3o\$\$7bobo3bo29b3o\$8booboo17boboo11bo4boboo13booboboo13booboboo13booboboo\$8bo3boo16boobbo9bo5boobbo11boboboobbo11boboboobbo11boboboobbo\$33boo18boo12bo5boo12bo5boo12bo5boo\$47bo\$11b3o32boo62boo\$11bo34bobo60bobo\$7bo4bo97bo\$7boo\$6bobo\$80bo\$81bo\$79b3o\$83b3o\$85bo4b3o\$84bo5bo\$91bo14\$11bobo\$11boo87bo\$12bo85boo5bo\$6bo92boobboo\$7bo96boo\$5b3o4\$bo35boo18boo18boo18boo\$bbo35bo19bo19bo11bobo5bo\$3o4booboboo24boboboo14boboboo14boboboo7boo5boboboo13booboboo\$6boboboobbo24b3obbo14b3obbo14b3obbo6bo7b3obbo12bob3obbo\$7bo5boo6bo21boo18boo18boo18boo18boo\$20bo20boo18boo18boo6bo11boo18boo\$bbobo5boo8b3o17bobo17bobo17bobo4bobo10bobo17bobo\$3boo4bobo12b3o14bo19bo19bo6boo11bo19bo\$3bo6bo13bo\$25bo10bo19bo33bo\$16b3o16bobo4boo11bobo4boo26boo\$16bo18bobo4boo11bobo4boo25bobo\$6boo9bo18bo19bo\$5bobo45boo9boo\$7bo6boo36bobo9bobo\$13boo39bo9bo\$15bo\$11boo\$10bobo\$12bo3boo\$15boo\$17bo!`

Using the above mechanism reduces #192 from 50 to 26 gliders:
`x = 149, y = 58, rule = B3/S23115bo\$115bobo\$115boo\$\$114bo\$51bo60bobo\$52bo60boo\$50b3o\$\$6bo46bobo\$6bobo17boo18boo5boo11boo18boo18boo18boo13bo4boo\$bb3oboo17bobbo16bobbo5bo10bobbo16bobbo16bobbo3boo11bobbo11bobobbobbo\$4bo20bobo17bobo9b3o5boboo16boboo16boboobbobo11boboo12boobboboo\$3bo22bo19bo10bo8bo19bo19bo6bo12bo19bo\$58bo5bobo17bobo17bobo17bobo17bobo\$53bo10boo18boo18boo18boo18boo\$52bo\$52b3o9boo18boo\$40bo4b3o16boo18boo\$40boo5bo\$39bobo4bo35boo\$81bobo\$83bo9\$5bo61bo\$6bo58boo\$4b3o45bo13boo26bo\$8bo41boo43bo\$7bo43boo40b3o\$7b3o17boo16bo11boo18boo18boo\$27boo17bo10boo17bobbo16bobbo\$44b3o16boo12boo18boo\$63bobo\$bo4boo13bo4boo23bo4boo5bo21boo18boo18boo\$obobbobbo11bobobbobbo11bo9bobobbobbo23bobbobbo13bobbobbo13bobbobbo\$boobboboo12boobboboo12bo9boobboboo22boboboboo12boboboboo12boboboboo\$6bo19bo12b3o14bo20boo3boobbo10boo3boobbo15boobbo\$4bobo17bobo16bo10bobo20boo5bobo10boo5bobo17bobo\$4boo18boo17boo9boo28boo7b3o8boo18boo\$38bo3bobo50bo\$38boo7boo45bo\$37bobo6bobo\$48bo\$\$52boo\$52bobo\$52bo\$\$50boo\$49bobo\$51bo!`

#318 from 30 gliders:
`x = 124, y = 88, rule = B3/S2382bo\$83bo3bo18boo\$81b3oboo18bobbo\$86boo17bobbo\$106boo\$41bo\$31bo7bobo9bo19bo19bo19bo\$27boobobo7boo5boobobo11booboobobo11booboobobo11booboobobo\$27boboobbo9boobboboobbo10booboboobbo10booboboobbo10booboboobbo\$32boo8bobo7boo18boo18boo18boo\$44bo\$109boo\$108bobo\$10bo98bo\$9bo\$9b3o\$5bobo71bo\$6boo72bo\$6bo71b3o\$82b3o\$bo82bo4b3o\$bboo79bo5bo\$boo87bo5\$b3o\$3bo\$bbo\$\$16boo\$16bobo\$bbo13bo\$bboo\$bobo17\$36bo\$37boo6bo\$36boo7bobo\$bbo42boo5bobo\$obo19boo18boo8boo\$boo19boo18boo9bo\$\$boo19boo18boo\$obo19boo18boo\$bbo3boo18boo9bo8boo6boo\$5bobbo16bobbo9boo5bobbo4boo\$5bobbo16bobbo8boo6bobbo6bo\$6boo18boo18boo\$\$11bo19bo19bo25boobbo15boobbo15boobbo\$4booboobobo11booboobobo11booboobobo24bobbobo14bobbobo14bobbobo\$4booboboobbo10booboboobbo10booboboobbo7bo16b3obbo14b3obbo14b3obbo\$12boo18boo18boo6bo21boo18boo18boo\$40bobo17b3o17boo18boo18boo\$9boo18boo10boo6boo28bobo17bobo17bobo\$8bobo17bobo10bo6bobo29bo19bo19bo\$9bo19bo19bo14b3o\$64bo10bo19bo\$65bo8bobo4boo11bobo4boo\$56b3o15bobo4boo11bobo4boo\$56bo18bo19bo\$44boo11bo34boo9boo\$43bobo45bobo9bobo\$45bo8boo37bo9bo\$53boo\$55bo\$49boo\$48bobo\$50bo5boo\$55boo\$57bo!`

The following create an attached side, inspired by the synthesis of #137:

#138 from 24 gliders:
`x = 147, y = 59, rule = B3/S2378bo\$76bobo\$77boo\$\$81bo\$81boo\$80bobo\$42bo\$41bo41boo\$41b3o39bobo42bo\$39bo43bo16boo18boo6bobo9boo\$40bo30b3o27bo19bo6boo11bo\$38b3o19boo11bo6boo18bo19bo19bo\$60boo10bo7boo18boo18boo18boobbo\$143bobo\$7bobo10boo18boo18boo18boo18boo18boo18booboo\$bbobobboo12bo19bo19bo19bo19bo19bo19bo\$3boo3bo12boboo16boboo16boboo16boboo16boboo16boboo16boboo\$3bo18bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobo\$24boo18boo18boo18boo18boo18boo4bo\$boo127bobo\$bboo6bo119boo\$bo7boo\$9bobo115b3o\$127bo\$128bo17\$79bo\$79bobo47bo\$36bo42boo48bobo\$37bo52bo38boo\$35b3o40bo5bo5bobo\$47bo31bo4bobo3boo16bo19bo\$11bo33boo30b3o4boo22bo19bo\$9bobo34boo40bo19bo19bo\$oo8boo8boo18boo7boo36boo\$bo19bo19bo7bobo35bobo\$o7boo10bo19bo8bo10bo19bo\$oobbo3bobo9boo18boo18b3o17b3o18boo18boo18boo\$3bobobbo14bobbo16bobbo16bobbo16bobbo13bobbobbo13bobbobbo13bobbobbo\$ooboo15boob4o13boob4o13boob4o13boob4o13boob4o13boob4o13boob4o\$bo19bo19bo19bo19bo19bo19bo19bo\$boboo16boboo16boboo16boboo16boboo16boboo16boboo16boboo\$bbobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo!`

Similarly, #370 from 21 gliders:
`x = 169, y = 69, rule = B3/S2350bo\$51bo\$11bo37b3o\$10bo42boo\$10b3o40boo\$96bo\$97boo\$11b3o82boo\$11bo\$12bo\$\$106bo\$34boo18boo18boo18boo8boo18boo18boo18boo\$35bo19bo19bo19bo9boo18bo19bo11bo7bo\$19bo14bo19bo19bo19bo29bo19bo11bo7bo\$18boo14boo18boo18boo18boo11bo16boo18boo10b3o5boo\$18bobo86boo18boo4boo12boo4boo12boo\$34boo18boo18boo18boo10bobo15booboo4boo9booboo4boo9booboo\$33bobo17bobo17bobo17bobo27bobo17bobo17bobo\$34bo19bo19bo19bo27bobbo16bobbo16bobbo\$123boo18boo18boo7\$97boo\$97bobo\$bo80b3o12bo\$boo81bo\$obo80bo\$\$13boo\$13boo12\$100bo\$61bo39bo\$62boo35b3o\$61boo48bo\$109boo\$61bo48boo\$14boo18boo18boo4boo22boo18boo7boo\$15bo19bo19bo4bobo22bo19bo7bobo\$14bo19bo19bo29bo19bo8bo10bo\$14boo18boo18boo28boo18boo18b3o\$17boo18boo18boo28boboo16boboo16boboo\$9bo4booboo15booboo15booboo3boo20booboobo13booboobo13booboobo\$10bobbobo19bo19bo7boo20bo19bo19bo\$8b3obobbo17bobo17bobo6bo20bobo17bobo17bobo\$13boo18boo18boo28boo18boo18boo\$70b3o\$70bo\$12boo57bo\$11bobo\$13bo\$56boo\$55bobo\$57bo!`

And similarly, a totally different way to make #343 - that reduces the cost from 31 to 30 gliders:
`x = 196, y = 56, rule = B3/S23169bo\$167bobo\$168boo\$\$170bo\$170bobo\$170boo\$82bo\$82bobo81bo\$82boobboo67bobo6bobo\$85boo69boo7boo\$42bo44bo15bo19bo19bo12bo3bobo10bo19bo\$5bo37bo19bo19bo18bobo17bobo17bobo16boo9bobo17bobo\$3bobo35b3o18bobo17bobo17bobbo16bobbo16bobbo15bo10bobbo9boo5bobbo\$oobboo57boo18boo18boo6bo11boo18boo12b3o13boo10boo3booboo\$boo106bobo27boo18bo9boo18bobo\$o22boo18boo18boo18boo18boo5boo11boo13bobobboo13bo9bobobboo15bobboo\$4bobo17bo19bo19bo19bo19bo19bo14bo4bo24bo4bo19bo\$4boo17bo19bo19bo19bo19bo19bo19bo29bo19bo\$5bo17boo18boo18boo18boo18boo18boo18boo17b3o8boo10boo6boo\$8bo155bo19bobbo\$7boo102boo50bo21boo\$7bobo100bobo56boo\$112bo55boo\$170bo\$113boo\$113bobo\$113bo13\$bbo\$3bo9bo19bo19bo19bo19bo19bo19bo19bo\$b3o8bobo17bobo17bobo17bobo8bobo6bobo17bobo17bobo17bobo\$5boo5bobbo16bobbo16bobbo16bobbo8boo6bobbo16bobbo16bobbo16bobbo\$5boo3booboo15booboo15booboo15booboo9bo5booboo13bobooboo13bobooboo13bobooboo\$9bobo17bobo17bobo17bobo8bo8bobo16boobo16boobo16boobo\$10bobboo15bobboo9bo5bobboo14boobboo5boo7boobboo18boo18boo17b3o\$14bo19bo10boo7bo19bo4bobo12bo19bo10bo8bo19bo\$13bo19bo10boo7bo19bo10b3o6bo19bo9bobo7bo\$5boo6boo18boo18boo18boo11bo6boo18boo9boo7boo\$4bobbo38bo38bo41boo\$5boo39boo40b3o37boo\$b3o41bobo40bo38bo\$3bo80b3obbo47b3o\$bbo83bo50bo\$85bo52bo!`

[b]Objects with protruding loaves:

Here are some 17-bit still-lifes with loaf-like bonding sites, suitable for attaching molds and jams (I need these to complete the 22-bit molds - I'm not actually synthesizing them at this point, just noting the ones that can't yet be synthesized). #237*, #281, #314, #315, #316, #319 and #350* remain unsynthesized (plus two trivial ones replacing snakes with carriers in the ones marked *).

