codeholic wrote:Is it possible to line up trails in two rows by three, so that the distance between trails in each of both rows would be the same and adjustable?
I fail to get distance of 54, 56 or 58 between boats.
EDIT: Maybe that's not a good idea anyway, because then clean-up gets more complicated.
x = 1276, y = 1114, rule = B3/S23
20bo1234bo$21b2o1230b2o$20b2o1232b2o89$80bo1114bo$81b2o1110b2o$80b2o
1112b2o2$16bo1242bo$17b2o1238b2o$16b2o1240b2o85$140bo994bo$141b2o990b
2o$140b2o992b2o2$76bo1122bo$77b2o1118b2o$76b2o1120b2o4$o1274bo$b2o
1270b2o$2o1272b2o79$200bo874bo$201b2o870b2o$200b2o872b2o2$136bo1002bo$
137b2o998b2o$136b2o1000b2o4$60bo1154bo$61b2o1150b2o$60b2o1152b2o79$
260bo754bo$261b2o750b2o$260b2o752b2o2$196bo882bo$197b2o878b2o$196b2o
880b2o4$120bo1034bo$121b2o1030b2o$120b2o1032b2o23$450b2o56b2o98b2o56b
2o98b2o56b2o$450b2o56b2o98b2o56b2o98b2o56b2o30$450b2o56b2o98b2o56b2o
98b2o56b2o$450b2o56b2o98b2o56b2o98b2o56b2o24$320bo634bo$321b2o630b2o$
320b2o632b2o2$256bo762bo$257b2o758b2o$256b2o192b2o56b2o98b2o56b2o98b2o
56b2o192b2o$450b2o56b2o98b2o56b2o98b2o56b2o3$180bo914bo$181b2o910b2o$
180b2o912b2o25$450b2o56b2o98b2o56b2o98b2o56b2o$450b2o56b2o98b2o56b2o
98b2o56b2o30$450b2o56b2o98b2o56b2o98b2o56b2o$450b2o56b2o98b2o56b2o98b
2o56b2o22$380bo514bo$381b2o510b2o$380b2o512b2o2$316bo642bo$317b2o638b
2o$316b2o640b2o2$450b2o56b2o98b2o56b2o98b2o56b2o$450b2o56b2o98b2o56b2o
98b2o56b2o$240bo794bo$241b2o790b2o$240b2o792b2o27$450b2o56b2o98b2o56b
2o98b2o56b2o$450b2o56b2o98b2o56b2o98b2o56b2o30$450b2o56b2o98b2o56b2o
98b2o56b2o$450b2o56b2o98b2o56b2o98b2o56b2o20$440bo394bo$441b2o390b2o$
440b2o392b2o2$376bo522bo$377b2o518b2o$376b2o520b2o4$300bo149b2o56b2o
98b2o56b2o98b2o56b2o149bo$301b2o147b2o56b2o98b2o56b2o98b2o56b2o147b2o$
300b2o672b2o29$508b2o98b2o56b2o98b2o$508b2o98b2o56b2o98b2o30$508b2o98b
2o56b2o98b2o$508b2o98b2o56b2o98b2o22$436bo402bo$437b2o398b2o$436b2o
400b2o4$360bo554bo$361b2o550b2o$360b2o146b2o98b2o56b2o98b2o146b2o$508b
2o98b2o56b2o98b2o30$508b2o98b2o56b2o98b2o$508b2o98b2o56b2o98b2o30$508b
2o98b2o56b2o98b2o$508b2o98b2o56b2o98b2o20$496bo282bo$497b2o278b2o$496b
2o280b2o4$420bo434bo$421b2o430b2o$420b2o432b2o2$508b2o98b2o56b2o98b2o$
508b2o98b2o56b2o98b2o30$608b2o56b2o$608b2o56b2o30$608b2o56b2o$608b2o
56b2o24$480bo314bo$481b2o310b2o$480b2o312b2o4$608b2o56b2o$608b2o56b2o
30$608b2o56b2o$608b2o56b2o30$608b2o56b2o$608b2o56b2o22$540bo194bo$541b
2o190b2o$540b2o192b2o6$608b2o56b2o$608b2o56b2o30$608b2o56b2o$608b2o56b
2o30$608b2o56b2o$608b2o56b2o20$600bo74bo$601b2o70b2o$600b2o72b2o8$608b
2o56b2o$608b2o56b2o!
x = 328, y = 1113, rule = B3/S23
4b2o56b2o202b2o54b2o$4b2o56b2o202b2o54b2o30$4b2o56b2o68b2o52b2o78b2o
54b2o$4b2o56b2o68b2o52b2o78b2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b
2o56b2o68b2o52b2o78b2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o
68b2o52b2o78b2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b
2o78b2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b2o
54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b2o54b2o30$
4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b2o54b2o30$4b2o56b
2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b2o54b2o30$4b2o56b2o68b2o
52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b2o54b2o30$4b2o56b2o68b2o52b2o78b
2o54b2o$4b2o56b2o68b2o52b2o78b2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$
4b2o56b2o68b2o52b2o78b2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b
2o68b2o52b2o78b2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o
52b2o78b2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b
2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b2o54b2o
30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b2o54b2o30$4b2o
56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b2o54b2o30$4b2o56b2o68b
2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b2o54b2o30$4b2o56b2o68b2o52b2o
78b2o54b2o$4b2o56b2o68b2o52b2o78b2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b
2o$4b2o56b2o68b2o52b2o78b2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o
56b2o68b2o52b2o78b2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b
2o52b2o78b2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o
78b2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b2o54b
2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b2o54b2o30$4b
2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b2o54b2o30$62b2o68b2o
52b2o$62b2o68b2o52b2o$7bo259b2o50b3o$7b2o257b2obob3o44bo2bo$7bob2o256b
o2bo49b2o$3bo263bo7bo44bo2b3o$2b2o4bo2bo51bo203bo3bo4bo39bo3bobo3bo$b
2o2bobob2o47b3obobo210bo3b2o35bo3bo5bo$5b2o2bobo47b4ob2o3b3o193bo4bob
3o2b2o2bo34bo3bobob2o$8bo2bo52bo2b5o193bo5b3o8bo32bo2b2obo$11bo41b2o3b
2o3bo3bo189bo18bo6b3o29bo2bo$8bobo35b3o3bo2bobo5bo4b5o181bo11bo10bo2b
