## Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

### Re: Synthesising Oscillators

mniemiec wrote:Here are the new (7-glider) and traditional (10-glider) syntheses of this. The new one came up fairly recently. I'm not sure where or when (I don't have my notes handy at the moment on this computer - something I plan to remedy soon).

That natural predecessor is actually much more generous. After playing around with gencols for a while I managed to work out this 4-glider synthesis:
`x = 8, y = 16, rule = B3/S235bo\$5bobo\$5b2o3\$2bo\$2o\$b2o3\$b2o\$obo\$2bo\$5b3o\$5bo\$6bo!`

Speaking of 4-glider syntheses, where did this one come from?
`x = 15, y = 14, rule = B3/S233bobo\$3b2o\$4bo4\$bo5b2o\$b2o3b2o\$obo5bo3\$13b2o\$12b2o\$14bo!`

Extrementhusiast used it in his synthesis of a period-6 oscillator. Speaking of which, his construction seems to lack these steps:
`x = 81, y = 21, rule = B3/S2375bo\$74bo\$40b3o31b3o\$37bo2bo39bo\$11bo26bo2bo36b2o\$9b2o25b3o40b2o\$2bo7b2o20bo29bo\$bobo11bo15bobo27bobob2o\$bobo10bo16bobo2bo24bobobo\$2obob2o7b3o13b2obobobo22b2obobo\$o2bob2o4bo18bo2bob2o23bo2bob2o\$b2o7b2o19b2o28b2o\$10bobo\$75b2o\$74b2o\$69b2o5bo\$69bobo\$69bo\$65b3o\$67bo\$66bo!`

(I think that this can be improved by skipping the table step, but I am not motivated enough to find the improvement).

mniemiec wrote:
Codeholic wrote:That makes the century eater synthesis in just 10 gliders:

These are some trivial stabilizer variants that may actually be useful

A variant can be synthesized in 8 gliders:
`x = 19, y = 30, rule = B3/S232bo\$3bo\$b3o2\$14bo\$13bo\$13b3o5\$4b3o\$6bo\$5bo\$8bo\$7b2o\$7bobo\$2bo\$2b2o13bo\$bobo12b2o\$16bobo3\$bo\$b2o\$obo2\$8bo\$7b2o\$7bobo!`

Here's a possibly known 6-glider synthesis:
`x = 11, y = 23, rule = B3/S239bo\$7b2o\$8b2o\$2bo\$3b2o\$2b2o\$10bo\$8b2o\$9b2o7\$2b2o\$3b2o\$2bo2\$5b2o\$bo3bobo\$b2o2bo\$obo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1249
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

Sokwe wrote:Here's a possibly known 6-glider synthesis:

I don't know that particular one as such. The "preferred" method for that still-life is another very similar 6-glider synthesis. However, the way the curl forms in the two is slightly different, so it's possible yours might be useful in some ways the old one isn't, and vice versa.
`x = 11, y = 20, rule = B3/S239bo\$7b2o\$8b2o\$2bo\$3b2o\$2b2o\$10bo\$8b2o\$9b2o2\$2bo\$3b2o\$2b2o4\$5b2o\$b2ob2o\$obo3bo\$2bo!`
mniemiec

Posts: 905
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Another possible predecessor:
`x = 93, y = 23, rule = B3/S2318bo\$17bo47bo\$17b3o43bobo\$15bo48b2o2bo\$13bobo41bo9bo\$14b2o42bo8b3o\$56b3o4bo\$3b2o14b2o40bobo\$2bo2bo12bo2bo19b2obo17b2o3b2obo16b2o\$bobob3o9bobob3o10bo5bobob3o19bobob3o15b3o\$o2bo4bo7bo2bo4bo10b2o2bo2bo4bo18bobo4bo12bo4bo\$b2ob4obo7b2ob4obo8b2o4b2ob4obo13b2o3bob4obo10bob4obo\$3bo4bo10bo4bo17bo4bo13bobo4bo4bo12bo4bo\$3bob3o11bob3o18bob3o16bo6b3o15b3o\$2b2obo12b2obo12b3o4b2obo24b2o16b2o\$36bo\$35bo\$40bo\$40b2o\$39bobo\$45b2o\$45bobo\$45bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1696
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

The new four glider synthesis can improve the construction of one of the p12 oscillators:
`x = 60, y = 23, rule = B3/S2339bo\$37bobo\$38b2o7bo\$46bo\$46b3o\$2bo11bo\$obo10bo\$b2o10b3o2\$36b2ob2o16bobo\$3b3o2bobo26bob2o16b2o\$5bo2b2o27bo20bo\$4bo4bo24b2obo10bo\$34b2ob2o9bobo\$48b2o\$44b2o\$44bobo4b2o\$4b2ob2o25b2ob2o5bo5b2o\$5bobobo25bobobo12bo\$3bobobobo23bobobobo\$3b2o2bob2o22b2o2bob2o\$7bo29bo\$6b2o28b2o!`

The second step could probably be done with only 5 gliders.

An extra glider can turn one of the blocks into a ship:
`x = 20, y = 14, rule = B3/S235bo\$6b2o9bobo\$5b2o10b2o\$18bo\$8bo\$8b2o2bo\$7bobo2bobo\$12b2o4\$3o\$2bo\$bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1249
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

Sokwe wrote:An extra glider can turn one of the blocks into a ship:
`x = 20, y = 14, rule = B3/S235bo\$6b2o9bobo\$5b2o10b2o\$18bo\$8bo\$8b2o2bo\$7bobo2bobo\$12b2o4\$3o\$2bo\$bo!`

The ship is facing the wrong way, though. However, that four-glider synthesis of that SL saves twenty-two gliders!
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1696
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Sokwe wrote:[Extrementhusiast's] construction seems to lack these steps... I think that this can be improved by skipping the table step, but I am not motivated enough to find the improvement.

This was the reaction that I was thinking of (posted by Mark Niemiec in an earlier construction):
`x = 47, y = 26, rule = B3/S2330bo\$31b2o\$30b2o2\$41bo\$41bobo\$41b2o3\$11bo\$9b2o\$2bo7b2o20bo\$bobo11bo15bobo\$bobo10bo16bobo2bo\$2obob2o7b3o13b2obobobo\$o2bob2o4bo18bo2bob2o\$b2o7b2o19b2o\$10bobo2\$44b3o\$39b2o3bo\$39bobo3bo\$39bo\$35b3o\$37bo\$36bo!`

Here is an extremely obvious reduction to another recent synthesis (8 gliders cheaper):
`x = 168, y = 67, rule = B3/S23152bo\$153b2o\$75bo76b2o7bo\$73b2o84b2o\$74b2o80bo3b2o\$2bobo152b2o\$3b2o151b2o\$3bo68b3o\$6bo34bo30bo\$6bobo32bobo29bo\$6b2o26b2o5b2o21b2o4bo23b2o4b2o22b2o4b2o22b2o4b2o\$34bo2bo26bo2bobobo22bo2bobobo22bo2bobobo22bo2bobobo\$35b3o27b3ob2o24b3ob2o24b3ob2o24b3ob2o2\$35b3o27b3ob2o24b3ob2o24b3ob4o22b3ob4o\$34bo2bo26bo2bobobo22bo2bobobo2bo19bo2bobo2bo21bo2bobo2bo\$6b2o26b2o5b2o21b2o4bo23b2o4bo3bobo17b2o28b2o2bo\$6bobo32bobo60b2o\$6bo34bo\$3bo102b2o22bo17b2o\$3b2o100bobo21b2o16bobo\$2bobo102bo21bobo17bo3b3o\$155bo5b3o\$154bo6bo\$127b3o32bo\$129bo\$128bo\$130b3o\$130bo\$131bo4\$18bo\$18bobo\$18b2o\$125bo\$126bo\$124b3o\$128bo\$127bo\$127b3o\$2bo2bobo\$obo2b2o149bo\$b2o3bo94bo23bobo26bobo3bo\$99bobo24b2o27b2o3bobo3bo\$73bobo24b2o24bo33b2o3bo\$74b2o30bo58b3o\$74bo26bo3bo\$40b2o28b2o4bo23bobo2b3o23b2o25bo2b2o\$3b2o5b2o22bo2bobobo22bo2bobobo3bo18bo2bobo2bo21bo2bobo2bo21bo2bobo2bo\$3bo3bobobo22b4ob2o23b4ob2o4b3o16b4ob3o22b4ob3o22b4ob3o\$4b4ob2o\$36bob5o23bob5o23bob2o26bob2o26bob2o\$6bob5o23b2obo2bo23b2obo3bo22b2obo26b2obo26b2obo\$6b2obo2bo59b2o3\$41b2o28b3o\$41bobo27bo\$37b2o2bo26bo3bo\$36bobo29b2o\$38bo28bobo2\$42b2o\$41b2o\$43bo!`

Edit: A cute little reduction by 3 gliders in the above synthesis:
`x = 29, y = 12, rule = B3/S233bo2bobo\$bobo2b2o\$2b2o3bo3\$7bo\$6bobo15bo2b2o\$o2bobo2bo11bo2bobo2bo\$4ob3o12b4ob3o2\$2bob2o16bob2o\$2b2obo16b2obo!`

Unimportant converters:
`x = 42, y = 33, rule = B3/S2336bo\$37bo\$35b3o\$39bo\$30bo8bobo\$31bo7b2o\$29b3o7\$32bo\$31bobo\$2o29b2o\$obo\$bo29b2o\$31bobo\$32bo3\$b2o\$obo\$2bo6b2o\$9bobo\$9bo19b3o\$31bo7b2o\$16bo13bo8bobo\$15b2o22bo\$2b3o10bobo17b3o\$4bo32bo\$3bo32bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1249
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

In reference to that p6, why don't I just fix the error and avoid dealing with the block-moving shenanigans?
`x = 420, y = 31, rule = B3/S23118bobo\$119b2o9bobo\$113bo5bo10b2o53bo\$114b2o15bo53bobo\$83bo29b2o70b2o\$61bo22b2o\$62bo20b2o8bo31bo52bobo\$60b3o29bobo21bobo5bobo7bo44b2o11bo\$92bobo22b2o5bobo6bo45bo12bobo16bo131bo\$57b3o33bo23bo7bo7b3o18b2o28b2o6b2o18bo131bo\$bobo12bo42bo59bo34bobo27bobo23b3o129b3o2b2o\$b2o12bo17bo24bo3bo16bobo11bo24bo2bo3bo30bo29bo35bo18bo21bo23bo17bobo15bo22bo2bo14bo20b2o6bo13b2o6bo\$2bo12b3o14bobo26bobo16b2o10bobo23bo2bo2bobo28bob2o9bobo14bob2o32bobo16bobo19bobo21bobo17b2o14bobo21bo2bo13bobo20bo5bobo13bo5bobo\$32bobo26bobo16bo11bobo19bo5bo3bobo28bobo4bobo3b2o15bobobo4bobo12bo11bobo16bobo19bobo21bobo17bo15bobo22b2o14bobo20bobo3bobo13bobo3bobo\$bo3b2o24b2obob2o22b2obob2o17b2o5b2obob2o14bobo8b2obob2o24b2obo4b2o5bo14b2obobo4b2o13b2o9b2obob2o12b2obob2o15b2obob2o17b2obob2o29b2obob2o34b2obob2o18b2o2b2obob2o11b2o2b2obob2o\$b2ob2o25bo2bob2o22bo2bob2o18b2o4bo2bob2o15b2o8bo2bob2o24bo2b2o4bo20bo2b2o6bo12bobo9bo2b2obo12bo2b2obo15bo2b2obo17bo2b2obo13b2o14bo2b2obo34bo2b2obo22bo2b2obo18b2obo\$obo3bo25b2o27b2o21bo7b2o30b2o29b2o8bo19b2o34b2o17b2o20b2o22b2o16bobo15b2o39b2o27b2o20b2o\$29bo126bo7b2o20bo9b3o23bo14bo3bo17bo3bo19bo3bo18bo12bo3bo36bo3bo24bo3bo17bo3bo\$30bo30b2o29b2o30b2o27b3o8bobo16b3o10bo14b3o5b3o15b4o18b4o20b4o32b4o37b4o17bo7b4o19b3o\$11b2o15b3o30bobo28bobo22bo6bobo26bo29bo7b2o4bo15bo5bo131b2o26bobo\$10b2o21b3o26bo30bo23b2o6bo7b3o56b2o18bo24b2o20b2o22b4o32b4o29b2o6b4o16b2o7b4o19b3o\$12bo20bo82bobo14bo57bo45b2o20bobo6bo14bo2bo32bo3bo27bo8bo3bo24bo3bo18bo2bo\$30b2o2bo99bo125bo7bobo13b2o36b2o39b2o17b3o7b2o20b2o\$29bobo209bo26b2o114bo\$31bo91bo112b2o2b2o23b2o19bo96bo\$123b2o95b2o15b2obobo21b2o15b2o2b2o\$122bobo86b2o6b2o15bo29bo15b2obobo\$212b2o7bo59bo\$211bo3b3o19b2o\$215bo21bobo\$216bo20bo!`

Another note: Although this is more for saving gliders than actually building syntheses, Seeds of Destruction can really help with cleanup after the relevant part of a reaction is finished, e.g. the second-to-last step in my synthesis of the eighth 16-bitter.