#375 from 27 gliders. I had actually built this one last March, as an intermediate step in one of the difficult 16s at the time (one that was needed to make 12-bit molds). I didn't record the 17-bit one separately, as the 17s weren't a current concern at the time, and only just noticed it again after making a much more ugly 56-glider synthesis of it!:
`x = 163, y = 65, rule = B3/S2386boo\$85bobobo\$87bobobo\$89boo\$94boo15bo19bo19bo\$37bo55boo15bobo17bobo17bobo\$36bo58bo14boo18boo18boo\$36b3o\$57boo28boo18boo18boo18boo\$36bo19bobo27bobo17bobo17bobo17bobo\$bbo19boo12boo4boo13bo4boo23bo4boo13bo4boo13bo4boo13bo4boo\$obobb3o14bobo10bobo4bobo17bobo27bobo17bobo17bobo17bobo\$boobbo17boo18boo18boo28boo18boo18boo18boo\$6bo18boo18boo18boo28boo18boo18boo18boo\$bo23bobo17bobo17bobo27bobo17bobo17bobo17bobo\$boo23bo19bo19bo29bo19bo19bo19bo\$obo\$\$160boo\$139b3o18boo\$141bo\$140bo\$oo140boo17boo\$boo139bobo16boo\$o141bo15\$33bo50bo44bo\$31bobo49bo46boo\$32boo16bobo26bo3b3o43boo\$51boo27boo7bo48bobo\$51bo27boo6boo49boo\$41bo46boo49bo\$40bobo6boo\$40boo6boo\$50bo\$37boo\$36bobo16bo7bo19bo13bobbo12bo3boo14bo3boo14bo\$37bo4boo10bo7bobo17bobo11bo15bobo3bo13bobo3bo4bobo6bobo\$42bobo9b3o4bobbo16bobbo11bo3bo10bobbobbo13bobbobbo5boo6bobbobboo\$43boo17b3obo15b3obo9b4o12b3obo15b3obo7bo7b3obobo\$45boo18bobo9bo7bobo27bo19bo19bo\$45bobo16bobbo10boo4bobbo26bo19bo11bo7bo\$46bo18boo10boo6boo27boo18boo10bobo5boo\$38bo107boo\$37boo\$33bo3bobo10boo93bo\$34boo14boo92boo\$33boo56b3o50bobo\$79bo11bo\$42boo7boo26boo11bo\$41bobo7boo25bobo\$43bo!`

#251 from 19 gliders, similar to a 16-bit one with beehive:
`x = 175, y = 42, rule = B3/S23147bo\$146bo\$146b3o5\$143bo\$144bo\$142b3o\$\$127bo12boo\$125bobo11bobo\$126boo13bo\$133b3o\$135bo18bo\$134bo18bo\$153b3o\$34bo\$35bo\$33b3o\$38bo132bo\$obo33boo131b3o\$boo19bo14boo3bo12boobo3bo12boobo3bo22boobo3bo22boobo3bo22boobo3boo\$bo19bobo17bobo11boboobbobo11boboobbobo12bo8boboobbobo21boboobbobo21boboobbobbo\$22boo18boo18boo18boo10boo16boo28boo27bobo\$b3o30b3o58boo20boo28boo9boo12bo\$bo28b3obo81bobbo26bobbo7boo\$bbo29bobbo79boboo26boboo10bo\$31bo59bo22bobo27bobo\$90boo22bobo27bobo\$86boobbobo22bo29bo\$87boo\$86bo\$\$134boo\$91b3o39bobo\$91bo43bo\$92bo\$145bo\$144boo\$144bobo!`

The following synthesis is a combination of several useful results falling out of a doomed attempt to create the wrong object, and then building it the wrong way to boot. These two 17s aren't on the hard list - I was trying to make #350 but accidentally put the loaf on the wrong way! Still, a few useful converters fell out of the process. Incidentally, the base 16-bit still-life is reduced by 1 (using the 2-glider claw-to-beehive converter). The beehive-to-mango converter is less obtrusive (but costs 1 more glider). The mango-to-feather converter is much more expensive, but also much less obtrusive.

What's most ridiculous about this synthesis is that the whole reason I went through all the above convolutions was that the standard beehive-to-loaf converter won't work for #350. However, it DOES work for these objects! Building them the old easy way (row 3) costs 41 (w/loaf) and 49 (w/feather), while building them the new convoluted way (rows 4+5) costs 47 (w/feather) and 54 (w/loaf), so the old way is best for the loaf, but the new way is best for the feather:
`x = 168, y = 143, rule = B3/S23132bobo\$132boo\$133bo\$10bo\$11boo\$10boo4bo\$16bobo\$16boo\$10boo\$9bobo63boo18boo18boo18boo18boo\$11bo60boobbo15boobbo15boobbo15boobbo15boobbo\$32b3o36bobobo15bobobo17bobo7boo8bobo15bobobo\$32bobbo34bobboboo13bobboboo6bo9boboo5bobo8boboo11bobobboboo\$6b3o17b3o3bo38boo18boo9bo11bobbo6bo9bobbo10boo3boobbo\$6bobbo16bobbobbo69b3o11boo18boo18boo\$6bo19bo6bobo8bo\$6bo19bo18boobo36b3o11bo29b3o\$7bobo17bobo14boobbobo36bo10boo29bo\$48boo36bo11bobo29bo\$90boo11boo29boo\$91boobbo6boo21boo6boo\$90bo3boo8bo21boo7bo\$94bobo28bo3b3o\$129bo\$40boo88bo\$41boo\$40bo66b3o\$107bo\$54bo53bo\$53boo\$53bobo6\$55boo\$54boo\$56bo6\$12bo\$10boo\$11boo\$7bo\$8boo\$7boo6boo18boo18boo28boo18boo18boo\$12boobbo13boboobbo13boboobbo23boboobbo13boboobbo13boboobbo\$11bobobo14boobobo14boobobo24boobobo14boobobo14boobobo\$8bobobboboo16boboo16boboo28boo18boo18boo\$3bobobboo3boobbo15boobbo15boobbo26bobbo16bobbo16bobbo\$4boo10boo18boo18boo27boo18boo18boo\$4bo38boo3b3o\$7boo33b4o4bo9boo12boo18boo\$6boo34booboobbo10bobo11boo18boo\$8bo35boo14bo29b3o\$56b3o33bo\$58bo32bo\$57bo14\$141bobo\$100bo40boo\$99bo19boo21bo\$99b3o17boo\$15boo18boo18boo18boo18boo18boo18boo28boo\$10boboobbo13boboobbo13boboobbo13boboobbo13boboobbobb3o8boboobbobboo9boboobbo23boboobbo\$10boobobo14boobobo14boobobo14boobobo14boobobo3bo10boobobo3boo9boobobo24boobobo\$15boo18boo18boo18boo18boo3bo14boo18boo5boo21boo\$14bobbo16bobbo16bobbo3boo11bobbo16bobbo16bobbo16bobbo3boo21bo\$15boo18boo18boo4bobo11bobbo16bobbo16bobbo16bobbo4bo21bobo\$31boo18boo8bo14boo18boo18boo18boo10bo17boo\$10b3o18boo18boo94bo\$12bo45boo82b3obb3o\$11bo47boo81bo\$13b3o34boo6bo84bo\$13bo35bobo\$14bo36bo90b3o\$53boo87bobbo\$53bobo80b3o3bo\$53bo82bobbobbo\$136bo6bobo\$136bo\$137bobo12\$15boo18boo18boo18boo18boo18boo\$10boboobbo13boboobbo13boboobbo13boboobbo13boboobbo13boboobbo\$10boobobo14boobobo14boobobo5bo8boobobo14boobobo14boobobo\$15boo18boo18boo3bo14boo18boo18boo\$14bo19bo19bo5b3o11bobbo16bobbo16bobbo\$15bobo17bobo17bobo6b3o8bobo17bobo17bobo\$16boo18boo18boo6bo11bo19bo19bo\$65bo15bo19bo\$36boo18boobb3o17bobo17bobo\$36boo18boobbo19bobo17bobo\$61bo19bo19bo\$16bobo84boo\$16boo85bobo\$17bo85bo\$\$16b3o\$16bo\$17bo14\$boo\$obo\$bbo!`

(Sadly, reversing this to make #350 won't work, as the mango version is stable, but the intermediate feather one isn't.)

The following miscellaneous syntheses are not related to each other:

The recent beehive-to-long-bookend-with-hook converter is very useful, and solves more than .5% of remaining still-lifes, including one 15-bit one (for the same cost as before), and this 16-bit one (that is reduced from 31 to 11 gliders):
`x = 71, y = 15, rule = B3/S2343bo\$43bobo\$13bo29boo\$13bobo37bo\$13boo38bobo\$8bo44boo\$7bo35bo\$7b3o33boo\$42bobo21boo\$10bo16boo18boo8b4o6bo\$9boo15bobbo16bobbo3boobbo3bo4bo3bo\$bo7bobo14b3o17b3o4bobobo8b5o\$bbo50bo4bobbo\$3o22boboo16boboo16boboo\$25boobo16boobo16boobo!`

This tub-to-barge welder could be used to close billiard-table exteriors. It gives us #338, #337, #339, #376 from 20, 20, 22, 22:
`x = 147, y = 172, rule = B3/S2370bo23bo\$68bobo22bo\$69boo22b3o4\$101bo19bo19bo\$100bobo17bobo17bobo\$101boboboo14boboboo14boboboo\$103boboo16boboo16boboo\$103bo19bo19bo\$101bobo10bo6bobo17bobo\$76boo23boo9bobo6boo17bobo\$75bobo12b3o20boo26bo\$77bo12bo25boo\$91bo25boo\$70boo6boo36bo\$71boo5bobo40boo\$70bo7bo42bobo\$121bo11\$116bobo\$116boo\$117bo\$111bo\$72bobo37bo\$73boo35b3o\$41bo19bo11bo7bo19bo19bo19bo\$40bobo17bobo17bobo10booboobbobo10booboobbobo17bobo\$32bo8boboboo14boboboo14boboboo6booboo3boboboo6booboo3boboboo12boboboboo\$30bobo10boboo16boboo7bo8boboo16boboo16boboo12bo3boboo\$31boo10bo16bobbo11bo4bobbo16bobbo16bobbo16bobbo\$41bobo15bobobo9b3o3bobobo15bobobo15bobobo17bobo\$33b3o4bobo17bobo17bobo17bobo17bobo19bo\$35bo5bo19bo19bo19bo19bo\$34bo37b3o38boo\$72bo41boo\$73bo39bo\$123boo\$39b3o80boo\$39bo77boo5bo\$40bo77boo\$117bo9\$116bobo\$116boo\$117bo\$111bo\$72bobo37bo\$73boo35b3o\$41bo19bo11bo7bo19bo19bo19bo\$40bobo17bobo17bobo10booboobbobo10booboobbobo17bobo\$32bo8bobo17bobo17bobo9booboo3bobo9booboo3bobo15bobobo\$30bobo10bo19bo10bo8bo19bo19bo15bo3bo\$31boo10boboo13bobboboo8bo4bobboboo13bobboboo13bobboboo13bobboboo\$41boboboo12boboboboo6b3o3boboboboo12boboboboo12boboboboo14boboboo\$33b3o4bobo17bobo17bobo17bobo17bobo19bo\$35bo5bo19bo19bo19bo19bo\$34bo37b3o38boo\$72bo41boo\$73bo39bo\$123boo\$39b3o80boo\$39bo77boo5bo\$40bo77boo\$117bo9\$81bo\$81bobo\$81boo\$76bo\$77boo\$76boo\$38bo9bo24boo26bo19bo19bo\$39boo7bobo10boobboo5bobo6boobboo13bobobboo13bobobboo13bobobboo\$38boo8boo11bobobbo7bo6bobobbo14bobobbo14bobobbo14bobobbo\$25boo18boo16boo18boo18boo18boo18boo\$25bo19bo17bo19bo19bo19bo19bo\$5boo16bobo17bobo15bobo17bobo17bobo10bo6bobo17bobo\$4boo17boo18boo16boo18boo18boo9bobo6boo17bobo\$boo3bo106boo26bo\$obo36bo76boo\$bbo36boo76boo\$38bobo75bo\$121boo\$121bobo\$121bo11\$116bobo\$116boo\$117bo\$111bo\$72bobo37bo\$73boo35b3o\$41bo19bo11bo7bo19bo19bo19bo\$40bobobboo13bobobboo13bobobboo6booboobbobobboo6booboobbobobboo13bobobboo\$32bo8bobobbo14bobobbo14bobobbo6booboo3bobobbo6booboo3bobobbo12bobobobbo\$30bobo10boo18boo9bo8boo18boo18boo14bo3boo\$31boo10bo16bobbo11bo4bobbo16bobbo16bobbo16bobbo\$41bobo15bobobo9b3o3bobobo15bobobo15bobobo17bobo\$33b3o4bobo17bobo17bobo17bobo17bobo19bo\$35bo5bo19bo19bo19bo19bo\$34bo37b3o38boo\$72bo41boo\$73bo39bo\$123boo\$39b3o80boo\$39bo77boo5bo\$40bo77boo\$117bo9\$116bobo\$116boo\$117bo\$111bo\$72bobo37bo\$73boo35b3o\$41bo19bo11bo7bo19bo19bo19bo\$40bobo17bobo17bobo10booboobbobo10booboobbobo17bobo\$32bo8bobo17bobo17bobo9booboo3bobo9booboo3bobo15bobobo\$30bobo10bo19bo10bo8bo19bo19bo15bo3bo\$31boo10boo15bobboo10bo4bobboo15bobboo15bobboo15bobboo\$41bobobbo12bobobobbo6b3o3bobobobbo12bobobobbo12bobobobbo14bobobbo\$33b3o4bobobboo13bobobboo13bobobboo13bobobboo13bobobboo15bobboo\$35bo5bo19bo19bo19bo19bo\$34bo37b3o38boo\$72bo41boo\$73bo39bo\$123boo\$39b3o80boo\$39bo77boo5bo\$40bo77boo\$117bo!`

