ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

Re: Synthesising Oscillators

Postby Sokwe » December 15th, 2013, 4:25 pm

An easy solution to one of the 16-bit still lifes from a 13-bit still life:
x = 18, y = 19, rule = B3/S23
13bo$11b2o$b2o2b2o5b2o$bo2bo2bo8b2o$2bobobo8b2o$3bobo4b2o5bo$4bo5bobo$
10bo2$2b2o$bobo$3bo2b2o$6bobo$6bo3$b2o$obo$2bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby towerator » December 15th, 2013, 4:30 pm

A simple improvement to the previous chart (all the credit for Extrementhusiast):
x = 1079, y = 94, rule = B3/S23
962b2ob2o31b2o33b2o34b2o$963bobo31bo2bo31bo2bo32bo2bob2o$962bo3bo31b2o
32b2obo31bobob2obo$539b2ob2o419b3obo31bobob2o29bob2obo28bobo$540bobo
173b2o30b2o2bo33b2o31b2o33b2o3bo29b2ob2o32b2o37bo2bo29bo2b2obo29bobob
2o30bo$6b2o2b2o30bobobo30bob2o30bob2o31bobo2b2o28bo3b2o29b2ob2o35b2o
28b2ob2o32b2ob2o34b2o35b2ob2o29bobo32b2o33b2o34bo3bo28b2o3b2o28b2o2b2o
29b2o2b2o29b2ob2o32b3obo29bo3b3o30bobo32bo33bo2b3o29bo3bo31bobo2b2o35b
2o29b2o35bo34b2o$6bobo2bo29bob3obo28bob2obo29b2obo31b2obo2bo28b3o2bo
30bobobobo28b2obobo29bobo34bobo34bobo36bobobo28b2obo31bo2b2o30bo2b2o
31bob2o29bobobobo28bo2bo2bo28bo2bo2bo29bobo32bo5bo29bo5bo28bo2bobo30bo
b2o31b2o33bobo31bo6bo$8b2o31bo5bo28bo5bo31bob2o31bobo32b2o31bo2bob2o
28bob2o30bo3bo32bo3bo32bo2bob2o31bo5bo31bo32b2obo31b2obo32bo33bobo31bo
bob2o29b2obobo29bo2b3o30bo5bo29bo3b2o29b2obobo30bo2bo32bo33b2obo30b2o
3bo$6bo2bobo30b3obo30bob2obo28b2o2bobo28b2o2bo32bo2b3o29bobo35bo29bob
2o33bob2obo31b2obo2bo31b2o3bo29b2obob2o30bobobo30bobobo28bobo32bob2o
32bobo33bobo31b2o2bo31bob3o31bobo33bo2bo31bobo32b3o33bobo30bo2bo$6b2o
2b2o32b2o32b2obo29bob2o31bob2o33b2o3bo30b2o32b2o2bo29bobobo32bobobo34b
obo34bobo30bobobobo30bo2b2o28bo4b2o28b2o33bo37bo33bo35bo34b2o34b2o33bo
bo30bobob2o34bo32bobo30bobo$253bob2o33b2o35bo35b2o35b2o34bo32b2o32b2o
67b2o37b2o31b2o35b2o105bo31b2o37b2o33bo32bo34b2ob2o31b2o32b2o2bo30b2o
2b2o$963bobo31bo2bo31bo2bobo29bo2bo2bo$962bo3bo31b2o3b2o29b2obo31b2obo
bo$963b3obo31bobo2bo31bob2o31bobo$965bo2bo29bo2b2o33bo2bo31bo$966b2o
30b2o37b2o31b2o4$2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o
b2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o8$108bob2o
35bobo2b2o386b2ob2o2b2o$108b2obo35b2obo2bo169b2ob2o213bobo2b2o$111bob
2o35bobo100b2o69bobo213bo2bo4bo$108b3obobo32b3obo97b2obobo68bo3bo212bo
bo10bo$108bo2bo35bo2bo98bob2o70bob2o69bo144bo9b2o$109b2o37b2o103bo70bo
bobo4bo63bo3bo150b2o$250b3obo72b2o4bobo59b3ob2o143b2o2b2o$119bo38bo91b
o2bo79b2o65b2o142b2ob2o$118bo38bo93b2o296bo143bo$118b3o36b3o170b3o60b
2o10bob2o265bo18bobo298b4o$115b2o37b2o105bo68bo63b2o9b2obo263bobo18b2o
298bo4bo8bo$111bo3bobo32bo3bobo103bo70bo61bo15b2o262b2o323bo9bo$109bob
o3bo32bobo3bo105b3o147bo585b2o8b2o$110b2o37b2o106b2o144b2obobo136bo
458b2ob3o$253bo3bobo143bob2ob2o135bo452b2o5b2o$251bobo3bo285b5o143bo
306bo2b2o$252b2o291bo143b2o308b2obo$545bo135bo8b2o308bobob2o$680bo14b
2o302bo2b2obo$396b2o282b3o2b3o7bobo301b2o$395bobo287bo9bo$397bo288bo$
540b2ob2o$541bobo$540bo2bo$540bobo$541bo137b2ob2o$680bobo2bo$399bobo
135bo3bo138bo2b3o$395bo3b2o134bobo2bobo138b2o$396b2o2bo4bob2o123b2o2b
2o2bobo140bo$395b2o8b2obo122bobo7bo139b3o$409b2o122bo9b3o134bo$402b2o
6bo126b3o3bo129bo6b2o$402bobobobo130bo4bo129bo$405b2ob2o128bo133b3o$
400bo$395bo3b2o$393bobo3bobo285b2o$394b2o257b2o33b2o$652bobo22bo9bo13b
2o$654bo22b2o22bobo$676bobo22bo3$700bo$699b2o$402bo296bobo$401bo$401b
3o290bo$693b2o$400bo292bobo$401bo255b2o$399b3o254bobo$658bo2$398bo6bob
2o$398b2o5b2obo$397bobo9b2o$402b2o6bo$401bo2bobobo$401b2o2b2ob2o3$396b
2o$395bobo$397bo!

Now semi-synthetized objects are in the correct orientation

EDIT:added Sowke's synthesis
x = 1079, y = 94, rule = B3/S23
962b2ob2o31b2o33b2o34b2o$963bobo31bo2bo31bo2bo32bo2bob2o$962bo3bo31b2o
32b2obo31bobob2obo$539b2ob2o419b3obo31bobob2o29bob2obo28bobo$540bobo
173b2o30b2o2bo33b2o31b2o33b2o3bo29b2ob2o32b2o37bo2bo29bo2b2obo29bobob
2o30bo$6b2o2b2o30bobobo30bob2o30bob2o31bobo2b2o28bo3b2o29b2ob2o35b2o
28b2ob2o32b2ob2o34b2o35b2ob2o29bobo32b2o33b2o34bo3bo28b2o3b2o28b2o2b2o
29b2o2b2o29b2ob2o32b3obo29bo3b3o30bobo32bo33bo2b3o29bo3bo31bobo2b2o35b
2o29b2o35bo34b2o$6bobo2bo29bob3obo28bob2obo29b2obo31b2obo2bo28b3o2bo
30bobobobo28b2obobo29bobo34bobo34bobo36bobobo28b2obo31bo2b2o30bo2b2o
31bob2o29bobobobo28bo2bo2bo28bo2bo2bo29bobo32bo5bo29bo5bo28bo2bobo30bo
b2o31b2o33bobo31bo6bo$8b2o31bo5bo28bo5bo31bob2o31bobo32b2o31bo2bob2o
28bob2o30bo3bo32bo3bo32bo2bob2o31bo5bo31bo32b2obo31b2obo32bo33bobo31bo
bob2o29b2obobo29bo2b3o30bo5bo29bo3b2o29b2obobo30bo2bo32bo33b2obo30b2o
3bo$6bo2bobo30b3obo30bob2obo28b2o2bobo28b2o2bo32bo2b3o29bobo35bo29bob
2o33bob2obo31b2obo2bo31b2o3bo29b2obob2o30bobobo30bobobo28bobo32bob2o
32bobo33bobo31b2o2bo31bob3o31bobo33bo2bo31bobo32b3o33bobo30bo2bo$6b2o
2b2o32b2o32b2obo29bob2o31bob2o33b2o3bo30b2o32b2o2bo29bobobo32bobobo34b
obo34bobo30bobobobo30bo2b2o28bo4b2o28b2o33bo37bo33bo35bo34b2o34b2o33bo
bo30bobob2o34bo32bobo30bobo$253bob2o33b2o35bo35b2o35b2o34bo32b2o32b2o
67b2o37b2o31b2o35b2o105bo31b2o37b2o33bo32bo34b2ob2o31b2o32b2o2bo30b2o
2b2o$963bobo31bo2bo31bo2bobo29bo2bo2bo$962bo3bo31b2o3b2o29b2obo31b2obo
bo$963b3obo31bobo2bo31bob2o31bobo$965bo2bo29bo2b2o33bo2bo31bo$966b2o
30b2o37b2o31b2o4$2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o
b2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o8$108bob2o
35bobo2b2o386b2ob2o2b2o$108b2obo35b2obo2bo169b2ob2o213bobo2b2o$111bob
2o35bobo100b2o69bobo213bo2bo4bo71bo$108b3obobo32b3obo97b2obobo68bo3bo
212bobo10bo64b2o$108bo2bo35bo2bo98bob2o70bob2o69bo144bo9b2o55b2o2b2o5b
2o$109b2o37b2o103bo70bobobo4bo63bo3bo150b2o54bo2bo2bo8b2o$250b3obo72b
2o4bobo59b3ob2o143b2o2b2o59bobobo8b2o$119bo38bo91bo2bo79b2o65b2o142b2o
b2o61bobo4b2o5bo$118bo38bo93b2o296bo61bo5bobo73bo$118b3o36b3o170b3o60b
2o10bob2o208bo56bo18bobo298b4o$115b2o37b2o105bo68bo63b2o9b2obo263bobo
18b2o298bo4bo8bo$111bo3bobo32bo3bobo103bo70bo61bo15b2o198b2o62b2o323bo
9bo$109bobo3bo32bobo3bo105b3o147bo197bobo385b2o8b2o$110b2o37b2o106b2o
144b2obobo136bo64bo2b2o389b2ob3o$253bo3bobo143bob2ob2o135bo67bobo382b
2o5b2o$251bobo3bo285b5o65bo77bo306bo2b2o$252b2o291bo143b2o308b2obo$
545bo135bo8b2o308bobob2o$608b2o70bo14b2o302bo2b2obo$396b2o209bobo70b3o
2b3o7bobo301b2o$395bobo211bo75bo9bo$397bo288bo$540b2ob2o$541bobo$540bo
2bo$540bobo$541bo137b2ob2o$680bobo2bo$399bobo135bo3bo138bo2b3o$395bo3b
2o134bobo2bobo138b2o$396b2o2bo4bob2o123b2o2b2o2bobo140bo$395b2o8b2obo
122bobo7bo139b3o$409b2o122bo9b3o134bo$402b2o6bo126b3o3bo129bo6b2o$402b
obobobo130bo4bo129bo$405b2ob2o128bo133b3o$400bo$395bo3b2o$393bobo3bobo
285b2o$394b2o257b2o33b2o$652bobo22bo9bo13b2o$654bo22b2o22bobo$676bobo
22bo3$700bo$699b2o$402bo296bobo$401bo$401b3o290bo$693b2o$400bo292bobo$
401bo255b2o$399b3o254bobo$658bo2$398bo6bob2o$398b2o5b2obo$397bobo9b2o$
402b2o6bo$401bo2bobobo$401b2o2b2ob2o3$396b2o$395bobo$397bo!
This is game of life, this is game of life!
Loafin' ships eaten with a knife!
towerator
 
Posts: 326
Joined: September 2nd, 2013, 3:03 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » December 15th, 2013, 4:54 pm

Finished another in 49 gliders:
x = 262, y = 55, rule = B3/S23
143bo$144bo$142b3o6$165bo$166b2o47bobo$165b2o49b2o$76bo139bo$77b2o86bo
$76b2o81bo4b2o7bo52bo$92bo65bo5bobo6bobo51b2o$90b2o66b3o12b2o51b2o15bo
bo$91b2o28bo99bo21b2o$48bo71bo101b2o20bo$16bo29bobo71b3o98b2o$14bobo
30b2o69bo9bo43bo$15b2o35bo66bo7bo35bo7bo15bo$51bo65b3o7b3o16bo7b2o6bob
o6b3o12bo$18bobo30b3o90bobo7b2o6bobo21b3o$18b2o27b2o81b3o12b2o16bo58b
2o$2bo16bo26bobo73b2o6bo27b2o26bo7b2o25bobo5b2o27b2o$obo45bo33b2o38bo
8bo10bo15bo27b2o6bo27bo6bo28bobo$b2o53bo26bo39bo19b2o14bo25bobo8bo34bo
29bo$16b2o36b3o23b3o37b4o18b2o12b4o32b5o30b5o24b6o$2b3o10bo2bo3bo30bo
25bo39bo35bo36bo27bo6bo28bo$2bo13bobo3bobo3bo25bob3o21bob3o35bob4o30bo
b4o8b2o21bob4o21b2o6bob4o23bobo$3bo13bo4b2o4bobo24b2o2bo21b2o2bo35b2o
2bo31b2o2bo8bobo21b2o2bo20bobo7b2o3bo23b2o$28b2o28b2o24bobo83bo62b2o$
25b2o36bo21bo136b2o$25bobo33b2o159bobo$25bo26b2o8b2o149b3o6bo$53b2o2bo
86b2o69bo$52bo3b2o85bobo53b2o13bo$56bobo86bo53bobo$63b3o125b2o6bo$63bo
126bobo$64bo37bo89bo$60b3o27bobo8b2o123b2o$62bo27b2o9bobo96b2o25b2o$
61bo29bo107b2o25bo$201bo42b3o$90b2o152bo$90bobo152bo$90bo5$81bo$81b2o$
80bobo!