EDIT: A relatively interesting component:
`x = 45, y = 44, rule = B3/S2312bo\$13bo3bobo\$11b3o6bo\$20bo\$17bo2bo\$18b3o3\$20bo\$5bo13bo\$bo4b2o11b3o\$2bo2b2o6bo\$3o9bobo\$12bobo\$13bo2\$12bo5bo17b2o4b2o\$11bobo3bobo16bo2bobo2bo\$12b2o3b2o18b3ob3o7\$12bo\$13bo3bobo\$11b3o6bo\$20bo\$3bo13bo2bo\$4bo13b3o\$2b3o2\$20bo\$19bo\$19b3o\$13bo\$12bobo\$12bobo\$5b2o6bo\$6b2o\$5bo6bo5bo18b2o3b2o\$11bobo3bobo16bo2bobo2bo\$12b2o3b2o18b3ob3o!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1696
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Extrementhusiast wrote:In reference to that p6, why don't I just fix the error and avoid dealing with the block-moving shenanigans?

Oh, right...

Here is an improvement of a step in the p8 synthesis from a while back:
`x = 20, y = 28, rule = B3/S2311bo\$11bobo\$11b2o4bo\$16bo\$16b3o4\$3bo\$b3o\$o13bo\$b5o7b2o\$3bo2bo6bobo\$5b2o3\$9bo\$9b2o\$8bobo\$12b3o\$12bo\$13bo4\$17b3o\$17bo\$18bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1249
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

Finished yet another 16-bitter in 59 gliders:
`x = 447, y = 58, rule = B3/S23398bo\$397bo\$397b3o8\$71bobo\$71b2o21bo\$72bo19bobo\$93b2o\$122bo\$3bo117bo97bo\$3bobo112bo2b3o96b2o\$3b2o111bobo100b2o\$61bo32b2o21b2o\$2bo32bo21bob2o33bo124bo\$obo30bobo19bobo2b2o26bobo4bo43b2o23b2o22b2o18b2o8b2o20b2o25b2o28b2o19b2o30b2o17b2o48b2o19b2o\$b2o6b2o23b2o2bo2bo14b2o6b2obo2bo18b2o5bobo2bo12bobo6b2obo2bo9bo2bo2bo18bo2bo2bo17bo2bo2bo13bo2bo2bo3bobo19bo2bo2bo15bo4bo2bo2bo4bo18bo2bo2bo14bo2bo2bo25bo2bo2bo12bo2bo2bo43bo2bo2bo14bo2bo2bo\$8b2o21b2o5b4o22b2ob4o18bo7b5o13b2o6bob5o11b5o20b5o19b5o15b5o27b5o16bo5b5o3bo21b5o16b5o27b5o14b5o45b5o16b5o\$10bo19bobo82bo108b2o35b3o13b3o\$32bo7b2o27b2o16bo11b3o25b3o13b3o22b3o21b3o15b5o8b2o17b3o24b3o25b7o14b3ob3o25b3ob3o13bob4o44bob6o13bob2o\$40bobo26bobo13bobo11bo2bo16bo7bo2bo12bo2bo20bo2bo20bo2bo14bo4bo3b2o5bo15bo2bo14b2o7bo3bo7b2o15bo2bo2bo13bo2bobo2bo23bo2bobo2bo12b2obo2bo43b2obo4bo12b2obo\$2b2o37bo28bo15b2o12b2o10bo6b2o7b2o14b2o20bobo21bobo16bobo6bobo20b2o15bobo7b2ob2o7bobo34b2o5b2o23b2o2bo2b2o17b2o49bobo\$bobo108b2o4bobo46bo17b3obobo18b2o6bo41bo19bo145b2o\$3bo84bo22bobo48bo24bo2bo153b3o42bo3b2o\$6b2o80b2o31b3o39b2o21bo26b2o108bo22bo3b2o37b2o2bobo32b2o\$7b2o78bobo31bo40b2o2b2o45bobo106b2o21bo3bobo3b2o31bobo2bo34bobo\$6bo3b2o110bo42bobo45bo25b2o81bobo26bo3bobo70bo\$10bobo44b2o108bo70bobo6b2o50b2o54bo\$10bo47b2o12bo167bo6bobo48bobo2b2o\$57bo13b2o174bo52bo2bobo14b3o\$71bobo60b2o122b2o21b2o20bo18bo\$133bobo107b2o14b2o19b2o39bo\$135bo7b3o97bobo12bo23bo40b3o\$143bo99bo79bo\$144bo179bo\$135b2o165b3o94b2o\$134bobo165bo95b2o\$136bo166bo96bo10\$397b3o\$397bo\$398bo\$159b2o\$158b2o\$160bo!`

Again, I'm pretty sure that the start can be made more cheaply. (Also, I'm not sure if my technique used in the last two steps is new.)

On another note, I did some work on the griddle variant requirement, and got to here. It isn't much, but it's something:
`x = 93, y = 23, rule = B3/S2318bo\$17bo47bo\$17b3o43bobo\$15bo48b2o2bo\$13bobo41bo9bo\$14b2o42bo8b3o\$56b3o4bo\$3b2o14b2o40bobo\$2bo2bo12bo2bo19b2obo17b2o3b2obo16b2o\$bobob3o9bobob3o10bo5bobob3o19bobob3o15b3o\$o2bo4bo7bo2bo4bo10b2o2bo2bo4bo18bobo4bo12bo4bo\$b2ob4obo7b2ob4obo8b2o4b2ob4obo13b2o3bob4obo10bob4obo\$3bo4bo10bo4bo17bo4bo13bobo4bo4bo12bo4bo\$3bob3o11bob3o18bob3o16bo6b3o15b3o\$2b2obo12b2obo12b3o4b2obo24b2o16b2o\$36bo\$35bo\$40bo\$40b2o\$39bobo\$45b2o\$45bobo\$45bo!`

A somewhat more convoluted yet direct predecessor:
`x = 15, y = 23, rule = B3/S237bo\$6bo\$6b3o\$7bo\$7b3o3bo\$10b3obo\$5b2o2bo2b2o\$2b3ob3o\$4bo\$7b2o\$6bob3o\$6bo4bo\$4b2ob4obo\$3bo2bo4bo\$4bobob3o\$3o2b2obo\$2bo\$bo4bo\$5b2o\$5bobo\$b3o\$3bo\$2bo!`

Haven't yet worked on the tail-to-snake problem.

EDIT: Just did an initial check and came up with this predecessor:
`x = 11, y = 8, rule = B3/S239bo\$2b2o4bo\$3bo2bobobo\$3bobo2bobo\$2obobo\$o2bob2o\$2bobob3o\$3bo3bo!`

...which could come from here:
`x = 8, y = 7, rule = B3/S232b2o\$3bo2b2o\$3bobobo\$2obobo\$o2bob2o\$2bobo2bo\$3bo2b2o!`

However, it turns the tail into an eater instead of a snake.

EDIT 2: Remember that context? This is what it is referring to:
`x = 335, y = 39, rule = B3/S23202bo\$203bo\$201b3o2\$2bo\$obo\$b2o207bo\$208bobo\$106bo102b2o4bobo\$6bo97bobo70bo37b2o\$4bobo16bo81b2o4bo66bo27bo4bo4bo\$5b2o16bobo84bo5bobo57b3o13bo12bobob2o\$23b2o64bo16bo3b3o3b2o18bo11b2o11bo25bo3bo9b2o2bobo2b2o3b2o31bo\$17bo9bo40bo20bobo14b2o9bo17bo11b3o12bo10b3o12b2ob3o6bobo3bo7bo2bo21b2o7bobo14b2o32b2o24b2o\$15b2o9bo22bo18bobo18b2o2b2o10bobo26bo12b2o14bo11bo11b2o13bo11bo2bo20bobo7b2o14bobo31bobo23bobo\$13bo2b2o8b3o20bobo16b2o2b2o18b2o40bo8bo4bo14bo10bo40b2o21bo25bo33bo5bo19bo\$11bobo35b2o2b2o16b2o21bo22bo5bo9bo9bo20bo14b2ob2o23b2ob2o23b2ob2o8bo12b2ob2o7b2o4bo15b2ob2o4bobo14b2obo\$12b2o38b2o19bo15bo26bobo2b2o10bo11b2o17bo14b2obo24b2obo24b2obo8b2o12b2obo7bo2bob2o16b2obo5b2o15b2obob2o\$44b2o8bo7b2o4bo13b2o4bobo18b2o4bobo4b2o9bo10bobo2b2o13bo17bo2b2o23bo2b2o23bo2b2o4bobo14bo2b2o3bo2bo2b2o18bo2b2o21bob2o\$44bobo2bo12bobo2bobo12bobo2bobo19bobo2bobo16bo10bobobo2bo12bo14b2obobo2bo19b2obobo2bo19b2obobo2bo17b2obobo2bo3b2o20b2obobo2bo17b2obobo\$7bo37bo2bobo12bo2bobo14bo2bobo21bo2bobo17bo8bo2bo2bo2bo4b2o6bo14bobo2bo2bo19bobo2bo2bo19bobo2bo2bo17bobo2bo2bo25bobo2bo2bo17bobo2bo2b2o\$7b2o14bobo20b2obo14b2obo16b2obo23b2obo18bo12b2ob2o3b4o6bo17b2ob2o23b2ob2o23b2ob2o21b2ob2o29b2ob2o4b2o15b2ob4o2b2o\$6bobo14b2o23bo17bo19bo26bo8bo10bo6b4o4bo6b2o7bo19bo4bo22bo4bo22bo4bo20bo4bo3bobo22bo4bo2bo17bo7bo\$24bo23bobo15bobo17bobo24bobo6bobo9bo5b2o6bob3o10bo20bob4o22bob4o22bob4o20bob4o3b2o2b3o18bob6o18bob6o\$49bobo15bobo17bobo24bobo5b2o10bo14bo2bo10bo21bo27bo27bo25bo8bo2bo21bo25bo\$21b3o26b2o16b2o18b2o25b2o18bo14b2o10bo23bob2o24bob2o24bob2o22bob2o8bo21bob2o22bob2o\$21bo114bo10bo5b2o6bo23b2ob2o23b2ob2o23b2ob2o21b2ob2o3b2o24b2ob2o21b2ob2o\$22bo97b2o25bobo100b2o22bo2bo\$121b2ob3o19b2o102bobo22b2o\$120bo3bo21b2o102bo\$16b2o107bo121b2o36b2o\$17b2o227bobo24b3o9bobo\$16bo10b3o218bo26bo9bo\$27bo246bo\$28bo2\$32b3o\$32bo\$33bo!`

It's a p10 with a missing step, which could theoretically be broken up into two steps. (45 gliders are used for the rest of the steps.)
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1696
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Extrementhusiast wrote:Finished yet another 16-bitter in 59 gliders

Here are a couple of small improvements:
`x = 47, y = 22, rule = B3/S2344bobo\$44b2o\$45bo4\$2o10bo17b2o\$o2bo2bo4bo18bo2bo2bo\$2b5o4b3o18b5o\$42b3o\$2b5o7b2o15bob4o5bo\$bo4bo7bobo14b2obo2bo5bo\$bobo10bo21b2o\$2b2o\$42b3o\$42bo\$43bo3\$10bo\$9b2o\$9bobo!`

When I was playing around with your original synthesis this came up (it's not at all interesting or useful, but there it is):
`x = 30, y = 55, rule = B3/S2327bo\$26bo\$26b3o19\$5b2o\$b2o3bo\$bo2bo\$2bob2o\$b2obo\$2bobo\$obob2o\$2o16bo3b2o\$18b2o2bobo\$17bobo2bo10\$28b2o\$27b2o\$29bo10\$26b3o\$26bo\$27bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1249
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

I'm currently looking for some way to synthesize the left step to get to the right. (An exploded pre-block is also needed, but that is presumably easy.)
`x = 32, y = 12, rule = B3/S232o24b2o\$o2b2o21bo2b2o\$b2o2bo21b2o2bo\$3b2obo22b2o\$b2o2bo21b2o\$o2bo4b2o16bobo\$b2o4b2o14bobo\$6bo2bo13b2o\$5bo\$b3obo\$3bobo\$2bo!`

EDIT: Yet another 16-bitter in 29 gliders and one LWSS:
`x = 252, y = 37, rule = B3/S2311bobo\$11b2o\$12bo\$51bo\$11b3o38bo165bobo\$11bo38b3o166b2o\$12bo206bo2\$224bobo\$30bo30bo162b2o\$30bobo27bo158bobo3bo\$30b2o28b3o151bo5b2o\$212bobo5bo\$63b2o148b2o\$63bobo\$50bo2b2o8bo22bo2b2o32bo2b2o16bo2b2o96b2o\$50b4obo30b4o2bo30b4o2bo14b4o2bo35bo2b2o29bo2b2o20bo2b2o\$55bo35b2o35b2o11bo7b2o35b4o2bo27b4o2bo19b3o2bo\$52b3o33b3o34b3o11bobo4b3o25bo3bo12b2o32b2o23b2o\$52bo34bo2bo33bo2bo12b2o3bo2bo23bobob2o5b2o3b3o23b2ob2o3b3o23b2o\$88b2o34b2o11b2o6b2o26b2o2b2o4b2o2bo2bo23b2ob2o2bo2bo22bobo\$136bobo48b2o32b2o25bo\$98bo21bo17bo72b3o\$97bo23bo19b2o70bo\$97b3o19b3o19b2o40b2o27bo4b2o\$4bo89b2o87b2o32b2o5b3o\$4b2o17b3o64bo3bobo22b3o19b2o81bo\$3bobo17bo31b3o30bobo3bo26bo19b2o40b2o32b2o6bo\$24bo30bo33b2o29bo62b2o32b2o\$44b3o9bo157b2o8b3o\$46bo166bobo7bo2bo\$bo43bo169bo10bo\$b2o223bo\$obo53b3o164bobo\$56bo99b3o\$57bo100bo\$157bo!`