#240 from 50 gliders, using the standard snake-to-tub-w/long-tail converter modified to use an inducting carrier, further modified here to use an (extremely expensive) hat:
`x = 166, y = 102, rule = B3/S2310bobo\$11boo\$11bo\$\$bbo8b3o17bo19bo19bo19bo19bo19bo19bo\$bboo9bo17b3o17b3o17b3o17b3o17b3o17b3o17b3o\$bobo8bo21bo19bo19bo19bo19bo19bo19bo\$31boobo16boobo16boobo16boobo16boobo16boobo16boobo\$31booboo15booboo15booboo15booboo15booboo15booboo15booboo\$143bobo\$47bo95boo\$48bo48b3o13bo19bo10bo8bo\$46b3o20booboo15booboo3bo11boobobo14boobobo14booboboboo\$68boboboo14boboboo4bo9bobobobo13bobobobo13bobobobobobo\$45bo23bo19bo6bo12bo3bo15bo3bo15bo3bo3bo\$21bo23boo49boo\$20boo22bobo48bobo42boo\$20bobo117bobo\$135bo4bo\$135bobo\$135boo\$126boo\$127boo3b3o\$54boo70bo5bo\$54bobo76bo\$54bo11\$46bo\$44bobo\$45boo\$\$46bo19boo18boo\$46boo17bobbo16bobbo\$45bobo17bobbo16bobbo\$66boo18boo\$11bo19bo19bo19bo10bo8bo19bo19bo19bo\$11b3o17b3o17b3o17b3o9bobbo4b3o17b3o17b3o17b3o\$5bo8bo6bo12bo19bo19bo6b3obboo6bo14boo3bo14boo3bo14boo3bo\$3bobo5boobo6bobo7boobo16boobo16boobo10bobo3boobo14bobbobo14bobbobo14bobbobo\$4boo5booboo5boo8booboo15booboo15booboo15booboo15booboo15booboo15booboo\$\$31booboo15booboo15booboo15booboo15booboo15booboo15booboo\$13bo17booboo15booboo15booboo15booboo15booboo15booboo15booboo\$9booboboboo\$oo6bobobobobobo6boo\$boo6bo3bo3bo6boo127bo\$o25bo125bobo\$152bobo\$153bo\$3b3o15b3o\$5bo3b3o9bo110boo3bo\$4bo6bobboo6bo104boobboboboo\$10bobboo113boo3bobboo\$15bo111bo6\$19bo\$18boo\$18bobo11\$126bobo\$122bo3boo\$123boobbo\$11bo19bo19bo19bo19bo19bo10boo7bo29bo\$11b3o17b3o17b3o17b3o17b3o17b3o17b3o27b3o\$9boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo24boo3bo\$9bobbobo14bobbobo14bobbobo14bobbobo14bobbobo14bobbobo14bobbobo23bo3bobo\$11booboo15booboo15booboo15booboo15booboo15booboo15booboo21bobobooboo\$120bobo3bo31bo\$11booboo15booboo15booboo15booboo15booboo6bo8booboo5boo3boo3booboo\$11booboo14bobobobo13bobobobo13bobobobo13bobobobo3boo10bobo6bo3bobo4bobo5bo\$5bo15bo9bo3bo15bo3bo14bobobbo14bobobbo5boo9bobo17bobo5bobo\$6bo13bo50boo18boo20bo7b3o9bo6boo\$4b3o6bo6b3o74bobo23bobboo8bo\$8bo3bobo3bo28bo38boo9boo23bo3bobo7bobo\$8boobbobobboo28boo38boo9bo27bo6bobboo\$7bobo3bo3bobo26bobo37bo45boo\$99boo23boo6bobo\$49b3o46boo23bobo\$49bo50bo24bo\$50bo!`

#211 from 27 gliders, using beehive-to-mango-to-feather converter (and its cousin w/loaf from 34):
`x = 159, y = 70, rule = B3/S23131bobo\$134bo\$125bobo6bo\$128bo2bo2bo\$49bo78bo3b3o\$50b2o5bo67bo2bo\$49b2o4b2o40bobo26b3o\$56b2o39b2o\$44bo47bo5bo28bo\$45b2o4bo38b2o36bo\$44b2o6b2o37b2o6b2o20b3o2b3o\$18b2o31b2o10bo34b2o23bo\$18bobo26b2o14bobo23bo10bo12b2o7bo10b2o18b2o\$13bo4bo27bobo14b2o3bo5b2o11bobo4b2o16bo2bo11bo4bo2bo17bobo\$11bobo24bo9bo9bo8bo5bo2bo11b2o3bo2bo16bo2bo11b2o3bo2bo19bo\$8b2o2b2o20b2obobo14b2obobo7b3o4b2obo16b2obo16b2obo9b2o5b2obo16b2obo\$2o5bobo25bobobo15bobobo15bobo17bobo17bobo17bobo17bobo\$b2o6bo24bo2b2o15bo2b2o15bo2b2o15bo2b2o15bo2b2o15bo2b2o15bo2b2o\$o33bobo17bobo8b2o7bobo17bobo17bobo17bobo17bobo\$35b2o18b2o4bo2b2o9b2o18b2o18b2o18b2o18b2o\$61b2o3bo61bo\$60bobo65b2o\$127bobo13\$68bo\$68bobo\$68b2o14\$53bo\$54bo\$52b3o2\$53bo73bo\$53b2o70bobo\$52bobo71b2o\$89bo19bo19bo19bo\$73b2o15bo2b2o13bobo17bobo17bobo\$73b2o13b3o2b2o13bobo17bobo17bobo\$85bo23bo19bo19bo\$53b2o18b2o11bo6b2o19bo19bo19bo\$53bobo17bobo8b3o6bobo17bobo17bobo17bobo\$56bo19bo11b3o5bo16bo2bo16bo2bo16bo2bo\$54b2obo16b2obo12bo3b2obo16b2obo16b2obo16b2obo\$55bobo17bobo11bo5bobo17bobo17bobo17bobo\$54bo2b2o15bo2b2o15bo2b2o15bo2b2o15bo2b2o15bo2b2o\$54bobo17bobo17bobo17bobo17bobo17bobo\$55b2o18b2o18b2o18b2o18b2o18b2o!`

#273 from 77 gliders (based one of the hard 15s from 64 gliders). This converter is the reverse of the hat-to-loop converter, and might have other uses:
`x = 147, y = 38, rule = B3/S23127bo\$125bobo\$126boobbo\$48bo80bo\$3bo19bo19bo4bobo12boo18boo18boo18boo4b3o11boo\$bbobo7bo9bobo17bobo3boo12bobo17bobo7bo9bobo17bobo17bobo\$bbobbo6bobo7bobbo16bobbo16bo19bo9bobo7bo19bo19bo\$ooboo7boo6booboo15booboo15boob4o13boob4o5boo6boob4oboo10boob4oboo10boob4o\$obbo5boo9bobbo4boo10bobbo4boo3bo6bobbobbo13bobbobbobboo9bobbobboboo10bobbobboboo10bobbobbo\$bobbo4bobo9bobbo3boo11bobbo3booboo8bobbo16bobbo4bobo9bobbo16bobbo16bobo\$bboo5bo12boo18boo8boo8boo18boo5bo12boo18boo18bo\$126b3o\$102boo18boobbo\$51boo49boo18boo3bo\$50boo\$52bo28bobo41bo\$82boo40boo\$82bo41bobo\$\$81b3o\$83bo\$82bo14\$97boo\$97bobo\$97bo!`

#126 from 34 gliders; same as 16 used in above #122 synthesis, but using eater instead of snake:
`x = 161, y = 58, rule = B3/S2349bobo\$50boo3bo\$15bobo32bobboo\$15boo37boo\$6bo9bo\$7bobbo46bo43bo\$5b3o3boobbo41bobo41bobo\$10boobbo42boo15bo19bo6boo11bo19bo19bo\$14b3o13boobo16boobo16boobobo14boobobo14boobobo14boobobo14boobobo\$30boboo16boboo16boboobobboo10boboobobboo10boboobo14boboobo14boboobo\$74bo3boo14bo3boo14bo19bo19bo\$13bo17b3o17b3o17b3o17b3o17b3o17b3o17b3o\$12bo18bobbo16bobbo4b3o9bo19bo19bo19bo18bo\$12b3o17bobo17bobo4bo79bo10boo\$6bo26bo19bo6bo77bo\$6boo127boob3o\$5bobo5bo43bo76bobo\$12boo42boo78bo\$12bobo41bobo\$138b3o\$138bo\$139bo9\$45bo\$43bobobbo\$44boobbobo\$12bo35boo\$13bo38b3o\$11b3o38bo44bobo\$53bo15boo18boo6boo20boo18boo18boo\$4bo5b3o11bo19bo19bo5bo13bo5bo7bo15bo5bo13bo5bo13bo5bo\$oobobo4bo9booboboboo11booboboboo11boobobob3o10boobobob3o20boobobob3o10boobobob3o10boobobob3o\$oboobo5bo8boboobobobo10boboobobobo10boboobobo12boboobobo22boboobobo12boboobobo12boboobobo\$4bo19bo3bo15bo3bo5bo9bo19bo10bo4bobo13bo19bo19bo\$b3o4bo12b3o17b3o9boo6b3o17b3o9boo5boo7bo19bo\$o7boo10bo19bo12bobo4bo19bo13boo5bo6bobo17bobo\$oo5bobo10boo18boo18boo18boo26bobo17bobo\$96bo12bo8boo9bo8boo\$95boo21boo6boo10boo\$72boo15boo4bobo27bobo\$73boo14bobo35bo12b3o\$72bo16bo50bo\$83boo56bo\$82boo\$84bo6b3o\$91bo\$92bo\$\$86boo\$87boo\$86bo!`

#352, #294, #293 from 16, 20, 14 gliders. The first two attach a "broken eater" (i.e. eater to gull converter, suppressing the tail bit next to the eater head):
`x = 155, y = 122, rule = B3/S23137bo\$135boo\$136boo\$bo\$bbo76bo39bo\$3o76bobo38boo\$79boo38boo\$77bo\$bo30bo42bobo19boo28boo24bo\$o22bo7bo11bo19bo12boo5bo12bobbo3bo22bobbo3bo18bobo\$3o19bobo6b3o8bobo17bobo17bobo12boo3bobo11bobo8boo3bobo4b3o6boobobbo\$6b3o13boo18boo18boo18boo18boo12boo14boo5bo8bo3boo\$6bo13boo10b3o5boo18boo18boo18boo15bo12boo8bo9boo\$b3o3bo13bo12bo6bo14boo3bo14boo3bo14boo3bo24boo3bo19bo\$3bo17bobo9bo7bobo11bobo3bobo11bobo3bobo11bobo3bobo14boo5bobo3bobo17bobo\$bbo19boo18boo12bo5boo12bo5boo12bo5boo15boo5bo5boo18boo\$36bo81bo\$35boo\$35bobo\$\$115bo\$115boo4boo\$114bobo5boo\$121bo15\$130bo\$128boo\$125bo3boo\$123bobo7bo\$124boo7bobo\$133boo\$119bo\$120boo\$119boo\$\$127boo12bo\$126bobbo3bo6bo11boo\$116bobo8boo3bobo5b3o5boobobbo\$116boo14boo14bo3bobo\$117bo12boo18boobo\$126boo3bo11bobo5bo\$118boo5bobo3bobo9boo6bobo\$119boo5bo5boo10bo7boo\$118bo\$\$141b3o\$141bo\$115bo26bo\$115boo4boo\$114bobo5boo\$121bo13\$89bobo\$90boo20bo\$90bo22boo\$112boo25bo\$109bo29bobo\$107bobo29boo\$108boo5\$120bo21bo\$118boo21bo\$119boo20b3o3\$144bobo\$144boo\$145bo\$\$113bo\$114bobbo\$112b3obboo\$116bobo4bo28boo\$122bobo26bobbo\$122boo24boobbobo\$120boo26boboobo\$121bo29bo\$121bobo27bobo\$122boo28boo14\$142b3o\$142bo\$143bo!`

#197 from 29 gliders:
`x = 190, y = 53, rule = B3/S2327boo18boo18boo18boo18boo18boo18boo\$24boobbo15boobbo15boobbo15boobbo15boobbo15boobbo15boobbo\$23bobobo15bobobo17bobo17bobo17bobo17bobo17bobo\$22bobboboo13bobboboo6bo9boboo16boboo16boboo16boboo16boboo\$23boo18boo9bo11bobbo16bobbo16bobbo16bobbo16bobbo\$54b3o11boo18boo18boo18boo18bobo\$6bo116bo9bo15bo\$7boobo26b3o11bo72boo5boo\$6boobbobo26bo10boo71boo7boo\$10boo26bo11bobo\$42boo11boo16boo18boo30bo\$43boobbo6boo17boo18boo30boo\$42bo3boo8bo39boo26bobo5b3o\$46bobo47bobo35bo\$96bo36bo\$bboo\$3boo\$bbo\$\$16bo\$15boo155bo\$15bobo154bobo\$172boo\$\$150boo18boo\$150boo18boo\$\$17boo\$16boo\$18bo4\$96bo\$94boo38bo\$95boo36bo\$133b3o\$98bo12bo19bo\$97boo12bo19bo\$97bobo11bo19bo\$bo5boo18boo18boo18boo18boo18boo18boo5boo11boo18boo18boo\$bboboobbo15boobbo15boobbo15boobbo15boobbo15boobbo15boobbo4b4o7boobbo15boobbo15boobbo\$3obbobo17bobo17bobo17bobo17bobo17bobo17bobo4booboo8bobo17bobo17bobo\$5boboo15bobboo15bobboo15bobboo15bobboo15bobboo15bobboo4boo9bobboo15bobboo15bobboo\$6bobbo15boobbo15boobbo15boobbo15boobbo15boobbo15boobbo15boo18boo18boo\$o7bobo17bobo17bobo16boobo16boobo16boobo16boobo16boo18boo18boo\$boo6bo19bo19bo17bobbo16bobbo16bobbo16bobbo16bobo17bobo17bobo\$oobboo62boo18boo18boo18boo4bo13bo19bo19bo\$3bobo127boo\$5bo41boo84bobo\$43bobboo\$43boo3bo\$42bobo!`

#353 from 24 gliders:
`x = 128, y = 56, rule = B3/S23103bo\$101boo\$102boo\$\$97bo\$98boo\$97boo3bo\$100boo\$101boo3\$60bo60boo\$61boo18bo19bo18bobbo\$26bobo15bo15boobbo15bobobo15bobobo15bobobo\$26boo16b3o17b3o14boob3o14boob3o14boob3o\$27bo19bo19bo19bo19bo19bo\$46boo18boo18boo18boo18boo\$28b3o\$28bo\$29bo10\$16bobo\$16boo\$17bo\$11bo\$9bobo10bo\$10boo8boo\$21boo86bo\$109bobo\$13bo95boo\$11bobo\$12boo24boo18boo18boo18boo10bo7boo\$bboo35bo19bo19bo19bo9boo8bo\$o4bo15boo16boboo16boboo16boboo16boboo6bobo7boboo\$6bo13bobbo16bobbo16bobbo16bobbo16bobbo16bobbo\$o5bo13bobobo17bobo17bobo17bobo17bobo17bobo\$b6o6boo6boob3o14boob3o14boob3o14boob3o14boob3o14boobo\$12bobo12bo19bo19bo19bo5bobo11bo12bobbo\$14bo11boo18boo18boo18boo6boo10boo13boo\$16b3o75bo\$16bo24boo18boo35boo\$17bo23boo18boo28boo4bobo\$90bobo6bo\$24boo33boo31bo\$24bobo31bobo42boo\$24bo35bo35boo5bobo\$95bobo5bo\$97bo!`