2o34bo2bo$9bo38bo2bo6b3o11bo180bo4b2o6bo11b2o37b2o$46bob2o2b3o3bo10bob
o181b2o4bo5b2o2bo$2o44bob2obo3b3o11b2o5bobo175b2o3bo5b5o56b2o$2o46bob
2o4bo20b2o176bo2bob3o3b2o58b2o$53bo23bo177b2o4bo2b3o$48b3o2bo207bo$44b
o4bo212bobo$44bo4bo213bo$45bo2bo196bobo$245b2o$4b2o56b2o182bo19b2o54b
2o$4b2o56b2o202b2o54b2o2$26bo$25b2o$25bobo271bo$299b2o$298bobo2$132b2o
52b2o$132b2o52b2o3$12b2o40b2o218b2o38b2o$12b2o40b2o218b2o38b2o2$41bo$
40bo$40b3o4$294bo$295bo$293b3o7$4b2o56b2o202b2o54b2o$4b2o56b2o22bo91b
3o85b2o54b2o$85b2o92bo$85bobo91b3o$285bo$239bo43b2o$239b2o43b2o$238bob
o$48bo$49b2o$48b2o89b2o$138bobo$130b2o6b2o48b2o$12b2o40b2o74b2o6b2o38b
2o8b2o84b2o38b2o$12b2o40b2o83bobobo34b2o94b2o38b2o$141b2o$132bobo4b2ob
o$132b2o$133bo$190bo$189bobo$188bo3bo$188bo3bo$128b2o58bo$128b2o59b3o
7$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b2o54b2o12$140b2o
36b2o$140b2o36b2o17$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o
78b2o54b2o30$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b2o68b2o52b2o78b2o54b
2o30$62b2o68b2o52b2o$62b2o68b2o52b2o$7bo259b2o$7b2o257b2obob3o43bo$7bo
b2o256bo2bo44b2o$3bo263bo7bo$2b2o4bo2bo51bo203bo3bo4bo42b3o$b2o2bobob
2o47b3obobo210bo3b2o36bo2bo3b3o$5b2o2bobo47b4ob2o3b3o193bo4bob3o2b2o2b
o35b3o$8bo2bo52bo2b5o193bo5b3o8bo35bo$11bo41b2o3b2o3bo3bo189bo18bo6b3o
$8bobo35b3o3bo2bobo5bo4b5o181bo11bo10bo2b2o$9bo38bo2bo6b3o11bo180bo4b
2o6bo11b2o$46bob2o2b3o3bo10bobo181b2o4bo5b2o2bo$2o44bob2obo3b3o11b2o5b
obo175b2o3bo5b5o56b2o$2o46bob2o4bo20b2o176bo2bob3o3b2o58b2o$53bo23bo
177b2o4bo2b3o$48b3o2bo207bo$44bo4bo212bobo$44bo4bo213bo$45bo2bo196bobo
$245b2o$4b2o56b2o182bo19b2o54b2o$4b2o56b2o202b2o54b2o2$26bo$25b2o$25bo
bo2$299bo$299b2o$132b2o52b2o110bobo$132b2o52b2o3$12b2o40b2o218b2o38b2o
$12b2o40b2o218b2o38b2o2$41bo$40bo$40b3o4$294bo$295bo$293b3o7$4b2o56b2o
202b2o54b2o$4b2o56b2o22bo91b3o85b2o54b2o$85b2o92bo$85bobo91b3o2$239bo$
239b2o40bo$238bobo38b2o$48bo231b2o$49b2o$48b2o89b2o$138bobo$130b2o6b2o
48b2o$12b2o40b2o74b2o6b2o38b2o8b2o84b2o38b2o$12b2o40b2o83bobobo34b2o
94b2o38b2o$141b2o$132bobo4b2obo$132b2o$133bo$190bo$189bobo$188bo3bo$
188bo3bo$128b2o58bo$128b2o59b3o7$4b2o56b2o68b2o52b2o78b2o54b2o$4b2o56b
2o68b2o52b2o78b2o54b2o12$140b2o36b2o$140b2o36b2o!
codeholic wrote:What I really wish is that there were a way to parametrize distance between two trails in a pair. Would it be possible, for instance, to use kickbacked gliders to suppress outside gliders of the previous Herschel triplet? It sounds feasible to me.
x = 635, y = 812, rule = B3/S23
4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o$4b2o40b2o68b2o41b2o
75b2o58b2o68b2o59b2o91b2o102b2o30$4b2o40b2o68b2o41b2o75b2o58b2o68b2o
59b2o91b2o102b2o$4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o30$
4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o$4b2o40b2o68b2o41b2o
75b2o58b2o68b2o59b2o91b2o102b2o30$4b2o40b2o68b2o41b2o75b2o58b2o68b2o
59b2o91b2o102b2o$4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o30$
4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o$4b2o40b2o68b2o41b2o
75b2o58b2o68b2o59b2o91b2o102b2o30$4b2o40b2o68b2o41b2o75b2o58b2o68b2o
59b2o91b2o102b2o$4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o30$
4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o$4b2o40b2o68b2o41b2o
75b2o58b2o68b2o59b2o91b2o102b2o30$4b2o40b2o68b2o41b2o75b2o58b2o68b2o
59b2o91b2o102b2o$4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o30$
4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o$4b2o40b2o68b2o41b2o
75b2o58b2o68b2o59b2o91b2o102b2o30$4b2o40b2o68b2o41b2o75b2o58b2o68b2o
59b2o91b2o102b2o$4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o30$
4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o$4b2o40b2o68b2o41b2o
75b2o58b2o68b2o59b2o91b2o102b2o30$4b2o40b2o68b2o41b2o75b2o58b2o68b2o
59b2o91b2o102b2o$4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o30$
4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o$4b2o40b2o68b2o41b2o
75b2o58b2o68b2o59b2o91b2o102b2o30$4b2o40b2o68b2o41b2o75b2o58b2o68b2o
59b2o91b2o102b2o$4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o30$
4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o$4b2o40b2o68b2o41b2o
75b2o58b2o68b2o59b2o91b2o102b2o30$4b2o40b2o68b2o41b2o75b2o58b2o68b2o
59b2o91b2o102b2o$4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o30$
4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o$4b2o40b2o68b2o41b2o
75b2o58b2o68b2o59b2o91b2o102b2o30$4b2o40b2o68b2o41b2o75b2o58b2o68b2o
59b2o91b2o102b2o$4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o30$
4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o$4b2o40b2o68b2o41b2o
75b2o58b2o68b2o59b2o91b2o102b2o30$4b2o40b2o68b2o41b2o75b2o58b2o68b2o