EDIT 2: Solved my question myself. A p6 in 72 gliders:
`x = 542, y = 40, rule = B3/S23465bo\$463bobo5bo\$464b2o3bobo\$307bo162b2o\$32bo275bo\$33bo54bo64bo74bo77b3o\$31b3o52bobo29bo35bo72bo\$87b2o27bobo12bo20b3o6bobo63b3o\$117b2o12bobo27b2o140bobo\$27bo103b2o29bo63bo77b2o\$28bo89bo30b2o3bobo45bobo22bo76bo\$26b3o89b2o11bo16bo2bo2b2o5b2o40b2o20b3o\$70bo46bobo10b2o16bo2bo3bo4bo2bo39bo66bo3bo\$70b2o4bo53bobo16b2o9bo2bo45bo13bo9bo34bobob2o5b2o4bo27b2ob2o4bo22b2o4bo24b2o4bo\$51bo17bobo5bo83b2o3bo34b2o5bobo12b2o3b2o2bobo34b2o2b2o4bobo2bobo26b2obobo2bobo20bo2bo2bobo22bo2bo2bobo34b2o4bo14b2o4bo36b2o4bo24b2o3bo15b2o3bo\$50bo24b3o87bo34bobo5bo2bo10bobo3bo3bo2bo44bo3bo2bo21bo7bo3bo2bo20b2o3bo2bo22b2o3bo2bo32bo2bo2bobo12bo2bo2bobo34bo2bo2bobo24bo2bobo15bo2bobo\$50b3o68b2ob2o26b2ob2o5bo2b3o34bo3b2ob2o18b3ob2o46b3ob2o23b2o6b3ob2o23b3ob2o25b3ob2o34b2o3bo2bo12b2o3bo2bo34b2o3bo2bo20b3o3bo2bo11b3o3bo2bo\$41bo5bo38b2o6bo27bobo28bobo5b2o44bobo21bobo49bobo23b2o9bobo24bo3bo26bo3bo37b3ob2o15b3ob2o37b3ob2o21bo2b3ob2o12bo2b3ob2o\$25bo7bo6bobo5b2o24b3o8bo2bo4b2o27bo2bo27bo2bo4bobo43bo2bo20bo2bo48bo2bo14b3o16bo2bo24b2o2bo26b2o2bo36bo3bo16bo3bo38bo3bo25bo3bo14b2o2bobo\$25b2o6b2o5b2o5b2o27bo9b2obo3bobo27b2obo27b2obo50b2obo20b2obo48b2obo15bo17b2obo25b2obo27b2obo36b2o2bo16b2o2bo38b2o2bo25b2o2bo14b3o3bo\$9bobo12bobo5bobo3b2o11b3o21bo7b3o2bo31b3o2bo25b3o2bo48b3o2bo18b3o2bo46b3o2bo15bo15b3o2bo18bo5b2o2bo26b2o2bo7bo31b2o19b2o5bo14b2o19b2o17bo10b2o15b2o2b2o\$4bobo2b2o26bobo11bo31bo2bo33bo2bo27bo2bo31b3o16bo2bo20bo2bo48bo2bo28bo4bo2bo18bobo4bo2bo23bo3bo2bo8bo30b2o12bo6b2o7bobo11bobo17b2o17bobo8b2o19b2o\$5b2o3bo27bo13bo31b2o35b2o29b2o32bo19b2o22b2o50b2o27bobo5b2o20b2o5b2o23bobo3b2o9b3o19b3o5bobo13b2o3bobo7b2o14bo18bo18b2o2b2o5bo20bo\$5bo21b3o157bo124b2o60bobo37bo2bobo15b2o5bo43bobo13b2o6b2o4bobo18bobo\$10b2o17bo313bo31bo37bo3b2o29bo38b2o12bobo5bo7b2o19b2o\$9b2o17bo309b2o3b2o93bobo6b2o29bobo22bo\$11bo325bobo2bobo79bo14b2o6bobo29b2o\$2o316b2o19bo83b2o14bo31b2o6bo\$b2o249b3o62bobo103bobo46b2o\$o253bo51b3o10bo70bo46b2o32bo4b3o\$35b2o216bo54bo12b3o40b3o7bo14b2o47b2o38bo\$36b2o10b2o257bo13bo44bo7b2o13bobo29b3o13bo39bo\$35bo11b2o273bo42bo7bobo47bo\$39b3o7bo372bo\$41bo382b3o\$40bo383bo\$425bo\$399b2o\$399bobo\$399bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1696
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Here's my very first synthesis... Already known for sure, but still "yay!"
Spark coil on boat with 5 gliders...
`x = 22, y = 8, rule = B3/S2320bo\$bo11bo4b2o\$2bo11b2o3b2o\$3o10b2o\$4b3o\$6bo13bo\$5bo13b2o\$19bobo!`
This is game of life, this is game of life!
Loafin' ships eaten with a knife!
towerator

Posts: 328
Joined: September 2nd, 2013, 3:03 pm

### Re: Synthesising Oscillators

Yet another 16-bitter in 18 gliders:
`x = 95, y = 31, rule = B3/S2355b2o\$20bo33b2o\$21bo28bobo3bo9bo\$19b3o29b2o11b2o\$51bo13b2o\$26bo\$25bo\$21bo3b3o20bobo\$22bo26b2o\$20b3o26bo\$25bo\$26bo\$7bo16b3o15bobo\$6bo36b2o14b2o\$6b3o12bo10bo10bo14bo2bo25b2obo\$21b3o6b2o27b3o25bob2o\$2bo21bo6b2o29b2o4b3o20b2o\$3bo17b3o35b3o2bo3bo19b3o2bo\$b3o17bo37bo3bobo3bo18bo3bobo\$64bo28bo\$3o\$o23b2o\$bo21bobo\$25bo20bo\$46b2o11b3o\$45bobo11bo\$60bo2\$63bo\$62b2o\$62bobo!`

EDIT: A p3 in 28 gliders and one LWSS:
`x = 190, y = 47, rule = B3/S23140bo\$141b2o\$140b2o5\$146bo\$147bo\$145b3o5\$160bobo\$160b2o\$161bo\$158bo\$156bobo\$157b2o\$150bo\$151bo\$149b3o2\$22bobo16bo138b2o\$2bo20b2o15bo31bobo106bo\$obo20bo16b3o30b2o3bo102bobo\$b2o15bobo52bo2b2o33bobo68b2o\$19b2o48bo7b2o20bo12b2o6bo44bo19b2o\$19bo23bo24bobo27bobo11bo6bobo8bo33bobo18bobo\$3o29bo8b2o21b2obobobo22b2obobobo13b2obobobo6bo33bobobo18bobo\$2bo29bo9b2o20bob2obobo22bob2obo2bo12bob2obo2bo5b3o31bobo2bo16b2o2bo\$bo30bo37bo29bobo18bobo40bobobo16bobobo\$44b2o5bo22bobo24bo20bo42bobo18bobo\$44bobo3b2o22b2o90bo20bo\$44bo5bobo22bo39b2o2b2o\$34bo35b3o24b3o16b2ob2o3b2o\$22b2o10bobo33bo28bo15bo7b2ob2o\$23b2o9b2o35bo26bo25b4o\$22bo5b3o69b3o15b2o5b2o\$30bo69bo18b2o2bo\$29bo71bo16bo3b2o\$122bobo2\$150b3o\$152bo\$151bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1696
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Extrementhusiast wrote: A p3 in 28 gliders and one LWSS

Mark Niemiec constructed this in the same way back in July, but he used a much less efficient final step. Here are two variants that he also built with the final step replaced by your version:
`x = 135, y = 70, rule = B3/S2385bo\$83bobo\$84b2o5\$89bo\$90b2o\$89b2o4\$105bo\$104bo\$104b3o2\$100bobo\$101b2o\$101bo\$93bo\$51bo42b2o\$51bobo39b2o\$51b2o\$44bo79b2o\$43bo81bo\$obo40b3o79bob2o\$b2o123bo\$bo38bobo26bo39bo20bo\$28bo12b2o5bo6b2o11bobo37bobo17b2o\$8bo18bobo11bo5bobo4b2o6bo4bobo37bobo20bo\$6b2o20b2o6b3o9b2o6bo4bo5bobobo35bobobo18bobo\$7b2o21b2o6bo11b2o9b3o4bobobo35bobobo16bobobo\$30bobo4bo8bo3bobo5bo10bo2bo36bo2bo17bo2bo\$31bo15bo3bo5b2o11b2o38b2o19b2o\$4bo3b2o35b3o9bobo\$4b2ob2o\$3bobo3bo44b3o\$56bo\$55bo3\$44b2o\$45b2o\$44bo49b2o\$95b2o\$94bo8\$103b2o19b2o\$104bo20bo\$104bob2o17bob2o\$105bo20bo\$109bo20bo\$107b2o19b2o\$109bo20bo\$109bobo8bo9bobo\$108bobobo5b2o9bobobo\$109bo2bo2b2o2b2o9bo2bo\$110b2o3bobo15b2o\$115bo2\$107b3o\$109bo\$108bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1249
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

This messages has about a week worth of accumulated updates, so please bear with me (some have been superceded by subsequent posts).

extrementhusiast wrote:Finished a third in 32 gliders:

Since this reduced the original by 11 gliders, it also did the same for the following two that are based on it:
`x = 176, y = 60, rule = B3/S23152bo\$138bo11boo\$139bo11boo\$137b3o\$57bo83bo\$58bo82bobo\$14bobo39b3o29bobo50boo\$o13boo72boo\$boo12bo44bo28bo\$oo57bo34bobo\$59b3o28boobboo\$24bo38b3o16boo5bobo3bo6boo10boo6boo10boo6boo\$23bo39bo14boobboo7bo6boobboo9bobobboobboo9bobobboobboo\$23b3o38bo13boo18boo13boo3boo13boo3boo\$\$26bo\$25boo15boo18boo18boo18boo18boo18boo\$11boo7boo3bobo13bobo17bobo17bobo17bobo17bobo17bobo25boo\$8bobbo8bobo15bobbo16bobbo16bobbo16bobbo16bobbo16bobbo26bobbo\$7bobobobbo5bo16bobobobbo12bobobobbo12bobobobbo12bobobobbo12bobobobbo12bobobobbo7b3o12bobobobbo\$8bobbobobo22bobbobobo12bobbobobo12bobbobobo12bobbobobo12bobbobobo12bobbobobo6bo15bobbobobo\$11bobbo26bobbo16bobbo16bobbo16bobbo16bobbo16bobbo8bo17bobbo\$10boo28boo18boo18boo18boo18boo18boo28boo15\$19boo18boo18boo18boo18boo18boo28boo18boo\$18bobbo16bobbo16bobbo16bobbo16bobbo16bobbo17bo8bobbo16bobbo\$17bobobobbo12bobobobbo12bobobobbo12bobobobbo12bobobobbo12bobobobbo15bo6bobobobbo12bobobobbo\$12bo5bobbobobo12bobbobobo12bobbobobo12bobbobobo12bobbobobo12bobbobobo12b3o7bobbobobo12bobbobobo\$10bobo8bobbo16bobbo16bobbo16bobbo16bobbo16bobbo26bobbo16bobbo\$5bobo3boo7boo17bobo17bobo17bobo17bobo17bobo27bobo20boo\$6boo31boo18boo18boo18boo18boo28boo\$6bo\$\$7b3o48bo24boo18boo18boo3boo23boo3boo\$9bo49bo19boobboo14boobboo6bo7boobboobbobo19boobboobbobo\$8bo48b3o19boo18boo6bo3bobo5boo6boo20boo6boo\$61b3o43boobboo\$31boo30bo42bobo\$17bo12boo30bo50bo\$17boo13bo80boo\$16bobo45b3o45bobo35boo\$64bo84bobo\$65bo85bo\$153b3o\$140boo11bo\$141boo11bo\$140bo!`

extrementhusiast wrote:Finished an eighth in 52 gliders and one LWSS:

This one is down to 51, as one glider can be saved in the penultimate step by moving the pi-cleanup glider slightly so it doesn't leave a spurious block:
`x = 53, y = 37, rule = B3/S2328bobo\$o27boo\$boo26bo\$oo6\$31bo\$31bobo\$31boo\$\$10boo\$5boo3boo33boo\$5bobo37bobo\$8bo39bo\$9bo39boboo\$6b3o3bo33b3o3bo\$6bobb4o33bobb3o\$9bo12bo26bo\$10bo10boo\$9boo10bobo4\$28boo\$28bobo\$28bo\$\$16bobo\$16boo\$bboo13bo\$bobo\$3bo12boo\$16bobo\$16bo!`

(I noticed that you use a 15-bit still-life. Your last step in creating this (boat+shillelagh to beehive+tab) takes 4 gliders in 1 step; much better than my previous 11 in 4 steps!)