#106 from 55 gliders (based on the last hard 16-bit still-life):
`x = 114, y = 22, rule = B3/S239bo\$7bobo\$8boo\$\$10bo\$obo7bobo39bo25bo\$boo7boo41bo25bo\$bo49b3o23b3o17bo\$5bo10bo38bo39boo\$6boo7bo39bobo38boo\$5boo8b3o37boo29bo\$84boo\$31boo18boo17boo8bobobboo3boo\$29bobbo16bobbo16bobbo8boo6bobbo\$29b3o17b3o17b3o9bo7b3o\$20bo\$9boobo6boo8boobo16boobo16boobo16boobo14boobobo\$8boboobo5bobo6boboobo14boboobo14boboobo14boboobo14boboobo\$7bo5bo13bo5bo13bo5bo13bo5bo13bo5bo13bo5bo\$7boboobo14boboobo14boboobo14boboobo6boo6boboobo14boboobo\$8boboo16boboo16boboo16boboo6bobo7boboo16boboo\$80bo!`

#345 from 59 gliders, based on an expensive 15. Sadly, there's no known way to convert this into the similar unsolved 21-bit trice tongs:
`x = 128, y = 70, rule = B3/S2371bo\$71bobo\$71boo\$69bo\$63bo3bobo\$64bo3boo\$28bobo31b3o\$28boo40bo\$29bo38boo4bo\$69boo3bobo\$30boo42boo\$29boo54boo18boo18boo\$21bo3bo5bo9bo3boo14bo3boo14bo4bo14bo4bo14bo4bo\$20bobobobo13bobobobo13bobobobo13bobobo15bobobo15bobobo\$20boboboo14boboboo14boboboo5boo7boboboo14boboboo14boboboo\$21bobo17bobo17bobo7bobo7bobo17bobo17bobo\$23bo19bo19bo7bo11bo19bo19bo\$23boo18boo18boo18boo18boo18bobo\$98bo9bo15boo\$99boo5boo\$98boo7boo\$\$100bo\$100boo\$99bobo5b3o\$109bo\$108bo13\$100bobo\$100boo\$101bo8bo\$89bo19bo\$90boo17b3o\$89boo11bo\$102bobo\$102boo\$108bo\$106boo\$107boo\$\$5boo18boo18boo9bo18boo18boo\$bo4bo14bo4bo14bo4bo8bo15bo4bo14bo4bo24bo\$obobo15bobobo15bobobo10b3o12bobobo4boo9bobobo4boo19bobobo\$oboboo14boboboo14boboboo24boboboobbobbo8boboboobbobbo18bobob3o\$bobo17bobo17bobo14bo12bobo4bobbo9bobo4bobbo19bobo3bo\$3bo8bo10bo19bo13boo14bo5boo12bo5boo22bobbo\$3bobo5bo11boboo16boboo10bobo13boboo16boboo26bobo\$4boo5b3o10bobo17bobo27bobo17bobo11bo15bo\$107boo\$8b3o96bobo\$8bo\$9bo\$bbo58bo\$bboo56boo33boo\$bobo56bobo33boo6boo\$95bo7boo\$99b3o3bo\$101bo\$100bo!`

Some failed attempts that need further work:

It seems like #143 (Valentine) is closely related to #289 (Half-Valentine? Broken Heart?). A modification of the predecessor for the former gives the latter. Also, the former can almost be converted to the latter (shown are generations 0 and 37):
`x = 93, y = 68, rule = B3/S234bo9bo13b3o\$5b3o3b3o\$8b3o\$\$5bo3bo3bo13booboo\$5bobbobobbo12bobobobo\$7bobobo14bobbobbo\$7bobobo15bobobo\$3boo3bobo3boo12bobo\$3b3o3bo3b3o13bo\$4boo7boo10\$4bo9bo13b3o\$5b3o3b3o\$8b3o4boo\$13bobbo14bo\$5bo3bo3boo12boobobo\$5bobbobo15bobobobo\$7bobobobbo11bobbobo\$7bobobobboo11bobo\$3boo3bobobbobbo11bobo4boo\$3b3o3bo3bobo13bo5boo\$4boo8bo9\$obo\$boo\$bo28bo\$29bo\$22bobo4b3o\$22boo\$23bo\$\$50bo\$49bo\$50bo\$\$7booboo\$7booboo\$51bo39bo\$7booboo35booboboo13b3o17boobobo\$6bobobobo33boboboboo12bo3bo15bobobobo\$6bobbobbo33bobbobo3boo13bo15bobbobo\$7bobobo35bobo4bobo11boo17bobo\$8bobo15b3o19bobo17bo19bobo\$9bo16bo22bo39bo\$21bobo3bo40bo\$21boo\$22bo\$\$21b3o\$17boobbo\$16boo4bo\$18bo!`

Partial #383. I suspect the last step may not be possible:
`x = 169, y = 24, rule = B3/S2346bo\$47boo\$46boo\$\$55bo\$55bobo\$55boo3\$48booboo\$48booboo\$4bo19bo19bo19bobo17bobo17bobo17bobo14b3o20bobo\$oobobo14boobobo14boobobo14booboboo13booboboo13booboboo13booboboo13bo3bo15booboboo\$oboobo14boboobo14boboobo14boboo16boboo16boboo16boboo20bo15boboo\$4bo19bo19bo19b3o17b3o17b3o17b3o15boo21boo\$boo18boo18boo18boo3bo14boo3bo14boo3bo14boo3bo15bo23bo\$bo19bo19bo12bo6bo19bo19bo4bobo12bo4bobo37bobo\$bbo19bo19bo9boo8bo19bo8boo9bo4boo13bo4boo13bo24boo\$boo18boo18boo10boo6boo18boo7boo9boo18boo\$86b3o3bo\$46boo40bo\$47boob3o34bo\$46bo3bo\$51bo!`

Partial #165 and #166: a slight alteration to the sparks used on of the hard 16s could make these (see generations 0, and 41; objects appear at 43). I'm adding this at the last minute, and can't recall exactly how to add such sparks. I've seen it done frequently enough, but I can't find any examples at the moment, and don't have the time to look them up at the moment:
`x = 85, y = 92, rule = B3/S2331bo\$30bo\$30b3o\$16bo\$17bo\$15b3o3\$29bobo\$29boo\$30bo\$37bo\$35boo\$36boo\$7bo\$bo6bo\$bbo3b3o\$3o3\$20boo\$19bobbo\$19bobbo42bo3bo\$20boo43b3o\$67bobo\$25boo31bo10bo\$23bobbo28bobbo3boobbo11boobboo\$22boboo28booboobbobbo13bobbobbo\$21bobo30bo6bobo16booboo\$21bobo30boo5bobo17bobo\$22bo39bo18bobo\$61bobo18bo\$\$59bo5bo\$39boo17bo3bo3bo\$38boo18b4o3bo\$40bo20boo\$58booboo\$3b3o5bo47b5o\$5bo5boo46bo3boo\$4bo5bobo50boo4\$22bobo\$22boo\$23bo\$\$22boo\$22bobo\$22bo\$\$65bo3bo\$65b3o\$67bobo\$14boo42bo10bo\$13bobo39bobbo3boobbo11boobboo\$15bo38booboobbobbo13bobbobbo\$54bo6bobo16booboo\$54boo5bobo17bobo\$62bo18bobbo\$61boboo17boo21\$65bo3bo\$65b3o\$67bobo\$58bo10bo\$55bobbo3boobbo11boobboo\$54booboobbobbo13bobbobbo\$54bo6bobo16booboo\$54boo5bobo17bobo\$62bo17bobbo\$60boobo17boo!`

Summary:

The above syntheses remove the following 34 objects from the list:
#106, #113, #114, #122, #126,
#138, #156, #162, #167, #197,
#198, #211, #216, #229, #240,
#250, #251, #252, #273, #286,
#293, #294, #318, #334, #337,
#338, #339, #344, #345, #352,
#353, #370, #375, #376.

Updates based on other posts during the last week:

Extrementhusiast wrote:#334 from a 15-bitter:

Sokwe wrote:This same method can be used to solve #114:

Nice! These are both much smaller than mine, without all the convolutions.

Extrementhusiast wrote:#344 from a solved 17-bitter:

This is the same as mine, but yours uses a cheaper weld (which should also be applied to #216)

Sokwe wrote:Also, the last step from this synthesis can be used to solve #138. Here are two similar ways to get there:

Sokwe wrote:#198:

See above for completely different ways to do these less expensively.

mniemiec wrote:#214 is listed as solved, but I don't have it in my list. When was that posted, and by whom?

Sokwe wrote:I posted a solution to a related still life on January 4 that made this still life trivial (see here). I actually found the synthesis sometime in December, but I assumed it was already known so I didn't post it. Here is #214 and three related still lifes (Edit: it turns out that this was not correct ):

Last week I was collating all the syntheses I had listed with the unsolved object list, and when I looked at #214, I saw that I did indeed already have a synthesis for it, attributed to you - so this was totally a bookkeeping error on my part.

Sokwe wrote:Here is a similar-looking 17-cell still life that isn't on the list but can be synthesized from 5 gliders (possibly already known):

I had an incremental synthesis for this taking 11 gliders, but this 5-glider one is new to me. This is of particular interest to me at the moment, as I am attempting to list every object (and pseudo-object) buildable from 6 or less gliders. (No, I'm not attempting any kind of exhaustive search by smashing 5 or 6 gliders together, but whenever one comes up, I add it to the lists.) I've currently got ten 3s, a bit over 100 4s, a bit over 100 5s and a bit over 200 6s.

Sokwe wrote:#115 from a constructable 18-cell still life:

Very nice! I wasted a lot of time trying to make this one; I didn't think of starting with a bun and turning it into a snake at the very end.

Extrementhusiast wrote:Either way, #113 from a 14-bitter:

Mine is similar, but more expensive because I've been using a round-about flipper for objects of this kind (e.g. eater tail to loaf) and had forgotten about the cheaper one. This should also similarly improve #250 and #252 (and several 16s).

Sokwe wrote:#211

Mine (above) is similar, but differs starting from the beehive. To get to #211, mine is much cheaper, but to get to the loaf-related cousin, yours is much cheaper - so both paths are useful.

Sokwe wrote:In the same vein as some of the recent syntheses, #122 and #163 can be constructed from 17-bit still lifes that don't seem to be on the list:

I think my synthesis (above) of #122 is slightly cheaper - almost identical to yours but using a snake instead of an eater.

Sokwe wrote:#286 from a 19-cell still life that I think can be constructed:

I count this as taking 61 gliders, which is a bit more than my (totally different) 56-glider direct method (above).

Extrementhusiast wrote:#107 from a presumably trivial 21-bitter:

Yes. It can be made by adding a slide-around inducting block to #378.

Extrementhusiast wrote:#143 from #232:

Extrementhusiast wrote:#232 from an 11-bitter:

Yay! And three weeks ahead of schedule! This also makes #289 much closer, especially if one uses a modified predecessor.

Extrementhusiast wrote:#197 from a 16-bitter:

I did it a totally different way (see above), which I think is cheaper. But I really like this converter! It looks like has a lot of potential for other similar objects.
mniemiec

Posts: 900
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

#289 from a 14-bitter:
`x = 25, y = 23, rule = B3/S2321bo\$20bo\$20b3o5\$11bo11bo\$7b2obobo9b2o\$6bobob2o10bobo\$6bo2bo\$2bo4bobo\$obo5bo10b3o\$b2o16bo\$20bo3\$7b2o\$6bobo\$8bo\$10b3o\$10bo\$11bo!`

EDIT: Full synthesis of #288:
`x = 212, y = 31, rule = B3/S23182bo\$180bobo\$50bo130b2o\$9bo41bo\$10bo30bobo5b3o103bo\$8b3o31b2o40bobo67bo\$42bo41b2o24bobo20bo20b3o17bo\$85bo24b2o21bobo16bo19bobo\$5bo34b2o7b2o25bobo32bo21b2o15bobo20b2o\$3bobo35b2o5b2o27b2o49bo22b2o\$4b2o34bo9bo26bo8b2o26b2o13bo3bo5b2o21b2o25b2o\$bo9bo33b2o22bo15bobo21bo3bobo11b3o2bobo3bobo14b2o4bobo19b2o3bobo15b2o\$b2o8b2o32bo24bo14bo22bobo2bo18bo2bo2bo16bo2bo2bo20bo2bo2bo16bo2bo\$obo7bobo33bo21b3o15bo22b2o3bo18b3o3bo16b3o3bo20b3o3bo16b2o3bo\$14b3o26b4o25bo10b4o24b4o21b4o19b4o23b4o18b4o\$14bo8bobo17bo28b2o9bo27bo23bo22bo26bo20b2o\$15bo7b2o19bo22bo3bobo10bo17bo9bo22bobo20bobo24bobo18bo2bo\$24bo18b2o22b2o7b2o5b2o15bobo8b2o23b2o21b2o16bo8b2o20b2o\$20b2o44bobo6bobo23b2o2b2o68bobo\$20bobo54bo20b2o6b2o68b2o\$20bo76bobo5bo\$99bo78b3o\$180bo\$15b3o62bo6b2o90bo\$15bo63b3o4b2o\$16bo62bob2o5bo\$80b3o\$80b2o106b3o\$89b2o97bo\$88b2o99bo\$90bo!`

EDIT 2: #108 can use the same method as #107:
`x = 55, y = 17, rule = B3/S235bo13bo\$6bo13bo\$4b3o11b3o17bo\$8bo27b2o\$8bobo26b2o\$8b2o17bo\$25b2o\$4b2o15bobo2b2o3b2o\$2bo2bo16b2o6bo2bo\$2b3o17bo7b3o2\$2b3o25b3o15b2ob2o\$bobobo23bobobo15bobobo\$o5bo21bo5bo13bo5bo\$ob3obo13b2o6bob3obo13bob3obo\$bobobo13bobo7bobobo15bobobo\$21bo!`

Because this is an unfinished synthesis, I'm leaving it on the list for now.