59b2o91b2o102b2o$4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o30$
4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o$4b2o40b2o68b2o41b2o
75b2o58b2o68b2o59b2o91b2o102b2o30$4b2o40b2o68b2o41b2o75b2o58b2o68b2o
59b2o91b2o102b2o$4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o30$
4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b2o102b2o$4b2o40b2o68b2o41b2o
75b2o58b2o68b2o59b2o91b2o102b2o21$167bo$166b3o59b3o$165bo$166b2o60bobo
$166bo64bo$227bo3bo2$227bo2b2o$297bo331b3o$4b2o40b2o250bo68bo59b2o91bo
$4b2o40b2o317b2obo58b2o90bob2o108bo$297b2o60b3o2bo3bo150bo3bo2b3o100b
4o$157b2o79b2o53b3ob2o63bo5bo150bo5bo96b2o5b5o$121b2o34b2o8b2o59b2o8b
2o53bo4bo64bobob2o150b2obobo97b2o4bo3b2o$120bo2b2o42b2o59b2o62b2o6b2o
58bo4bobobo148bobobo4bo101b3o$114bo5b2obo169bob3ob2obo58b3obobobo148bo
bobob3o$48bo65bo6bo3b2o165bo5bo3bo60b2o3bo150bo3b2o$46b4o64bo177bo2bob
o4bo$39b2o4b6o242bo7bo48bo186bo$38bo2bo3bo4b2o104bo81bo56b3obo49b3o
184b3o$35bo3bobo17b2o94b3o79bo2bo107bobobo182bobobo$33b2o5b2o5bo9b2ob
2o92b2ob2o81b2o106bobobo182bobobo$34b2o3bo8b2o7bo4bo94b3o78bo3bo106b3o
19b2o142b2o19b3o94b2o$37b2o18bo3b3o48b2o41b2obo79bo2bo50b2o56bo19bo3bo
138bo3bo19bo82b2o9bobo$50bo7b2o4bo47b2o42b2o81b2o51b2o76bo5bo134bo5bo
102b2o10bo$50b2o10bobo91bo214b2obobo134bobob2o$50b2o10b2o308bo4bo132bo
4bo$372bo4bo132bo4bo$372bo4bo132bo4bo$373b3o56b2o2bo75b3o$431b2o$46b2o
68b2o41b2o75b2o58b2o68b2o64b2o86b2o102b2o$46b2o68b2o41b2o75b2o58b2o68b
2o23bo104bo23b2o102b2o$389bobo40b2o2b2o58bobo$11b3o376b2o39bo64b2o$11b
obo255bobo162b4o$10bo2bo255b2o161bo2bo$10b3o257bo$10b3o$11bo2bo$11bo$
14bo$83bo$2b2o8bo68b2o$2b2o9bo40b2o26b2o83b2o59b2o74b2o52b2o63b3o9b2o
91b2o102b2o$12b2o40b2o10bo100b2o59b2o74b2o52b2o75b2o91b2o102b2o$64bobo
356b3o$65b2o357b2o3$bo$obo578bo$ob2o576bo$3bo576b3o$obo$bo2$335bobo$
335b2o$330bo5bo$331bo$290bo38b3o$4b2o40b2o68b2o41b2o75b2o53bo4b2o68b2o
59b2o91b2o102b2o$4b2o40b2o68b2o41b2o75b2o51b3o4b2o68b2o59b2o91b2o102b
2o4$158bo$156bobo$157b2o6$54b2o111b2o59b2o74b2o52b2o75b2o91b2o102b2o$
54b2o111b2o59b2o74b2o52b2o75b2o91b2o102b2o17$4b2o40b2o68b2o41b2o75b2o
58b2o68b2o59b2o91b2o102b2o$4b2o40b2o68b2o41b2o75b2o58b2o68b2o59b2o91b
2o102b2o12$528b2o102b2o$528b2o102b2o!
codeholic wrote:There probably would be forward gliders that break away in the front of the pattern, but it might be feasible to suppress them with additional spaceships or specialized devices built by the front pattern (plain eaters probably won't work, because every next forward glider will be shifted compared to the one sent by the previous triplet).
EDIT: There will be also break-away backward gliders in the back. No good design, probably
HartmutHolzwart wrote:That forward rake is really great to look at work!!!! Congratulations!
Howver, finding a shortcut would be appreciated in order to make the full ship a little bit shorter.
dvgrn wrote:Then when I looked at the geometry again, it became clear that there were a couple of other options as far as orienting the Herschels (because they put out one glider in each direction, but not on mirror-image lanes).
codeholic wrote:Did I get you right, that it's possible to build a whole track that consists of Herschels all oriented in one direction?
codeholic wrote:Currently I found ways to heisenburp a line of boats with offsets [20,44,48]+62N, but they are all in the same direction...
dvgrn wrote:codeholic wrote:Did I get you right, that it's possible to build a whole track that consists of Herschels all oriented in one direction?
Yes -- check out the width-42 and width-43 Herschel pairs in the sample pattern I sent.
x = 156, y = 520, rule = B3/S23
7b2o27b2o78b2o28b2o$7b2o27b2o78b2o28b2o30$7b2o27b2o78b2o28b2o$7b2o27b
2o78b2o28b2o30$7b2o27b2o78b2o28b2o$7b2o27b2o78b2o28b2o30$7b2o27b2o78b
2o28b2o$7b2o27b2o78b2o28b2o30$7b2o27b2o78b2o28b2o$7b2o27b2o78b2o28b2o
30$7b2o27b2o78b2o28b2o$7b2o27b2o78b2o28b2o30$7b2o27b2o78b2o28b2o$7b2o
27b2o78b2o28b2o30$7b2o27b2o78b2o28b2o$7b2o27b2o78b2o28b2o30$7b2o27b2o
78b2o28b2o$7b2o27b2o78b2o28b2o30$7b2o27b2o78b2o28b2o$7b2o27b2o78b2o28b
2o30$7b2o27b2o78b2o28b2o$7b2o27b2o78b2o28b2o30$7b2o27b2o78b2o28b2o$7b
2o27b2o78b2o28b2o30$7b2o27b2o78b2o28b2o$7b2o27b2o78b2o28b2o30$7b2o27b
2o78b2o28b2o$7b2o27b2o78b2o28b2o30$7b2o27b2o78b2o28b2o$7b2o27b2o78b2o
28b2o21$43b3o$43b3o$42bo2bo$42b3o$43b2o5$116b2o28b2o$6b5o105b2o28b2o$
6bobob2o$8bo3bo21b2o$8b2ob3o20b2o8b2o$b2o5b2ob2o31b2o$b3o3bo2bo$o2bo3b
4o$b3o2bob2obo$b2o3bo2b3o$7bob3o20b3o$31bo3bo$31b2o3bo$31bo4bo$11b2o
19bo3bo$11b2o$33b2o6$7b2o27b2o$7b2o27b2o115b3o$154bo$152b3o7$115bobo$
114bo2bob2o$114bo2bob2o23b2o$118b2obo22b2o8b2o$112bo5b4o32b2o$110b2o$
110bo6b2o$110b3obob2o3bo$116b5o$117bo25bo$142bobo$141bo3bo$141bo3bo$
120b2o23bo$120b2o20b3o7$116b2o28b2o$116b2o28b2o!