EDIT: Finished another pair from a listed predecessor:
x = 167, y = 39, rule = B3/S23
o$b2o$2o6$bobo$2b2o$2bo25bo$29bo116bobo$16bo10b3o116b2o$14b2o112bobo
16bo$15b2o57bo53b2o$75bo41bobo9bo$40bobo30b3o3bo38b2o$32bo8b2o3bo22bo
7b2o39bo5bobo$33b2o6bo2b2o24b2o6b2o44b2o$32b2o11b2o22b2o54bo9bobo$7b2o
27bobo11bo23bo29bo30b2o5b4o$6bobo2b2o24b2o10bo25bo29b2o29bo5bo3bo$8bob
2o25bo11b3o21b3o28b2o36bo$12bo95bo34bo2bo$32b3o32b2o26b2o10b2o16b2o33b
2o$34bo9b2o21bo2bo9bo14bo2b2o3b2o2bobo15bo2b2o29bo2bo$33bo6b2obo2bo21b
2obo8bobo13b2obo2bobo21b2obo30b2o$41bobobo23bobo8b2o15bobobo25bobob2o
28bobob2o$40bo2b2o23bo2b2o23bo2b2o25bo2b2obo27bo2b2obo$40b2o26b2o26b2o
6b2o20b2o32b2o$103b2o$105bo$100b2o$101b2o$100bo2$71bo$71b2o$70bobo!


EDIT 2: This pairs two formerly unpaired still lifes:
x = 83, y = 32, rule = B3/S23
59bo$57b2o$58b2o2$44bo$45b2o$44b2o2$33bo$28bo3bo19b2o7bo$29b2ob3o16bo
2bo6bobo$8bo19b2o21bo2bo6b2o$7bo44b2o$7b3o58bo$67bo$10b2o55b3o$4b2o4bo
bo14bo23bo29b2o$bobobo4bo13bobobo19bobobo25bobobo$ob2o19bob2obo18bob2o
bo24bob2o$o3bo18bo3bo19bo3bo7bo17bo3bo$bobo20bobo21bobo8bobo16bobo$2ob
2o18b2ob2o19b2ob2o7b2o16b2ob2o2$56b3o$56bo$57bo4$61b3o$61bo$62bo!


I also found a way to get to here:
x = 22, y = 21, rule = B3/S23
10bobo$10b2o$11bo2$4bo$bobobo$ob2obo3bo$o3bo4bobo$bobo5b2o2b2o$2ob2o8b
obo$13bo4$5bo$5b2o$4bobo2$19b2o$19bobo$19bo!


EDIT 3: Another 16-bitter in 25 gliders:
x = 154, y = 32, rule = B3/S23
124bo$125bo$29bo93b3o7bo$29bobo95bo4bo$25bo3b2o96bobo2b3o$2bo17bo3bo
102b2o$obo15bobo3b3o$b2o16b2o$50bo$27b2o22b2o19bobo23bobo17bobo14bo11b
obo$3bo23bobob2o17b2o20b2obob2o19b2obob2o13b2obob2o9b2o11b2obo$2bo26bo
bobo41bobobo21bobo17bobo10bobo13bo$2b3o22bobobobo38b2obobobo18b2obobo
14b2obobo23b2obob2o$7b2o18b2o3bo39bobo3bo19bobobo15bobobo24bobobobo$b
2o3b2o65bo27bo19bo9b3o16bo$obo5bo10b2o110bo$2bo15bobo3b3o96b2o7bo$20bo
3bo78b3o17b2o$25bo4bo26b3o2b2o39bo$29b2o28bob2o41bo$29bobo26bo4bo36b3o
$102bo28b3o$34bo66bo29bo$33b2o51b2o44bo$33bobo49b2o$87bo33b2o$122b2o$
121bo2$62b2o$63b2o$62bo!


EDIT 4: Yet another 16-bitter in 30 gliders:
x = 135, y = 53, rule = B3/S23
49bo$47bobo$48b2o5$52bo$50bobo22bo$51b2o22bobo$75b2o5$32bo$32bobo57bob
o$17bo14b2o59b2o$18bo43b2o29bo18bo$16b3o11b3o28bo2bo47bobo$20bo11bo28b
obo27b2o19b2o$19bo11bo30bo16bo10bobo$19b3o13b2o28b2o12bobo10bo$35b2o
14bobo11b2o8bo3b2o24bo$o51b2o20bo19bo9bobo20bo3b2o$obo12b2o14b2o19bo8b
2o11b3o17b2o5b2o2bobo19b3o2bo$2o13b2o2b2o10b2o2b2o24b2o2b2o26bobo4bo2b
2o2bo4bobo15b2o$3b3o13b2o14b2o14b3o11b2o8bo24bobo2b2o5b2o15bo2b3o$3bo
49bo20b2o25bobo9bo15b2o3bo$4bo26b2o14b2o3bo8b2o11bobo25bo$14b3o14b2o
13bobo12b2o52bo$16bo19bo11bo16bo49bobo$15bo19bo28bobo27b2o19b2o$17b3o
15b3o25bo2bo26bobo$17bo46b2o29bo18bo$18bo15b2o77b2o$33bobo77bobo$35bo
5$51b2o$50bobo22b2o$52bo22bobo$75bo5$78b2o$78bobo$78bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Freywa » December 16th, 2013, 11:19 pm

Unsolved still lifes are flying off like hotcakes. Hey, Grant, could you make sure the list of unsolved 16-bit still lifes is continuously updated?
User avatar
Freywa
 
Posts: 274
Joined: June 23rd, 2011, 3:20 am
Location: Singapore

Re: Synthesising Oscillators

Postby towerator » December 17th, 2013, 3:02 pm

Freywa: yup, they are solved so fast!
I'm pretty sure that every 16-cell SL will be solved before 2014's summer.
This is game of life, this is game of life!
Loafin' ships eaten with a knife!
towerator
 
Posts: 326
Joined: September 2nd, 2013, 3:03 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » December 17th, 2013, 5:33 pm

I believe that this is updated to date posted:
x = 1079, y = 94, rule = B3/S23
962b2ob2o66b2o34b2o$963bobo66bo2bo32bo2bob2o$962bo3bo65b2obo31bobob2ob
o$963b3obo66bob2obo28bobo$716b2o30b2o2bo33b2o31b2o33b2o3bo29b2ob2o32b
2o37bo2bo65bobob2o30bo$6b2o2b2o30bobobo30bob2o30bob2o31b2o2bobo63b2ob
2o30b2o2bo30b2ob2o32b2ob2o71b2ob2o64b2o33b2o33b2o32b2o3b2o63b2o2b2o29b
2ob2o32b3obo29bo3b3o30bobo32bo33bo2b3o29bo3bo31bobo2b2o35b2o66bo34b2o$
6bobo2bo29bob3obo28bob2obo29b2obo31bo2bob2o64bobobobo27bo2bobo30bobo
34bobo71bobobo65bo2b2o30bo2b2o30bo2b2obo27bobobobo63bo2bo2bo29bobo32bo
5bo29bo5bo28bo2bobo30bob2o31b2o33bobo31bo6bo$8b2o31bo5bo28bo5bo31bob2o
29bobo67bo2bob2o28b2o2bo29bo3bo32bo3bo70bo5bo64b2obo31b2obo31b2o2b2o
29bobo66b2obobo29bo2b3o30bo5bo29bo3b2o29b2obobo30bo2bo32bo33b2obo30b2o
3bo$6bo2bobo30b3obo30bob2obo28b2o2bobo30bo2b2o65bobo32bobo30bob2o33bob
2obo70bo3b2o65bobobo30bobobo31bo31bob2o68bobo31b2o2bo31bob3o31bobo33bo
2bo31bobo32b3o33bobo30bo2bo$6b2o2b2o32b2o32b2obo29bob2o34b2obo66b2o31b
o2b2o30bobobo32bobobo71bobo67bo2b2o28bo4b2o31bob2o28bo71bo35bo34b2o34b
2o33bobo30bobob2o34bo32bobo30bobo$252b2o36b2o35bo73b2o66b2o32b2o37bobo
27b2o70b2o35b2o105bo31b2o37b2o33bo32bo34b2ob2o65b2o2bo30b2o2b2o$963bob
o66bo2bobo29bo2bo2bo$962bo3bo67b2obo31b2obobo$963b3obo68bob2o31bobo$
965bo2bo67bo2bo31bo$966b2o69b2o31b2o4$2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o
b2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2o8$108bob2o35bobo2b2o133b2ob2o180b2o32b2o32b2ob2o2b2o$108b2o
bo35b2obo2bo134bobo32b2ob2o144b3o31b3o32bobo2b2o$111bob2o35bobo100b2o
32bo3bo32bobo140b2o4bobo25b2o4bobo30bo2bo4bo$108b3obobo32b3obo97b2obob
o32bob2obo30bo3bo139bo2bo3b3o24bo2bo3b3o29bobo10bo$108bo2bo35bo2bo98bo
b2o35bo2b2o30bob2o69bo71b2obo3b2o25b2obo3b2o30bo9b2o228b3o2b2o$109b2o
37b2o103bo32bobo3b2o30bobobo4bo63bo3bo67bobo31bobo46b2o228b4o$250b3obo
31bo6bo33b2o4bobo59b3ob2o68bo2b2o27bo4b2o36b2o2b2o240bo3bo$119bo38bo
91bo2bo32bo46b2o65b2o66b2o3bo27b2o4bo36b2ob2o236bo3b2ob2o$118bo38bo93b
2o219bo33bo42bo143bo90bobobobob2o$118b3o36b3o170b3o60b2o10bob2o62bo2b
2o29bo2b2o164bo18bobo87bo2bobo$115b2o37b2o105bo68bo63b2o9b2obo61bo3bob
o27bo3bobo161bobo18b2o89b2obobo$111bo3bobo32bo3bobo103bo70bo61bo15b2o
59b2o2bo29b2o2bo164b2o111bo2bo$109bobo3bo32bobo3bo105b3o147bo375bobo$
110b2o37b2o106b2o144b2obobo136bo241bo$253bo3bobo143bob2ob2o135bo$251bo
bo3bo285b5o143bo$252b2o291bo143b2o$545bo135bo8b2o$680bo14b2o$315bobobo
bobobobobobobobobo58b2o282b3o2b3o7bobo$395bobo287bo9bo$397bo288bo$540b
2ob2o$294bo246bobo$294bo245bo2bo$286b2ob2o2bo246bobo$287bobo3bo247bo
137b2ob2o$286bo3bo2b2o27b2ob2o353bobo2bo$286bob2obo2bo28bobo3bo69bobo
135bo3bo138bo2b3o$287bobobo3bo26bo3bo2bo65bo3b2o134bobo2bobo138b2o$
290bo4bo27b3o2b3o65b2o2bo4bob2o123b2o2b2o2bobo140bo$324bo3b3o64b2o8b2o
bo122bobo7bo139b3o$291b2o30bo3bobo79b2o122bo9b3o134bo$326b4o72b2o6bo
126b3o3bo129bo6b2o$326b3o73bobobobo130bo4bo129bo$327b2o76b2ob2o128bo
133b3o$400bo$395bo3b2o$393bobo3bobo285b2o$394b2o257b2o33b2o$652bobo22b
o9bo13b2o$654bo22b2o22bobo$676bobo22bo3$700bo$699b2o$402bo296bobo$401b
o$401b3o290bo$693b2o$400bo292bobo$401bo255b2o$399b3o254bobo$658bo2$
398bo6bob2o$398b2o5b2obo$397bobo9b2o$402b2o6bo$401bo2bobobo$401b2o2b2o
b2o3$396b2o$395bobo$397bo!