EDIT 3: This finishes #108:
`x = 793, y = 47, rule = B3/S23677bo\$598bo77bo\$385bo213bo76b3o\$62bo323bo120bo89b3o43bo\$61bo29bo10bo281b3o121bo92bo39b2o115bo\$61b3o28bo7b2o8bobo393b3o3bo87bo41b2o54bo57bobo12bo\$90b3o8b2o7b2o48bo97bo144bobo90bo5bo7b2o88b3o34bobo58bobo56b2o11bo\$8bo85bo16bo47bo99bo93bo49b2o92bo5b2o6b2o125b2o58b2o21bo41bo6b3o\$9b2o43bo32bo6bobo62b3o95b3o94bo49bo90b3o4b2o134bo81bo43b2o\$8b2o42bobo33bo5b2o256b3o61bo149bobo29bobo119b3o40b2o\$53b2o5bo18bo6b3o67bobo257bobo148b2o30b2o117bo\$13bo10bo3bo30bo20b2o75b2o254bo2b2o75bo73bo3bo27bo74b3o40bobo42bo\$13bobo6bobo3bobo28b3o17b2o76bo106bo149bo79b2o76b2obobo139b2o43b2o\$13b2o8b2o3b2o233bo148b3o78b2o49bo26b2o2b2o29bo154bobo\$63bobo34b2o31b2o16bo12b2o25b2o3b2o18b2o3b2o28b2o3b2o5b3o21b2o3b2o21b2o3b2o24b2o3b2o26b2o3b2o31b2o3b2o17b2o3b2o17bo8b2o3b2o21b2o3b2o21b2o10b2o18b2o12bo17b2o8b2o27b2o5bo3bo21b2o5bo3bo39b2o27b2o21b2o17bob2o\$11bo14b3o34b2o34bo2bo29bo2bo16b2o9bo2bo25bo2bo2bo16bobo2bo2bo26bobo2bo2bo27bobo2bo2bo19bobo2bo2bo22bobo2bo2bo24bobo2bo2bo3b2o24bobo2bo2bo3bo13bo2bo2bo3bo13b2o7bo2bo2bo3bo17bo2bo2bo3bo15bo2bo3bo6b2o16bo2bo3b2o23bo2bo3bobo2b2o25bo2bo3bobobobo19bo2bo3bobobobo37bo2bo25bo2bo19bo2bo16b2o2bo\$5bo3b2o17bo6bob2o16bob2o5bo33bob2o22bobo4bo2b2o15b2o6bo2bo2b2o18bo4bobobo2b2o16bobobo2b2o26bobobo2b2o7b2o18bobobo2bobo18bobobo2bobo21bobobo2bobo23bobobo2bobobobo24bobobo2bobobobo10bobobo2bobobobo11b2o6bobobo2bobobobo16bobo2bobobobo10b2obo2bobobobo19b2obo2bobobobo19b2obo2bobobob2o25b2obo2bobobob2ob2o16b2obo2bobobob2ob2o8bo25b2obo2bo22b2obo2bo16b2obo2bo20bo\$6b2o2b2o15bo5b3obo15b3obo38b3obo24b2o4b2obo22b3o2b2obo17bobo4b2o2b2obo18bo2b2obo24bo3bo2b2obo8bobo18bo2b2obobo19bo2b2obobo22bo2b2obobo24bo2b2obobob2o26bo2b2obobobobo10b2o2b2obobobobo19b2o2b2obobobobo13b2obob2obobobobo11bob2obobobobo2b2o16bob2obobobo22bob2obobobo29bob2obobobo23bob2obobobo14bobo24bob2ob2o22bob2ob2o14bobob2ob2o16b2ob2o\$5b2o25bo4bo14bo4bo7b2o28bo4bo24bo8bo21bo8bo18b2o8bo2bo21bo2bo22bobo6bo2bo8bo23bo2b2o23bo2b2o26bo2b2o28bo2b2o33bo2bobob2o15bo2bobob2o24bo2bobob2o14bo2bobo2bobob2o10bobobo2bobob2o2b2o15bobobo2bobobobo18bobobo2bobobob2o24bobobo2bobobob2ob2o15bobobo2bobobob2ob2o8b2o23bobobo2bo16bo4bobobo2bo15bobobo2bo17bo2bo\$32bob3o15bob3o7b2o29bob3o31b3o22b2o4b3o30b2o23b2o24b2o7b2o34b2o26b2o29b2o31b2o36bo2bo20bo2bo29bo2bo19b2o3bo2bo14b2o3bo2bo8bo14b2o3bo2bo3b2o18b2o3bo2bo3bobo2b2o20b2o3bo2bo3bobobobo14b2o3bo2bo3bobobobo32b2o3bo2bo13bobo4b2o3bo2bo15bo3bo2bo17bo2bo\$7b3o21b2obo15bobobo11bo26bobobo24b3o6bo30bo7bo15b3o103bo27bo30bo32bo37b2o22b2o31b2o26b2o21b2o30b2o12bo17b2o8b2o27b2o5bo3bo21b2o5bo3bo5b3o31b2o15b2o10b2o21b2o19b2o\$7bo42b2o41b2o29bo44bo18bo66b2o34bo27bo29bo11bo20bo11b2o175b2o2b2o29bo76bo\$8bo114bo45b3o15bo67b2o33bo23bo4b2o6bo21b2o7bo2bobo18b2o11b2o175b2obobo106bo32b2o17b3o20bo\$b2o287b2o20bobo12bobo26bobo2b2o31bo3b2o70b2o95bo3bo27bo74b3o40bobo18bo20b2o\$obo156b2o6bo52bobo90b2o12b2o28b2o39bobo70b2o94b2o30b2o117bo18bo20bobo\$2bo81bo75b2o4b2o52b2o73bo28b2o72bo71bo95bobo29bobo119b3o\$84b2o73bo6bobo52bo64b2o6b2o27b2o313bo81bo\$6b2o75bobo199bobo6bobo17b3o8bo312b2o81bo\$5b2o155bo7b2o48b3o64bo28bo80bo75b2o125b3o34bobo\$7bo79b2o72b2o7bobo47bo70b3o21bo3b2o75b2o41b2o27b3obo2bob3o120bo41b2o\$88b2o71bobo6bo50bo21bo15b2o32bo26b2o74bobo39bobo29bo2b2o2bo123bo39b2o\$87bo155b2o13b2o32bo26bo120bo28bo8bo118b3o43bo\$242bobo15bo64b2o115b2o155bo76b3o\$324b2o116bobo153bo77bo\$248b2o76bo46b2o67bo234bo\$247bobo124b2o\$249bo123bo2\$255bo\$254b2o\$254bobo4\$205b2o\$204bobo\$206bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1690
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:#304 from a 16-bitter:

This can be reduced by one by this standard bookend-to-wing converter:
`x = 34, y = 20, rule = B3/S2311bo\$10bo\$o9b3o\$boo13bo\$oo12boo\$15boo4bo\$21bobo\$21boo\$\$18b3o\$18bo\$19bo\$\$32bo\$7bo4boo13bo3bobo\$6bobobobbo8bo3bobobobbo\$7boob3o8boo4boob3o\$9bo11bobo5bo\$9boboo16boboo\$10bobo17bobo!`

Sokwe wrote:Also, the last step from this synthesis can be used to solve #138. Here are two similar ways to get there:

Your first one and mine are identical (24 gliders), while your second eater-based one is one cheaper.

Sokwe wrote:This same method can be used to solve #114:

Even though the base still-life (15.370) is ridiculously expensive, this method (40 gliders) is still slightly cheaper than mine (43).

Sokwe wrote:#115 from a constructable 18-cell still life:

The original 18-bit still-life is made from down-snake-on-snake then converting one snake into a bun - which your synthesis later converts back into a snake (two expensive transformations) - just so you can safely put a temporary boat there. This would be much easier to just deal with the snake directly. Unfortunately, all the ways I knew to directly add an inducting table or long bookend required one bit to be too close to the object. Fortunately, I was able to modify one of these to add the table directly without the forward bit, bypassing all the conversions. This reduces this synthesis from 44 to 22 gliders - and a subsequent improvement of this table-adder reduces it 2 more, to 20 (which, for 6 gliders, is almost as cheap as adding it the conventional way, via boat):
`x = 248, y = 104, rule = B3/S23bbo\$obo\$boo22\$101bobo\$101boo\$102bo16\$51bobo\$52boo\$52bo\$\$51b3o\$53bo117bo\$52bo119bo43bo\$116boo18boo18boo12b3o3boo18boo19bo8boo18boo\$117bo11bo7bo19bo19bo15boobbo17b3o5boobbo15boobbo\$116bo10bobo6bo19bo7b4o8bo17bobo27bobo17bobo\$116boo10boo6boo18boo5bo3bo8boo16boboo20bo5boboo16boboo\$131boo19boo13bo4boo19boo16boo5boo3boo20bo\$116boo12bobo3boo14boobboo5bobbo5boobboo18boo12bobo4bobo6boo18boo\$117bo14bo4bo19bo19bo19bo14bo14bo19bo\$32boo82bo19bo19bo11boo6bo19bo29bo19bo\$33boo81boo18boo18boo9bobo6boo18boo28boo18boo\$32bo136bo\$171boo42boo\$171bobo33boo5bobo\$171bo36boo6bo\$207bo12\$174bo\$173bo\$173b3o\$\$170bobo\$171boo3boo18boo\$171bo5bo15boobbo\$168bo7bo17bobo\$166bobo7boo16boboo\$167boo3boo19boo\$172boobboo18boo\$177bo19bo\$168boo6bo19bo\$169boo5boo18boo\$168bo\$23b3o\$25bo\$24bo61boo\$86bobo\$86bo\$\$98bo\$97boo\$97bobo4\$19boo\$18bobo\$20bo!`

Sokwe wrote:A 14-glider synthesis of #214 with the block moved to the other side:

By subsequently sliding the block over, this gives #214 from 22 gliders, compared to the previous method from 25.

Extrementhusiast wrote:#171 from a 17-bitter apparently not on the list:

Sokwe wrote:That's actually an 18-bitter, but it can easily be constructed based on my synthesis of #173. Here's a synthesis from a 13-cell still life:

Sokwe wrote:The synthesis of #171 can be improved by using Buckingham's 2-glider bun-to-bookend:

As I was fleshing this out, it did indeed use the #173 one, plus bookend-to-bookend-w/tail. However, yor new order (bookend-to-snake AFTER wrapping the eater tail) saves three gliders. Your original 6-glider bun-to-bookend-w/tail was the same cost as doing it in two steps, but the improvement makes it better.

Extrementhusiast wrote:#201, #202, and #209 from the still unsolved #210:

#210 is quite easy, from 20 gliders; the final standard eater-to-feather conversion has one extra glider (SW corner) added to reduce the footprint. So this gives us all four:
`x = 113, y = 56, rule = B3/S2389bo\$89bobo\$50bo38boo\$50bobo\$7bo36bo5boo15boo18boo\$6bo38bo21boo18boo\$6b3o34b3o\$\$39bobo24boo18boo18boo\$40boo23bobbo16bobbo16bobbo\$o10bobo12boobo10bo5boobo16boobo16boobo16boobo\$boo8boo14bob3o15bob3o15bob3o15bob3o15bob3o\$oo10bo14bo4bo5boo7bo4bo14bo4bo14bo4bo14bo4bo\$4boo20boo3boo6boo5boo3boo13boo3boo13boo3boo13boo3boo\$5boo6b3o22bo\$4bo8bo\$14bo14\$7boo\$6bobo3bo\$8bo3bobo\$12boo45bobo\$15b3o41boo\$15bo38bobo3bo\$16bo38boo\$55bo3boo\$6boo17boo18boo12bobo13boo\$5bobbo16bobbo16bobbo10bo15bobbobboo\$6boobo16boobo16boobo26boobobbo\$7bob3o15bob3o15bob3o25bobobo\$7bo4bo14bo4bo14bo4bo24bobbo\$6boo3boo13boo3boo13boo3boo23boo\$\$63b3o\$63bo\$64bo\$\$59boo\$54boo3bobo\$54bobobbo\$54bo\$42boo\$41bobo\$43bo!`

Sokwe wrote:#286 from a 19-cell still life that I think can be constructed:

[quote="mniemiec"]I count this as taking 61 gliders, which is a bit more than my (totally different) 56-glider direct method (above).
Oops! After fully instantiating all the steps, it looks like 58 gliders.
mniemiec

Posts: 900
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

mniemiec wrote:Your first one and mine are identical (24 gliders), while your second eater-based one is one cheaper.

The eater-based synthesis of #138 that I posted can be reduced by 3 gliders using this reaction:
`x = 14, y = 11, rule = B3/S237bo\$5bobo3bo\$2o4b2o3bobo\$obo8b2o\$2bo\$2b2o2b2o\$5bo2bo\$2b2ob4o\$3bo\$3bob2o\$4bobo!`

mniemiec wrote:By subsequently sliding the block over, this gives #214 from 22 gliders, compared to the previous method from 25.