Here is one trivial one I stumbled on by accident (e.g. the first step was old boilerplate, and I was expecting the last step to be hard, and surprised that one glider could do it), made from one of the final 15-bit ones. With 6 extra gliders, so this rings in at 69:
`x = 107, y = 15, rule = B3/S23bboo18boo18boo18boo18boo18boo\$bobo17bobo17bobo17bobo17bobo17bobo\$o3boo14bo3boo14bo3boo14bo3boo14bo3boo15bobboo\$oboobbo13boboobbo13boboobbo13boboobbo13boboobbo15boobbo\$bobobo15bobobo15bobobo15boboboo14boboboo16boboo\$4bo19bo19bo18bo13b3o3bo19bo\$62boo15bobboo18boo\$78bo\$21boo18boobb3o\$3o18boo18boobbo\$bbo33bo9bo\$bo34boo3bo\$3b3o29bobobboo\$3bo36bobo\$4bo!`

Here is a second from 28 (once I realized I could use the same mechanism that's used for welding together a cis-shillelagh inducting a still-life. Back in the '90s, when I was building the 14-and 15-bit pseudo-still-lifes, that was the only geometry that was unusually difficult to synthesize from either side):
`x = 153, y = 5590bo\$90bobo\$90boo3\$5bo3bo\$6boobobo18boo18boo18boo18boo\$5boobboo20bo19bo19bo19bo47bo\$26boobo16boobo16boobo16boobo16boobo16boobo7boo7boobo\$26bob3o15bob3o15bob3o15bob3o3bo11bob4o14bob4o6boo6bob4o\$94bobo15bo19bo19bo\$bo25boo10bo7boo18boo18boo5boo11boobboo14boobboo14boobbo\$bbo7boo15boo11bo6boo18bo19bo19bo19bo19bo3boo\$3o6boo27b3o27bo19bo4bo14bo19bo19bo\$5bo5bo38bo16boo18boo3boo13boo18boo5boo11boo\$5boo43bobo39bobo39bobo\$4bobo43boo82bo\$131boo\$11bo35bobo80bobo\$10boo36boo82bo\$10bobo35bo\$\$44boo\$43bobo\$45bo14\$6boobo16boobo16boobo16boobo16boobo16boobo\$6bob4o14bob4o14bob4o14bob4o14bob4o14bob4o\$12bo19bo19bo19bo19bo19bo\$7boobbo15boobbo15boobbo15boobbo15boobbo15boobbo\$7bo3boo14bo3boo14bo3boo14bo3boo14bo3boo14bobbo\$8bo19bo19bo19bo19bo19boo\$7boo20bo19bo19bo19bo9bo\$28boo18boo17bobo17bobo9bobo\$14bobo27bo9bo12boo18boo6boobboo\$14boo29boo5boo41bobo\$15bo28boo7boo35boo3bo\$91boo\$3o12boo35bo29b3o5bo\$bbo12bobo33boo31bo\$bo9bo3bo27b3o5bobo29bo\$11boo30bo\$10bobo31bo!`

Matthias's new house-to-snake conversion allows this one to be made from 35 gliders:
`x = 154, y = 98, rule = B3/S2344bobo\$45boo14bo\$45bo13boo\$60boo\$54bo44bo\$53bo44bo\$53b3o42b3o\$74b3o17b3o\$68boo18boo18boo18boo18boo\$69bo19bo19bo19bo19bo\$41boo25bo3bo15bo3bo15bo3bo15bo3bo15bo3bo\$40bobo25b5o15b5o15b5o15b5o15b5o\$42bo\$70bo19bo19bo19bo17b3o\$58boo9bobo17bobo17bobo10bo6bobo16bobbo\$58bobo9bo19bo19bo9bobo7bo18boo\$58bo62boo\$124boo\$53boo70boo\$28boo18boobboo70bo\$7bobo17bobbo16bobbo3bo\$8boo17bobbo16bobbo\$8bo19boo18boo\$\$7boo\$6bobo\$8bo12\$8boo18boo18boo18boo18boo18boo18boo18boo\$9bo19bo19bo19bo19bo19bo19bo19bo\$8bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo\$8b5o15b5o15b5o15b5o15b5o15b5o15b5o15b5o\$\$8b3o17b3o17b3o15b7o13b7o13b3ob3o13b3ob3o13b3ob3o\$8bobbo15bo3bo7bo7bo3bo7bo6bobbobbo13bobbobbo12bobbobobbo11bobbobobbo11bobbobobbo\$9boo16booboo5bobo7booboo7bobo43boo5boo11boo5boo11boobbobboo\$38boo19boo\$8bo\$8boo30b3o13b3o72bo\$7bobo32bo13bo73boo\$12bo28bo15bo72bobo\$11boo75boo\$11bobo73bobobboo\$89bobbobo33b3o\$37boo21boo30bo37bo\$38boo19boo68bo\$37bo23bo69b3o\$131bo\$132bo\$91b3o\$91bo\$92bo17\$8boo18boo18boo18boo18boo18boo\$9bo19bo19bo19bo19bo19bo\$8bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo\$8b5o15b5o15b5o15b5o15b5o15b5o\$\$6b3ob3o14bob4o14bob4o14bob4o14bob4o14boboo\$5bobbobobbo13boobobbo13boobobbo13boobobbo13boobobbo13boobo\$5boobbobboo18boo18boo18bobo17bobobboo\$boo54bo15bo19bobboo\$obo52boo41bo\$bbo3b3o37boo8boo34boo\$8bob3o34boobbo39bobo\$7bobbo35bo3boo41bo\$11bo38bobo\$57b3o\$57bo\$58bo\$54b3o\$56bo\$55bo!`

Two more from standard boilerplate from 16 and 22 (first one wasn't on the list because it could have been made from the second; second one WAS on the list because it was presumed that it led to the first, rather than the other way around):
`x = 157, y = 32, rule = B3/S2310bo\$o9bobo10bo\$boo7boo10bo\$oo20b3o110bo\$9bo126bo\$7bobo124b3o3bo\$8boo43bobo74bo7boo\$54boo75boo6boo\$54bo75boo\$3bo83bobo\$4bo53bo24bo3boo33bo\$bb3o52bo26boobbo34bo\$22bo34b3o23boo23boo11b3o4boo\$22bobo5boo18boo9b3o6boo18boo16bobo17bobo20boo\$22boo6bo19bo10bo8bo4boo13bo4boo14bo3boo14bo3boo14bo3boo\$32bo19bo9bo9bo3bo15bo3bo15bo3bo15bo3bo15bo3bo\$31boo18boo18boobbo15boobbo15boobbo15boobbo15boobbo\$29bobbobo14bobbobo14bobbobo14bobbobo14bobbobo14bobbobo14bobbobo\$6bobo20boobboo14boobboo14boobbo15boobbo15boobbo15boobbo15boobbo\$7boo\$7bo51boo\$59bobo\$59bo\$\$8b3o43b3o\$10bo45bo\$9bo9boo34bo\$19bobo37bo\$19bo38boo\$14boo42bobo\$13boo\$15bo!`

Another two trivial ones (again, first was not on the list because it could have been made from the second). This didn't use standard mechanisms, but I just stubstituted a barge in a custom 14-bit synthesis with a tub w/tail and voila! (I tried unsuccessfully to start with the 14-bit object that had a tub, and then turn it into an eater. Then it occurred to me that it might be easier if it was just an eater to start with, and it worked!)
`x = 158, y = 25, rule = B3/S2392bo11bo\$93boo7boo\$92boo9boo\$137bo\$138bo\$136b3o\$140bo\$49bo90bobo\$11bo36bo19bo14bobo12bo41boo\$11bobobbo4boo18boo5b3o10boo4bobo14boo5boo4bobo11boo18boo18boo\$11boobboo5bo19bo19bo4bobo14bo7bo4bobo12bo3boo14bo3boo14bobboo\$bo13bobo4bobo17bobo6b3o8bobo3bo23bobo3bo13bobobbo14bobobbo14bobobbo\$boo20bobo17bobo5bo11bobo16boo9bobo17boboo16boboo16boboo\$obo21bo19bo7bo11bo16bobo10bo20bo19bo19bo\$5b3o75bo29bobo17bobo17bobo\$5bo107boo18boo18boo\$6bo78bo\$85boo7boo\$84bobo8boo\$89boo3bo\$88bobo\$90bo\$100boo\$99boo\$101bo!`

So, 5 more off the list; now it's down to 53 (now 52!).

This is a partial synthesis of one that has been on my list for years (part of the "let's make sure we can put a cis-shillelagh on anything" project). It relies on one of the 8 remaining unsolved 18-bit pseudo-still-lifes:
`x = 138, y = 22, rule = B3/S23109bo\$108bo\$108b3o\$\$23bo83bo\$24bo3bo79bo\$22b3oboo78b3o\$27boo37bobo\$62bo3boo\$bboboo14boo10boboo16boboo7boobbo4boboo16boboo9bo6boboo18boo\$bboobo15boo9boobo16boobo6boo8boobo16boobo9boo5boobo17bobo\$6boo12bo15boo18boo18boo18boo6bobo9boo14bo3boo\$7bo29bo11boo6bo11boo6bo11boo6bo11boo6bo13bo5bo\$oobobo24boobobo13bobobobo13bobobobo12bobbobobo12bobbobobo15bobobo\$obooboo23bobooboo15booboo15booboo11boobbooboo11boobbooboo15booboo\$67bo\$62bo3boo\$60bobo3bobo34boo\$61boo39bobo\$23boo79bo\$22bobo\$24bo!`

I have come up with a few incomplete syntheses for four more; two more snake-based ones (each missing one vital step), plus two trivial derived carrier-based ones. The first one lacks a suitable means of turning an eater into a snake - the same mechanism as is used in the second gets too close in the first. The second, on the other hand,needs a mechanism to collapse a tub - the same mechanism as used in the first also gets too close. There is a way of doing it with a glider and mutated LWSS, but I'm not sure how to get those in place. Perhaps you could figure these out?
`x = 177, y = 125, rule = B3/S2351bo31bo19bo19bo\$49boo27boobbobo13boobbobo13boobbobo\$5bo44boo26bobobbo14bobobbo14bobobbo\$3bobo19boo28boo23b3o17b3o17b3o\$4boo19boo17bo10boo22bo19bo19bo\$boo39bobo19bo15bo19bo18boo\$obo40boo18bo15boo14b3oboo\$bbo46bo13b3o31bo\$40bo6bobo7boo37bo\$41bo6boo7bobo\$39b3o15bo\$35b3o\$37bo\$36bo23boo\$60bobo\$44b3o13bo\$46bo\$45bo\$35b3o\$37bo13b3o\$36bo14bo\$52bo11\$147bo\$148bo\$146b3o\$156bobo\$82bobo64bobo4boo\$80bobobobo62boo6bo\$81booboo64bo\$\$43bo19bo19bo27b3o40bo\$38boobbobo13boobbobo13boobbobo13boo3boo5bo3bo3boo3boobo11boo3boobo6boo13boo3boo\$38bobobbo6bo7bobobbobo12bobobbobo12bobobbobo8bo3bobobboboo11bobobboboo6bobo12bobobbobbo\$40b3o6boo9b3obbo14b3obbo14b3obbo6boo6b3o17b3o27b3obboo\$39bo9bobo7bo5boo12bo5boo12bo5boo5bo6bo19bo29bo\$39boo18boo18boo18boo18boo18boo28boo\$44boo66bo33boo\$43bobo6bo94boo3boo\$45bo5boo93bo5bobo\$51bobo98bo\$\$48b3o\$50bo\$49bo7\$141b3o\$140bo3bo\$144bo\$142boo\$142bo\$80bobo67bo\$74bo5boo60bo8bobo\$69bobboo7bo64boo3bobobo\$70bobboo73b4oboo\$68b3o\$93bo19bo19bo19bo\$73bo15boobobo14boobobo14boobobo14boobobo14boobboo\$65bo6boo15bo3bo15bo3bo6bo8bo3bobo13bo3bobo13bo3bobo\$66bo5bobo15b3o17b3o6boo9b3obbo14b3obbo14b3obbo\$64b3o10b3o8bobo17bobo8bobo6bobo4boo11bobo4boo11bobo4boo\$77bo10boo18boo18boo18boo18boo\$78bo35boo\$60b3o50bobo6bo\$62bo12bo39bo5boo\$61bo12boo45bobo\$74bobo\$118b3o\$120bo\$70b3o46bo\$72bo\$71bo10\$61boo\$60bobo\$62bo\$55bo\$56bo\$54b3o\$\$13bo133bo\$14bo47bobo83bo\$12b3o47boo82b3o\$16bo46bo92bobo\$15bo133bobo4boo\$15b3o17boo18boo92boo6bo\$35boo18boo93bo\$\$62bobo89bo\$9boobboo14boobboo14boobboo7boo15boobboobo12boobboobo12boobboobo12boobboobo6boo14boobboo\$9bo3bobo13bo3bobo13bo3bobo7bo15bo3boboo12bo3boboo12bo3boboo12bo3boboo6bobo13bo3bobbo\$10b3obbo14b3obbo14b3obbo24b3o17b3o17b3o17b3o27b3obboo\$8bobo4boo11bobo4boo11bobo4boo8bo12bobo17bobo17bobo17bobo27bobo\$8boo18boo18boo15bobo10boo18boo18boo18boo28boo\$65boo20boo18boo37boo\$87boo18boo38boo3boo\$64bo81bo5bobo\$63boo44boo41bo\$49boo12bobo43bobo\$48bobo58bo\$50bo8b3o\$59bo\$60bo!`