EDIT: Two more in 33 and 34 gliders:
x = 212, y = 78, rule = B3/S23
63bo$64bo23bo91bo$62b3o24b2o88bo$88b2o7bo77bo3b3o$95b2o79b2o7bo5bo$72b
o19bo3b2o77b2o6b2o5bo$72bobo18b2o89b2o4b3o$66bo5b2o18b2o$15bo51bo$16b
2o47b3o125bo$15b2o102bo72b2o$61bobo26b2o18b2o7bobo10b2o18b2o24b2o12bob
o10b2o$62b2o25bo2bo17bo2bo5b2o11bo2bo16bo2bo22bo2bo23bo2b2o$44b2obob2o
11bo5b2obob2o15b2obob2o14b2obob2o15b2obo16b2obo22b2obo23b2obo$43bobob
2obo18bob2obo16bob2obo15bob2obo16bobo17bobo23bobo6b3o15bobobo$24bo19bo
15b2o7bo21bo20bo21bo2b2o15bo2b2o21bo2b2o4bo17bo2b2o$22bobo2bo33b2o5b2o
20b2o19b2o7b2o11b2o3bo14b2o3bo20b2o3bo5bo15b2o$23b2o2bobo30bo58b2o16bo
19bo6bobo16bo$27b2o13b3o76bo15b2o18b2o5b2o16bo$39bo2bo70b3o49bo15bo$
40bo2bo71bo38b2o24bo$38b3o73bo19b2o17bo2bo10bo11bo$117b3o9b3ob2o18bo2b
o10bobo9b2o8b3o$117bo13bo3bo18b2o11b2o20bo$118bo11bo59bo$114b3o49bo$2o
114bo48b2o$b2o112bo49bobo10b2o$o178b2o$159b2o17bo$158b2o$160bo4$6b2o$
5bobo$7bo9$63bo$64bo23bo91bo$62b3o24b2o88bo$88b2o7bo77bo3b3o$95b2o79b
2o7bo5bo$27bo44bo19bo3b2o77b2o6b2o5bo$26bo45bobo18b2o89b2o4b3o$26b3o
37bo5b2o18b2o$23bo43bo$24bo19bo20b3o125bo$22b3o20bo73bo72b2o$43b3o15bo
bo26b2o18b2o7bobo10b2o18b2o24b2o12bobo10b2o$47b2o13b2o25bo2bo17bo2bo5b
2o11bo2bo16bo2bo22bo2bo23bo2b2o$37b2ob2o6b2o12bo5b2obob2o15b2obob2o14b
2obob2o15b2obo16b2obo22b2obo23b2obo$38bob2o5bo21bob2obo16bob2obo15bob
2obo16bobo17bobo23bobo6b3o15bobobo$23b2o2b2o7bo23b2o5bo21bo20bo21bo4b
2o13bo4b2o19bo4b2o4bo15bo4b2o$22bobob2o8b2o13b3o7b2o4b2o20b2o19b2o8b2o
10b2o4bo13b2o4bo19b2o4bo5bo14b2o$24bo3bo22bo8bo58b2o16bo19bo6bobo16bo$
52bo68bo15b2o18b2o5b2o16bo$113b3o49bo15bo$115bo38b2o24bo$41b2o71bo19b
2o17bo2bo10bo11bo$40bobo74b3o9b3ob2o18bo2bo10bobo9b2o8b3o$42bo74bo13bo
3bo18b2o11b2o20bo$118bo11bo59bo$114b3o49bo$116bo48b2o$115bo49bobo10b2o
$179b2o$159b2o17bo$158b2o$160bo!


EDIT 2: Another one in 38 gliders, following much the same procedure as the previous two:
x = 218, y = 37, rule = B3/S23
20bobo103bo$20b2o102b2o50bo$21bo103b2o47bobo$3bo171b2o$bobo77bo49bobo$
2b2o78bo48b2o$80b3o49bo57bo6bo$20bo63bo11bo91b2o5b2o$20bobo60bo13bo3bo
18b2o11b2o54b2o5b2o$20b2o61b3o9b3ob2o18bo2bo10bobo9b2o30b2o$80bo19b2o
17bo2bo10bo11bo31bo$2bo78bo38b2o24bo31bo$obo76b3o49bo15bo31bo$b2o23bo
60bo15b2o18b2o5b2o16bo31bo$26bobo56b2o16bo19bo6bobo16bo31bo$26b2o58b2o
16bo19bo25bo31bo$52b2o22b2o20b2o3b2o13b2o3b2o19b2o3b2o25b2o3b2o28b2o3b
2o$23b3o26bobob2obo16bobob2obo14bobobo15bobobo21bobobo27bobobo10bobo
17bobobobo$23bo30bobob2o18bobob2o16bobo17bobo23bobo29bobo10b2o20bobo$
24bo9b3o16bobo21bobo5b2o12bobo17bobo23bobo29bobo12bo4bo14bob2o$34bo19b
o22bo7bobo11bo19bo25bo31bo10b2o7bobo12bo$35bo9bobo15bo12b2o7bo12b2o18b
2o24b2o30b2o9bo2bo6b2o12b2o$46b2o14bo125b2o$46bo15b3o90bobo$155b2o$22b
o22b2o109bo26bo$21b2o21bobo12bo122bobo10b3o$21bobo22bo3bo7b2o93b3o26bo
bo10bo$49b2o7bobo92bo29bo12bo$49bobo102bo24b3o$62bo118bo$4bo56b2o117bo
$4b2o55bobo$3bobo163b2o17b2o$168bobo11bo4b2o$170bo11b2o5bo$181bobo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » December 17th, 2013, 8:10 pm

Extrementhusiast wrote:Another one in 38 gliders, following much the same procedure as the previous two

If the first 18-bit still life can be synthesized, this procedure could be used to solve another 16-bit still life:
x = 222, y = 52, rule = B3/S23
207bo$206bo$206b3o2$220bo$219bo$219b3o6$86bo$84b2o50bo$85b2o47bobo$
135b2o$33bo57bobo$34bo56b2o$32b3o57bo57bo6bo$36bo19bo91b2o5b2o$35bo21b
o3bo18b2o11b2o54b2o5b2o19bo24bo$35b3o17b3ob2o18bo2bo10bobo9b2o30b2o39b
o21bobo$32bo27b2o17bo2bo10bo11bo31bo38b3o22b2o$33bo46b2o24bo31bo$31b3o
57bo15bo31bo69bo$39bo23b2o18b2o5b2o16bo31bo66b2o$37b2o24bo19bo6bobo16b
o31bo66b2o$bo25bo10b2o17bo6bo12bo6bo18bo6bo24bo6bo50bo$b3o23b3o27b3o3b
2o12b3o3b2o18b3o3b2o24b3o3b2o42b2o6b3o3b2o$4bob2obo20bob2obo24bobo17bo
bo23bobo29bobo10bobo30bobo9bobobo$b2obobob2o17b2obobob2o21b2obobo14b2o
bobo20b2obobo26b2obobo10b2o33bo6b2obobo$bobobo21bobobo5b2o18bobobo15bo
bobo21bobobo27bobobo12bo4bo35bobob2o$4bo24bo7bobo19bo19bo25bo31bo10b2o
7bobo35bo$28b2o7bo20b2o18b2o24b2o30b2o9bo2bo6b2o27b2o6b2o$148b2o36bobo
$5b2o108bobo68bo18bobo$5bobo107b2o88b2o$b2o2bo110bo26bo39bo22bo$obo
139bobo10b3o25b2o$2bo110b3o26bobo10bo26bobo$113bo29bo12bo$114bo24b3o
33b3o39b2o$6b2o133bo35bo38b2o$6bobo131bo35bo8b3o30bo$6bo178bo$129b2o
17b2o36bo$128bobo11bo4b2o$130bo11b2o5bo63b2o$141bobo68b2o$207b3o4bo$
207bo$208bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » December 18th, 2013, 7:02 pm

Sure enough, finished it in 56 gliders:
x = 338, y = 52, rule = B3/S23
300bo$299bo$299b3o2$313bo$312bo$312b3o6$69bo109bo$67b2o108b2o50bo$68b
2o108b2o47bobo$228b2o$126bo57bobo$73bo53bo56b2o$70bo2bobo49b3o57bo57bo
6bo$37bo30bobo2b2o54bo19bo91b2o5b2o$36bo32b2o57bo21bo3bo18b2o11b2o54b
2o5b2o19bo24bo$36b3o5bo83b3o17b3ob2o18bo2bo10bobo9b2o30b2o39bo21bobo$
31b2o9b2o81bo27b2o17bo2bo10bo11bo31bo38b3o22b2o$30bobo10b2o81bo46b2o
24bo31bo$32bo91b3o57bo15bo31bo69bo$14bobo5bo109bo23b2o18b2o5b2o16bo31b
o66b2o$15b2o3bobo107b2o24bo19bo6bobo16bo31bo66b2o$15bo5b2o71bo25bo10b
2o17bo6bo12bo6bo18bo6bo24bo6bo50bo45bo$3bobo28bo38bo20b3o23b3o27b3o3b
2o12b3o3b2o18b3o3b2o24b3o3b2o42b2o6b3o3b2o38b3o$3b2o18b2o9bo26bo10bobo
b2obo17bob2obo20bob2obo24bobo17bobo23bobo29bobo10bobo30bobo9bobobo41bo
$4bo19b2o8bo27bo9bobobob2o14b2obobob2o17b2obobob2o21b2obobo14b2obobo
20b2obobo26b2obobo10b2o33bo6b2obobo40b2obo$23bo23bo12b3o10bobo18bobobo
21bobobo5b2o18bobobo15bobobo21bobobo27bobobo12bo4bo35bobob2o40bobob2o$
b2o43b2o26bo22bo24bo7bobo19bo19bo25bo31bo10b2o7bobo35bo45bo2bo$2o44bob
o72b2o7bo20b2o18b2o24b2o30b2o9bo2bo6b2o27b2o6b2o45b2o$2bo21b3o16bo197b
2o36bobo$26bo15b2o54b2o108bobo68bo18bobo$25bo16bobo28b2o23bobo107b2o
88b2o$72b2o20b2o2bo110bo26bo39bo22bo$74bo18bobo139bobo10b3o25b2o$95bo
110b3o26bobo10bo26bobo$206bo29bo12bo$207bo24b3o33b3o39b2o$99b2o133bo
35bo38b2o$99bobo131bo35bo8b3o30bo$99bo178bo$222b2o17b2o36bo$221bobo11b
o4b2o$223bo11b2o5bo63b2o$234bobo68b2o$300b3o4bo$300bo$301bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » December 18th, 2013, 10:00 pm

One of the predecessors in the list is easy to create from known converters and a 14-bit still life:
x = 94, y = 25, rule = B3/S23
4b2o18b2o18b2o18b2o18b2o$2obobo14b2obobo14b2obobo14b2obobo14b2obobo$ob
2o16bob2o16bob2o16bob2o16bob2o$4bo19bo19bo3bo15bo19bo$b3o17b3o6bo10b3o
4bobo10b3o3b2o12b3obo$bo19bo7bo11bo6b2o11bo5b2o12bo2bo$29b3o10b2o7b2o
9b2o18b2o$43bo7bobo9bo4bo$22b3o7b2o8bo8bo10bo4b2o23bo$32bobo7b2o18b2o
3bobo21bo$32bo58b3o$7bo51b2o27b2o$6b2o52b2o22bo3bobo$6bobo50bo22bobo3b
o$2b2o79b2o$3b2o$2bo2$14bo$14b2o16b2o$13bobo15b2o$33bo$17bo$17b2o$16bo
bo!


Edit: Two easy 16-bit still lifes:
x = 48, y = 27, rule = B3/S23
3bo29bo$4b2o28b2o$3b2o28b2o5$2o2bo10b3o15b2o10b3o$o2bobo9bo17bobo9bo$b
obobo10bo13b2obobo10bo$2bobo25bobobo$3bo29bo7$7b2o28b2o$3b2o2bobo23b2o
2bobo$2bobo2bo24bobo2bo$4bo29bo3$8b2o28b2o$9b2o28b2o$8bo29bo!


Edit 2: The updated list of unsynthesized 16-bit still lifes:
x = 1079, y = 94, rule = B3/S23
962b2ob2o66b2o34b2o$963bobo66bo2bo32bo2bob2o$962bo3bo65b2obo31bobob2ob
o$963b3obo66bob2obo28bobo$716b2o30b2o2bo33b2o31b2o33b2o3bo29b2ob2o32b
2o37bo2bo65bobob2o30bo$6b2o2b2o30bobobo30bob2o135b2ob2o65b2ob2o32b2ob
2o71b2ob2o134b2o102b2o2b2o66b3obo29bo3b3o30bobo32bo33bo2b3o29bo3bo31bo
bo2b2o35b2o66bo34b2o$6bobo2bo29bob3obo28bob2obo135bobobobo63bobo34bobo
71bobobo135bo2b2obo97bo2bo2bo64bo5bo29bo5bo28bo2bobo30bob2o31b2o33bobo
31bo6bo$8b2o31bo5bo28bo5bo134bo2bob2o62bo3bo32bo3bo70bo5bo134b2o2b2o
98b2obobo65bo5bo29bo3b2o29b2obobo30bo2bo32bo33b2obo30b2o3bo$6bo2bobo
30b3obo30bob2obo135bobo65bob2o33bob2obo70bo3b2o136bo103bobo67bob3o31bo
bo33bo2bo31bobo32b3o33bobo30bo2bo$6b2o2b2o32b2o32b2obo137b2o66bobobo
32bobobo71bobo138bob2o100bo70b2o34b2o33bobo30bobob2o34bo32bobo30bobo$
290b2o35bo73b2o139bobo99b2o142bo31b2o37b2o33bo32bo34b2ob2o65b2o2bo30b
2o2b2o$963bobo66bo2bobo29bo2bo2bo$962bo3bo67b2obo31b2obobo$963b3obo68b
ob2o31bobo$965bo2bo67bo2bo31bo$966b2o69b2o31b2o4$2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2o8$287b2ob2o248b2ob2o2b2o$288bobo32b2ob2o213bobo
2b2o$287bo3bo32bobo213bo2bo4bo$287bob2obo30bo3bo212bobo10bo$288bo2b2o
30bob2o69bo144bo9b2o228b3o2b2o$286bobo3b2o30bobobo4bo63bo3bo150b2o228b
4o$286bo6bo33b2o4bobo59b3ob2o143b2o2b2o240bo3bo$286bo46b2o65b2o142b2ob
2o236bo3b2ob2o$549bo234bobobobob2o$330b3o60b2o10bob2o374bo2bobo$330bo
63b2o9b2obo375b2obobo$331bo61bo15b2o375bo2bo$410bo375bobo$403b2obobo
136bo241bo$403bob2ob2o135bo$543b5o$545bo$545bo2$315bobobobobobobobobob
obobo58b2o$395bobo$397bo$540b2ob2o$294bo246bobo$294bo245bo2bo$286b2ob
2o2bo246bobo$287bobo3bo247bo$286bo3bo2b2o27b2ob2o$286bob2obo2bo28bobo
3bo69bobo135bo3bo$287bobobo3bo26bo3bo2bo65bo3b2o134bobo2bobo$290bo4bo
27b3o2b3o65b2o2bo4bob2o123b2o2b2o2bobo$324bo3b3o64b2o8b2obo122bobo7bo$
291b2o30bo3bobo79b2o122bo9b3o$326b4o72b2o6bo126b3o3bo$326b3o73bobobobo
130bo4bo$327b2o76b2ob2o128bo$400bo$395bo3b2o$393bobo3bobo$394b2o8$402b
o$401bo$401b3o2$400bo$401bo$399b3o3$398bo6bob2o$398b2o5b2obo$397bobo9b
2o$402b2o6bo$401bo2bobobo$401b2o2b2ob2o3$396b2o$395bobo$397bo!