Extrementhusiast's synthesis (the only other synthesis of this object that I know of) takes only 20 gliders:
`x = 112, y = 27, rule = B3/S2385bo\$84bo\$25bo26bo31b3o\$23bobo27bo\$24b2o6bo18b3o3bo24bo\$32bobo12bo7b2o24bo\$29bo2b2o14b2o6b2o23b3o\$27bobo17b2o\$28b2o53bo\$57bo24b2o\$57bobo22bobo\$57b2o\$obo23b2o17b2o25b2o28b2o\$b2o22bo2bo16bo2bo23bo2b2o25bo2b2ob2o\$bo24b2obo16b2obo23b2obo2b2o22b2obobo\$7bobo17bobo17bobo24bobobobo23bobobo\$7b2o16bobob2o14bobob2o21bobob2o24bobob2o\$8bo16b2o18b2o25b2o28b2o6b2o\$3b2o104b2o\$2bobo3b2o94bo6bo\$4bo3bobo92b2o\$8bo47b2o29b2o14bobo\$56bobo27b2o12b2o\$56bo31bo10bobo\$44b3o54bo\$46bo\$45bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1243
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

Partial synthesis of #161 from the corresponding bun version:
`x = 425, y = 36, rule = B3/S23178bo\$177bo\$177b3o147bo48bo14bo18bobo\$53bo132bobo139b2o44bobo12bobo18b2o\$54bo44bo66bobo17b2o139b2o46b2o13b2o19bo\$52b3o42bobo67b2o4bobo11bo197bobo\$98b2o67bo5b2o211b2o\$56bo88bo28bo95bo115bo\$57bo88bo124b2obobo\$55b3o86b3o16bo106b2o2b2o23bo\$77bo19bo63bobo14b2o95bo24bo72b2o\$55bo22bo3bo15b2o10b2o34bo15b2o14bobo117b3o33b2o36b4o\$27bo27b2o19b3ob2o15b2o10bo2bo32b2o32bo25b2o22b2o21b2o19b2o17b2o17bo11bo10bobo20b2o13b2ob2o23b2o\$28bo25bobo24b2o26bo2bo32bobo56bo2bo20bo2bo19bo2bo17bo2bo14bo2bo17bobo7bobo7bo4bo18bo2bo15b2o22bo2bo\$4bobo19b3o65bo4bo10b2o93b3o21b3o20b3o18b3o14b3o18b2o9b2o7b5o12bo6b3o40b3o\$o3b2o88b2o2bo68bo135bo42bobo32bo\$b2o2bo70b2o15bobo2b3o4b2o32b2o27bo4b2o30b3o21b3o20b3o18b3o14b3o6bo2bo21b3o4b3o13b2o4b3o26bo13b3o\$2o29b2o25b2o3bo13bo2bo25bo2bo28bo2bo24b3o3bo2bo29bo2bo20bo2bo19bo2bo17bo2bo13bo2bo4b2o2b3o21bo4bo2bo18bo2bo23b3o13bo2bo18b2o2bo\$7b2o2bo13bo5bobo3bo20bobobobo12bobobo24bobobo27bobobo29bobobo7bo22bobo21bobo20bobo18bobo14bobo3bobo24bo7bobo12bo6bobo27bo5b2o5bobo17bo2bobo\$7bo2bobo10bobo8bobobo22b2o2bo12b2o2bo24b2o2bo27b2o2bo20b2o7b2o2bo5b2o21b2o2bo19b2o2bo15bo2b2o2bo16b2o2bo12b2o2bo36b2o2bo11b2o4b2o2bo24b2o5bo2bo3b2o2bo18b2o2bo\$9b2o2bo10b2o9b2o2bo24b2o15b2o27b2o10b2o18b2o19bobo10b2o5bobo23b2o22b2o13bobo5b2o19b2o15b2o39b2o10bobo7b2o25b2o4bo2bo6b2o21b2o\$12b2o13b2o9b2o21b3o14b3o26b3o12bobo14b3o23bo7b3o30b3o21b3o16b2o2b3o17bob2o13bob2o37bob2o18bob2o22b3o9b2o3bob2o19bob2o\$9b3o16b2o5b3o22bo2bo13bo2bo25bo2bo12bo15bo2bo30bo2bo29bo2bo20bo2bo19bo2bo17b2obo13b2obo37b2obo18b2obo24bo14b2obo19b2obo\$8bo2bo15bo6bo2bo23b2o15b2o27b2o30b2o32b2o31b2o21b2o20bobo126bo\$9b2o24b2o13b2o173bo22b2o2bo\$51b2o173b2o19bobo\$50bo174b2o8b2o12bo\$208b2o21bo2b2o16b2o\$207bobo21b2o3bo14b2o\$172b2o35bo2b2o16bobo20bo\$172bobo37bobo8b3o\$172bo31b2o6bo12bo\$203bobo18bo\$205bo20b3o\$226bo\$227bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1690
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:#289 from a 14-bitter:

This is so simple and obvious that I'm extremely embarrassed that it hadn't occurred to me, and I was looking at much more complex methods instead!

Extrementhusiast wrote:This finishes #108:

Very impressive! There is a slight bug in step #12 (add inducting ship). One of the gliders passes through the object. I didn't know about this way to add an inducting ship; unfortunately, it can never work for this purpose, as the glider must always pass though the object - unless the object is created after the glider passes through it. This can easily be fixed by using the standard 4-glider ship-adder (+1 glider). Also, in step #20, the two 3-glider sparks can both be replaced by 2-glider sparks (-2 gliders):
`x = 109, y = 74, rule = B3/S238bo\$9bo65bo\$7b3o65bobo\$75boo\$\$71bobo\$72boo\$boo3boo23boo3boo23boo3boo4bo18boo3boo\$obobbobbo21bobobbobbo3boo16bobobbobbo21bobobbobbo3boo\$obobobbobo20bobobobbobobobo16bobobobbobo5bo14bobobobbobobobo\$bobboobobo21bobbooboboboo18bobboobobo4bo16bobbooboboboo\$4bobboo25bobboo25bobboo5b3o17bobboo\$5boo28boo28boo28boo\$6bo29bo29bo8b3o18bo\$4bo11bo17bo29bo12bo16bo\$4boo7bobbobo15boo28boo10bo17boo\$11bobobboo\$12boo15\$68bobo\$68boo\$69bo\$\$68b3o\$68bo\$69bo6\$80bo\$78boo\$79boo\$66boo28boo5bo3bo\$65bobbo3bobo20bobbo3bobobobo\$61boobobboboboboo16boobobbobobobooboo\$62boboobobobo20boboobobobo\$60bobobobboboboboo15bobobobbobobobooboo\$60boo3bobbo3bobo15boo3bobbo3bobobobo\$66boo28boo5bo3bo\$79boo\$78boo\$80bo\$74bo\$73bo\$73b3o12\$74bo\$73boo\$73bobo!`

Wow! With #143 from 109 gliders and #108 from 110, I think these two are the most complicated still-life syntheses to date!

This older way to make a broken eater (from at least 2013-07-10) adds pre-block from the corner bit, making both side bits appear simultaneously:
`x = 39, y = 2410bobo\$13bo\$9bo3bo\$6bo6bo\$7boobobbo\$6boo3b3o3\$3boo3bo9bo\$3oboo3boo6bo\$5o3boo7b3o\$b3o\$\$22bo\$11bo9boo14bo\$3bobo4bobo4bo3bobo12bobo\$4boo4bobo3bobo13boobobbo\$4bo6bo4boo14bo3boo\$14boo18boo\$15bo19bo\$15bobo17bobo\$7boo7boo18boo\$6bobo\$8bo!`

I have seen several situations where a tool like this could have come in useful. This could also have been used to make #352 (although with more gliders). In fact, it should have done so (so #352 should never have been on the list, as this tool has been in the database a long time). Missing it was likely human error.

I noticed this when attempting to do a computer verification of all unknown 17s. It turned up one (#352) that should not have been on the list, plus one other that should have been on the list (between #339 and #340); fortunately, that one can easily be made from another recently-built one.

I was just trying to verify that all 17s either have explicit syntheses, have immediate predecessors of less than 17 bits, or their predecessors can ultimately be traced back to ancestors of less than 17 bits. As of this moment, I count 125 unbuildable 17s on the list, plus an additional 56 trivial unbuildable 17s derived from ones on the list plus a trivial conversion (snake to carrier, claw to beehive, etc.). I similarly re-verified the 15s and 16s, and there were no surprises. Of course, nothing lower needs to be verified, as explicit syntheses already exist for all of them.
mniemiec

Posts: 900
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

#180 from a 17-bitter that I do not see on the list:
`x = 127, y = 29, rule = B3/S23102bo\$103bo\$90bo10b3o3bo\$91b2o4bo7b2o\$90b2o6b2o6b2o\$97b2o4\$23b2o46bo\$23b2o47bo4b2o17b2o\$24b2o44b3o4bobo16bobo\$24b2o53bo18bo\$9b2o17b2o14b2ob2o29b2ob2o14b2ob2o18b2ob2o\$6bo2bo2bo12bo2bo2bo13bobo2bo26bo3bo2bo13bobo2bo4bo12bobo2bo\$5bobobob2o11bobobob2o11bobobob2o27b2obob2o12bo2bob2o3bo12bo2bob2o\$o5bo2bobo12b2o2bobo12b2o2bobo8bobobo16bobobo13b2obobo4b3o10b2obo\$b2o6bo2bo15bo2bo15bo2bo20b3o3bobobo2bo15bobo20bo\$2o8b2o17b2o17b2o23bo3b2o3b2o16b2o3b2o16b2o\$72bo32bobo\$2bo102bo\$2b2o\$bobo69b2o9b2o\$72bobo10b2o\$74bo9bo3b2o\$87b2o\$80b2o7bo\$81b2o\$80bo!`

The skipped intermediate steps are already known.

EDIT: #257 from a 15-bitter:
`x = 77, y = 30, rule = B3/S2323bo\$24bo\$22b3o7bo\$18bo11b2o\$o18b2o10b2o\$b2o15b2o\$2o4\$7bo\$8b2o\$7b2o\$24bo23b2o22b2o\$23bobo22bobo21bobo\$22bo2bo20b2o2bo19b2o2bo\$22bobob2o19bobob2o18bobob2o\$21b2obo2bo17bobobo2bo18bobo2bo\$25b2o18b2o3b2o4bo15bobo\$56bobo14bo\$56b2o\$54bo5bo\$11b3o35bo3b2o4b2o\$13bo34b2o3bobo3bobo\$12bo9b2o24bobo\$21b2o18b2o\$17bo5bo16bobo\$17b2o23bo5bo\$16bobo29b2o\$47bobo!`

EDIT 2: #256 from a 16-bitter:
`x = 80, y = 16, rule = B3/S233b2o20b2o17b2o14b2o13b2o\$3bobo19bobo16bobo13bobo12bobo\$2obo2bo15b2obo2bo8bo3b2obo2bo9b2obo2bo9bobo2bo\$obobobo15bobobobo9bo2bobobobo9bobobobo9b2obobo\$3b2ob2o16bobob2o6b3o4bobob2o9bo2bob2o11bob2o\$13bo10b2o17bobo9b2o4bo14bo\$11b2o26b2o3b2o8bobo3b2o13b2o\$3b2o7b2o24bobo15bo\$2bo2bo2b2o30bo\$2bo2bob2o11bobo\$3b2o4bo11b2o\$21bo3b3o\$25bo\$20b2o4bo\$19bobo\$21bo!`

EDIT 3: #394 from the corresponding 16-bitter:
`x = 24, y = 26, rule = B3/S239bo\$10b2o3bo2b2o\$9b2o2bobob2o\$14b2o3bo5\$5b2o\$5bobo2b2o\$7bo2bo4b2o\$o6b2obo3bo2bo\$b2o6bo4bo2bo\$2o7bobo3b2o4bobo\$10b2o9b2o\$22bo2\$13bo\$12bobo\$12bo2bo\$13b2o2\$4b2o\$5b2o15bo\$4bo16b2o\$21bobo!`

EDIT 4: #205 from the corresponding 16-bitter (and trivial operations):
`x = 27, y = 27, rule = B3/S23bo\$2bo\$3o4\$10bo3b2o\$10b3o2bo\$8b2o3b2o9bobo\$7bobo2bo2b3o6b2o\$7b2o3b2o3bo7bo2\$24bo\$8b2o4b2o7bo\$8bobo2bo2bo6b3o\$9bo3bo2bo\$14b2o8bo\$24b2o\$23bobo2\$7b2o\$6bobo\$8bo2\$b2o7bo\$2b2o5b2o\$bo7bobo!`

However, based on the way I made that 16-bitter, I think that there is a much cheaper solution available.