codeholic wrote:So how would the formula for the distance between 42-tracks in the triplet look like?
x = 617, y = 223, rule = B3/S23
21b2o40b2o108b2o40b2o195b2o40b2o108b2o40b2o$21b2o40b2o108b2o40b2o195b
2o40b2o108b2o40b2o30$21b2o40b2o108b2o40b2o195b2o40b2o108b2o40b2o$21b2o
40b2o108b2o40b2o195b2o40b2o108b2o40b2o30$21b2o40b2o108b2o40b2o195b2o
40b2o108b2o40b2o$21b2o40b2o108b2o40b2o195b2o40b2o108b2o40b2o30$21b2o
40b2o108b2o40b2o195b2o40b2o108b2o40b2o$21b2o40b2o108b2o40b2o195b2o40b
2o108b2o40b2o30$21b2o40b2o108b2o40b2o195b2o40b2o108b2o40b2o$21b2o40b2o
108b2o40b2o195b2o40b2o108b2o40b2o29$413bo$173b2o40b2o197bo46bo102b2o
40b2o$173b2o40b2o245bo101b2o40b2o$22b2o45bo343b2o45bo2bo$21b2obob3o32b
2o4bob2o338b3ob2o37b2o9b2o$22bo2bo35b2o4b6o336bo4bo37b2o10bo$22bo7bo
39bo2bo334b2o6b2o38bo3bo3bo$22bo3bo4bo39bobo335bob3ob2obo36bo5b3o$30bo
3b2o32bo339bo5bo3bo36b3o$20bo4bob3o2b2o2bo31b3obobo333bo2bobo4bo$20bo
5b3o8bo30bo5bo334bo7bo$12bo18bo6b3o29b3o338b3obo$9bo11bo10bo2b2o33b3o$
8bo4b2o6bo11b2o$8b2o4bo5b2o2bo$9b2o3bo5b5o34b2o347b2o40b2o$10bo2bob3o
3b2o36b2o347b2o40b2o$10b2o4bo2b3o$16bo$17bobo$18bo200b2o392b2o$obo214b
2obo392b3o$2o215b2o393bo2bo$bo19b2o40b2o154b2o191b2o40b2o155b2ob2o$21b
2o40b2o156b2o189b2o40b2o155b2ob2o$612b2ob2o$220bobo392bo$221bo163bobo
224b3o$385b2o226bo$386bo3$176bo$175bobo$177bo$172b4obo426b2o$71b2o99b
2o49b2o237b2o103bo36b2o8b2o$71b2o98bo51b2o237b2o102bobo45b2o$179b2o
381bo2b2ob2o33bo$180b2o380bo3bobo33bobo$174bo6b2o379bo5bob2o33bo$567b
2ob2o28bo3bo$176bo392bo29bo4bo$178bo419bo$178bo$49bo553bo$50bo118b2o
389b2o38bo$48b3o118b2o389b2o4$446bo$447bo$445b3o$21b2o40b2o108b2o40b2o
195b2o40b2o108b2o40b2o$21b2o40b2o108b2o40b2o195b2o40b2o108b2o40b2o12$
71b2o150b2o237b2o150b2o$71b2o150b2o237b2o150b2o!
x = 461, y = 918, rule = B3/S23
400b2o40b2o$400b2o40b2o30$4b2o40b2o352b2o40b2o$4b2o40b2o352b2o40b2o30$
4b2o40b2o352b2o40b2o$4b2o40b2o352b2o40b2o30$4b2o40b2o352b2o40b2o$4b2o
40b2o352b2o40b2o30$4b2o40b2o352b2o40b2o$4b2o40b2o352b2o40b2o30$4b2o40b
2o352b2o40b2o$4b2o40b2o352b2o40b2o30$4b2o40b2o352b2o40b2o$4b2o40b2o
352b2o40b2o30$4b2o40b2o352b2o40b2o$4b2o40b2o352b2o40b2o30$4b2o40b2o
352b2o40b2o$4b2o40b2o352b2o40b2o30$4b2o40b2o352b2o40b2o$4b2o40b2o352b
2o40b2o30$4b2o40b2o352b2o40b2o$4b2o40b2o352b2o40b2o30$4b2o40b2o352b2o
40b2o$4b2o40b2o352b2o40b2o27$3bo50bo$2bo2bo47b3o$bo3bo46b2o2bo$bo4bo
45bo3bo343b2o40b2o$b7o44bobo345b2o40b2o$bo2bo2b2o$4o3bo36b2o7b2ob2o$bo
5bo36b2o9bo$2b2o2bo$3b2o8bo431bo$13bo428b2o2b2o$13bo427b2o$45bo387b2ob
2o3bo3bo$43b2o389bo2bo4b4o$44b2o388b2obo9bo3b2o4b3o$434bo12bob2ob2o$
429bo5b2o7bo2bobo8bo$2o40b2o383b2o7bo7bo4bo4bobobo$2o40b2o384b2o20bo8b
o$452b3o4bo$453bobo4bo$456bo3bo$457b4o3$4b2o40b2o394b2o$4b2o40b2o394b
2o9$403b2o$403bo$398b2o2bo3bo$54b2o342b2o3bo2b2o42b2o$54b2o352b2o40b2o
$405b2ob2o2$406b2ob2o$406b2ob2o$408bo4$396b2o$396b2o7$4b2o40b2o352b2o
40b2o$4b2o35bo4b2o352b2o40b2o$42b2o$41b2o10$54b2o394b2o$54b2o394b2o3$
360bo$360bobo$360b2o2$103bo$104b2o$103b2o8$4b2o40b2o352b2o40b2o$4b2o
40b2o352b2o40b2o10$446bobo$447b3o$447bob3o$450b2o14$3bo50bo$2bo2bo47b
3o$bo3bo46b2o2bo$bo4bo45bo3bo343b2o40b2o$b7o44bobo345b2o40b2o$bo2bo2b
2o$4o3bo36b2o7b2ob2o$bo5bo36b2o9bo$2b2o2bo$3b2o8bo431bo$13bo428b2o2b2o
$13bo427b2o$45bo387b2ob2o3bo3bo$43b2o389bo2bo4b4o$44b2o388b2obo9bo3b2o
4b3o$434bo12bob2ob2o$429bo5b2o7bo2bobo8bo$2o40b2o383b2o7bo7bo4bo4bobob
o$2o40b2o384b2o20bo8bo$452b3o4bo$453bobo4bo$456bo3bo$457b4o3$4b2o40b2o
394b2o$4b2o40b2o394b2o9$403b2o$403bo$398b2o2bo3bo$54b2o342b2o3bo2b2o
42b2o$54b2o352b2o40b2o$405b2ob2o2$406b2ob2o$406b2ob2o$408bo4$396b2o$
300bo95b2o$300bobo$300b2o2$163bo$164b2o$163b2o$4b2o40b2o352b2o40b2o$4b
2o35bo4b2o352b2o40b2o$42b2o$41b2o10$54b2o394b2o$54b2o394b2o2$402b2o$
360bo40bobo$360bobo40bo$360b2o2$103bo$104b2o$103b2o8$4b2o40b2o352b2o