Here's an almost-synthesis of one of the 12 unsolved 19-bit pseudo-still-lifes. It's complete except for one vital step, that needs a very specialized spark, similar to the one produced by the period-12 Crown oscillator, but that doesn't quite work, as the back end of it needs to be missing:
`x = 161, y = 141, rule = B3/S23104bo\$103bo\$53bobo47b3o\$54boo19boo18boo18boo18boo18boo\$54bo19bobbo16bobbo16bobbo16bobbo16bobbo\$75b3o17b3o17b3o17b3o17b3o\$57boo4bo39bo\$58boobbo12b3o17b3o4boo11b3o17b3o17b3o\$57bo4b3o9bobbo16bobbo4bobo9bobb3o14bobb3o14bobb3o\$74boo18boo18boo4bo13boo4bo13boo4bo\$63bo55bobo17bobo17boo\$62boo34b3o18bobo17bobo\$62bobo35bo19bo19bo\$99bo42boo\$95bo46bobo\$95boobboo41bo\$94bobobbobo\$99bo16\$5boo18boo18boo18boo18boo28boo18boo18boo\$4bobbo16bobbo16bobbo16bobbo16bobbo26bobbo16bobbo16bobbo\$5b3o17b3o17b3o17b3o17b3o27b3o17b3o17b3o\$\$5b3o17b3o17b3o17b3o17b3o27b3o17b3o17b3o\$4bobb3o14bobb3o14bobb3o14bobb3o14bobb3o24bobb3o14bobb3o14bobb3o\$4boo4bo13boo4bo13boo4bo13boo4bo13boo4bo23boo4bo13boo4bo13boo4bo\$bo7boo18boo18boo18boo3bobo12boo28boo18boo18boo\$bbo21boo18boo18boo9boo7boo28boo18boo18boo\$3o21bobo17bobo17bobo8bo8bobo9bobo15bobbo16bobbo16bobbo\$5b3o17bo19bo19boo18boo9boo17b3o17b3o17b3o\$5bo91bo\$bboobbo44boo60b3o17b3o17b3o\$bobo43bobboo40boo18bobbo16bobbo17bobbo\$3bo43boo3bo39bobo5bo11boo18boo21boo\$46bobo43bo6boo\$77b3o8boo9bobo\$79bo7boo\$78bo10bo\$93bo\$83boo7boo38boo\$82bobo7bobo33boobbobo\$84bo42bobobbo\$129bo\$85boo\$85bobo45bo\$85bo47boo\$132bobo13\$5boo18boo18boo18boo18boo18boo18bo9boo18boo\$4bobbo16bobbo16bobbo16bobbo16bobbo16bobbo15bobobboo4bobbo16bobbo\$5b3o17b3o17b3o17b3o17b3o17b3o16boob3o5b3o17b3o\$127boobo\$5b3o17b3o17b3o17b3o17b3o17b3o20b3o4b3o17b3o\$4bobb3o14bobb3o14bobb3o14bobb3o14bobb3o14bobb3o19bo4bobb3o14bobb3o\$4boo4bo13boo4bo13boo4bo13boo4bo13boo4bo13boo4bo23boo4bo13boo4bo\$9boo18boo18boo18boo18boo18boo28boo18boo\$4boo18boo18boo18boo18boo18boo23bo4boo18boo\$4bobbo16bobbo16bobbo16bobbo16bobbo16bobbo19bobo4bobbo16bobbo\$5b3o17b3o17b3o17b3o17b3o17b3o20boo5b3o17b3o\$123b3o\$3b3o17b3o17b3o17b3o17b3o17b5o17bo7b5o17b3o\$3bobbo16bobbo16bobbo16bobbo16bobbo16bo4bo15bo8bo4bo16bobbo\$5boo18bobo17bobo17bobo17bobo18bobo27bobo18boo\$o9bo15bo19bo19bobo17bobob3o13boo28boo\$boo5boo41bo15bo19bobbo37b3o\$oo7boo38boo40bo38bo\$46boobboo77bo3boo\$bbo43bobo85boo\$bboo42bo86bo\$bobo5b3o\$11bo\$10bo11\$74b3o\$73bo3bo\$77bo\$75boo5bo42bo\$75bo7bo39bobo\$81b3o40boo\$5boo18boo18boo18boo8bo9boo\$4bobbo16bobbo16bobbo16bobbo16bobbo18boo18boo\$5b3o17b3o17b3o17b3o17b3o18boo18boo\$\$5b3o17b3o17b3o17b3o17b3o18boo18boo18boo\$4bobb3o14bobb3o14bobb3o14bobb3o10bo3bobb3o13bobob3o13bobob3o13bobob3o\$4boo4bo13boo4bo13boo4bo13boo4bo8bo4boo4bo12boo5bo12boo5bo12boo5bo\$9boo18boo18boo18boo6bo3boo6boo18boo18boo18boo\$4boo18boo18boo18boo13bo4boo17boo18boo18boo\$4bobbo16bobbo16bobbo16bobbo12bo3bobbo15bobobo15bobobo15bobobo\$5b3o17b3o17b3o17b3o17b3o18boo18boo18boo\$\$5b3o17b3o17b3o17b3o17b3o18boo18boo\$5bobbo15bobbo16bobbo16bobbo16bobbo18boo18boo\$7boo15boo18boo19boo18boo\$81b3o40boo\$40boo41bo39bobo\$39bobo40bo42bo\$41bo\$43b3o\$7boo34bo\$6bobobboo31bo\$8bobbobo\$11bo\$\$7bo\$6boo\$6bobo!`

Sokwe wrote:Here's an 8-glider synthesis of a 15-cell still life:

Update: I created the 7-glider synthesis on 2013-10-29. It was based on a predecessor that I found from a 20x20 methuselah from output collected from Andrzej Ostraczynski's screen saver, from a source suggested by Lewis (on the Accidental Discoveries thread, I think). There are hundreds of mundane objects logged there, plus dozens of exotic ones I had never seen before. The text files list each object, plus a number used to seed the random number generator to produce the initial 20x20 random muck that produces it. I think that many useful synthesis could be gleaned from them. I looked at a few so far, and only found a couple I could salvage, but there are bound to be many others. One was the above-mentioned 15-bit still-life (a 3-glider improvement), and another was this 16-bit still-life that I had spent a fair bit of time trying to unsuccessfully synthesize just a week earlier, before I found a very nice natural predecessor from the screen saver results:
`x = 127, y = 36, rule = B3/S2388bo\$89bo3bobo\$87b3o3boo\$94bo\$96b3o\$96bo\$97bo17bobo\$108bo6boo\$108bobo5bo\$108boo\$\$79bo\$80boo\$79boo3\$6bo117boo\$booboo18bo19bo19bo29bo28bobbo\$obobboo16bobo17bobo17bobo27bobo27bobo\$bbo20boo18boo18boo28boo27booboo\$123bobo\$123bobbo\$63boo28boo29boo\$42boo18bobbo26bobbo\$41bobo19boo28boo\$43bo69bo\$45boo65boo\$45bobo64bobo\$45bo4\$107boo\$79boo25boo\$80boo26bo\$79bo!`

Sokwe wrote:That natural predecessor is actually much more generous. After playing around with gencols for a while I managed to work out this 4-glider synthesis:

Much nicer! This also leads to the following trivial variants:
`x = 151, y = 29bobo39bo\$bboo37bobo\$bbo39boo3\$12bo39bo39bo39bo\$oo10bobo25b3o9bobo11boo24bobo37bobo\$boo6bobboo12boo14bo6bobboo11bobbo20bobboo35bobboo\$o9bo14bobbo12bo8bo14bobbo21bo15boo22bo15boo\$8b3o15boo20b3o15boo20b3o15boo20b3o15boo\$30bo39bo39bo39bo\$8bo17b5o17bo17b5o17bo17b5o17bo17b5o\$7boo17bo20boo17bo20boo17bo20boo17bo\$7bobo19boo16bobo19boo16bobo19boo16bobo19boo\$29boo38boo39bo39bo\$108bo40bo\$108boo38bo\$11b3o37b3o37b3o37b3o13bo\$11bo39bo39bo39bo15boo\$12bo39bo28boo9bo39bo\$82boo4bo35bo\$81bo5boo35boo\$87bobo33bobo\$132bo\$131boo\$131bobo\$125bo\$125boo\$124bobo!`

Sokwe wrote:Speaking of 4-glider syntheses, where did this one come from?

Update: Early last year, B. Shemyakin sent out an email including many glider syntheses from 3-5 gliders. All of the 3-glider ones were previously known, but quite a few of the 4- and 5-glider ones were new. This is one of those. (See my web page data under 18.2403 for this one, or "still-lifes from 4 gliders" for all of them.).

Sokwe wrote:Extrementhusiast used it in his synthesis of a period-6 oscillator. Speaking of which, his construction seems to lack these steps:

That's odd. Not only did I miss that, my version of his synthesis starts with the block, rather than a ship on the inductor. However, the block on the upper half of the inductor (that I call a "hand") can be made more easily directly, from 7 gliders. But this is moot, since the block on the bottom half can be made from 5, and the location of the block doesn't matter, as the block-to-table transformation is indifferent to orientation:
`x = 136, y = 73, rule = B3/S23106bobo\$107boo9bobo\$101bo5bo10boo\$102boo15bo\$101boo\$\$113bo\$104bobo5bobo7bo\$105boo5bobo6bo\$105bo7bo7b3o7boo\$62bobo12bo29bo23bobo\$62boo12bo6bo22bobbo3bo19bo\$63bo12b3o3bobo21bobbobbobo17boboo\$82bobo17bo5bo3bobo17bobo\$62bo3boo13booboboo12bobo8booboboo13boobo\$62booboo14bobboboo13boo8bobboboo13bobboo\$61bobo3bo14boo28boo18boo\$133bo\$112boo16b3o\$72boo31bo6bobo15bo\$71boo32boo6bo7b3o\$73bo30bobo14bo\$122bo\$\$111bo\$111boo\$110bobo9\$obo27bo\$boo26bo\$bo27b3o3\$106bobo\$107boo9bobo\$101bo5bo10boo\$102boo15bo\$10bo60bo29boo\$11boo57bo51bo\$10boo58b3o40bo7bo\$47boo18boo35bobo5bobo6b3o\$46bobbo16bobbo35boo5bobo\$47boo18boo36bo7bo17boo\$107bo23bobo\$43bo19bo19bo22bobbo3bo19bo\$42boboboo14boboboo14boboboo18bobbobboboboo14boboo\$42boboboo14boboboo14boboboo14bo5bo3boboboo14bobo\$41boobo16boobo16boobo15bobo8boobo16boobo\$41bobbo16bobbo16bobbo16boo8bobbo16bobboo\$42boo18boo18boo28boo18boo\$133bo\$112boo7b3o6b3o\$105bo6bobo6bo8bo\$18boo85boo6bo8bo\$17boo85bobo\$19bo\$15boo\$14bobo94bo\$16bo94boo\$110bobo4\$35b3o\$35bo\$36bo!`

Sokwe wrote:A variant can be synthesized in 8 gliders:

This also improves the tub-, beehive- and bookend- based versions by 1 (but not the snake one, as the convoluted mechanism needed to bring in a snake has too much close-by scaffolding that interferes with anything else coming from that direction).

Sokwe wrote:Elkies's P5 with tub in 28 gliders:

Update: Even though this doesn't improve that specific oscillator per se, the first step DOES improve the following 16-bit still-life by 1 (13 new way, 14 old way), plus at least 6 other related larger ones in my collection. It also allows Elkies's P5 with tub, boat, barge, etc. to be constructed from that still-life itself as a base:
`x = 123, y = 1226bo\$7bo\$5b3o\$16bo\$15bo\$15b3o3\$7bobo\$8boo\$8bo10bo\$18bo85bo\$18b3o83bobo\$104boo\$21boo\$21bobo12bobboo15bobboo15bobboo15bobboobboo11bo\$21bo13bobobbo14bobobbo14bobobbo14bobobbobbobo9bobobobbo\$5bo30boobo16boobo16boobo16boobo3bo12boob4o\$5boo4b3o24bo19bo19bo19bo19bo\$4bobo6bo15bo8bobo17bobo17bobo17bobo17bobo\$12bo15bo10boo18boo18boo18boo18boo\$28b3o\$39boo18boo\$39boo18boo\$14bo4b3o\$14boo5bo39b3o\$13bobo4bo40bo\$62bo12\$91bobo\$92boo11bobo\$92bo13boo\$106bo\$11bo78boo\$12boo6bobo68boo12bo\$11boo7boo14bo3bo15bo3bo15bo3bo9bo5bo3bo3boo10bo\$21bo13bobobobo13bobobobo13bobobobo13bobobobobbobo8bobobobbo\$14boo19boboboo14boboboo14boboboo14boboboo15boob4o\$15boobb3o14bo19bo19bo19bo21bo\$14bo6bo60boo18boo14bobo\$20bo41b3o17boo8bo9boo15boo\$62bo29boo3boo\$63bo27bobo4boo6b3o\$59b3o35bo8bo\$61bo40boo3bo\$60bo40boo\$103bo14\$60boo\$59boo33bobo\$55bobo3bo32boo\$56boo37bo\$56bo58bo\$79boo11bo6boo13bobobboo\$52bo27bo12bo6bo14boo3bo\$18bo3bo30boo24bo11b3o5bo19bo\$19boobobo27boo24bo19bo19bo\$18boobboo16bo19bo17bobo9b3o5bobo17bobo\$39bobo17bobo17bobo8bo8bobo17bobo\$24b3o13bo19bo19bo10bo8bo19bo\$24bo\$25bo24boo\$49bobo\$51bo7bo\$58boo\$58bobo8\$58bo\$49bobo5bo36bo\$52bo4b3o35bo\$4bo3bo43bo40b3o\$bboboboo41bobbo\$3boobboo17bo23b3o3bo19boo18boo\$25bobo15bobo9bobo18boo18boo\$3o23bo17boo10bo\$bbo41bo\$bo3bo19bo29bo\$4bobobboo13bobobboo23bobobboo15bobboo15bobboo15bobboo\$5boo3bo14boo3bo24boo3bo14bobobbo14bobobbo14bobobbo\$9bo19bo29bo16boobo16boobo16boobo\$8bo19bo14b4o11bo19bo19bo19bo\$8bobo17bobo11bo3bo11bobo17bobo17bobo17bobo\$9bobo17bobo14bo12bobo17bobo17bobo17bobo\$10bo19bo11bobbo5boo7bo19bo19bo19bo\$50bobo\$52bo\$\$56boo\$45boo9bobo\$46boo8bo\$45bo\$54boo\$53bobo\$55bo!`