EDIT 5: #103 from #101, which is already solved:
`x = 21, y = 11, rule = B3/S2310b2o4bo\$9bo2bob2o\$3bo5bo2bo2b2o\$4b2o4b2o7b2o\$3b2o13b2o\$20bo\$9bob2o\$9b2ob3o\$3o12bo\$2bo6b2ob3o\$bo7bob2o!`

EDIT 6: #102 from a trivial 19-bit pseudo:
`x = 84, y = 35, rule = B3/S2334bo\$27bobo3bo\$27b2o4b3o\$2bobo23bo\$3b2o\$3bo3\$51bo\$52bo\$50b3o\$15b2o4bo35b2o\$15bo2bobobo30b2o2bo2bo2bo16bo2bo\$b2o13b3ob2o32b2o2b6o14b6o\$obo50bo23bo\$2bo11b3o18bo22b2o2b2o13bobo2b2o\$13bo2bo17b2o22b2o2b2o14b2o2b2o\$4bo8b2o19bobo\$4b2o16b2o\$3bobo17b2o\$22bo2\$16b2o\$15bobo5b2o4b2o\$17bo4b2o4b2o\$3b2o19bo5bo\$4b2o\$3bo\$7b2o\$8b2o\$7bo2\$23b3o\$23bo\$24bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1690
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:#257 from a 15-bitter

This can be reduced slightly:
`x = 48, y = 24, rule = B3/S2313bo\$8bo4bobo\$9bo3b2o\$7b3o3\$15bo18b2o\$bo12bobo17bobo\$2bo4bo5bo2bo15b2o2bo\$3o5bo4bobob2o12bobobob2o\$6b3o3b2obo2bo12bobobo2bo\$16b2o14bo3b2o4bobo\$42b2o\$4b3o36bo\$6bo\$5bo27b2o4b3o3b3o\$33bobo3bo5bo\$33bo6bo5bo4\$33b3o\$35bo\$34bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1243
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

#181 from a presumably trivial 19-bitter:
`x = 76, y = 25, rule = B3/S2329bo\$27b2o9bobo\$28b2o8b2o\$23bobo13bo13bobo\$24b2o28b2o\$24bo29bo2\$18bo33b2ob2o\$16bobo33b2ob2o\$obo14b2o21b2o\$b2o4b2o17b2o12bobo9b2ob2o12b2ob2o\$bo4bo2bo9b3o3bo2bo11bo11bo3bo12bo3bo\$5bobobo11bo3b2obo24b2obobo11b2obobo\$b2o2bobo2b2o8bo5bo2b2o7bo15bo2b2o12bo2b2o\$2b2o2b2o3bo12bobo3bo6b2o13bobo14bobo\$bo8bo13b2o3bo7bobo12b2o15b2o\$9bo18bo\$8bo18bo\$8b2o17b2o4\$37b2o\$36b2o\$38bo!`

If need be, I can draft up a process to create that 19-bitter.

EDIT: #268 from #187:
`x = 37, y = 34, rule = B3/S234bobo\$5b2o\$5bo26bobo\$22bo9b2o\$22bobo8bo\$22b2o2\$34bo\$34bobo\$30bo3b2o\$31b2o\$30b2o2\$bo18b2o\$2bo16bo2bo\$3o15bob2o2b2o\$19bo5bo\$20b5o\$22bo2\$4b2o13b2o\$4bobo10bo2bo\$5bo10bob2o\$16bo\$15b2o7\$b3o27bo\$3bo26b2o\$2bo27bobo!`

EDIT 2: #348 can be solved the same way as #333 was:
`x = 31, y = 36, rule = B3/S2316bo\$17bo\$15b3o3\$19bo3bo\$17bobob2o\$18b2o2b2o4\$27bobo\$27b2o\$28bo\$11bo\$8bobobo3b2o\$8b2obobo2b2o\$11bobo\$11b2o2\$11b4o\$11bo3bob2o\$14b2obo\$17bo\$17b2o5\$2bo\$obo\$b2o\$5b2o22b2o\$4bobo6b2o13b2o\$6bo6bobo14bo\$13bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1690
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#183 from a constructable 17-cell still life:
`x = 135, y = 22, rule = B3/S235bo27bobo24b3o\$4bo28b2o27bo2bo\$4b3o27bo26bo2bo\$bo62b3o45bobo\$2bo27bobo80b2o6bo\$3o6b2o20b2o6b2o28b2o25b2ob2o12bo5bobo4b2ob2o\$5b2o2bo21bo7bo26bo2bo27bobo16bo3b2o5bobo\$5bobobo26b2obo25bobobo27bobo16b2o9bobo\$7bob2o20b2o3b2ob2o25b2ob2o25b2ob2o14bobo8b2ob2o\$7bobo2bo17bo2bo5bo2bo26bo2bo15bo10bo2bo23bo2bo2bo\$4bo3bo2b2o17bo2bo2b3o2b2o23b3o2b2o16b2o5b3o2b2o24b2o2b2o\$5bo25b2o3bo29bo21b2o6bo\$3b3o21bo64b2o\$28bo2bo60bobo\$26b3o2b2o59bo\$2b2o26bobo94b2o\$3b2o114bo6b2o4b3o\$2bo116b2o7bo3bo\$5b3o110bobo12bo\$5bo119b2o\$6bo117bobo\$126bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1243
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

#207 from a 17-bitter not on the list:
`x = 77, y = 13, rule = B3/S2320bob2ob2o18bob2ob2o4bo12bob2ob2o\$20b2obobo19b2obobo4bo13b2obobo\$25bobo22bobo2b3o16bo\$obobo19bobobo20bobobo19bob2o\$11bobo10bo2bo7bo13bo2bo2b3o15bo2bo\$12b2o3bobo3b2o9bo15b2o3bo18b2o\$12bo5b2o14b3o19bo\$18bo9b2o\$16bo10bo2bo\$16b2o9bo2bo\$15bobo3b3o4b2o\$23bo\$22bo!`

EDIT: #200 tweezed from the given soup:
`x = 47, y = 50, rule = B3/S2329bobo\$29b2o\$o29bo\$b2o\$2o4\$40bo\$40bobo\$40b2o12\$19bo\$18bobo\$17bo2bo\$18b2o\$30bo3bo\$31b2obobo\$22bo7b2o2b2o\$21bobob2o\$21bobob2o\$22bo3\$22b2o\$22b2o12\$45bo\$44b2o\$44bobo!`

"BINGO!"
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1690
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#154:
`x = 146, y = 34, rule = B3/S2380bo\$78bobo\$79b2o\$89bobo18bobo\$90b2o18b2o\$90bo20bo3\$77b2o58bo\$76b4o58bo\$76b2ob2o55b3o\$78b2o60bo\$140bobo\$85bo54b2o\$2o28b2o28b2o24bo13b2o\$o4b2o23bo4b2o23bo4b2o17b3o13bo4b2o22b2o4b2o\$2bo2b2o25bobobo25bobobo22bo5b2o5bobobo22bo2bobobo\$b2o28b2obo23bo2b2obo22b2o5bo2bo3b2obo26b2obo\$10b2o22b2o20bobo5b2o22b2o4bo2bo6b2o28b2o\$5b2o2b2o20b3o23b2o2b3o19b3o9b2o3bob2o26bob2o10bo\$2o2bo2bo3bo18bo2bo26bo2bo21bo14b2obo26b2obo9bo\$2o2bo2bo22b2o27bobo22bo58b3o\$5b2o19bo29b2o2bo\$27b2o26bobo\$4bo21b2o8b2o19bo75b2o\$3b2o27bo2b2o23b2o72b2o\$3bobo26b2o3bo21b2o72bo\$31bobo27bo\$24b3o\$26bo\$25bo\$27b3o\$27bo\$28bo!`

The syntheses for #137 and #138 can be improved using this reaction:
`x = 45, y = 10, rule = B3/S234bo29bo\$4bobo27bobo\$4b2o28b2o\$2o6bo21b2o6bo\$b2o5b3o20b2o5b3o\$o10bo18bo10bo2bo\$8b2ob3o24b2ob4o\$9bo4bo24bo\$9bob3o25bob2o\$10b2o28bobo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1243
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

This solves #354:
`x = 21, y = 31, rule = B3/S232bo\$obo\$b2o\$4bo14bo\$4bobo11bo\$4b2o12b3o2\$o\$b2o\$2o\$16bo\$15b2o\$9b2o4bobo\$9b2o2\$4b2o3b2o3bo\$3bo2bo2bobobobo\$3bo2bo3bo3bo\$4b2o5b3o\$9bobo\$9b2o4\$2o\$b2o\$o2\$10b2o\$9b2o\$11bo!`

EDIT: #212 from a trivial variant of a 17-bitter not on the list:
`x = 94, y = 28, rule = B3/S2364bo\$65b2o\$39bo24b2o4bo\$38bo30bo\$o22b2o13b3o15b2o11b3o14b2o\$b2o20bo2b2o28bo2b2o25bo2b2o\$2o22b2o2bo28b2o2bo6bo18b2o2bobo\$25bobobo28bobobo4b2o19bobob2o\$23bobob2o29bobobo4bobo18bobo\$22bobo32b2ob2o27b2o\$23bo\$55bo\$56bo8b2o\$54b3o8bobo\$7b3o2b2o51bo\$9bob2o45bo\$8bo4bo43b2o\$57bobo3\$37b2o\$37bobo\$37bo3\$12b2o\$13b2o\$12bo!`

Also, that component allows for predecessors for #140, #150, #165, and #166:
`x = 108, y = 62, rule = B3/S236bo\$6bobo26bo38bo28bo\$6b2o27bobo34bobo26bobo\$35b2o36b2o27b2o\$9bo21b2o6bo30bo6b2o20bo6b2o\$2o7b3o20b2o5b3o22b2o2b3o5b2o15b2o2b3o5b2o\$b2o9bob2o15bo10bo21bo2bo10bo14bo2bo10bo\$o8b2ob2obo23b2obo2bo20b2ob2o24b2ob2o\$8bo2bo28bob4o21bobo26bobo\$9bobob2o25bo26bo2bo24bo2bo\$10bobobo26b3o24b2o26b2o\$11bo31bo2\$2b3o\$4bo2b2o\$3bo2b2o\$8bo4\$b3o\$3bo32bo\$2bo34bo12bo\$35b3o11bo\$49b3o5\$31bo\$29bobo\$10b2o18b2o8b2o22b2o2b2o23b2o2b2o\$9bo2bob2o23bo2bo21bo2bo2bo22bo2bo2bo\$9b2ob2obo16b3o4b2obo2bo20b2ob2o24b2ob2o\$11bo22bo7b4o21bobo26bobo\$11bob2o18bo5b2o26bo2bo24bo2bo\$12bobo24bob3o24b2o26b2o\$43bo19\$39bobo\$39b2obo2bo\$42b4o\$39b2o\$39bob3o\$43bo!`

EDIT 2: #164 from a 17-bitter not on the list:
`x = 23, y = 30, rule = B3/S239bo\$7b2o\$4bo3b2o\$2bobo7bo\$3b2o7bobo\$12b2o4bobo\$18b2o\$19bo2\$20b2o\$20bobo\$5b2o2bo10bo\$5bo2bobo\$7b2obo7bo\$8bob2o5b2o\$8bo8bobo\$obo6b3o\$b2o8bo\$bo5\$4b2o8b3o\$3bobo8bo\$5bo9bo2\$2o7b2o\$b2o5bobo\$o9bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1690
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:#164 from a 17-bitter not on the list

Here's an improvement as well as a solution to the related #165 from a 17-bitter not on the list:
`x = 41, y = 111, rule = B3/S2327bo\$26bo\$o25b3o\$b2o29bo\$2o28b2o\$31b2o4bo\$37bobo\$37b2o15\$13b2o2bo\$13bo2bobo\$15b2obo\$16bob2o\$16bo\$17b3o\$19bo3\$39b2o\$38b2o\$40bo2\$36b2o\$23b2o11bobo\$23bobo10bo\$23bo\$19b2o\$18bobo\$20bo\$23bo\$22b2o\$22bobo22\$22bobo\$22b2o\$23bo\$20bo\$18bobo\$19b2o\$23bo\$23bobo10bo\$23b2o11bobo\$36b2o2\$40bo\$38b2o\$39b2o3\$19bo\$13b2o2b3o\$13bo2bo\$15b2ob2o\$16bobo\$16bobo\$17bo15\$37b2o\$37bobo\$31b2o4bo\$2o28b2o\$b2o29bo\$o25b3o\$26bo\$27bo!`

Here are some other ways to achieve this reaction:
`x = 102, y = 18, rule = B3/S237b2o28b2o28b2o28b2o\$8bo29bo29bo29bo\$8bob2o26bob2o26bob2o26bob2o\$7b2obo26b2obo26b2obo26b2obo\$10bo29bo29bo29bo\$2b2o3b3o27b3o22b2o3b3o27b3o\$bobo3bo24b2o3bo23bobo3bo29bo\$3bo27bobo29bo\$33bo\$4b2o59b3o21b2o\$4bobo28b2o28bo19b2o2bobo\$4bo30bobo28bo17bobo2bo\$2o33bo26b3o21bo\$b2o28b3o30bo\$o32bo29bo\$32bo55b2o\$89b2o\$88bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1243
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

mniemiec wrote:By subsequently sliding the block over, this gives #214 from 22 gliders, compared to the previous method from 25.

Sokwe wrote:Extrementhusiast's synthesis (the only other synthesis of this object that I know of) takes only 20 gliders:

I figured out what the confusion was. His synthesis was partial (based on 15.362) so I had filled that part in. I had 15.362 built a different way, from 12 gliders - but it should really only take 7, as you've shown. I've now updated both still-lifes.