Edit 3: Another easy 16-bit still life by the same method as above:
x = 18, y = 27, rule = B3/S23
3bo$4b2o$3b2o4$2o$o2b2o10b3o$b2o2bo9bo$3bobo10bo$3b2o8$7b2o$3b2o2bobo$
2bobo2bo$4bo3$8b2o$9b2o$8bo!

Alternatively:
x = 18, y = 27, rule = B3/S23
8bo$9b2o$8b2o3$4bo$2bobo2bo$3b2o2bobo$7b2o6$2o$o2bo$b2obo$3bobo10bo$3b
obo9bo$4bo10b3o5$3b2o$4b2o$3bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby towerator » December 19th, 2013, 10:40 am

x = 1079, y = 94, rule = B3/S23
962b2ob2o66b2o34b2o$963bobo66bo2bo32bo2bob2o$962bo3bo65b2obo31bobob2ob
o$963b3obo66bob2obo28bobo$716b2o30b2o2bo33b2o31b2o33b2o3bo29b2ob2o32b
2o37bo2bo65bobob2o30bo$6b2o2b2o30bobobo30bob2o135b2ob2o65b2ob2o32b2ob
2o71b2ob2o238b2o2b2o66b3obo29bo3b3o30bobo32bo33bo2b3o29bo3bo31bobo2b2o
35b2o66bo34b2o$6bobo2bo29bob3obo28bob2obo135bobobobo63bobo34bobo71bobo
bo239bo2bo2bo64bo5bo29bo5bo28bo2bobo30bob2o31b2o33bobo31bo6bo$8b2o31bo
5bo28bo5bo134bo2bob2o62bo3bo32bo3bo70bo5bo238b2obobo65bo5bo29bo3b2o29b
2obobo30bo2bo32bo33b2obo30b2o3bo$6bo2bobo30b3obo30bob2obo135bobo65bob
2o33bob2obo70bo3b2o240bobo67bob3o31bobo33bo2bo31bobo32b3o33bobo30bo2bo
$6b2o2b2o32b2o32b2obo137b2o66bobobo32bobobo71bobo242bo70b2o34b2o33bobo
30bobob2o34bo32bobo30bobo$290b2o35bo73b2o241b2o142bo31b2o37b2o33bo32bo
34b2ob2o65b2o2bo30b2o2b2o$963bobo66bo2bobo29bo2bo2bo$962bo3bo67b2obo
31b2obobo$963b3obo68bob2o31bobo$965bo2bo67bo2bo31bo$966b2o69b2o31b2o4$
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o8$287b2ob2o$288bobo32b2ob
2o$287bo3bo32bobo$287bob2obo30bo3bo$288bo2b2o30bob2o69bo384b3o2b2o$
286bobo3b2o30bobobo4bo63bo3bo380b4o$286bo6bo33b2o4bobo59b3ob2o389bo3bo
$286bo46b2o65b2o383bo3b2ob2o$784bobobobob2o$330b3o60b2o10bob2o374bo2bo
bo$330bo63b2o9b2obo375b2obobo$331bo61bo15b2o375bo2bo$410bo375bobo$403b
2obobo378bo$403bob2ob2o5$315bobobobobobobobobobobobo58b2o$395bobo$397b
o2$294bo$294bo$286b2ob2o2bo$287bobo3bo$286bo3bo2b2o27b2ob2o$286bob2obo
2bo28bobo3bo69bobo$287bobobo3bo26bo3bo2bo65bo3b2o$290bo4bo27b3o2b3o65b
2o2bo4bob2o$324bo3b3o64b2o8b2obo$291b2o30bo3bobo79b2o$326b4o72b2o6bo$
326b3o73bobobobo$327b2o76b2ob2o$400bo$395bo3b2o$393bobo3bobo$394b2o8$
402bo$401bo$401b3o2$400bo$401bo$399b3o3$398bo6bob2o$398b2o5b2obo$397bo
bo9b2o$402b2o6bo$401bo2bobobo$401b2o2b2ob2o3$396b2o$395bobo$397bo!

Another update to the list. 18 to go!
This is game of life, this is game of life!
Loafin' ships eaten with a knife!
towerator
 
Posts: 326
Joined: September 2nd, 2013, 3:03 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » December 19th, 2013, 11:25 am

A nice two-part partial:
x = 15, y = 41, rule = B3/S23
4bo$5bo$3b3o2$6bo$5bo$2bo2b3o$obo$b2o9bo$5b2o3b3o$4bo2bobo$5b2o3bo$2b
2o7bo$bobo8bo$3bo7b2o6$8bo$8bo$6b5o$8bo$8bo9$12bo$10b3o$9bo$10bo$11bo
2bo$12bo$8b2ob2o$8b2o!

The block in the corner can be replaced with pretty much anything with a corner. (Unfortunately, a glider in the same spot won't work.)
Last edited by Extrementhusiast on December 19th, 2013, 11:28 am, edited 1 time in total.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Freywa » December 19th, 2013, 11:28 am

It seems to me, out of the unsolved 16-bit still lifes, that many of them have a live cell (I will call this the axle) adjacent to exactly three other live cells (the neighbours). No two neighbours are orthogonally adjacent to each other, and the three are not all orthogonally adjacent to the axle.
x = 252, y = 63, rule = LifeHistory
2A2.2A30.A.A.A30.A.2A33.2A.2A37.2A.2A$A.A2.A29.A.3A.A28.A.2A.A33.A.A.
C.A35.A.A$2.2A31.A5.A28.A5.A32.A2.C.2A34.A3.A$A2.A.A30.3A.A30.A.2A.A
33.A.A37.A.AC$2A2.2A32.2A32.2A.A35.2A38.A.A.A$154.2A19$172.2A.2A35.2A
32.2A$173.A.A35.A2.A30.C2.A.2A$172.A3.C34.2A.C29.A.C.CA.A$173.2AC.A
35.C.CA.A26.A.C$105.2A30.2A2.A33.A2.A34.A.A.2A28.A$2A.2A33.2A.2A28.2A
2.2A26.3A.A29.A3.3A33.2A35.A32.2A$.A.A33.A.A.A29.A2.C2.A24.A5.A29.A5.
A$A3.C32.A5.A28.AC.C.A25.A5.A29.A3.2A$A.AC.A32.A3.2A30.C.A27.A.3A31.A
.A$.A.A.A33.A.A32.A30.2A34.2A$4.A35.2A31.2A97.2A.2A34.2A2.A28.2A2.2A$
173.A.A35.A2.A.A27.A2.A2.C$172.A3.C36.AC.C29.AC.C.A$173.2AC.A37.C.2A
29.C.A$175.A2.A36.A2.A29.A$176.2A38.2A29.2A17$2.2A31.2A33.2A3.A29.2A.
2A32.2A$.A.A32.A33.A2.3A29.A3.A31.A.A2.2A$A2.C.A30.A.2A31.AC33.A.A31.
A6.A$.AC.C.A30.C2.A32.A33.AC.A30.2A3.A$3.C2.A31.A.A32.3A33.C.A30.A2.A
$3.A.A30.A.A.2A34.A32.A.A30.A.A$4.A31.2A37.2A33.A32.A!

Still lifes with axles (marked in white) appear to be harder to synthesise than those without axles. Maybe we need to compile a database of converters and other reactions that make axles?
User avatar
Freywa
 
Posts: 274
Joined: June 23rd, 2011, 3:20 am
Location: Singapore

Re: Synthesising Oscillators

Postby Extrementhusiast » December 19th, 2013, 11:38 am

Very rough predecessor to one of the pairs, but it might give some ideas:
x = 11, y = 11, rule = B3/S23
10bo$2ob2o5bo$bobo5bo$o3bo4bo$b3obo3bo$3bo2bo2bo$4bobo2bo$5bo4bo2$3b2o
b2o$b2obobob2o!

The starting still life can be made easily.

EDIT: Another 16-bitter in 19 gliders:
x = 115, y = 44, rule = B3/S23
85bo$85bobo$85b2o$82bo$80bobo$81b2o2$85bo$83b2o$84b2o2$75bobo15bo$75b
2o15bo$58bo13bo3bo15b3o$53bo3bo12bobo10b2o$54b2ob3o11b2o9bo2bo$53b2o
27bo2bo9bo$8bo63bo10b2o9b2o$9b2obo59b2o20bobo$8b2o2bobo56bobo$12b2o18b
2o16b2o28b2o25b2ob2o$31bo2bob2o11bo2bob2o23bo2bob2o5b3o14bobobobo$21bo
10bobobo13bobobo25bobobo6bo16bo2bob2o$20b2o11b2obobo12b2obo26b2obo7bo
16bobo$20bobo14b2o15bob2o26bob2o22b2o$2o52bo2bo26bo2bo$b2o52b2o28b2o$o
2$39bo53b2o$32bo5bo54bobo$33bo4b3o52bo$31b3o9$36b2o$36bobo$36bo!


EDIT 2: A somewhat better predecessor idea for that pair:
x = 21, y = 16, rule = B3/S23
4b2ob2o$5bobo$4bo3bo6bo$5b3obo4bo$7bo2bo3b3o$8bobo7b3o$9bo8bo$19bo$6b
2o$bo3bobo4bo$b2o3bo4b2o$obo8bobo2$8b2o$7bobo$9bo!

Unfortunately, it still doesn't work.

EDIT 3: Now it works, with 22 gliders:
x = 142, y = 25, rule = B3/S23
28bo9bo$29b2o5b2o$28b2o7b2o$2bo$3b2o2bo20bo9bo$2b2o2bo21b2o7b2o$6b3o
18bobo7bobo$52b2ob2o21b2ob2o21b2ob2o26b2ob2o$3bo27b2ob2o17bobo23bobo
23bobo28bobo$3b2o6bo13b2o4bo3bo4b2o10bo3bo21bo3bo21bo3bo11bo14bo3bo$2b
obo5bo15b2o4b3o4b2o12b3o5b3o15b3obo16bo4b3obo9bo16b3obo$10b3o12bo8bobo
4bo13bobo3bo19bo2bo16bo5bo2bo8b3o16bo2bo$35b2o19b2o4bo19bobo14b3o6bobo
29b2o$60bo22bo25bo$14b3o43b2o14b2ob2o21b2ob2o8b3o$bo12bo44bobo13bobobo
bo20b2ob2o8bo$b2o12bo61bobo36bo$obo105bo$108b2o$107bobo$4b3o$4bo$5bo8b
2o$14bobo$14bo!


EDIT 4: Another pair done in 27/29 gliders:
x = 184, y = 50, rule = B3/S23
56bo$54bobo$55b2o2$134bobo$135b2o$135bo$21bo16bo102bo$22bo15b2o4bo67bo
27bo$20b3o14bobo5bo65bo28b3o$43b3o65b3o$75b2ob2o18b2ob2o27b2ob2o19b2ob
2o$5bo16bo31b2o6bo13bobo20bobo8bo20bobo21bobo$4bo16bobo4bo13b3o8bo2bo
4b2o12bo3bo18bo3bo6b2o19bo3bo19bo3bo$b2ob3o13bo2bo3bo16bo7bob2o5bobo
11bob2o19bob2o7bobo18bob2o3bo16bob2o$obo18b2o4b3o13bo9bo22bo22bo31bo4b
obo4bobo9bobobo$2bo48bobo20bobo20bobo29bobo4b2o6b2o12b2o$51b2o21b2o21b
2o7b3o20b2o13bo$19b2o8b2o70b2o3bo26b2o$15bo2b2o8b2o72bo4bo26bo7b2o$15b
2o3bo9bo47b2o22bobo17b2o10bobo4b2o$14bobo62b2o22b2o18b2o10b2o6bo$78bo
3b2o38bo$82bobo$82bo42b3o$127bo12b2o$126bo12b2o$141bo$129bo$129b2o$
128bobo9$154b2ob2o19b2ob2o$155bobo21bobo$154bo3bo19bo3bo$154bob2o20bob
2obo$155bobobo4bo14bobobo$158b2o4bobo15bo$164b2o2$161b3o$161bo$162bo!