Update: I've counted 3, 5, 12 and 27 Elkie's P5 variants from 22-25 bits. These can be built from what is alredy known, plus these irreducible as-yet-unsynthesized bases (one 22, one 23, two 24, one 25-bit ones, plus two additional 27-bit ones and 28-bit one for interest):
`x = 116, y = 10, rule = B3/S23bo14bo14bo14bo14bo14bo14bo14bo\$o2b3o9bo2b3o9bo2b3o9bo2b3o9bo2b3o9bo2b3o9bo2b3o9bo2b3o\$2bo14bo14bo14bo14bo14bo14bo14bo\$3bobo2bo9bobo2bo9bobo2bo9bobo2bo9bobo2bo9bobo2bo9bobo2bo9bobo2bo\$2b2ob4o8b2ob4o8b2ob4o8b2ob4o8b2ob4o8b2ob4o8b2ob4o8b2ob4o\$bo2bo11bo2bo14bo11bo2bo11bo2bo14bo4b2o5bo2bo11bo2bo\$b2o3bo8bobo3bo12bob2obo7bobo2b2o7b2o2b2o12bobo2bo7bobobo10bo2bob2o\$5b2o9bo3b2o13b2ob2o8bo3b2o12bo13bobobo8bobobo10b2o3bo\$65bo15bobo10bo2bo15bobo\$65b2o15bo12b2o17b2o!`

The one with the siamese loaf could almost be made from this, if one could provide a suitably unobtrusive domino spark, which might allow a self-annihilating boat-bit:
`x = 15, y = 11, rule = B3/S2312b3o\$8bo3bo\$bboo5boobbo\$bobbo3boo\$bbobo\$boob3o\$obbo3bo\$bobobboo\$bbo7b3o\$10bo\$11bo!`

codeholic wrote:seeds

#1,3,5 are new still-lifes. I'm sure all could be synthesized using more conventional methods, but nowhere near as cheaply as these. #6 had a synthesis, but the new 9 glider one is much better than the previous 17 glider one (and if the spurious blinker and loaf could be cleaned up with one glider, it would be down to . #2 is the only one of these that doesn't dramatically improve the state of the art for general syntheses (as two blocks on two boats can already be made from 4 gliders).

Sokwe wrote:Unimportant converters:

The boat-to-shillelagh could come in very useful. I have found a few syntheses where I needed a way to do this with all the gliders coming from one side, and the alternatives are usually quite convoluted and gruesome. This could improve those quite considerably!

Extrementhusiast wrote:Finished yet another 16-bitter in 59 gliders:

This can be done much more cheaply, from 33 (from Sep. 5). The snake can be added much more cheaply if there's an unobtrusive overhanging tab, which is true with the carrier flipped:
`x = 168, y = 98, rule = B3/S2371bo\$69b2o41bo\$70b2o40bobo\$59bo52b2o\$36bobo18bobo29b2o18b2o\$37b2o19b2o29b2o18b2o\$37bo\$58bo\$58b2o85bo\$57bobo86bo\$134bo9b3o3bo\$135bo4bo7b2o\$133b3o5b2o6b2o\$140b2o5\$161b2o\$80b2o18b2o18b2o18b2o19bo\$80bo2bo2bo13bo2bo2bo13bo2bo2bo13bo2bo2bo16bo2bo\$82b5o15b5o15b5o15b5o15b5o\$132b3o\$84bo19bo19bo9bo9bo19bo\$83bobo17bobo17bobo7bo9bobo17bobo\$38b2o44bo19bo19bo19bo19bo\$37bobo\$39bo2\$22b2o17b2o9b2o\$bobo17bo2bo15bobo8bo2bo\$2b2o17bo2bo17bo8bo2bo\$2bo19b2o28b2o\$62b2o\$b2o58b2o\$obo60bo\$2bo22\$21b2o18b2o18b2o18b2o18b2o18b2o18b2o18b2o\$21bo19bo19bo19bo19bo19bo19bo19bo\$23bo2bo16bo2bo16bo2bo16bo2bo16bo2bo16bo2bo16bo2bo16bo2bo\$22b5o15b5o15b5o4bo10b5o15b5o15b5o12bo2b5o15b5o\$70bo66bobo\$15bo8bo17b3o17b3o5b3o9b3o17b3o17b3o13b2o2b3o16bob2o\$16bo6bobo16bo2bo16bo2bo15bo2bo16bo2bo16bo2bo16bo2bo16b2obo\$14b3o7bo18b2o18b2o16b2o18b2o17bobo17bobo\$97bo9bo13bo15b2o2bo\$18bo37b2o40b2o5b2o29bobo\$18b2o37b2o2bo35b2o7b2o30bo\$17bobo36bo3b2o5b3o71b2o\$60bobo4bo37bo34b2o\$68bo35b2o36bo\$96b3o5bobo\$96bo\$97bo5\$145bo\$135bo9bobo\$133bobo9b2o\$134b2o5\$134bobo5b2o\$135b2o5bo18b2o\$135bo8bo2bo13bo2bo2bo\$143b5o15b5o\$133bo\$131bobo8bob2o16bob2o\$132b2o8b2obo16b2obo2\$134bo\$134b2o\$133bobo!`

Extrementhusiast wrote:Yet another 16-bitter in 29 gliders and one LWSS:

This is a 26-glider synthesis (from Oct. 24) that does it in a different way:
`x = 127, y = 74, rule = B3/S2393bo\$94bo19bo\$11bo80b3o18bobo\$12b2o99bobo\$11b2o76b3o22bo\$16bo46bo27bo\$14b2o3b3o41bobo24bo\$15b2o2bo14bob2o16bob2o5b2o9bob2ob2o13bob2ob2o13bob2ob2o\$20bo13b2obo16b2obo2b2o12b2obob2o13b2obob2o13b2obob2o\$18bo41bobo61b2o\$18b2o40bo43bobo16bo2bo\$17bobo84b2o17bo2bo\$105bo18b2o2\$105b2o\$105bobo\$105bo10\$47bo\$48b2o8bo\$47b2o7bobo\$57b2o2\$4bo19bo29bo4bo\$3bobo17bobo24bo2bobob2o\$3bobo17bobo22bobo2bobo2b2o\$4bo19bo24b2o3bo\$78b2o18b2o18b2o\$78bo19bo19bo\$4bob2ob2o13bob2ob2o23bob2ob2o13bob2o2bo13bob2o2bo13bob2o2bo\$4b2obob2o13b2obob2o23b2obob2o13b2obob2o13b2obob2o13b2obob2o\$bo12b2o18b2o11bo16b2o13bo19bo19bo\$2bo10bo2bo16bo2bo8bobo15bo2bo12bobo17bobo17bobo\$3o10bo2bo8bo7bo2bo9b2o7bo7bo2bo13b2o18b2o18b2o\$14b2o8bobo7b2o14b2o2bobo2b2o3b2o\$3b3o18bobo22bobo2bobo2bobo\$5bo19bo25bo3bo3bo\$4bo59b3o18bo19bo\$58bo5bo19bobo17bobo\$58b2o5bo18bobo17bobo\$57bobo25bo19bo\$107b2o\$107bobo\$107bo11\$88bo\$86bobo\$50bo36b2o\$51b2o5b2o10bo7b2o10bo7b2o18b2o\$50b2o6bo10bobo6bo10bobo6bo19bo\$54bob2o2bo8bobo4b2o2bo8bobo4b2o2bo15b2o2bo\$50b2o2b2obob2o9bo4bobob2o9bo4bobob2o14bobob2o\$51b2o6bo16bo2bo16bo2bo16bo2bo\$50bo8bobo17bobo17bobo17bobo\$53b2o5b2o18b2o18b2o18b2o\$53bobo\$53bo!`

Extrementhusiast wrote:Yet another 16-bitter in 18 gliders;

Very nice. I spent a lot of time trying to make this just this past week, without success.

Extrementhusiast wrote:A p3 in 28 gliders and one LWSS:

Nice. I had a synthesis of this from 36 gliders, by using a hat and turning it into an eater. This is cheaper. This also makes a similar reduction in the two 20-bit versions of this oscillator (which Sokwe just pointed out).
mniemiec

Posts: 905
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

mniemiec wrote:Matthias's new house-to-snake conversion allows this one to be made from 35 gliders

In this specific case that last hook can be removed with 3 gliders, bringing the total down to 31:
`x = 154, y = 92, rule = B3/S2344bobo\$45b2o14bo\$45bo13b2o\$60b2o\$54bo44bo\$53bo44bo\$53b3o42b3o\$74b3o17b3o\$68b2o18b2o18b2o18b2o18b2o\$69bo19bo19bo19bo19bo\$41b2o25bo3bo15bo3bo15bo3bo15bo3bo15bo3bo\$40bobo25b5o15b5o15b5o15b5o15b5o\$42bo\$70bo19bo19bo19bo17b3o\$58b2o9bobo17bobo17bobo10bo6bobo16bo2bo\$58bobo9bo19bo19bo9bobo7bo18b2o\$58bo62b2o\$124b2o\$53b2o70b2o\$28b2o18b2o2b2o70bo\$7bobo17bo2bo16bo2bo3bo\$8b2o17bo2bo16bo2bo\$8bo19b2o18b2o2\$7b2o\$6bobo\$8bo12\$8b2o18b2o18b2o18b2o18b2o18b2o18b2o18b2o\$9bo19bo19bo19bo19bo19bo19bo19bo\$8bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo\$8b5o15b5o15b5o15b5o15b5o15b5o15b5o15b5o2\$8b3o17b3o17b3o15b7o13b7o13b3ob3o13b3ob3o13b3ob3o\$8bo2bo15bo3bo7bo7bo3bo7bo6bo2bo2bo13bo2bo2bo12bo2bobo2bo11bo2bobo2bo11bo2bobo2bo\$9b2o16b2ob2o5bobo7b2ob2o7bobo43b2o5b2o11b2o5b2o11b2o2bo2b2o\$38b2o19b2o\$8bo\$8b2o30b3o13b3o72bo\$7bobo32bo13bo73b2o\$12bo28bo15bo72bobo\$11b2o75b2o\$11bobo73bobo2b2o\$89bo2bobo33b3o\$37b2o21b2o30bo37bo\$38b2o19b2o68bo\$37bo23bo69b3o\$131bo\$132bo\$91b3o\$91bo\$92bo14\$58bo\$58bobo\$58b2o\$8b2o18b2o18b2o18b2o\$9bo19bo19bo7bo11bo\$8bo3bo15bo3bo15bo3bo3b2o10bo3bo\$8b5o15b5o15b5o3bobo9b5o2\$6b3ob3o14bob4o14bob4o14bob2o\$5bo2bobo2bo13b2obo2bo13b2obo2bo3bo9b2obo\$5b2o2bo2b2o18b2o18b2o2b2o\$b2o53bobo\$obo\$2bo3b3o\$8bob3o\$7bo2bo\$11bo!`

mniemiec wrote:
Extrementhusiast wrote:Finished yet another 16-bitter in 59 gliders:

This can be done much more cheaply, from 33 (from Sep. 5). The snake can be added much more cheaply if there's an unobtrusive overhanging tab, which is true with the carrier flipped