40b2o$4b2o40b2o352b2o40b2o10$446bobo$447b3o$447bob3o$342b2o106b2o$341b
obo$343bo12$54bo$53b3o$52b2o2bo$4b2o46bo3bo343b2o40b2o$4b2o46bobo345b
2o40b2o2$44b2o7b2ob2o$44b2o9bo2$445bo$442b2o2b2o$441b2o$45bo387b2ob2o
3bo3bo$43b2o389bo2bo4b4o$44b2o388b2obo9bo3b2o4b3o$282b2o150bo12bob2ob
2o$281bobo145bo5b2o7bo2bobo8bo$42b2o239bo143b2o7bo7bo4bo4bobobo$42b2o
384b2o20bo8bo$452b3o4bo$453bobo4bo$456bo3bo$457b4o3$46b2o192bo201b2o$
46b2o192bobo199b2o$240b2o2$223bo$224b2o$223b2o3$4b2o$4b2o397b2o$403bo$
398b2o2bo3bo$54b2o342b2o3bo2b2o42b2o$54b2o352b2o40b2o$405b2ob2o2$406b
2ob2o$406b2ob2o$408bo4$396b2o$300bo95b2o$300bobo$300b2o2$163bo$164b2o$
163b2o$46b2o352b2o40b2o$46b2o352b2o40b2o8$4b2o$4b2o3$54b2o394b2o$54b2o
394b2o2$402b2o$360bo40bobo$360bobo40bo$360b2o2$103bo$104b2o$103b2o8$
46b2o352b2o40b2o$46b2o352b2o40b2o8$4b2o$4b2o$446bobo$447b3o$54b2o391bo
b3o$54b2o286b2o106b2o$341bobo$343bo15$46b2o352b2o40b2o$46b2o352b2o40b
2o5$445bo$442b2o2b2o$441b2o$4b2o427b2ob2o3bo3bo$4b2o428bo2bo4b4o$434b
2obo9bo3b2o4b3o$282b2o150bo12bob2ob2o$54b2o225bobo145bo5b2o7bo2bobo8bo
$54b2o227bo143b2o7bo7bo4bo4bobobo$428b2o20bo8bo$452b3o4bo$453bobo4bo$
456bo3bo$457b4o3$240bo201b2o$240bobo199b2o$240b2o2$223bo$224b2o$223b2o
3$46b2o$46b2o355b2o$403bo$398b2o2bo3bo$398b2o3bo2b2o42b2o$408b2o40b2o$
405b2ob2o2$406b2ob2o$4b2o400b2ob2o$4b2o402bo3$54b2o$54b2o340b2o$300bo
95b2o$300bobo$300b2o2$163bo$164b2o$163b2o$400b2o40b2o$400b2o40b2o8$46b
2o$46b2o3$450b2o$450b2o2$402b2o$360bo40bobo$4b2o354bobo40bo$4b2o354b2o
3$54b2o$54b2o8$400b2o40b2o$400b2o40b2o8$46b2o$46b2o$446bobo$447b3o$
447bob3o$342b2o106b2o$341bobo$343bo2$4b2o$4b2o3$54b2o$54b2o8$400b2o40b
2o$400b2o40b2o8$46b2o$46b2o2$282b2o$281bobo$283bo4$4b2o$4b2o3$54b2o
184bo$54b2o184bobo$240b2o2$223bo$224b2o$223b2o3$400b2o40b2o$400b2o40b
2o8$46b2o$46b2o5$300bo$300bobo$300b2o$4b2o$4b2o3$54b2o$54b2o8$400b2o
40b2o$400b2o40b2o8$46b2o$46b2o8$4b2o$4b2o3$54b2o$54b2o!
codeholic wrote:An amazing find that can make me completely rethink the whole design of the front pattern:Code: Select allx = 62, y = 28, rule = B3/S23
59bo$57bo3bo$56bo$56bo4bo$56b5o21$3o$bo$b3o!
x = 636, y = 1868, rule = B3/S23
591b3o$590bo3bo$590bo3bo$588b2o5b2o$587bob7obo23b3o$587bo2b5o2bo25bo$
588bo3bo3bo25bo$631b3o$631bo2bo$631bo$631bo$632bobo3$583bo$582bobo$
581bo3bo$576b2o3bo2bo10b2o$575bo2bo16b3o$576b2o12b2o3b2o$585bo8b2o$
584bo9bo$585bo47bo$632b3o$632bob2o$633b3o$633b2o8$581bo$581bobo21b3o$
581b2o21bo2bo$607bo$603bo3bo$603bo3bo$607bo$604bobo3$606bo$605b3o$604b
2obo$604b3o$576b2o27b2o$575bo2bo$576b2o23$595bo$594b3o$594bob2o$595b3o
$595b2o2$576b2o$575bo2bo$576b2o6$601bo$600b3o$600bob2o$601b3o$601b2o5$
631b3o$631bo2bo$631bo$631bo$632bobo10$576b2o$575bo2bo54bo$576b2o54b3o$
632bob2o$633b3o$633b2o9$605b3o$521bo82bo2bo$521bobo83bo$521b2o80bo3bo$
603bo3bo$607bo$604bobo3$606bo$605b3o$604b2obo$604b3o$605b2o4$576b2o$
575bo2bo$576b2o19$595bo$594b3o$594bob2o$595b3o$595b2o6$576b2o$575bo2bo
$576b2o2$601bo$600b3o$600bob2o$601b3o$601b2o5$631b3o$631bo2bo$631bo$
631bo$632bobo11$633bo$632b3o$632bob2o$576b2o55b3o$575bo2bo54b2o$576b2o
8$605b3o$604bo2bo$607bo$461bo141bo3bo$461bobo139bo3bo$461b2o144bo$604b
obo3$606bo$605b3o$604b2obo$604b3o$605b2o8$576b2o$575bo2bo$576b2o15$
595bo$594b3o$594bob2o$595b3o$595b2o10$576b2o23bo$575bo2bo21b3o$576b2o
22bob2o$601b3o$601b2o5$631b3o$631bo2bo$631bo$631bo$632bobo11$633bo$
632b3o$632bob2o$633b3o$633b2o3$576b2o$575bo2bo$576b2o4$605b3o$604bo2bo
$607bo$603bo3bo$603bo3bo$401bo205bo$401bobo200bobo$401b2o2$606bo$605b
3o$604b2obo$604b3o$605b2o12$576b2o$575bo2bo$576b2o11$595bo$594b3o$594b
ob2o$595b3o$595b2o10$601bo$600b3o$600bob2o$601b3o$576b2o23b2o$575bo2bo
$576b2o3$631b3o$631bo2bo$631bo$631bo$632bobo11$633bo$632b3o$632bob2o$
633b3o$633b2o7$576b2o$575bo2bo$576b2o27b3o$604bo2bo$607bo$603bo3bo$
603bo3bo$607bo$604bobo$341bo$341bobo$341b2o263bo$605b3o$604b2obo$604b