EDIT 5: Yet another pair done with a base of 37 gliders:
x = 253, y = 37, rule = B3/S23
140bo$95bo42bobo$94bo44b2o$94b3o52bo8bo$149bobo6bobo$149b2o7b2o2$145bo
$143b2o18bo54bo$144b2o15b2o56bo$41b2o66bo52b2o53b3o$40bobobo65b2ob2o
32bo53bo$42bobobo62b2o2bobo30bobo51bo12bobo$bobo40b2o67bo33b2o34bo16b
3o11b2o$b2o25bo20bo134bo29bo$2bo24bobo18bobo131b3o2bo$23bo3b2o19b2o17b
2o38b2o34b2o41bobo2b2o3b2o24b2o2b2o19b2o$3o18bobo21bo20bo2bo4b2o2b2o
26bo2bob2o29bo2bob2o17b2o14b3o2bo2bo2bobobo5bo18bo2bo2bob2o14bo2bob2o$
2bo19b2o20bobo5bo12bobobo5b2obobo24bobobob2o28bobobob2o17bobo15bo3b2ob
ob2o8bobo17b2obob2obo13bobob2obo$bo43bobo3bo14bobo5bo3bo27bobo33bobo
21bo16bo6bobo10b2o20bobo18bobo$24bo21bo4b3o13bo39bo35bo46bobo7b2o23bob
o20bo$19b2o3b2o165bo7b2o25bo21b2o$18bobo2bobo26b3o74b3o25b3o41bo$20bo
33bo76bo25bo$53bo76bo27bo$144bo$143b2o74b2o5b2o$143bobo74b2o5b2o6b2o$
148bo70bo6bo7b2o$147b2o81b3o3bo$135bo11bobo82bo$135b2o94bo$134bobo2$
149bo$148b2o$148bobo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » December 20th, 2013, 4:32 am

Very impressive! For the second synthesis, the house with hook can be synthesized with 5 gliders due to Dean Hickerson:
x = 35, y = 66, rule = B3/S23
o$b2o$2o34$32bo$30bobo$31b2o16$14bo$15b2o$14b2o3$34bo$32bobo$33b2o2$
31bo$31b2o$30bobo!


based on your last synthesis, here is a possible predecessor for one of the remaining still lifes:
x = 14, y = 17, rule = B3/S23
12b2o$10bo2$8bo3bo$9bobobo$10b4o2$b2o2b2o$bo2bo2bob2o$2b2obob2obo$4bob
o$4bobo$5bo3b4o$2bo4b2o$4o3bo3bo$b3o3bo$b2o!


Edit: A possible predecessor to another still life, but perhaps too messy to do anything with:
x = 15, y = 18, rule = B3/S23
7bo4bo$6bobo$9bob2o$10bo$b2o3b2o$o2bobobo6bo$2obobo8bo$2bob2o3b4o$2bo
7b3o$b2o9bobo$6b3o5bo$7b2o3bo$bo7bob2o$b2o$obo$6b2o$6bobo$6bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » December 20th, 2013, 5:42 pm

One of the suggested ones in 39 gliders:
x = 254, y = 39, rule = B3/S23
140bo$95bo42bobo$94bo44b2o$94b3o52bo8bo$149bobo6bobo$149b2o7b2o2$145bo
$143b2o18bo36bo$144b2o15b2o37bobo$41b2o66bo52b2o36b2o$40bobobo65b2ob2o
32bo48bobo$42bobobo62b2o2bobo30bobo48b2o$bobo40b2o67bo33b2o34bo13bo7bo
28bobo$b2o25bo20bo134bo18b2o23b2o4b2o$2bo24bobo18bobo131b3o2bo12b2o2b
2o21bobo5bo$23bo3b2o19b2o17b2o38b2o34b2o41bobo2b2o3b2o2bobo14b2o2b2o3b
o20b2o2b2o$3o18bobo21bo20bo2bo4b2o2b2o26bo2bob2o29bo2bob2o17b2o14b3o2b
o2bo2bobobo2bo16bo2bo2bobo21bo2bo2bo$2bo19b2o20bobo5bo12bobobo5b2obobo
24bobobob2o28bobobob2o17bobo15bo3b2obob2o23b2obob2o23b2obobo$bo43bobo
3bo14bobo5bo3bo27bobo33bobo21bo16bo6bobo27bobo27bobo$24bo21bo4b3o13bo
39bo35bo46bobo27bobo27bo$19b2o3b2o165bo29bo27b2o$18bobo2bobo26b3o74b3o
25b3o68bobo$20bo33bo76bo25bo70b2o$53bo76bo27bo70bo$144bo$143b2o75b2o4b
3o$143bobo65b2o6b2o5bo$148bo63b2o7bo5bo$147b2o62bo3b3o$135bo11bobo65bo
$135b2o79bo$134bobo2$149bo$148b2o$148bobo61b3o$214bo$213bo!


EDIT: Finished another pair with a base of 48 gliders:
x = 382, y = 37, rule = B3/S23
140bo$95bo42bobo$94bo44b2o$94b3o52bo8bo$149bobo6bobo$149b2o7b2o2$145bo
$143b2o18bo54bo$144b2o15b2o56bo$41b2o66bo52b2o53b3o$40bobobo65b2ob2o
32bo193bo17bo$42bobobo62b2o2bobo30bobo64bobo124bo18bobo$bobo40b2o67bo
33b2o34bo30b2o124b3o16b2o$b2o25bo20bo134bo29bo142bo$2bo24bobo18bobo
131b3o2bo167bobo$23bo3b2o19b2o17b2o38b2o34b2o41bobo2b2o3b2o24b2o2b2o3b
2o18b2o3b2o16b2o3b2o22b2o3b2o21b2o3b2o18b2o2b2o15bo$3o18bobo21bo20bo2b
o4b2o2b2o26bo2bob2o29bo2bob2o17b2o14b3o2bo2bo2bobobo24bo2bo2bobobo17bo
2bobobo15bo2bobobo21bo2bobobo20bo2bobobo5bo15bo2bob2o10bobob2o$2bo19b
2o20bobo5bo12bobobo5b2obobo24bobobob2o28bobobob2o17bobo15bo3b2obob2o
28b2obob2o14b3o2bobob2o17bobob2o23bobob2o22bobob2o8bobo12bobob2obo10bo
b2obo$bo43bobo3bo14bobo5bo3bo27bobo33bobo21bo16bo6bobo32bobo18bo3bobo
18bobobo24bobobo23bobobo10b2o12bobobo12b2obo$24bo21bo4b3o13bo39bo35bo
46bobo32bobo17bo6bo19bo2bo17bo7bo2bo10bobo11bo2bo7b2o16bo2bo12bo2bo$
19b2o3b2o165bo34bo20bo4b2o21b2o17bo9b2o3bobo3b2o13b2o7b2o18b2o14b2o$
18bobo2bobo26b3o74b3o25b3o86b2o44b3o14b2o5bo24bo$20bo33bo76bo25bo88bob
o50b2o9bo$53bo76bo27bo111b2o26bo2bo10bo$144bo126b2ob3o21bo2bo9b2o$143b
2o74b2o5b2o42bo3bo24b2o4b3o3bobo$143bobo74b2o5b2o6b2o38bo29bo$148bo70b
o6bo7b2o70bo$147b2o81b3o3bo$135bo11bobo82bo$135b2o94bo$134bobo2$149bo$
148b2o$148bobo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » December 20th, 2013, 7:20 pm

Great work! Here's a predecessor to another that might be a bit too tight to work with at this point, but it might be a start:
x = 14, y = 14, rule = B3/S23
9bo$7b2o$8b2o$2bo$bobob2o$o2b2obo$2o$8b3o$8bobo$bob2o3bo$b2obo$7bo4b2o
$6b2o3b2o$4b2o7bo!


Edit: A modification to an unrelated synthesis:
x = 20, y = 23, rule = B3/S23
11bo$12bo$10b3o3bo$6bo7b2o$7b2o6b2o$6b2o2$3bo$4b2o3bo$3b2o5bo3b2o$8b3o
4bo$15bobo$16b2o6$2o$b2o$o17b2o$17b2o$19bo!

I was hoping it might help in finding the second 16-bit still life in the list, but I can't find any viable predecessors.
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby mniemiec » December 21st, 2013, 12:12 am

Extrementhusiast wrote:I've noticed that the boat-turning component is unnecessarily large:

Sokwe wrote:Another reduction by one glider:

This can be reduced one further when there is no protruding tab on the bottom (and even if not, the last two steps could be combined by replacing the blinker by any convenient bent-blinker or blinker-on-blinker spark):
x = 74, y = 25, rule = B3/S23
9bo39bo$9bobo37bobo$bbo6boo31bo6boo$obo37bobo$boobbo35boobbo$5bobo37bo
bo$5boo38boo4$7boo3bo15boo17boo3bo15boo$6bobbobobo13bobobbo13bobbobobo
13bobobbo$7boboboo14bobobobo13boboboo14bobobobo$6boobo16boobobboo12boo
bo8boo6boobobboo$9bo19bo16bobbo7boo7bobbo$9boo5b3o10boo16boo4b3o3bo7b
oo$16bo38bo$17bo36bo$$14boo$15boo$14bo$18boo$17boo$19bo!


Sokwe wrote:The second can be reduced by one from 20 to 19; claw to beehive (aka bookend to bun) can be done with two gliders. However, this becomes moot, as the beehive can be made directly from a boat, removing another 6 gliders, for a total of 13 gliders. Retro-fitting this back into the first one reduces that one from 18 to 16. New and improved old methods:

x = 191, y = 110, rule = B3/S23
137bo$136bo$136b3o20bo$96bo62bobo$49bo31bo13bo18b2o18b2o23b2o$47bobo
32bo7bobo2b3o16b2o18b2o21bo$48b2o30b3o7b2o66bo$8bo45bo36bo3bo60b3o$7bo
44b2o40b2o$7b3o43b2o24b2o13bobo$obo53b2o11bo8bobo8bo15bo19bo19bo19bo
19bo$b2o25b2o18b2o6bobo9bobo9bo7bobo13bobo17bobo17bobo8b3o6bobo17bobo$
bo7b2o13b2obobo14b2obobo6bo7b2obobo14b2obobo13bobo2bo14bobo2bo14bobo2b
o6bo7bobo2bo16bo2bo$8b2o13bobobo15bobobo15bobobo15bobobo15bobob2o14bob
ob2o14bobob2o7bo6bobob2o14bobob2o$6bo3bo13bo2bo16bo2bo16bo2bo16bo2bo
16bo2bo16bo2bo16bo2bo16bo2bo15b2o2bo$4bobo20bobo17bobo17bobo17bobo17bo
bo17bobo17bobo17bobo17bobo$5b2o21b2o18b2o18b2o18b2o18b2o18b2o18b2o18b
2o18b2o17$161bo$161bobo$157bo3b2o$158b2o19b2o$157b2o19bobo$178bo$177b
2o5$129bo$127bobo$128b2o$88bo45bo$87bo44b2o$87b3o43b2o$80bobo53b2o11bo
19bo19bo$81b2o25b2o18b2o6bobo9bobo17bobo17bobo$81bo7b2o13b2obobo14b2ob
obo6bo7b2obobo14b2obobo14b2obobo$88b2o13bobobo15bobobo15bobobo15bobobo
15bobobo$86bo3bo12b2o2bo15b2o2bo15b2o2bo15b2o2bo15b2o2bo$84bobo20bobo
17bobo17bobo17bobo17bobo$85b2o21b2o18b2o18b2o18b2o18b2o3$79b2o$80b2o$
79bo$87b3o$87bo$88bo7$57bo$58b2o$57b2o10$96bo$95bo$90bobo2b3o$69b2o19b
2o$68bobo20bo$68bo$67b2o$137bo$64b3o69bo$66bo69b3o$65bo$114b2o18b2o$
114b2o18b2o5$79bo25bo19bo19bo19bo19bo$78bobo23bobo17bobo17bobo17bobo
17bobo$74b2obobo25bo2bo16bo2bo16bo2bo16bo2bo14bobo2bo$73bobobo25bobob
2o14bobob2o14bobob2o9bo4bobob2o14bobob2o$73b2o2bo25b2o2bo15b2o2bo15b2o
2bo8bobo4b2o2bo16bo2bo$77bobo27bobo17bobo17bobo7b2o8bobo17bobo$78b2o
28b2o18b2o18b2o18b2o18b2o$95bo63b3o$94b2o65bo$94bobo63bo!


