Extrementhusiast wrote:mniemiec wrote:The only 2 remaining unsolved P5s up to 26 bits are now ones with the tub plus a snake or carrier.

I did not expect this to go as directly as it did:...

Great work Extrementhusiast!

Here is the full synthesis in 24 and 28 gliders:

`x = 178, y = 92, rule = B3/S23`

155bobo$156b2o19bo$156bo18b2o$176b2o$148bobo$149b2o$14bo134bo$15b2o$

14b2o$2bo17bobo125bo$3b2o15b2o42bobo79bobo$2b2o17bo43b2o80b2o3bo$65bo

84b2o$bo149b2o$2o8b2o12bo37b2o48b2o48b2o$obo7bobo11bobo34bo2bo46bo2bo

46bo2bo$10bo13b2o36bobo6bobo38bobo2bo44bobo2bo$61b2ob2o5b2o38b2ob4o43b

2ob4o$60bo2bo2bo5bo4bo32bo2bo46bo2bo$59bobo2b2o11bobo29bobo2b2o43bobo

2b2o$60bo9b3o4b2o31bo4bo44bo4bo$53bobo14bo42bo50bo$12b3o39b2o8bo6bo41b

2o49b2o$14bo39bo8bobo$13bo49bobo7b2o$64bo8bobo3b2o$73bo4b2o$58bo8bo12b

o38bo$51b2o5b2o7b2o37bo11b2o$34b2o14bobo4bobo6bobo37b2o10bobo$34bobo

15bo52bobo6b3o$34bo81bo$115bo3$113bo$113b2o$112bobo2$82b2o$81b2o$83bo

9$105bobo$106b2o19bo$106bo18b2o$126b2o$98bobo$99b2o$14bo84bo$15b2o$14b

2o$2bo17bobo75bo$3b2o15b2o42bobo29bobo$2b2o17bo43b2o30b2o3bo$65bo34b2o

$bo99b2o$2o8b2o12bo37b2o48b2o$obo7bobo11bobo34bo2bo46bo2bo$10bo13b2o

36bobo6bobo38bobo2bo$61b2ob2o5b2o38b2ob4o$60bo2bo2bo5bo4bo32bo2bo$59bo

bo2b2o11bobo29bobo2b2o$60bo9b3o4b2o31bo4bo$53bobo14bo42bo$12b3o39b2o8b

o6bo41b2o$14bo39bo8bobo$13bo49bobo7b2o$64bo8bobo3b2o$73bo4b2o$58bo8bo

12bo$51b2o5b2o7b2o$34b2o14bobo4bobo6bobo$34bobo15bo$34bo8$82b2o$81b2o$

83bo!

Your method will reduce many syntheses of Elkies P5 variants. It obsoletes the recently solved variant without a tub. Unfortunately your snake-to-eater converter doesn't work here because the tub gets in the way, which I haven't been able to work out how to fix.

Anyway, while I'm here, I added a lot more clearance to the ship-to-tripole converter:

`x = 103, y = 61, rule = LifeHistory`

10.4D.D4.3D$10.D2.D.D4.D2.D45.2D2.D.3D2.D3.D$10.D2.D.D4.D2.D45.D.D.D.

D4.D.D.D16.B$10.D2.D.D4.D2.D45.D.D.D.3D2.D.D.D15.3B$10.4D.4D.3D46.D.D

.D.D4.D.D.D14.4B$69.D2.2D.3D3.D.D14.4B$97.4B$96.4B$95.4B$94.A3B$93.A

3B$93.3A3$29.3B$28.4B$27.4B$26.4B$25.4B$24.4B$23.4B$22.A3B$22.ABA$22.

2A3$26.2B$25.3B45.2B$24.4B45.3B15.3B$23.4B46.4B13.4B$22.4B48.4B11.4B$

21.4B50.4B9.4B$20.4B52.4B7.4B$19.A3B54.4B5.4B$18.A3B56.2BAB3.4B$18.3A

58.2B2A.ABAB$80.2A2.2AB$85.A$25.2B51.B$24.4B30.2B17.3B$16.A6.4B30.4B

15.4B$15.B2A4.4B32.4B13.4B$14.BABA3.4B34.4B11.4B$13.4B3.4B36.4B9.4B$

12.4B3.4B38.4B7.4B$11.4B3.BA2B40.4B5.A3B$10.4B3.2A2B42.3BA3.A3B17.2A$

9.4B5.2A44.ABA3.3A17.A.A$8.4B53.2A22.A$8.3B57.A19.A$8.2A7.3A47.B2A17.

A$7.ABA7.A3B45.BABA16.A$6.3BA8.A3B43.4B16.A$5.4B10.4B41.4B16.A$4.4B7.

2A3.4B39.4B8.2A6.A$3.4B7.A.A4.4B37.4B3.A4.A.A5.A$2.4B3.2A3.2A6.4B35.

4B3.A.A3.2A5.A$.4B4.A2.2A9.4B33.4B5.A2.2A6.A$4B6.2A.A5.2A3.3B33.3B7.

2A.A5.A$3B10.A.2A.A.A4.2B46.A.2A.A$13.2A.2A55.2A.2A!

I also found a reduction to up beacon on up long bookend with tub which also acts as a converter:

`x = 24, y = 28, rule = B3/S23`

21bobo$2bo18b2o$obo19bo$b2o2$18bo$16b2o$17b2o4$7bo$5bobo$6b2o$14bobo$

10bo3b2o$11b2o2bo$10b2o3$7b2o$6bo2bo$7b2o2$7b4o$7bo3bo$10bobo$11bo!