3o$605b2o16$576b2o$575bo2bo$576b2o7$595bo$594b3o$594bob2o$595b3o$595b
2o10$601bo$600b3o$600bob2o$601b3o$601b2o4$576b2o$575bo2bo52b3o$576b2o
53bo2bo$631bo$631bo$632bobo11$633bo$632b3o$632bob2o$633b3o$633b2o9$
605b3o$604bo2bo$576b2o29bo$575bo2bo24bo3bo$576b2o25bo3bo$607bo$604bobo
3$281bo324bo$281bobo321b3o$281b2o321b2obo$604b3o$605b2o20$576b2o$575bo
2bo$576b2o3$595bo$594b3o$594bob2o$595b3o$595b2o10$601bo$600b3o$600bob
2o$601b3o$601b2o5$631b3o$631bo2bo$631bo$631bo$632bobo4$565b2o$564bo2bo
$565b2o5$633bo$632b3o$632bob2o$633b3o$633b2o6$573b3o$572bo2bo$575bo$
571bo3bo29b3o$571bo3bo28bo2bo$575bo31bo$552bo19bobo28bo3bo$552bobo48bo
3bo$552b2o53bo$604bobo2$572bo$571b3o32bo$571bob2o30b3o$221bo343b2o5b3o
29b2obo$221bobo340bo2bo4b2o30b3o$221b2o342b2o38b2o25$595bo$594b3o$594b
ob2o$595b3o$565b2o28b2o$564bo2bo$565b2o8$601bo$600b3o$600bob2o$601b3o$
601b2o5$631b3o$631bo2bo$631bo$631bo$632bobo8$565b2o$564bo2bo$565b2o$
633bo$632b3o$632bob2o$633b3o$633b2o6$573b3o$572bo2bo$575bo$571bo3bo29b
3o$571bo3bo28bo2bo$575bo31bo$572bobo28bo3bo$603bo3bo$492bo114bo$492bob
o109bobo$492b2o$572bo$571b3o32bo$571bob2o30b3o$572b3o29b2obo$572b2o30b
3o$161bo443b2o$161bobo$161b2o402b2o$564bo2bo$565b2o21$595bo$594b3o$
594bob2o$595b3o$595b2o4$565b2o$564bo2bo$565b2o4$601bo$600b3o$600bob2o$
601b3o$601b2o5$631b3o$631bo2bo$631bo$631bo$632bobo11$633bo$565b2o65b3o
$564bo2bo64bob2o$565b2o66b3o$633b2o6$573b3o$572bo2bo$575bo$571bo3bo29b
3o$571bo3bo28bo2bo$575bo31bo$572bobo28bo3bo$603bo3bo$607bo$604bobo$
432bo$432bobo137bo$432b2o137b3o32bo$571bob2o30b3o$572b3o29b2obo$572b2o
30b3o$605b2o2$101bo$101bobo$101b2o2$565b2o$564bo2bo$565b2o17$595bo$
594b3o$594bob2o$595b3o$595b2o8$565b2o$564bo2bo$565b2o34bo$600b3o$600bo
b2o$601b3o$601b2o42$372bo$372bobo$372b2o6$41bo$41bobo$41b2o62$18b2o$
17bo2bo$18b2o17$312bo$312bobo$312b2o2$26bo$27b2o$26b2o6$8b3o7b2o$8bo2b
o5bo2bo$8bo9b2o$8bo3bo$8bo3bo$8bo$9bobo12$2b3o$bo2bo$4bo$o3bo$o3bo$4bo
$bobo7$18b2o$17bo2bo$18b2o29$18b2o$17bo2bo$18b2o15$252bo$252bobo$252b
2o2$86bo$87b2o$86b2o4$8b3o$8bo2bo$8bo$8bo3bo$8bo3bo$8bo$9bobo3$29b2o$
28bo2bo$29b2o3$20b3o$20bo2bo$20bo$20bo3bo$2b3o15bo3bo$bo2bo15bo$4bo16b
obo$o3bo$o3bo$4bo$bobo$23bo$22b3o$21b2obo$21b3o$22b2o9$49bo$47bobo$29b
2o17b2o$28bo2bo$29b2o29$29b2o$28bo2bo$29b2o8$192bo$192bobo$192b2o2$
146bo$147b2o$146b2o2$8b3o$8bo2bo$8bo$8bo3bo$8bo3bo$8bo$9bobo7$29b2o$
20b3o5bo2bo$20bo2bo5b2o$20bo$20bo3bo$2b3o15bo3bo$bo2bo15bo$4bo16bobo$o
3bo$o3bo$4bo$bobo$23bo$22b3o$21b2obo$21b3o$22b2o11$109bo$107bobo$108b
2o2$29b2o$28bo2bo$29b2o4$168b2o$168b2o22$175b3o$176bo$29b2o143b3o$28bo
2bo$29b2o7$166b2o$166b2o8b2o$176b2o3$8b3o$8bo2bo$8bo156bo$8bo3bo151bob
o$8bo3bo150bo3bo$8bo154bo3bo$9bobo155bo$164b3o7$20b3o145b2o$20bo2bo
144b2o$20bo$20bo3bo4b2o$2b3o15bo3bo3bo2bo110b2o$bo2bo15bo8b2o111b2o$4b
o16bobo$o3bo$o3bo$4bo$bobo$23bo$22b3o$21b2obo151b2o$21b3o152b2o$22b2o
16$168b2o$168b2o2$29b2o$28bo2bo110b2o$29b2o111b2o8$176b2o$176b2o17$
168b2o$168b2o2$29b2o$28bo2bo110b2o$29b2o111b2o8$8b3o165b2o$8bo2bo164b
2o$8bo$8bo3bo$8bo3bo$8bo$9bobo8$20b3o$20bo2bo$20bo$20bo3bo$2b3o15bo3bo
143b2o$bo2bo15bo147b2o$4bo16bobo$o3bo$o3bo$4bo$bobo$23bo$22b3o$21b2obo
$21b3o$22b2o60$8b3o$8bo2bo$8bo$8bo3bo$8bo3bo$8bo$9bobo8$20b3o$20bo2bo$
20bo$20bo3bo$2b3o15bo3bo$bo2bo15bo$4bo16bobo$o3bo$o3bo$4bo$bobo$23bo$
22b3o$21b2obo$21b3o$22b2o60$8b3o$8bo2bo$8bo$8bo3bo$8bo3bo$8bo$9bobo8$
20b3o$20bo2bo$20bo$20bo3bo$2b3o15bo3bo$bo2bo15bo$4bo16bobo$o3bo$o3bo$
4bo$bobo$23bo$22b3o$21b2obo$21b3o$22b2o74$20b3o$20bo2bo$20bo$20bo3bo$
20bo3bo$20bo$21bobo5$23bo$22b3o$21b2obo$21b3o$22b2o74$20b3o$20bo2bo$
20bo$20bo3bo$20bo3bo$20bo$21bobo5$23bo$22b3o$21b2obo$21b3o$22b2o74$20b
3o$20bo2bo$20bo$20bo3bo$20bo3bo$20bo$21bobo5$23bo$22b3o$21b2obo$21b3o$
22b2o74$20b3o$20bo2bo$20bo$20bo3bo$20bo3bo$20bo$21bobo5$23bo$22b3o$21b
2obo$21b3o$22b2o!