I accidentally found the above drastic improvement as a result of tinkering to try to build the following related object (which is a plausible predecessor for the above two objects). When I tried to actually use an existing tool to make this object (rather than trial and error), my very first copy+paste attempt worked (without even needing to make any phase adjustments!), from 16 gliders.
(On retrospect, I had found a 25-glider synthesis on 10/24 that I had forgotten about, so the above two would have been buildable, as I had the pieces, and had even documented them separately - I just forgot to glue them together! No matter, as this subsequent research has made several drastic improvements in all three objects, which is good):
x = 168, y = 120, rule = B3/S23
104bo$102boo51bo$103boo49bo$24bo129b3o$22bobo73bo15bo$23boo42bo31boo
12bo18boo18boo$65bobo30boo3bo4bobobb3o16boo18boo$28bobo35boo33boo5boo$
28boo42bo29boo5bo3bo$20bo8bo40boo40boo$18bobo50boo39bobo$19boo53boo11b
o19bo14boo18boo18boo$29bo12bo3boo14bo3boo6bobo5bo3bobo13bo3bobo12bobbo
16bobbo16bobbo$28bo12bobobobo13bobobobo6bo6bobobobo13bobobobo13bobobbo
14bobobbo14bobobbo$28b3o11boobo16boobo16boobo16boobo16booboo15booboo
15booboo$32b3o10bo19bo19bo19bo19bo19bo19bo$24bo7bo12bobo17bobo17bobo
17bobo17bobo17bobo17bobo$23boo8bo12boo18boo18boo18boo18boo18boo18boo$
23bobo17$11bobo$5bobo4boo$6boo4bo$6bo$$99bo9bo$100boo5boo$99boo7boo39b
obo$150boo$98bo51bo$98boo43bobo$97bobo44boobboo$144bo3bobo13boo$93bo
54bo15bobo$91bobo71boo$92boo$120boo18boo18boo$84boo18boo15bobboo15bobb
oo15bobboo$80boobobbo13boobobbo14bobobbo14bobobbo14bobobbo$80bobooboo
13bobooboo15booboo15booboo15booboo$85bo19bo19bo19bo19bo$85bobo17bobo
17bobo17bobo17bobo$86boo18boo18boo18boo18boo3$98boo$97boo$99bo6$40boo$
39boo$41bo$9bo27boo$9boo25bobo$8bobo27bo7$70bo$69boo$69bobo$$52boo$51b
oo$53bo15$46bo86bobo$47bo55bo30boo$45b3o53bobo30bo$9bo56bo35boo37bobo$
7bobo3bo52bobo16bo19bo35boo$8boobbo24bo28boo16bobo17bobo35bo$4boo6b3o
9boo9bobo16boo28bobbo16bobbo27bo$4bobo17boboboo6boo7bo8boboboo25boo18b
oo29boo$5boo3boo13boobobo10boboo10boobobo74boo$10bobo16bo9bobobboo13bo
$oo8bo9boo18boo8boo30boo18boo18boo18boo19bo$bobboo15bobboo25bobboo25bo
bbo16bobbo16bobbo16bobbo17bobo$bobobbo14bobobbo24bobobbo24bobobbo14bob
obbo14bobobbo14bobobbo16bobbo$bbooboo15booboo25booboo25booboo15booboo
15booboo15booboo14boboboo$5bo19bo29bo29bo19bo19bo19bo15boobbo$5bobo17b
obo27bobo27bobo17bobo17bobo7boo8bobo17bobo$6boo18boo28boo7bo20boo18boo
18boo8boobbo5boo18boo$64boo69bo3boo$64bobo72bobo!


Extrementhusiast wrote:Predecessor to another 16-bitter:

I'm not terribly worried about this one, since it's been superceded, but it still has a couple of interesting points. I can't think of any way to make either of the two still-lifes while the other is present (at least not with any currently-known construction techniques). Two of the gliders at the top pass through each other (but a simple kick-back could fix that). The resulting debris can be cleaned up by one glider one each side:
x = 39, y = 25, rule = B3/S23
21bo$20bobo$21boo4$22bobo$22boo$23bo$$21boo$20bobbo$14boo5boo11boo$14b
obo17bobo$12boo3bo14boo3bo$12bo5bo13bo5bo$13bo3boo14bo3boo$14bobo17bob
o$15boo18boo$$bo9bo$obo7bobo$boo3boobbobo$7boobbo$6bo!


It does lead to the following shillelagh-to-canoe conversion, which also works on claws in other places:
x = 81, y = 40, rule = B3/S23
o$boo$oo3$19bo$19bobo$19boo9$39boo18boo18boo$5boo28boo3bo14boo3bo14boo
3bo$6bo29bobbo16bobbo16bobbo$6boboo26bobo17bobo17bobo$7bobbo26bo5boo
12bo5boo12bo$9boo31bobbo16bobbo$23boo18boo18boo$23bobo$23bo41bo$64boo$
64bobo4$43boo18boo$42bobo17bobo$43bo19bo$19b3o$19bo$20bo$8bo$6bobobbo$
7boobbobo$11boo!


Unfortunately, it doesn't work on the two missing 16s with similar hooks (plus the Silver's P5 on cis hook w/tail) for the same reason existing methods don't work - the 4-bit diagonal pre-block predecessor gets too close to the rest of the object for one generation.

Sokwe wrote:I only count 35. Did you see these four by Extrementhusiast?

I had counted 36; the one I had missed was Extrementhusiast's domino-between-eaters, based on Towerator's suggestions. I had thought that one was already done, confusing it with a pseudo-still-life I had made last week (that also had a bridged tail-first eater in it).

I just partially solved the tail-to-snake conversion problem. It works via hook-with-tail, which makes those objects easier (since it's easier to turn that into a snake than vice versa).
This solves one 16-bit P2, plus some still-lifes (2 18s, 2 19s, 3 20s, 10 21s, 7 22s, 12 23s, 49 24s). Surprsingly enough, this only seems to be useful in this one oscillator; I had thought it was needed in more places.
x = 164, y = 113, rule = B3/S23
68bo$66boo$67boo8$57bobo$57boo19boo18boo18boo18boo18boo$58bo18bob3o15b
ob3o15bob3o15bob3o15bob3o$77bo4bo14bo4bo14bo4bo14bo4bo14bo4bo$39bo38b
4o16b4o16b4o16b4o16b4obo$40bo104bobo14bo$38b3o39boo3bo14boo3bo14boo18b
oo3boo13bo$42bo37boobbobo13boobbobo13boo18boo4bo13boo$42boo40bobo17bob
o$41bobo41bo19bo41b3o$107boo38bo$107bobo32boo4bo$107bo35boo$142bo6$66b
oo$66bobo$66bo4$32boo$31bobo$33bo8$135bo$136bo$134b3o$118boo18boo$obo
7bo106bobbo16bobbo$boo5bobo107boo18boo$bo7boo$20bo74bobo$18boo70bo5boo
$19boo70bo4bo8bo$10bo78b3o12bo$8bobo93b3o$9boo$$107bo$92boo14bo$18boo
18boo18boo18boo13boo3boo6b3o11bo19bo19bo$17bob3o8bo8b3o17b3o17b3o10bo
6b3o8bo7bobo17bobo17bobo$17bo4bo7bobo4bo4bo14bo4bo14bo4bo14bo4bo7bobo
4bo4bo14bo4bo14bo4bo$18b4obo6boo5b5obo13b5obo13b5obo13b5obo6boo5b5obo
13b5obo13b5obo$22bo19bo19bo19bo19bo19bo19bo19bo$20bo18b3o17b3o17b3o17b
3o17b3o17b3o17b3o$20boo17bo19bo19bo19bo19bo19bo19bo$12bo97bo$10bobo31b
oo18boo43boo$11boo31boo18boo43bobo$67boo$13b3o51bobo$15bo51bo$14bo$$
26b3o$26bo$27bo13$50bo29bo19bo19bo19bo19bo$48bobo27bobo17bobo17bobo17b
obo17bobo$47bo4bo21boobo4bo11boobo4bo14bo4bo14bo4bo14bo4bo$47b5obo5bob
o11bobob5obo9bobob5obo13b5obo13b5obo13b5obo$52bo6boo13bo7bo11bo7bo19bo
19bo19bo$49b3o8bo18boo10boo6boo18boo12bo5boo18boo$40boo7bo29bo10bobo6b
o19bo14boo3bo19bo$41boo12bo24bo11bo7bo19bo12boo5bo19bo$40bo13bo22b3o
17b3o17b3o17b3o19boo$54b3o20bo19bo19bo19bo$43boo$36boo6boo89boobb3o$
34booboo4bo9boo79bobobbo$34b4o15bobo80bo3bo$35boo16bo$138bo$137boo$46b
3o9bo78bobo$46bobbo7boo$46bo10bobo$46bo$47bobo!


Unfortunately, this requires the temporary-boat-bit kludge, as the snake head momentarily pops out; this makes his mechanism unusable in some other situations. However, it can be adapted when the tail is against a snake, giving these two new missing still-lifes for 34 and 40 (which can also, if desired, be assembled starting with the snake itself):
x = 170, y = 85, rule = B3/S23
135bo$10bo9bo115booboo16bo$11boo7bobo112boobbobo14bobo$10boo8boo117bo
17boo$$66bo$19bobo15boo18boo5boo11boo18boo18boo18boo18boo$19boo13boobb
o15boobbo6boo7boobbo15boobbo15boobbo15boobbo15boobbo$8boo3boo5bo12bobo
bo15bobobo17bobo17bobo17bobo17bobo17bobo$9boobbobo16bobboboo13bobboboo
5bo10boboo16boboo16boboo16boboo16boboo$8bo4bo4boo13boo18boo8boo11bobbo
16bobbo16bobbo16bobbo16bobbo$18bobobboo38bobo11boo18boo18boo18boo18boo
$18bo3boo24boo$24bo24boo8b3o$48bo10bo16boo18boo$53boo5bo15boo18boo$52b
obo$54bo44b3o$99bo$100bo13$6bobo$9bo$9bo$6bobbo9bo38bo$7b3o8bo7bo31bob
o$18b3o4bo32boo$25b3o113bo$36boo18boo82bo$36boo18boo82b3o$10bo6bo75bob
o34bobo$8bobo5bobo69bo4boo36boo4bobo$boo6boo6boo70bo4bo36bo6boo$4o19b
oo62b3o48bo$ooboo18bobo5boo18boo18boo10boo6boo$bboo13boo4bo8bo4boo13bo
4boo13bo4boo5boo6bo4boo18boo15bo12boo18boo$14boobbo13boboobbo13boboobb
o13boboobbo4bo4boobboboobbo13boboobbo15boo6boboobbo15boobbo$15bobo15bo
bobo15bobobo15bobobo9bobo3bobobo14boobobo15bobo6boobobo14bobbobo$15bob
oo18boo18boo18boo10bo7boo18boo28boo13boo3boo$7bo8bobbo16bobbo16bobbo
16bobbo16bobbo16bobbo26bobbo16bobbo$7boo8boo18boo18boo18boo18boo18boo
28boo18boo$6bobobboo128boo$10boo123boo3boo$12bo121bobo5bo$b3o132bo$3bo
$bbo12b3o$15bo$16bo11$93bo$91boo$19bo72boo$17bobo$14boobboo33bo$15boo
34bobo19boo14bo3boo$14bo22boo13boo3boo14boobboo10boobboobboo18boo$18bo
bo17bo10boo7bo19bo9bobo7bo15boobbo$18boo17bo10bobo6bo19bo19bo15bobobo$
19bo17boo11bo6boo18boo13boo3boo13bobboboo$22bo68bobo19boo$21boo70bo$
21bobo71boo$95bobo$95bo!


This also solves one 19-bit pseudo-still-life for 36 (plus indirectly three trivial related carrier-based ones for 42, 42, and 48).
x = 170, y = 78, rule = B3/S23
88bo$86bobo$87boo11bo$98bobo5boo$99boo4boo23bo7bo$75boo18boo10bo23boo
6bo$76bo8b3o3bo4bo16booboobo10boo5b3o3booboobo13booboobo$55boo19bobo8b
o4boobbobo15boboboo24boboboo12boboboboo$56boo19boo7bo4boo4boo15bo29bo
17bobo$55bo3boo54bo21b3o5bo15boobbo$59bobo52boo23bo4boo18boo$59bo27bo
50bo$87boo11boo$86bobo10boo$101bo36boo$97boo38bobo$96bobo40bo$98bo$
140bo$139boo$139bobo$136bo$136boo$135bobo4$53bo$52bo$39bo12b3o$40bo$
38b3o$49bo$47boo$43bobobboo$44boo$3booboobo13booboobo14bo8booboobo13b
ooboobo13booboobo13booboobo23booboobo13booboobo$bboboboboo12boboboboo
22boboboboo14boboboo14boboboo14boboboo16bo7boboboo14boboboo$bbobo17bob
o27bobo15bobobo15bobobo15bobobo19bobo3bobobo14boobobo$boobbo15boobbo
25boobbo13boboobbo13boboobbo13boboobbo14bo4boobboboobbo13boboobbo$4boo
18boo13boo13boo4bo8bo4boo13bo4boo13bo4boo15boo6bo4boo18boo$37booboo18b
obo5boo18boo18boo20boo6boo$37b4o19boo72b3o$o23boo12boo6boo6boo80bo4bo$
boo20bobo19bobo5bobo79bo4boo$oo22bo22bo6bo85bobo$5boo66boo18boo$4bobob
o64boo18boo$6bobobo51b3o$8boo45b3o4bo32boo$44b3o8bo7bo31bobo$43bobbo9b
o38bo$46bo$46bo$43bobo9$29bobo105bo$30boo106boo$30bo106boo$32bo13boobo
16boobo13booboobo13booboobo13booboobo13booboobo13booboobo$27boobbo14bo
boo12boobboboo12boboboboo12boboboboo12boboboboo3boo7boboboboo14boboboo
$26boo3b3o29boo18bo19bo18bobo7bobo7bobo19bo$28bo33bo60boo9bo8boo20bo$
23boo139boo$24boo73bo39bo$23bo75boo38boo4boo$98bobo37bobo5booboo$145bo
3bobo$101b3o45bo$101bo$102bo!