There is a more direct way to convert a bun to a bookend with tub that I found a while back which reduces the synthesis to 29 gliders:
`x = 167, y = 94, rule = B3/S2371bo\$69b2o41bo\$70b2o40bobo\$59bo52b2o\$36bobo18bobo29b2o18b2o\$37b2o19b2o29b2o18b2o\$37bo\$58bo\$58b2o85bo\$57bobo86bo\$134bo9b3o3bo\$135bo4bo7b2o\$133b3o5b2o6b2o\$140b2o5\$161b2o\$80b2o18b2o18b2o18b2o19bo\$80bo2bo2bo13bo2bo2bo13bo2bo2bo13bo2bo2bo16bo2bo\$82b5o15b5o15b5o15b5o15b5o\$132b3o\$84bo19bo19bo9bo9bo19bo\$83bobo17bobo17bobo7bo9bobo17bobo\$38b2o44bo19bo19bo19bo19bo\$37bobo\$39bo2\$22b2o17b2o9b2o\$bobo17bo2bo15bobo8bo2bo\$2b2o17bo2bo17bo8bo2bo\$2bo19b2o28b2o\$62b2o\$b2o58b2o\$obo60bo\$2bo14\$144bo\$134bo9bobo\$132bobo9b2o\$133b2o5\$21b2o18b2o18b2o18b2o18b2o18b2o10bobo5b2o\$21bo19bo19bo19bo19bo19bo12b2o5bo18b2o\$23bo2bo16bo2bo16bo2bo16bo2bo16bo2bo16bo2bo7bo8bo2bo13bo2bo2bo\$22b5o15b5o15b5o15b5o12bo2b5o15b5o15b5o15b5o\$97bobo32bo\$15bo8bo17b3o17b3o17b3o13b2o2b3o16bob2o5bobo8bob2o16bob2o\$16bo6bobo16bo2bo16bo2bo15bo2bo16bo2bo16b2obo6b2o8b2obo16b2obo\$14b3o7bo18b2o18b2o15bobo17bobo\$81bo15b2o2bo31bo\$18bo77bobo34b2o\$18b2o78bo33bobo\$17bobo81b2o\$100b2o\$102bo\$55b3o\$57bo2b2o\$56bo3bobo\$60bo2\$56b3o\$58bo\$57bo12\$76bo\$75b2o\$75bobo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1249
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

What 20 or less cell objects haven't been synthetised yet?
This is game of life, this is game of life!
Loafin' ships eaten with a knife!
towerator

Posts: 328
Joined: September 2nd, 2013, 3:03 pm

### Re: Synthesising Oscillators

Block-based cuphook with cross-snake in 75 gliders and one LWSS:
`x = 601, y = 34, rule = B3/S23445bo\$86bo359b2o\$86bobo29bobo190bo111bo21b2o3bobo\$86b2o30b2o189b2o113bo28bo\$74bo44bo190b2o110b3o28bo\$75bo350bo23bo2bo\$73b3o32bobo10bo180bo29bobo90bo25b3o\$89bo19b2o10bobo123bo52bobo30b2o90b3o\$87b2o20bo11b2o124bobo11bobo37b2o6bo23bo\$88b2o157b2o13b2o45bobo26bobo109bo26bobo\$262bo8bo37b2o27b2o43bo18bo20bobo22bobo3bo23b2o\$107bo138bo4bo17bobo67bo37bo5bobo17bo20b2o23b2o4b2o21bo\$4bo103bo138b2obo19b2o103b2o6b2o16b3o20bo29b2o3bobo\$2b2o102b3o137b2o2b3o123b2o2b2o77b2o\$3b2o24bo194bobo45b2o96b2o8bobo21b2o54bo\$20b2o5b2o20bo29bo24b2o114bo3b2o47b2o7b2o18b2o24b2o4b2o28b2o4bo9bo17b2o4bobo15b2o5b2o14b2o2bo2b2o31b2o\$21bo6b2o18bobo27bobo22bobo7bo2bo20b2o46b2o17b2o15b2o2bo3b2o17b2o22bo9bobo17bo2bo2bo19bo2bo3bo7bobo18bo2bo3bo26bo2bo4bo15bo2bobo2bo14bo2bobo2bo24bobo4bo2bob2o17bob2o19bob2o25bob2o29bob2o\$3o15b3o27b2o28b2o11bo13bo7b4o20b2o46b2o17b2o14b2o7b2o17b2o33b2o18b6o20b6o8b2o20b7o27b7o17b3ob3o16b3ob3o9bobo14b2o5b4obo17b2obo19b2obo25b2obo10bo18b2obo\$o17bo71bo63bo4bo184bo117b2o15bo14bo20bo22bo28bo5b2o25bo\$bo46b4o26b4o8b3o20b6o16b6o14b2obo24b6o13b6o19b6o13b6o21b3o5b6o18b6o20b6o30b7o27b7o17b7o16b7o8bo24b7o14b7o16b7o22b7o6b2o18b7o\$48bo3bo25bo3bo30bo4bo16bo4bo13b2o2b3o22bo5bo12bo5bo18bo5bo11bo6bo22bo4bo6bo16bo6bo18bo6bo8bo19bo6bo26bo6bo16bo6bo15bo6bo22bo9bo20bo22bo28bo32bo\$19b3o19bo9b2o28b2o33b2o20b2o46b3o16b3o22b3o12b2o2b3o22bo5b2o2b3o17b2o2b3o19b2o2b3o9bobo17b2o2b3o27b2o2b3o17b2o2b3o16b2o2b3o4bobo14bobo9b2o2b2o15b2o2b2o17b2o2b2o23b2o2b2o27b2o3bo\$21bo20bo13bobo22bo6b2o26bo21bo47bo18bo19bo4bo18bo34bo23bo25bo11b2o22bo33bo23bo22bo6b2o16b2o13b2o19b2o21bobo26bobo30b2o\$20bo19b3o13b2o20b2obo6bobo22b2obo18b2obo44b2obo16bobo14bo3b2o233bo76bo28bobo\$57bo19bo2bo7bo23bo2bo18bo2bo44bo2bo17b2o13bobo3bobo118bo115bo16bo37bo24bo24bo\$16b2o60b2o33b2o20b2o46b2o34b2o123b2o114b2o16b2o31b2o2b2o22b2o\$17b2o26b2o12bo119b3o23b2o137bobo113bobo14bobo32b2obobo18b2o2b2o\$16bo27bobo12bobo119bo23bobo303bo24bobo\$46bo12b2o20b2o82b3o12bo24bo330bo28bo\$80bobo82bo346b2o41bo8b2o\$41b2o15bo23bo66b2o15bo345bobo40b2o7bobo4b3o\$42b2o13b2o89b2o362bo41bobo3b2o9bo\$41bo15bobo90bo409bobo9bo\$560bo!`

towerator wrote:What 20 or less cell objects haven't been synthetised yet?

I believe that this is an up-to-posted-date list:
`x = 816, y = 119, rule = B3/S232o2b2o10bobobo25bob2o10bob2o11b2o2bobo55b2o38b3o11b3ob3o8b2o13b2o13b2o4b2o7b3o3b2o10bo13bobo10b2o13b2o29b2o18b2o38b2o19bo18b2o18bo146b2o38bo2b2o4bo10b2ob2o15b2ob2o15b2ob2o45b2o46b3o3b3o\$obo2bo9bob3obo23bob2obo9b2obo11bo2bob2o54bo2bob2o63bobob3o8bobob2o9bo6bo14bo8bobobo12bo2bo8bo4b3o7bobo2b3o23bo19bo9bo29bo20b2o17bobo2bobo12b3o4b2ob2o28b2o8b2o9bo21b2o62bo39b2o2bob2obo10b2obobo14b2obobo14b2obobo42bo2bo46bo2bobo2bo\$2b2o11bo5bo23bo5bo11bob2o9bobo57bob2obo34b2o2bobo9bobobo29bo10bob2obo9bob2obo9bobobobo7b2obobobo8bobo43bobo6bo10bobo5bobo29bobo20bo19bo2bo15bob2o4bo28bobo4b2o2bo8bob2o17bobo64bo2bo39bobo99bo3bo4bo42bo7bo\$o2bobo10b3obo25bob2obo8b2o2bobo10bo2b2o53b2obo2bo39bo9bo5bo8bo2bobo10bo2bo25bo14bobobobo11bo3bo11bobo8bo2b2obo27b2o2b3obo11b2o2b2obo32b2o17bo3b4o12bo5bo13bo6b2o30b3obo17b2o2b2o11bo69b2o40b2o13b2ob3o14b2ob3o14b2ob3o40b2obo3b2o39bo3bo7bo\$2o2b2o12b2o27b2obo9bob2o14b2obo57b2o36bo4b2o7b2o3b2o9bo4bo10bo12b3o2b3o7b2o3b3o9bobobo9bobob2o8b3o4bo8bo5bo27bo2bo2bo13bo2bo36bo2bo14b2o2bo17b3obo13b2obobo35bo3b3o11bobobo2bo12bo2b4o62bo3bo39bo12bo4bo14bo4bo14bo4bo87b3o2bo7bo\$179bo27bo3b2o10bobobo42bo13bo17b2o8bo4b2o27bo2bo16bo2bo36bo2bo12bo2bo25bo17bo39bo18b2o81bo4b3o37bo3bo10bo19bo19bo47b2o3bob2o34bob2o2bobobobo\$179bobo44b2o181b2o11b2o24b3o55bobo16bo2bo18bo3bo59b2o6bo38bobo10bo3b2o14bo3b2o14bo3b2o41bo4bo3bo35b3o\$410bobo13b3o19bo59bo19b2o14bobobo3bo65bo40bo13bo3bo15bo3bo15bo3bo44bo2bo37b3o5bo\$413bo110bobo17b2o3bobo63bobo58b2o18bobo17bobo43b2o39b2o5b3o\$137bobo272b2o110b2o22b2o65b2o80bo19b2o91b3o\$o3b2o24b2ob2o10b2o13b2o3b2obo6b2o2bo10b2ob2o25b2ob2o11bob2o\$3o2bo25bobobobo7bobo12bobo2bob2o6bo2bobo10bobo27bobo12bo3b2o\$3b2o26bo2bob2o9b3o12b3o11b2o2bo9bo3bo25bo3bo10b2o3bo\$2bo2b3o24bobo11bo3bob2o7bo15bobo10bob2o26bob2obo11b2obo668bo3bo\$2b2o3bo25b2o11b2o2b2obo7b2o13bo2b2o10bobobo25bobobo11bobo669bo3bo\$76b2o16b2o28bo51b2o4b2o7b3o3bo8b3ob3o10b2o11b2o3b2o11bo11b2o13b2o16bo13bobo26b2ob2o35b2o5b2o14b2o15bo19b2o19bobo342bobobobo\$176bobo4bo13bo26bo11bo5bo11bobo9bo14bobob3o9bobobo11bo2b2o24bo4b2ob2o30bo5bobo13bo2bo14b3o17bo19bo3bo343b3o\$180bobo9bob2o2bo8bobobo9b2obob2o9bobobo10bo4bo9bobob3o23bo5bo7bo2b2o27b2o6bo31bob2o2b2o12bobobo17bo17bobo17bo3bo342b3o\$176bo2bo11bo14bo17bo2bo23bob4obo22bo2bobo9bobo4bobo11b2o27bobobo34bo17bo4b2o14bo2b2o23bo12b2o344bo\$135b2o40bo3b3o7b2o3bobo7b2o3bobo8bobobo10b2o2bo10bo4bo8b3obobo9bo15bo5bo6b2o33bo4b3o36bobo9b2ob2obo15bo4bob2o11bobo3b3o15bo2bo\$2b2o43b2o27b2ob2o9bobo27b2o13bo2b2o37bo19b2o13b2o9bobo13bo2bo10bobo17bo8bo3bobo11bobobo12bo35bo31bobo3b2o12bo2bo16b2o2bobo12bo4bo17bo3bo\$bobo41bo2b3o24bobobo10b2obo26bo2b2o11b2obo84bo16b2o12bo16b2o13b2o13bo10bobo70bo18bobo20bo2bo14bobobo16bo3bo\$o2bob2o38b2o4bo23bo5bo11bo28b2o2bo10bobobo173bo90bo22b2o14b2o2b2o15b2obo\$2obo2bo39bob3o25bo3b2o8b2obob2o28b2o10bo2b2o324b3o\$3bobo40bobo28bobo10bobobobo24bob2o11b2o\$3b2o42bo30b2o13bo27b2obo5\$2o13b2o43b2o3b2o8b2o2bo10b2o2b2o9b2o2b2o9b2o2b2o50b2o13b2ob2o11bo4bo8b2o13b2o5b2o6b2o5b2o6b2o4bo8b2o3b3o7b2o2b2o9b2o2b2o25b2o18b2o38b2o10b2o6b2o4bo2bo30b2o\$o2b2o10bo2b2obo38bobobobo8bo2bobo9bo2bo2bo8bo2bo2bo8bo2bo2bo49bobobo11bobo11bobo2bobo7bobo4b2o6bobo3bobo6bobo3bobo6bobobo2b2o6bo14bo2bobo9bobo2bo26bo18bo39bo11bo8bo4bo2bo31bo10b2o\$b2obo11b2o2b2o40bobo11b3o2bo10b2ob2o9bobob2o9b2obobo53bo10bo2bob2o8bob4obo15bo40bo11bob2obo9bo17bo27bobo17bobo37bobo6bobo8bobob2o2b2o30bobo9bo\$2bobobo11bo42bob2o14b3o11bobo11bobo13bobo52bo2bo9b2obo12bo4bo10bob2obo9bobobo8bo2b2obo10bo3bo27bo11bo31bob2obo55b2o2b3obo10bobo5bobo29bobo5bobo\$o4b2o11bob2o39bo16bo14bobo13bo13bo53bo16bobo12bobo40bo14bo13b3o3bobo6bobo12bo2bobo29bo2b3o12bobo39bo2bo2bo12bo9bo29bob2o2b2o\$2o17bobo38b2o16b2o14bo14b2o11b2o53b2obobo11b2o13bo12b3o2b3o7b3ob3o8bo3b3o8b2ob3o15b2o6bobo2b2o8b2o4bo26bobo17bo4b2o35bo2bo24b2o32bo2bo\$183bo112bo3bo15b2o48bobobo97bo2bo\$182b2o159bo2bo18b2o2bo\$343bobo24b3o\$135b2o2bo204bo27bo\$2ob2o10b2ob2o10b2ob2o13b2o27b2o27b2o13b2o12bo3b3o\$bobo12bobo12bobobo10b3obo25bo2bob2o22bo2bo11bo2bo12bo5bo\$bo2b3o8bo3bo11bo2bobo8bo5bo23bobob2obo23b2o12b2obo13bo3b2o\$2b2o2bo9b3obo11bobobo9bo5bo23bobo28bobob2o9bob2obo10bobo\$4bo13bo2bo11bobo11bob3o26bo27bo2b2obo9bobob2o11b2o\$4b2o14b2o12bo13b2o28b2o26b2o15bo53bo2b3o8b2o13b2o13b2o13b2o13b2o13b2o2b3o8b3o12b3o12b3o3bo24b2o18b2o18b2o18b2o19bobo\$177bo13bo14bo6b2o6bobo12bobo2b3o7bobobo10bo36b2o12bo24bo19bo2b2o15bo2b2o15bobo2bobo12bo3bo\$176bo2bo2b2o8bobo3b2o7bobo4bo12b3o25bobo9bobo2b2o8bob2ob3o7bob2obobo7bob2o2bo24bobo6bo14bo19bo18bo2bo13bo3bo\$199bo11bobo9bobo10bo2b2obo10bo5bo21bo14bo14bo33b2o2b3obo9bobobo15bobobo16bo5bo14b2o\$135b2o39bobobo2bo10bobobo8bo2bo15bobo8bo14bo6bo8bo2bo2bo6b2o3bobo7b2o3bo2bo6b2o3bobo27bo2bo2bobo8bo3bobo13bo3bobo16b3obo17bo\$47b2o13b2o13b2o13b2o27b2o13bo39b2o3bo26bo3b3o7b3o4bo7bo4bobo7b2obobobo9bo3bo15bo13bo15bo26bo2bo4bo9b3obobo13b3obobo20bo14bo2bo2bo\$48b3o11bobo11bo2bo11bobo26bo2bo12bob2o41bo11b3ob3o8bo19b2o13b2o12bo11bo3bo14b2o13bo14b2o34b2o10bo2bo16bobobo17b3o16bob4o\$46bo4bo8b2o3bo9bo2b2o10bo2bobo25b2obo12bo2bo226b2o20bo17bo20bo\$45bob4o9bo5bo9b2o2b2o9b2obobo25bobo13bobo266b2o21bo\$46bo14bo3b2o11bobo12bo2bo25bob2o10bobob2o287b2o\$48bo13bobo13bobo12bobo27bo2bo9b2o\$47b2o14b2o14bo14bo29b2o4\$15b2o28b2o3bo9b2ob2o12b2o11b2o84b2o13b2o13b2o3b2o8b2o2b3o11bo11b2o13b2o13b2o13b2o14b2o\$15bobo27bo2b3o9bo3bo11bobo2b2o7bo85bo2bobo9bobo3b2o7bo5bo8bo17bobob2o6bobo12bobo12bobo3bo8bobob3o9bobo\$17bo28b2o13bobo11bo6bo8b3o84bo2bobo14bo8bobobo10bobo2b2o8bo6bo42bo\$16b2ob2o27bo13b2obo10b2o3bo11bo89bo9bobobo45bo9bobob3o6bo2b2ob3o8bobo2bo7bo2bobo10bo2b2o\$16bo2bobo26b3o13bobo10bo2bo13b2o81b2o4bo23b2o2bo11bo3bo8b2o29bo29bo19bo\$18bo2bo29bo12bobo10bobo16bo83b2o11bo2b2o11bo15bo16bobo7b3obobo8bo3bobo8b3obobo8bo3bobo7b2o\$19b2o29b2o13bo12bo17b3o79b2o12bo2bo15bobo7b2o2bo12bobo2b2o14bo14bo14bo14bo12bobo\$99bo80bo11b2o18b2o9bo16bo17b2o13b2o13b2o13b2o8bobo2b2o\$98b2o215bo6\$2o13b2o3b2o9b2o27b2o2bo10b2o2b2o\$obo12bobo2bo2bo6bo2bo26bo2bobo9bo2bo2bo95b2o12b2o13b2o\$2b3o2b2o8b3o2b2o7b2o3b2o24b2obo11b2obobo94bobo11bo3b2o9bobo\$bo3bo2bo7bo15bobo2bo26bob2o11bobo99bo10bobobo13bo\$b2o2b2o9b2o13bo2b2o28bo2bo11bo97bo3bo26bo2b2o\$31b2o32b2o11b2o102bo9b2o2bo\$176b2o16bo13bobobo\$182bobo11bobo9b2o\$178bobo2b2o14bo12bobo\$180bo17b2o13b2o24\$581b2ob2o15b2o18b2o18b2ob2o\$581b2obo16bobo17bobo17b2obobo\$585bo2bo17b2ob2o15b2o21b2o\$186b2ob2o2bo7b2ob2o2bo7b2ob2o10b2ob2o11b2ob2o10b2ob2o9bob2ob2o10b2ob2o50b2ob2o15b2ob2o15b2o18b2o177b2o15b2obob2o13b2obo19b2obo\$186b2obobobo7b2obobobo7b2obobob2o6b2obobobo9bobo12bobobo8b2obobo10bobobobo49b2obo16b2obo9bo6b2o18b2o177bo3bo11b2o18b2o21b2o\$193bo14bo15bo13bo8bo5bo7bo22bo6bo60bobo6bo10bobo5bobo203bo4b3o\$191bo14bo13bo2bo12bo2bo6bo5b2o7b2o4bobo13b2o7b2o4bobo53b2o2b3obo11b2o2b2obo6b2o18b2o176b2o6bo14b2o18b2ob2o18b2o\$193bo14bo12bo13bo11b3o13bo4b2o9b2o12bo5b2o54bo2bo2bo13bo2bo9bo19bo9bo174bo11b2o3bo14b2o3bob2o14b2o3bo\$189bobobo10b2o3bo11bobobo9b2obobo8bo2b2o9b3o14bo2b2o7bo62bo2bo16bo2bo10bobo6bo10bobo5bobo170bobo13bo2bo16bo2bo19bo2bo\$189b2o2bo12bob2o14b2o13b2o8bobobo12bo13bobobo8b3o95b2o2b3obo11b2o2b2obo171b2o14bobo17bobo20bobo\$250bo14b2o14bo13bo96bo2bo2bo13bo2bo191bo19bo22bo\$392bo2bo16bo2bo!`