dvgrn wrote:Technically we wouldn't need any upship streams besides the ones that generate a far-forward line of target junk -- though they still seem like a good option for other things. But these MWSSes can be slow-constructed with forerakes without much difficulty.
x = 2016, y = 139, rule = B3/S23
1008bo401bo199bo$10bo199bo394bo199bo202bobo398bo198b2o$8b2o199bo197bob
o195bobo197bobo200b2o399b3o197b2o$9b2o198b3o195b2o196b2o198b2o406bo$
408bo802b2o$1212b2o4$1814bo$1812b2o$1813b2o5$2013b3o$2013bo$1803bo199b
o10bo$603bo199bo198b3o197b3o197b3o197b3o197b3o197b3o$2b3o197b3o197b3o
197b3o197b3o197bo2bo196bo2bo196bo2bo196bo2bo195b2obo196b2obo$bo2bo196b
o2bo196bo2bo197bob2o196bob2o196bo199bo199bo199bo198b3o197b3o$4bo199bo
199bo198b3o197b3o196bo3bo195bo3bo195bo199bo198b3o197b3o$o3bo195bo3bo
199bo198b2o198b2o197bo3bo195bo3bo196bobo197bobo195b3o197b3o$o3bo195bo
3bo196bobo598bo199bo599b2o198b2o$4bo199bo798bobo197bobo$bobo197bobo
393b3o197b3o$401b3o192bo2bo196bo2bo601bo203b3o$401bo2bo194bo199bo600b
3o201bo2bo$401bo197bo195bo3bo600bob2o203bo401b3o$401bo3bo190bobo196bo
3bo601b3o199bo3bo400bo2bo$401bo3bo393bo207bo393b2o200bo3bo403bo$401bo
394bobo207b3o598bo399bo3bo$402bobo601bob2o594bobo400bo3bo$1007b3o794bo
206bo$15bo991b2o794b3o202bobo$14b3o1786bob2o$13b2obo1787b3o$13b3o1788b
2o$14b2o1192b3o$1207bo2bo$1210bo$1210bo$207bo999bobo$206b3o$206bob2o$
207b3o$207b3o$207b3o$207b2o58$1803bo199bo$603bo199bo198b3o197b3o197b3o
197b3o197b3o197b3o$2b3o197b3o197b3o197b3o197b3o197bo2bo196bo2bo196bo2b
o196bo2bo195b2obo196b2obo$bo2bo196bo2bo196bo2bo197bob2o196bob2o196bo
199bo199bo199bo198b3o197b3o$4bo199bo199bo198b3o197b3o196bo3bo195bo3bo
195bo199bo198b3o197b3o$o3bo195bo3bo199bo198b2o198b2o197bo3bo195bo3bo
196bobo197bobo195b3o197b3o$o3bo195bo3bo196bobo598bo199bo599b2o198b2o$
4bo199bo798bobo197bobo$bobo197bobo393b3o197b3o$401b3o192bo2bo196bo2bo
601bo203b3o$401bo2bo194bo199bo600b3o201bo2bo$401bo197bo195bo3bo600bob
2o203bo401b3o$401bo3bo190bobo196bo3bo601b3o199bo3bo400bo2bo$401bo3bo
393bo207bo393b2o200bo3bo403bo$401bo394bobo207b3o598bo399bo3bo$402bobo
601bob2o594bobo400bo3bo$1007b3o794bo206bo$15bo991b2o794b3o202bobo$14b
3o1786bob2o$13b2obo1787b3o$13b3o1788b2o$14b2o1192b3o$1207bo2bo$1210bo$
1210bo$207bo999bobo$206b3o$206bob2o$207b3o$207b3o$207b3o$207b2o!
x = 41, y = 405, rule = B3/S23
10b3o3b2o$9bo2bo3bobo$12bo3bo$8bo3bo$8bo3bo$12bo$9bobo3$11bo$10b3o$9b
2obo$9b3o$10b2o29$3o$o2bo$o$o3bo$o3bo$o$bobo13$36b3o$36bo2bo$36bo$36bo
$37bobo11$38bo$37b3o$37bob2o$38b3o$38b2o9$10b3o$9bo2bo$12bo$8bo3bo$8bo
3bo$12bo$9bobo3$11bo$10b3o$9b2obo$9b3o$10b2o29$3o$o2bo$o$o3bo$o3bo$o$b
obo13$36b3o$36bo2bo$36bo$36bo$37bobo11$38bo$37b3o$37bob2o$38b3o$38b2o
9$10b3o$9bo2bo$12bo$8bo3bo$8bo3bo$12bo$9bobo3$11bo$10b3o$9b2obo$9b3o$
10b2o29$3o$o2bo$o$o3bo$o3bo$o$bobo13$36b3o$36bo2bo$36bo$36bo$37bobo11$
38bo$37b3o$37bob2o$38b3o$38b2o9$10b3o$9bo2bo$12bo$8bo3bo$8bo3bo$12bo$
9bobo3$11bo$10b3o$9b2obo$9b3o$10b2o29$3o$o2bo$o$o3bo$o3bo$o$bobo13$36b
3o$36bo2bo$36bo$36bo$37bobo11$38bo$37b3o$37bob2o$38b3o$38b2o9$10b3o$9b
o2bo$12bo$8bo3bo$8bo3bo$12bo$9bobo3$11bo$10b3o$9b2obo$9b3o$10b2o29$3o$
o2bo$o$o3bo$o3bo$o$bobo!