This mechanism also solves 1 missing 18-bit still-life (w/mango instead of beehive), 2 19s, 1 20, 5 21s, 5 22s, 17 23s and 31 24s,
plus three pseudo-still-lifes (at 20, 23, and 24 bits). Unfortunately, it failes on one obvious case, the 20-bit snake-behind-sidewalk, because one of the sides gets in the way of an incoming glider. Here are a few not-quite-working attempts to adapt this mechanism to this situation (along with the reference working version above):
x = 117, y = 68, rule = B3/S23
16bo39bo39bo$15bo39bo39bo$bbo12b3o24bo12b3o24bo12b3o$3bo39bo39bo$b3o
37b3o37b3o$12bo39bo39bo$10boo38boo38boo$6bobobboo33bobobboo33bobobboo$
7boo38boo38boo$7bo8booboobo24bo8booboo26bo8booboo$15boboboboo32bobobo
35bobobo$15bobo37bobobbo6bo27bobobbo$14boobbo35boobbobo6bobo24boobbobo
$bboo13boo4bo18boo13booboo5boo13boo13booboo$ooboo18bobo14booboo35boob
oo$4o19boo15b4o36b4o$boo6boo6boo22boo6boo6boo22boo6boo6boo$8bobo5bobo
29bobo5bobo11b3o15bobo5bobo$10bo6bo32bo6bo5boo5bo19bo6bo5boo$63bobo5bo
31bobo$63bo39bo$25b3o$18b3o4bo29b3o37b3o$7b3o8bo7bo20b3o7bo29b3o7bo$6b
obbo9bo26bobbo6bo29bobbo6bo$9bo39bo39bo$9bo39bo39bo$6bobo37bobo37bobo
13$16bo39bo39bo$15bo39bo39bo$bbo12b3o24bo12b3o24bo12b3o$3bo39bo39bo$b
3o37b3o37b3o$12bo39bo39bo$10boo38boo38boo$6bobobboo33bobobboo33bobobb
oo$7boo38boo38boo$7bo8booboo26bo8booboo26bo8booboo$15bobobo35bobobo35b
obobo$15bobobbo34bobobbo34bobobbo6bo$14boobbobo33boobbobo33boobbobo6bo
bo$bboo13booboo20boo13booboo20boo13booboo5boo3b4o$ooboo35booboo25bo9b
ooboo27bo3bo$4o25b4o7b4o25bo10b4o28bo$boo6boo6boo10bo3bo7boo6boo6boo
10bo3bo7boo6boo6boo14bo$8bobo5bobo10bo18bobo5bobo10b4o15bobo5bobo$10bo
6bo5boo5bo19bo6bo5boo25bo6bo5boo$23bobo37bobo37bobo$23bo39bo39bo$$15b
3o40b3o34b3o$7b3o7bo29b3o8bo28b3o7bo$6bobbo6bo29bobbo9bo26bobbo6bo$9bo
39bo39bo$9bo39bo39bo$6bobo37bobo37bobo!


A mechanism where the head remains unmoved would be much more useful in general, as it wouldn't require temporary mangling of the foundation object.

Here are a couple of partial solutions I came up with years ago. Maybe somebody can find a way to make them work:
x = 71, y = 17, rule = B3/S23
10bo$10bobo$10boo$$9bo30bo$10boobo27bo$9boobb3o23b3o$13boo27bo$12bo3bo
25bobbo$4boobboobbo3bo17boobboob3obo18boo$4bobbobobbo3bo17bobbobobbo
21bobboobo$5bobo5boobo18bobo5bo21boboboo$oobobobo22boobobobo22boobobo$
obooboo3boo18bobooboo3boo18bobooboo$10bobob3o22boob4o$8bobbobbo26bob3o
$15bo!


A tool to remove a long bookend. Not sure how useful this will be:
x = 25, y = 15, rule = B3/S23
8bobo$boboo3boo3bo7boboo$boobo4bo3bobo5boobo$13boo$b6o14b3o$obbo3bobb
oo8bobbo$oo4boobbobo7boo$10bo$$5b3o$7bo$6bo$8b3o$8bo$9bo!


(and now, for comments on this past week's results:)

Sokwe wrote:An easy solution to one of the 16-bit still lifes from a 13-bit still life:

Oh nice! There were several of the 16s that need "boat to eater" conversions, which unfortunately are all obtrusive. I

hadn't thought about using a method that relies on a temporary hiccup behind it. I'll have to see where else this trick can come in handy!

Extrementhusiast wrote:Now it works, with 22 gliders:

This leads to roundabout beehive-to-loaf and mango-to-loaf converters, both of which can come in handy in many other places.

Sokwe wrote:Great work! Here's a predecessor to another that might be a bit to tight to work with at this point, but it might be a start:

This is good, because being able to make this kind of weld is one of the missing tools needed in many similar syntheses.

I'm positively astounded at how much progress you have all made. I was hoping to get the list down to at least 32, which would mean that 99% of the 16s had syntheses, but now it seems to be down to around a third of that!
mniemiec
 
Posts: 793
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Sokwe » December 21st, 2013, 5:45 am

I wrote:Here's a predecessor to another...

This might be a better start (presuming the long hook with tail can be placed that closely):
x = 13, y = 20, rule = B3/S23
11bo$7b2o3bo$6bo5bo$7b5o2$2bo$bobob2o$o2b2obo3b2o$2o8bo$9bobo$4bo3b2o$
bobobo2b2o$b2o2bo3bo$5b2o2bo$9bobo$11bo2$3b2o$2bobo$4bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » December 21st, 2013, 1:11 pm

mniemiec wrote:A tool to remove a long bookend. Not sure how useful this will be:
x = 25, y = 15, rule = B3/S23
8bobo$boboo3boo3bo7boboo$boobo4bo3bobo5boobo$13boo$b6o14b3o$obbo3bobb
oo8bobbo$oo4boobbobo7boo$10bo$$5b3o$7bo$6bo$8b3o$8bo$9bo!

Actually not that useful, considering this alternative:
x = 25, y = 35, rule = B3/S23
8bobo$bob2o3b2o3bo7bob2o$b2obo4bo3bobo5b2obo$13b2o$b6o14b3o$o2bo3bo2b
2o8bo2bo$2o4b2o2bobo7b2o$10bo2$5b3o$7bo$6bo$8b3o$8bo$9bo8$bob2o16bob2o
$b2obo16b2obo2$b6o14b3o$o2bo3bo12bo2bo$2o4b2o12b2o2$7bo$7b2o$6bobo$10b
2o$10bobo$10bo!

And now we're getting down to the bottom of the barrel.

EDIT:
Sokwe wrote:
I wrote:Here's a predecessor to another...

This might be a better start (presuming the long hook with tail can be placed that closely):
x = 13, y = 20, rule = B3/S23
11bo$7b2o3bo$6bo5bo$7b5o2$2bo$bobob2o$o2b2obo3b2o$2o8bo$9bobo$4bo3b2o$
bobobo2b2o$b2o2bo3bo$5b2o2bo$9bobo$11bo2$3b2o$2bobo$4bo!

This works:
x = 33, y = 15, rule = B3/S23
2bo25bo$bobob2o20bobob2o$o2b2obo19bo2b2obo$2o24b2o$8bobo$8b2o2b3o15bo$
bob2o4bo2bo14bobobo$b2obo8bo13b2o2bo$16b3o12b2o$16bo$17bo$4b2o$5b2o4b
2o$4bo5b2o$12bo!


EDIT 2: An alternate predecessor:
x = 9, y = 8, rule = B3/S23
2bo$bobo$o2b3o$2o4bo$5b2o$3bo2b2o$o2bo2b3o$b2o4b2o!

I'm thinking that that preblock might not be able to fit in there, though.

EDIT 3: A nice still life that comes from a methuselah I call the grate:
x = 48, y = 14, rule = B3/S23
40bo$39b4o$39b3o$42bo$41bo2bo2bo$22b3o15bo3bo2bo$2b3o14bo4bo13bo2b2obo
bo$3bo14b3o3bo13bobob2o2bo$2bo16bo4bo12bo2bo3bo$2bo21bo12bo2bo2bo$o41b
o$43b3o$42b4o$44bo!

I still need a good grate synthesis for it, though.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » December 22nd, 2013, 7:23 am

I wrote:This might be a better start...

In this particular case, it might be better to just shear off half of an extra long barge and add a domino spark:
x = 15, y = 12, rule = B3/S23
5bo$4bobo$3bo2b3o4bo$3b2o4bo2bo$8bobob3o$7bobo$b2o3bobo$4obobo2b3o$3o
3bo3bo$2bo5b2o$8bo$8bo!


Edit 2: Removed previous edit (see my next post).
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » December 22nd, 2013, 7:53 pm

Stillator in 78 gliders:
x = 535, y = 45, rule = B3/S23
508bobo$508b2o$493bo15bo$222bo268b2o$223bo12bo245bo9b2o9bo$221b3o12bob
o234bobo4bobo13bo6bobo$62bobo171b2o236b2o5b2o13bobo4b2o$62b2o410bo21b
2o$63bo152bo13bobo$217bo12b2o113bo$215b3o13bo76bobo35bo155bo$235bobo
31bobo36b2o34b3o155bobo$41bo107bo63b2o20b2o32b2o38bo38bo25bo127b2o$8bo
bo28b2o108bobo60bobo21bo33bo76bo27b2o$8b2o18b2o10b2o8b2o97b2o45bobo15b
o132b3o24b2o2b2o54bo$9bo17bo2bo18bo2bo33bo27bo20bo32bo21bo6b2o22bo156b
2o52bobo48bo$20bo6b3o7bo11b3o34b3o25b3o18b3o30b3o4bo14b3o4bo23b3o209b
2o47bobo5bo39b2o$7bo13bo13b2o52bo27bo20bo32bo3bobo15bo6bo23bo7bo19bo
42bo41bo30bo31bo6bo33bo40bo2bo2b3o38bo2bo$5bobo11b3o5b3o6b2o11b3o34b3o
bo23b3obo16b3obo28b3obo2b2o2b2o9b3o2bo3b2o20b3o6b2o18b3o2bo37b3o2bo36b
3o2bo25b3o2bo22bobob2o5b3o26bo4b3o41b2o2bo3b2o35bob3o$3o3b2ob3o14bo3bo
17bo3bo32bo3bo23bo3bo16bo3bo11bo16bo3bo6b2o9bo3b3o3bobo18bo3b3o4b2o16b
o3b3o10bobo23bo3b3o35bo3b3o24bo3b3o23b2o2b2o3bo3b2o24bo3bo3b2o44bobo2b
o34bobo2b2o$2bo6bo16b2ob2o18bobobo32bobo25bobo18bobo11b2o17bobo9bo9bob
o28bobo2bo23bobo13b2o25bobo5b2o32bobo28bobo26bo9bobo2bo23bo4bobo2bo42b
2ob2o2bo32b2ob2obo$bo8bo12bo9bo14b2ob2o32b2ob2o23b2ob2o16b2ob2o10bobo
15b2ob2o17b2ob2o26b2ob2o9bo14b2ob2o13bo24b2ob2o3bo2bo30b2ob2o3b2o21b2o
b2o3b2o29b2ob2o2bo26b2ob2o2bo44bo4bo34bo2bo$21bobo9bobo85b2o14bo16b2o
14bo21bo18b2o10bo9b2o17bo42bo4bo2bo33bo4bo25bo4bo33bo4bo28bo4bo43bobo
3bo15bo17bobo$22b2o9b2o48bo9bobo12bo11bo2bo13bobo13b2o15bobo19bobo15bo
bo10bobo7bobo16bobo9b3o28bobo3b2o34bobo3bo24bobo3bo32bobo3bo27bobo3bo
43bobo3bo7b2o4bo19bo$84bo8b2o11bobo3bo7bo2bo14b2o15bo15bobo19bobo16bo
11bobo26bobo8bo31bobo39bobo3bo24bobo3bo32bobo3bo27bobo3bo43bo5bo5b2o5b
3o$82b3o9bo12b2o2bobo2b2o3b2o49bo21bo30bo28bo10bo31bo27bo13bo5bo24bo5b
o32bo5bo27bo5bo49bo6bo$111bobob2o206b2o21bo30bo38bo33bo49bo$22b3o7b3o
44b3o12b2o16bo4bo4bo184bo16b2o21bo30bo38bo33bo37b2o10bo$24bo7bo48bo12b
obo24b2o183bo41bo30bo38bo33bo36bobo10bo$23bo9bo35bo10bo13bo20b2o4bobo
182b3o40bo30bo38bo33bo35bo13bo$57bobo8b2o44bobo233bo30bo38bo33bo17b2o
30bo$57b2o9bobo45bo108bo72b2o7bo43bo30bo38bo33bo17b2o30bo$58bo83bobo
80b2o72b2o6b2o4b2o37bo30bo38bo33bo15bo33bo$142b2o80bobo43b2o26bo7bobo
3bo2bo37bo30bo38bo33bo43bo5bobo$57b2o84bo127b2ob3o35bo2bo38bobo28bobo
36bobo31bobo39b2o6b2o$57bobo47b3o160bo3bo28bo9b2o40b2o29b2o37b2o32b2o
21b3o15bobo$57bo51bo40b2o123bo27b2o179bo$108bo40b2o151bobo178bo$144b3o
4bo347b2o$144bo353bobo$145bo354bo14b2o$48bo466bobo$48b2o425b3o37bo$47b
obo427bo$476bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » December 22nd, 2013, 8:07 pm

Since Extrementhusiast posted before I made my previous edit, I will copy it here:

A very good start to one of the unsynthesized griddles (found in Lewis' collection of soup results):
x = 160, y = 65, rule = B3/S23
37bo$36bo67bo$bo34b3o64bo$2bo31bo9bo58b3o$3o32bo8bobo54bo$33b3o8b2o53b
obo$21b2o18b2o57b2o$3b2o15bo2bo16bo2bo$3bobo15bobo17bobo40b2o18b2o19b
2o13b3o12b2o$3bo18bo19bo41bo2bo16bo2bo16bo2bo11bo3bo10bo2bo$85b2obo16b
2obo16b2obo14bo11b2obo$86bobo17bobo17bobo13bo13bo$40bo45bob2o16bob2o
16bob2o11bo14bob2o$41b2o42b2o2bo15b2o2bo15b2o2bo11bo13b2o$40b2o42bo2bo
16bo2bo16bo2bo26bo2bo$36b3o45bobo17bobo17bobo14bo13b2o$38bo46bo19bo19b
o$37bo3$36b2o2b3o$35bobo2bo$37bo3bo34$71b2o$71bobo$71bo4$68b2o$67b2o$
69bo!