#354 from 25 gliders, based on its cousin from 22 gliders:
`x = 167, y = 50, rule = B3/S2318bo8bo\$18bobo5bo\$18boo6b3o\$\$15bo\$13bobo72bo\$14boo72bobo17boo28boo18boo\$84b3oboo17bobbo18bo7bobbo16bobbo\$10bo24boo18boo18boo9bo8boo10bobo5boo13boo5bobo5boo10bobo5boo\$8bobo21boobbo15boobbo15boobbo8bo6boobbo11bo3boobbo12boo7bo3boobbo11bo3boobbo\$9boo13bo7boboo16boboo16boboo16boboo16boboo26boboo16boboo\$24bobo7bo19bo19bo19bo19bo12bo16bo9bo9bo\$8bo4boo9boo6bobo17bobo17bobo17bobo17bobo12boo13bobo9bo7bobo\$8boobboo18boo11bo6boo14bo3boo14bo3boo14bo3boo12bobo9bo3boo10bo3bo3boo\$7bobo4bo5boo24bo20bobo17bobo17bobo27bobo17bobo\$19boo23b3oboo17bobbo16bobbo16bobbo26bobbo16bobbo\$21bo26bobo17boo18boo18boo28boo18boo\$48bo11\$90bo\$89bo\$89b3o\$95bo40bo\$45bo40bobo6bobo39bo\$4bobo39bo40boo6boo38b3o\$5boo37b3o3bo36bo51bo\$5bo42boo89bobo\$8boo31b3o5boo20boo18boo46boo\$7bobbo32bo28bo19bo17boo18boo18boo\$bbo4bobo5boo15bobboo5bo9bobboo14bo3boo14bo3boo14bo3boo14bo3boo14bobboo\$obo5bo3boobbo14bobobbo14bobobbo14bobobbo14bobobbo14bobobbo14bobobbo14bobobbo\$boo9boboo16boboo16boboo16boboo16boboo16boboo16boboo16boboo\$4bo9bo19bo19bo19bo19bo19bo19bo19bo\$4bo7bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo\$4bo3bo3boo17bobo17bobo17bobo17bobo17bobo17bobo17bobo\$7bobo22bo19bo19bo19bo19bo19bo19bo\$7bobbo\$8boo\$5bo\$5boo\$4bobo!`

Several siamese-loaf-w/feather still-lifes sharing the same basic mechanism:
#314, #315, #319 from 27, 28, and 29 gliders (which also takes care of 3 of the 7 remaining mold-capable still-lifes):
`x = 168, y = 196, rule = B3/S23144bo\$144bobo\$144boo\$\$136bobo\$137boo\$137bo\$45bo\$44bo\$44b3o\$131bobo25boo\$10bo22bo11b3o5bo19bo19bo29bo8boo9bo16bobbo\$11bo20bobo12bo4bobo14boobobo14boobobo24boobobo7bo6boobobo15bobobo\$9b3oboo17bobbo10bo5bobbo12bobobobbo12bobobobbo22bobobobbo12bobobobbo15boobbo\$13bobo17boo18boo14bo3boo14bo3boo24bo3boo14bo3boo18boo\$13bo35bo98bobo12bo\$48boo71bo19bo6boo10boobo\$48bobo68b3o17b3o7bo9bobbo\$118bo19bo21boo\$118boo18boo11bo\$151bobo\$98bo52boo4boo\$96boo59boo\$93bo3boo34boo7b3o5bo\$83boo9boo36bobo7bo6boo\$82bobo8boo9boo28bo8bo5bobo\$84bo18boo\$105bo8\$126bo\$124bobo5bo\$125boo6boo\$128boobboo\$108boo17bobo8boo\$9boo18boo18boo18boo18boo17bobo18bo8bobo\$10bobbo16bobbo16bobbo16bobbo16bobbo16bobbo26bobbo15boobbo\$10bobobo15bobobo15bobobo15bobobo15bobobo15bobobo17bobo5bobobo14bobbobo\$11boobbo15boobbo15boobbo15boobbo9bo5boobbo15boobbo17boo6boobbo14bobobbo\$13boo18boo18boo18boo11bo6boo18boo18bo9boo16boboo\$13bo19bo19bo19bo10b3o6bo19bo29bo19bo\$10boobo16boobo16boobo17bobo17bobo17bobo27bobo17bobo\$9bobbo16bobbo16bobbo18boo8boo3boo3boo18boo28boo18boo\$10boo18boo18boo28bobo3bobo\$46b3o33bo3bo47boo\$48bo86boo\$7boo38bo86bo\$7boo\$\$5boo\$4bobo\$6bo11\$97bo\$97bobo\$97boo\$\$83bobo\$84boo\$84bo4\$78bobo27bo\$79boo26bo\$79bo27b3o\$119boo18boo18boo\$10bo22bo19bo19bo19bo26bobbo16bobbo16bobbo\$11bo20bobo17bobo14boobobo14boobobo25bobobo15bobobo15bobobo\$9b3oboo17bobbo12boobbobbo12bobobobbo12bobobobbo25boobbo15boobbo15boobbo\$13bobo17boo12bobo3boo14bo3boo14bo3boo28boo18boo18boo\$13bo35bo73bo19bo19bo\$73boo18boo29b3o17b3o17b3o\$51b3o18bobo17bobo31bo19bo20bo\$53bo19bo19bo44bo27boo\$52bo86bo\$137b3oboo\$104boo35bobo\$103boo36bo\$105bo\$137b3o\$139bo\$98boo38bo\$97boo\$99bo7\$96bo\$94bobo5bo\$95boo6boo\$98boobboo\$28boo28boo18boo17bobo8boo\$9boo17bobo27bobo17bobo18bo8bobo\$10bobbo16bobbo26bobbo16bobbo26bobbo15boobbo\$10bobobo15bobobo20bo4bobobo15bobobo25bobobo14bobbobo\$5bo5boobbo15boobbo17bobo5boobbo9boo4boobbo19boo4boobbo14bobobbo\$6bo6boo18boo19boo7boo10boo6boo20boo6boo16boboo\$4b3o6bo19bo17boo10bo19bo29bo18bo\$14b3o17b3o13bobo11b3o17b3o27b3o16bobo\$boo3boo9bo19bo14bo14bo19bo29bo16boo\$obo3bobo7boo18boo28boo18boo28boo\$bbo3bo95b3o\$82boo20bo7boo\$62b3o17boo19bo8boo\$62bo43boo11bo\$63bo41bobo10boo\$59b3o45bo10bobo\$61bo\$60bo\$116b3o\$118bo\$117bo\$119b3o\$119bo\$120bo5\$97bo\$97bobo\$97boo\$\$83bobo\$84boo\$84bo4\$78bobo\$79boo24bo\$79bo23boo\$104boo13boo18boo18boo\$10bo22bo19bo19bo19bo26bobbo16bobbo16bobbo\$11bo20bobo17bobo14boobobo14boobobo25bobobo15bobobo15bobobo\$9b3oboo17bobbo12boobbobbo12bobobobbo12bobobobbo25boobbo15boobbo15boobbo\$13bobo17boo12bobo3boo14bo3boo14bo3boo28boo18boo18boo\$13bo35bo73bo19bo6boo11bo\$73boo18boo29bo19bo4boo13bo\$51b3o19boo18boo30bobo13bo3bobo3bo11boo\$53bo72boo14bo3boo\$52bo87b3o\$54b3o38bobo\$54bo40boo\$55bo40bo43bo\$139boo\$94b3o42bobo\$94bo\$95bo9\$126bo\$124bobo5bo\$125boo6boo\$128boobboo\$28boo18boo18boo18boo18boo17bobo8boo11bobo\$9boo17bobo17bobo17bobo17bobo17bobo18bo8bobo10boo\$10bobbo16bobbo16bobbo16bobbo16bobbo16bobbo26bobbo8bo6boobbo\$10bobobo15bobobo15bobobo15bobobo15bobobo15bobobo17bobo5bobobo14bobbobo\$5bo5boobbo15boobbo15boobbo15boobbo15boobbo15boobbo17boo6boobbo7boo5bobobbo\$6bo6boo18boo18boo18boo18boo18boo18bo9boo7boo7boboo\$4b3o6bo19bo19bo19bo19bo19bo29bo10bo8bo\$14bo19bo19bo19bo19bo19bo3boo24bo3boo13bobo\$boo3boo5boo18boo18boo18boo18boo3bobo12boobbobbo22boobbobbo13boo\$obo3bobo89boo17bobbo26bobbo\$bbo3bo45bo20boo18boo4bo13boo3boo14boo7boo3boo\$52boo18bobo17bobo17bobo20boo5bobo\$51bobo19bo19bo5boo12bo20bo8bo\$99bobo\$99bo38boo8boo\$137bobo7bobo\$139bo9bo!`

Here's a partial synthesis of #217 related to the above syntheses, and from that, 13 more gliders would give #316:
`x = 152, y = 25, rule = B3/S23bbo\$obo5bo\$boo6boo\$4boobboo\$3bobo8boo\$5bo8bobo\$16bobbo15boobbo6b3o6boobbo15boobbo15boobbo25boobbo15boobbo\$8bobo5bobobo14bobbobo4bo3bo5bobbobo14bobbobo14bobbobo24bobbobo14bobbobo\$9boo6boobbo14bobobbo7bo6bobobbo14bobobbo14bobobbo24bobobbo14bobobbo\$9bo9boo16boboo6boo8boboobo14boboobo14boboobo24boboobo14boboo\$19bo18bo8bo10bobbo16bobbo16bobbo26bobbo16bo\$20bo18boo18boo18boo18boo10b5o13boo15bobo\$19boo26bo47boo13bo4bo9boo19boo\$74boo18bobbo17bo8bobbo8boo\$10boo61bobo19boo13bo3bo4bo5boo8boo\$11boo62bo36bo6boo16bo\$10bo13boo51boo35bo3bobo10b3o\$15boo7bobo50bobo34boo15bo\$14bobo7bo52bo35bobo16bo\$16bo102bo5boo\$118b3o5boo\$118boboo3bo\$119b3o\$119b3o\$119boo!`

Extrementhusiast wrote:#200 tweezed from the given soup:

Yay!

Extrementhusiast wrote:Also, that component allows for predecessors for #140, #150, #165, and #166:

I'll have to look at all the predecessors to see if they're buildable.

Extrementhusiast wrote:This solves #354:

My synthesis above appears to start from the same path, but is less expensive.

I've noticed that we seem to think along different lines, so even though we are working independently, there seems relatively little overlap (e.g. this week, only one synthesis).
mniemiec

Posts: 900
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

#160 (and #168 and #169) from a constructable 19-bitter:
`x = 21, y = 12, rule = B3/S23bo6bo3bo6bo\$2bo6bobo6bo\$3o4b3ob3o4b3o2\$3b3o4bo4b3o\$5bo3bobo3bo\$4bo3bobobo3bo\$7bo2bo2bo\$8b2ob2o\$9bobo\$9bo2bo\$10b2o!`

Also, is the new site up yet?

EDIT: #159 from a 16-bitter:
`x = 102, y = 28, rule = B3/S23obo\$b2o\$bo11bo\$12bo\$12b3o5\$79bo\$b2o28b2o3bo25b2o3bo11bobo13b2o3bo\$bobob2obo22bobobobo24bobobobo10b2o14bobobobo\$3bobob2o24bobobo26bobobo28bobobo\$2bobo27bobobo26bobobo28bobobo\$2bo29bo2bo27bo2bo29bo2bo\$b2o28b2o17bobo2b3o4b2o33b2o\$9bobo39b2o2bo\$9b2o40bo4bo10b2o\$10bo25b2o28bo2bo\$31b3ob2o17b2o10bo2bo\$8b3o22bo3bo17b2o10b2o\$8bo23bo21bo\$9bo2\$11b3o\$11bo43b2o\$12bo41bobo\$56bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1690
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:Also, is the new site up yet?

No, but It's getting a lot closer. i want to make sure things are right before rushing something half-finished out the door.
mniemiec

Posts: 900
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

A predecessor of #157 from two probably unsynthesized 8-bitters:
`x = 86, y = 42, rule = B3/S2359bo\$60bo\$58b3o2\$75bo\$56bo17bo\$3bobo51bo16b3o\$4b2o49b3o\$4bo2\$9bobo71bobo\$obo6b2o72b2o\$b2o7bo73bo\$bo79bo\$79b2o\$18bo61b2o\$18bobo\$5b2o11b2o45b2o\$5bobo7bo49bobo\$7bo6bo52bo\$2o5b2o5b3o43b2o5b2o\$obobo55bobobo\$2b2obo56b2obo\$bo3bo7b2o46bo3bo\$bob2o8bobo45bob2o\$2bobobo6bo48bo\$5b2o53bobo\$60b2o\$79bo\$12b2o64b2o\$12bobo63bobo\$12bo\$68b2o2b2o\$9b2o56bobob2o\$8b2o59bo3bo\$10bo37bo\$48b2o\$47bobo15b3o\$67bo\$51b2o13bo\$50bobo\$52bo!`

A predecessor of #219 from a probably unsynthesized 21-bitter:
`x = 200, y = 49, rule = B3/S23194bo\$164bo27b2o\$165b2o26b2o\$164b2o32bo\$188bo8bo\$186b2o9b3o\$187b2o2\$164bo\$165bo\$81bo81b3o\$79b2o32bo\$80b2o29bobo\$112b2o\$38bo47bobo\$39bo46b2o\$37b3o47bo39bo6bo\$41bo83b2o5b2o\$40bo34b2o11b2o36b2o5b2o\$40b3o31bo2bo10bobo23b2o41bo\$37bo36bo2bo10bo25bo43bo\$38bo36b2o38bo40b3o\$36b3o47bo29bo\$44bo33b2o5b2o30bo\$42b2o34bo6bobo30bo\$43b2o34bo39bo\$2o2bo25b2o2bo35b2o2bo3b2o30b2o2bo3b2o50b2o2bo3b2o\$o2bobob2obo19bo2bobob2obo29bo2bobobo32bo2bobobo10bobo39bo2bobobobo\$bobobobob2o20bobobobob2o30bobobobo33bobobobo10b2o41bobobobo\$2bobobo25bobobo5b2o28bobobo35bobobo12bo4bo37bobob2o\$4bo29bo7bobo29bo39bo10b2o7bobo27b2o8bo\$3b2o28b2o7bo30b2o38b2o9bo2bo6b2o28bobo6b2o\$125b2o37bo2\$163bo19bobo\$120bo42b2o18b2o\$119bobo10b3o27bobo19bo\$119bobo10bo\$120bo12bo21b3o37b2o\$116b3o38bo36b2o\$118bo37bo6b3o30bo\$117bo45bo\$164bo\$106b2o17b2o\$105bobo11bo4b2o65b2o\$107bo11b2o5bo63b2o\$118bobo64b3o4bo\$185bo\$186bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1243
Joined: July 9th, 2009, 2:44 pm

PreviousNext