codeholic wrote:Probably it does really make sense to start with two MWSS coming from opposite directions (though that would require some perfect timing as well), and then use that track to fanout two other tracks by colliding its gliders with gliders from fanout devices (perfect timing, again).
x = 12, y = 29, rule = B3/S23
11bo$9b2o$10b2o15$10bo$9b3o$8b2obo$8b3o$8b3o$3o5b3o$o2bo5b2o$o$o3bo$o
3bo$o$bobo!
codeholic wrote:I wonder if one can do anything with this reaction or it should belong to the "accidental discoveries" thread...
x = 41, y = 34, rule = B3/S23
34bo$34bobo$34b2o2$25bobo$25b2o$26bo3$36b3o$16bo19bo2bo$15bo20bo$15b3o
18bo3bo$28bo7bo3bo$8bo18b3o6bo$6b2o19bob2o6bobo$7b2o19b3o$28b3o$18b3o
7b3o$17bo2bo7b2o$20bo$16bo3bo$10bo5bo3bo$9b3o8bo$8b2obo5bobo$8b3o$8b3o
$3o5b3o$o2bo5b2o$o$o3bo$o3bo$o$bobo!
HartmutHolzwart wrote:- As the phase of the glider is irrelevant for slow salvo constructions only the relative spacing mod 240 counts.
HartmutHolzwart wrote:It should be manageable to set up a table the contains the cost of any relative spacing mod 240. one could then easily calculate the cost of candidate slow salvo construction and select the cheapest.
x = 112, y = 97, rule = B3/S23
109bobo$109b2o$110bo8$79bobo$79b2o$80bo34$16bo$15bo$15b3o19$2b3o$bo2bo
$4bo$o3bo$o3bo$4bo$bobo19$4bo$3b3o$3bob2o$4b3o$4b2o!
x = 19, y = 118, rule = B3/S23
16b2o$15bo2bo$16b2o17$13b3o$12bo2bo$15bo$11bo3bo$11bo3bo$15bo$12bobo5$
12bo$11b3o$11bob2o$12b3o$12b2o68$2b3o$bo2bo$4bo$o3bo$o3bo$4bo$bobo5$bo
$3o$ob2o$b3o$b2o!
x = 73, y = 98, rule = B3/S23
bo$2bo$3o50$68b2o$68b2o2$64bo$63bobo$63bobo$64bo6$70b2o$69bo2bo$70b2o
17$68b2o$68b2o2$64bo$63bobo$63bobo$64bo2$61bo$62bo$60b3o2$70b2o$69bo2b
o$70b2o!
x = 112, y = 129, rule = B3/S23
8$10bo$8bobo$9b2o63$82bo$82b3o$85bo$84b2o$77bo$71b2o3bobo$70bo2bo2bobo
$71b2o4bo19$70bo$68bobo$69b2o3$82bo$82b3o$85bo$84b2o$77bo$71b2o3bobo$
70bo2bo2bobo$71b2o4bo!
oblique wrote:If you still need help searching for seeds: might I humbly offer my assistance?
Maybe by writing some search program for slow salvo construction under the restrictions implied by your design?
dvgrn wrote:... the full list of lanes in order of cost is:
9, 18, 27, 5, 14, 23, 1, 10, 19, 28, 6, 15, 24, 2, 11, 20, 29, 7, 16, 25, 3, 12, 21, 30, 8, 17, 26, 4, 13, 22
For negative offsets it's the same list in reverse (or subtract each number from 31).
An offset of 0 or 31 from the last glider is a special case -- the cost is maximal, 31 rephasers, in either case.
dvgrn wrote:I'm not sure what the "don't stray too far to the right" line item means.
dvgrn wrote:I'm kind of thinking that it will work fine just to do an exhaustive search on P2 and stable slow-salvo outputs, hitting each one with all possible gliders, until *WSSes start coming out (at around five or six gliders, I'm guessing.) Then save the recipes that are workable edge-shooters -- i.e., none of the intermediate targets impinge on the *WSS lane -- and keep going until we have at least one good LWSS, MWSS, and HWSS recipe. They're out there somewhere...!
It's a huge search tree, of course, so it certainly might make sense to find clever ways to prune it back a little.
oblique wrote:Exhaustive search on P2 and stable outputs ... what exactly are the starting patterns?
I would just start with something like the Top 10 of the most-found ash particles or something.
Do you have a better list?
x = 213, y = 229, rule = B3/S23
o$b2o$2o28$19bo$20bo$18b3o23$55bo$56bo$54b3o38$76bo$77bo$75b3o38$121bo
$122b2o$121b2o18$155bo$156bo$154b3o18$172bo$173bo$171b3o18$183bo$184bo
$182b3o16$191bo$192bo$190b3o7$203bo$204bo$202b3o4$210b3o!
oblique wrote:As for pruning: I think it would make sense to kill off all reactions that would collide with the neighbouring construction site or reach a with of ... 100? 200?
Maybe an upper limit for the total cell count in any phase of the reaction will be another way to cut down this tree.
Or gliders / (unwanted) SS in the result.
typedef struct {
pattern *old_pat;
int old_lane;
pattern *new_pat;
int new_lane;
int dx, dy, dt, cost;
space_ship emitted [];
reaction trace [];
pattern *affected_area;
} reaction;
reaction *add_reaction (reaction *r1, reaction *r2)
{
reaction *r = "new reaction";
r->old_pat = r1->old_pat;
r->old_lane = r1->old_lane;
r->new_pat = r2->new_pat;
r->new_lane = adjust_lane (r2->new_lane, r1->dx, r1->dy);
r->dx = r1->dx + r2->dx;
r->dy = r1->dy + r2->dy;
r->dt = r1->dt + r2->dt;
r->cost = adjust_cost (r1, r2);
r->emmited = ship_merge (r1, r2);
r->trace = trace_merge (r1, r2);
r->affected_area = area_merge (r1, r2);
}
oblique wrote:Lanes are always defined such that lane 0 would hit exactly the top left corner of the bounding box.
oblique wrote:We could then use the weighted q algorithm and the function above, to search for a specific result.
(start with one state (pat,lane), q all reactions coming from there, then iteratively take the cheapest queued reaction r from the q, add any possible reaction starting with the end pattern of r back to the q, until one is found that yields the desired result)
Users browsing this forum: No registered users and 6 guests