One of the recently synthesized 16-cell still lifes can be synthesized for cheap using this reaction:
x = 13, y = 20, rule = B3/S23
6bo$7bo$5b3o4bo$10b2o$4bo6b2o$3b2o$3bobo8$bo$obo$obo$bo7b2o$9b2o$3b3o!


Unfortunately, none of the remaining unsynthesized 16-cell still lifes seemed to be be among the results, but the following has previously been suggested as part of a predecessor of one of them:
x = 54, y = 91, rule = B3/S23
14bo$15bo$13b3o40$49b2o$49b2o4$51bo$32b2o17bobo$32bobo16b2o$33bo$48bob
o$49b2o$49bo4$52bo$51b2o$51bobo4$51b3o$51bo$52bo2$39b3o$41bo$40bo11$bo
$b2o$obo6$15bo$15b2o$14bobo!


Finally, slight reductions to two recent syntheses:
x = 183, y = 29, rule = B3/S23
48bo$49bo$47b3o11bo47bo$59b2o42bo6bo6bo$51bo8b2o42b2o2b3o5bo$50bo52b2o
11b3o$50b3o105bobo$156bobobobo$77b2ob2ob2o8bobo11b2ob2ob2o42b2ob2o$3bo
73bo3bob2o9b2o6bo4bo3bob2o$4b2o72b3o13bo5bobo5b3o28bo19bo$3b2o52b2o38b
o3b2o35bobo17bobo17bobo$56b2o20b3o16b2o9b3o27b2obo16b2obo16b2obo$bo26b
o19bo9bo18bo3bo14bobo8bo3bo24b2o3bo14b2o3bo14b2o3bo$b2o25bo12bo6bo28bo
3bo25bo3bo8bobo14bo3b2o14bo3b2o14bo3b2o$obo25bo10bobo6bo29b3o27b3o9b2o
15bob2o16bob2o16bob2o$40b2o74b2o3bo16bobo17bobo17bobo$52b2o24b3o27b3o
5bobo5bo14bo19bo$51b2o21b2obo3bo22b2obo3bo4bo6b2o$53bo20b2ob2ob2o22b2o
b2ob2o11bobo31b2ob2o$156bobobobo$158bobo$47b3o50b3o11b2o$37b2o10bo2b3o
47bo5b3o2b2o$36bobo9bo3bo48bo6bo6bo$38bo14bo55bo$44b2o$43bobo$45bo!


x = 64, y = 41, rule = B3/S23
2bo$obo$b2o4$30bo$29bo8bobo$29b3o6b2o$11bo14bo12bo$12b2o11bo$11b2o12b
3o$19bo14bo$20bo11b2o$18b3o12b2o$24bo$22bobo$23b2o2$14bo$13bobo37b2o$
11b3obo35b3o2bo4bo$10bo4bob2o15bo15bo4b2o4bobo$11b3obobo5b2o7b2o17b3ob
o5b2o$13bobobo5bobo7b2o18bobo$15bobob2o3bo30bob2o$14b2obo2bo33b2ob2o$
18b2o$61b2o$55bo5bobo$54b2o5bo$54bobo$49b2o$48bobo$29b2o19bo$28b2o$14b
3o13bo$16bo$9b3o3bo$11bo$10bo!


Edit: A possible predecessor to one of the remaining 16-cell still lifes:
x = 54, y = 13, rule = B3/S23
24bob3o14bo$24bo3bo14bo$24bob3o13bo$obo3bobo15bobo$b2o4b2o15bob3o16b3o
$bo5bo37bo$4b2o43bobo$3bobo21bo22bo2bo$5bo4b2o16bo17b2o2bo2bo$9bo2bo
10b7o15bobo4bo$10bobo15bo16bobo$9b2obobo12bo16b2obobo$13b2o33b2o!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » December 23rd, 2013, 1:38 pm

This comes surprisingly close to one of them:
x = 9, y = 11, rule = B3/S23
7bo$6bo$6b3o2$2o2b2o$o2bobo$bobo$2b2obo$4bobo$4bobo$5bo!


Something completely different:
x = 23, y = 30, rule = B3/S23
2bobo$3b2o$3bo2$10bobo$o9b2o$b2o8bo$2o4$7b2o3b2o$6bo2bobo2bo$7b2o3bo2b
o$13b2o$18b2o$17bo2bo$b2o15b2o$2b2o9b3o$bo11bo$9b3o2bo$4b2o$3bobo14b3o
$5bo14bo$21bo$13b2o$12b2o$14bo4b2o$19bobo$19bo!


EDIT: A possible link, via a predecessor:
x = 12, y = 15, rule = B3/S23
5bo$3bo2bo$3bobo$4b2o$10bo$2o8bo$o2b2o3bo2bo$b2o2bo2bo2bo$3bo2bo$3b3o
4b2o2$3b3o$3bo2bob3o$4b2o2bo$9bo!


EDIT 2: That SL in 25 gliders and one LWSS:
x = 136, y = 35, rule = B3/S23
34bo$35b2o$34b2o2$65bo$65bobo24bo$65b2o26b2o$82bo9b2o$37bo24bo20bo$38b
o23bobo16b3o5bo11bo$36b3o23b2o5bobo18bo10bobo$40bobo26b2o17b3o10b2o$
40b2o3bo15bo8bo$41bo3bobo14b2o$45b2o14b2o$bo$2bo4bo61bo34bo24b2o3bo$3o
3bo51b2o8b2o27b2o3b3o10bo13bo2b3o$6b3o17b2o18b2o10bobo2b2o3bobo21bo4bo
bobo13bobo12b2o$26bo19bo12bo3bo26bobo5bo3bo12b2o15bo$22bo4bo19bo16bo
26b2o10bo28b3o$20bobo5bo14bo4bo11bo4bo33bo4bo30bo$6bo14b2o4b2o13bobo2b
2o10bobo2b2o27b3o2bobo2b2o29b2o$5b2o36bobo14bobo32bo3bobo9b2o$5bobo15b
o20bo16bo32bo5bo9b2o6b2o$18b2o3b2o87bo5bobo$2b3o12bobo2bobo93bo$4bo14b
o$3bo2$95b3o$94bo2bo$97bo$97bo$94bobo!


EDIT 3: Down slightly to 27 gliders:
x = 165, y = 29, rule = B3/S23
34bo$35b2o$34b2o2$65bo$65bobo$65b2o57bo$122bobo$37bo24bo29bo30b2o$38bo
23bobo28b2o$36b3o23b2o5bobo20b2o36bobo$40bobo26b2o59b2o$40b2o3bo15bo8b
o21bo28bobo7bo$41bo3bobo14b2o28b2o28b2ob3o$45b2o14b2o28bobo28bo$bo$2bo
4bo61bo34bo16bo12bo23b2o3bo$3o3bo51b2o8b2o27b2o3b3o17bo4b2o3b3o23bo2b
3o$6b3o17b2o18b2o10bobo2b2o3bobo26bobobo18b3o4bobobo12bobo12b2o$26bo
19bo12bo3bo34bo3bo13b2o10bo3bo11b2o15bo$22bo4bo19bo16bo38bo13b2o14bo
11bo15b3o$20bobo5bo14bo4bo11bo4bo33bo4bo11bo12bo4bo29bo$6bo14b2o4b2o
13bobo2b2o10bobo2b2o32bobo2b2o23bobo2b2o5b2o21b2o$5b2o36bobo14bobo36bo
bo27bobo8bobo5bo$5bobo15bo20bo16bo38bo29bo9bo6b2o$18b2o3b2o122bobo$2b
3o12bobo2bobo98b2o$4bo14bo104b2o$3bo119bo!


EDIT 4: Suggested SL in 16 gliders:
x = 86, y = 29, rule = B3/S23
62bo$62bobo$62b2o2$58bo$59b2o$58b2o3$60bo$47bo5bo6bobo$45bobo3bobo6b2o
$2bo29bo13b2o4b2o15bo$3b2o28b2obobo23bo4b2o$2b2o28b2o2b2o24bo5b2o14b2o
$12bo24bo11b2o11bo21bo$10b2o14b2o22b2o4b2o23b2obo$11b2o12bo2bo20bo5bo
2bo21bo2bo$4b2o8b2o10bobo27bobo21bobo$5b2o7bobo8b2obobo24b2obobo18b2ob
obo$4bo9bo14b2o28b2o5b2o15b2o$66bobo$66bo$3o$2bo$bo$7bo$6b2o$6bobo!

Also, is it too soon for 17-bitters?
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » December 23rd, 2013, 8:53 pm

Extrementhusiast wrote:Down slightly to 27 gliders...

Reduced to 24 gliders:
x = 131, y = 31, rule = B3/S23
74bo$74bobo25bo$74b2o27b2o$92bo9b2o$71bo21bo$71bobo17b3o5bo11bo$23bo
47b2o5bobo19bo10bobo$24b2o52b2o18b3o10b2o$23b2o3bo41bo8bo$29b2o40b2o$
28b2o40b2o$bo$2bo4bo70bo35bo$3o3bo60b2o8b2o28b2o3b3o10bo$6b3o33b2o23bo
bo2b2o3bobo22bo4bobobo13bobo$42bo25bo3bo27bobo5bo3bo12b2o$43bo29bo27b
2o10bo$29b2o13bo29bo39bo$6bo23b2o11b2o28b2o28b3o7b2o$5b2o22bo75bo15b2o
$5bobo96bo15b2o6b2o$110b3o9bo5bobo$2b3o105bo17bo$4bo106bo$3bo103b2o$
108b2o$107bo2$110b2o$109b2o$111bo!


Extrementhusiast wrote:Also, is it too soon for 17-bitters?

I think we might be hitting a point of diminishing returns for our efforts on the 16-bit still lifes. Who knows, maybe some 17-bit syntheses will give insight into how to solve some of the remaining 16-bitters.

To solve the three remaining symmetric 16-bit still lifes, it might be useful to run random symmetric soups and hope that they appear in the ash (although that might be a lot to hope for).

Edit: Is there a known way to add the necessary domino spark here?
x = 55, y = 13, rule = B3/S23
2b2o38b2o2b2o$bobo21b3o13bobo$o6bo17bo14bo6bo$b2o3bobo16b3o13b2o3bobo$
2bo2bobo19bo14bo2bob4o$2bobobo3bo14b3o14bobobob4o$3bobo3bobo31bob3obob
2o$4bo3bobo33bob2obo2b2o$7bobo18bo14b2o2b2o4b2o$8bo2b3o15bo13b2o7b2o$
2b2o7bo11b8o13b2o6bo$bobo8bo16bo13bo$3bo24bo!


Edit 2: A messy idea for one of the remaining 16-bit still lifes:
x = 78, y = 15, rule = B3/S23
24bo2bo9b3o14b3o10b2o$23b2ob2o28bo$obo3bobo15bo2bo9bo3bo12b3o14bo$b2o
4b2o15bo2bo10bo2bo12bo15b2o$bo5bo16bo2bo13bo12b3o13bo$4b2o33bo$3bobo
33bobo32bo$5bo4b2o15bo13bo15bo13b2o$9bo2bo15bo10bo2bo15bo11bob2o$10bob
o9b8o10bobo9b8o10bobo3bo$9b2ob2o14bo10b2ob2o2bo11bo10b2obo4bo$9bo2bo
14bo11bo2bo2b3o9bo11bo2bo$10bo2bo26bo2bo26bo2b2ob2o$11b2o28b2o28b2o$
74b3o!


Edit 3:
I wrote:Is there a known way to add the necessary domino spark here?

It was easier than I thought. I think the rest of the synthesis is trivial:
x = 19, y = 22, rule = B3/S23
2bo13bo$3bo12bobo$b3o12b2o3$5b2o$5b2o3b2o$9b2o$2b2o7bo$bobo$o6bo$b2o3b
obo$2bo2bobo$2bobobo3bo$3bobo3bobo$4bo3bobo$7bobo$8bo4bo$12b2o$5b2o5bo
bo$4b2o$6bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Sphenocorona » December 23rd, 2013, 9:35 pm

Sokwe wrote:Edit: Is there a known way to add the necessary domino spark here?

One of the miscellaneous 2-glider collisions produces a usable domino spark, and then the reactive bits can be suppressed with a third glider:
x = 17, y = 28, rule = B3/S23
3bo$4bo$2b3o4$12bo$12bobo$7bo4b2o$5bobo$6b2o3$3b2o$2bobo$bo6bo$2b2o3bo
bo$3bo2bobo$3bobobo3bo$4bobo3bobo$5bo3bobo$8bobo$9bo2$14b3o$b2o11bo$ob
o12bo$2bo!


EDIT: And here's a version with two gliders added to get rid of all debris:
x = 25, y = 49, rule = B3/S23
3bo$4bo$2b3o4$12bo$12bobo$7bo4b2o$5bobo$6b2o3$3b2o$2bobo$bo6bo$2b2o3bo
bo$3bo2bobo$3bobobo3bo$4bobo3bobo$5bo3bobo$8bobo$9bo2$14b3o$b2o11bo$ob
o12bo$2bo4$20b3o$20bo$21bo13$22b3o$22bo$23bo!


EDIT 2: We both added our syntheses at the same time (I did not see the edit until after the previous edit, which was just after I posted). Either way, my synthesis for the spark is two gliders cheaper.
Sphenocorona
 
Posts: 470
Joined: April 9th, 2013, 11:03 pm

PreviousNext

Return to Patterns

Who is online

Users browsing this forum: No registered users and 3 guests

cron