Correct me if there are any patterns which were solved that I missed removing from this list.
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1696
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Extrementhusiast wrote:Finished yet another 16-bitter in 59 gliders:

Update: the 5-glider bookend-to-curl step near the end looks new; this may slightly reduce some larger billiard tables. The resulting bookend-deleter may also improve some.

Extrementhusiast wrote:I'm currently looking for some way to synthesize the left step to get to the right. (An exploded pre-block is also needed, but that is presumably easy.)

This comes close. It makes one extra toxic (and hard to remove) bit, but it might offer some ideas:
`x = 51, y = 17, rule = B3/S2312bobo\$13boo\$13bo\$17bo\$o5boo8bo19boo\$boo3bobboo5b3o17bobboo\$oo5boobbo8b3o10bo3boobbo4bobobo\$9boobo7bo13bo4boobbobbobobo\$7boobboo8bo15boo\$6bobbo6boo18bobobbo3bo\$3bo3boo7bobo16bo10bo\$bbobo11bo15bobo10bo\$bboo28boo\$12b3o\$6b3o3bo\$8bo4bo\$7bo!`

Extrementhusiast wrote:Block-based cuphook with cross-snake in 75 gliders and one LWSS:

YAY! It hadn't occurred to me to try to use the new to-snake conversions, but this makes sense. I wonder a similar mechanism could be used for the griddle on cis snake? I suspect it might be a bit harder, as there's no known way yet to expand the sides of a live griddle, although the still-life that makes it is probably more amenable to mutation before it's activated. Here are some partial attempts at some of the as-yet-unsynthesized griddles:
`x = 128, y = 121, rule = B3/S2362boo60boo\$61bobbo58bobbo\$62boo60boo\$30bo66bo\$31bo64bo\$23bo5b3o64b3o5bo\$24boo14bo46bo14boo\$23boo13boo48boo13boo\$39boo46boo3\$40bo46bo\$26boo13boo42boo13boo\$25bobo4boo6boo21bo22boo6boo4bobo21bo\$27bo5b3o8bobo16bobo15bobo8b3o5bo21bobo\$31bo4bo7boo15bo4bo15boo7bo4bo24bo4bo\$31b6o8bo15b6o15bo8b6o24b6o\$\$31boobo26boobo26boobo26boobo\$31boboo26boboo26boboo26boboo\$\$43b3o36b3o\$43bo40bo\$44bo38bo7\$62boo\$61bobbo\$62boo\$30bo\$31bo\$23bo5b3o\$24boo14bo\$23boo13boo\$39boo\$\$103bobo\$40bo62boo\$26boo13boo61bo\$b3o8boo11bobo4boo6boo21bo29bo29bo\$o3bo8b3o11bo5b3o8bobo16bobo27bobo27bobo\$4bo6bo4bo14bo4bo7boo15bo4bo24bo4bo24bo4bo\$bboo6bob4obo12bob4obo7bo14bob4obo22bob4obo6boo14bob4obo\$bbo8bo4bo14bo4bo24bo4bo24bo4bo7bobo14bo4bo\$13b3o17b3o27b3o20bo6b3o8bo17bobo\$bbo9boo18boo28boo23boo3boo6b3o21bo\$86boo14bo\$43b3o55bo\$43bo\$44bo\$98b3o\$83b3o12bo\$85bo4bo8bo\$84bo5boo\$89bobo\$\$122boo\$121bobbo\$122boo\$\$104bo\$102boo\$96bo6boo\$97boo\$96boo3\$101bobo\$101boo\$21b3o9bo19bo19bo19bo8bo20bo\$20bo3bo8bobo17bobo17bobo17bobo27bobo\$24bo6bo4bo14bo4bo14bo4bo14bo4bo24bo4bo\$22boo6bob4obo12bob4obo12bob4obo12bob4obo22bob5o\$22bo7bobobbobo12bobobbobo12bobobbobo12bobobbobo22bobo\$31bo4bo14bo4bo14bo4bo14bo4bo7boo15bo3boo\$22bo38bo41booboo17boo\$60bo43b4o\$60b3o14bo19bo7boo\$76bobo17bobo\$57b3o16bobo12bo4bobo\$57bo19bo13boo4bo\$58bo31bobo\$\$93b3o\$93bo\$94bo6\$85bo\$83bobo\$84boo3bo\$89bobo\$89boo\$\$86bo\$87bo\$14bo19bo19bo19bo10b3o5bo19bo\$12bobo17bobo17bobo17bobo18bobo17bobo\$11bo4bo14bo4bo14bo4bo14bo4bo14bo4bo14bo4bo\$10bob5o13bob5o13bob5o13bob5o13bob5o14b6o\$10bobo17bobo17bobo17bobo8bobbo5bobo\$11bo3boo14bo3boo14bo3boo14bo3boo8bo5bo3boo14boobboo\$15boo18boo18boo18boo4bo3bo9boo14boobboo\$82b4o15bo\$70boo18boo8bo\$35boo12bobo3boo12bobbobboo12bobbobboo3b3o\$15boo18bobo12boo3bobo11bobbobbobo11bobbobbobo\$10b3oboo20boo12bo5boo12boo4boo12boo4boo\$12bo3bo\$11bo37boo46bo\$48bobo46boo\$12boo36bo45bobo3boo\$12bobo87bobo\$12bo89bo!`

Sokwe wrote:In this specific case that last hook can be removed with 3 gliders, bringing the total down to 31:

Sokwe wrote:There is a more direct way to convert a bun to a bookend with tub that I found a while back which reduces the synthesis to 29 gliders:

Thanks! Both of these should provide similar reductions to several other syntheses, especially billiard tables, or similar objects.

towerator wrote:Here's my very first synthesis... Already known for sure, but still "yay!"

Congratulations! Everybody has to start somewhere, and one learns by experience.

towerator wrote:What 20 or less cell objects haven't been synthetised yet?

There are many - way too many to list here. Here is a summary:
- Still-lifes: 52 (and falling!) 16-bit, 328* 17-bit, 772* 18-bit, 1766* 19-bit, 4116* 20-bit (* plus many derived from smaller sizes).
- Pseudo-still-lifes: 8 18-bit, 12 19-bit, 89 20-bit.
- Period-2 oscillators: 1 14-bit, 3 15-bit, 17 16-bit, 32 17-bit, 49 18-bit, 73 19-bit, 114 20-bit.
- Period-2 pseudo-oscillators (all trivial based on above 15-16 bit p2s): 4 19-bit, 28 20-bit.
- Period-3 oscillators: 2 17-bit, 1 18-bit, 2 19-bit, 10 20-bit (UPDATE: 9! as Extrementhusiast just solved one!).
- Period-6 oscillators: 1 20-bit.

I posted an abridged list here a while ago. Here are some of the hilights:
- 38 unique 16-bit still-lifes, plus two sets of 7 where one from either set can make one from the other set, or vice versa
- 18-19-bit still-lifes (the last of which is derived from an 18),
- 14-16-bit period-2 oscillators (the last 3 of which are trivial, based on 15s),
- 17-20-bit period-3 oscillators (UPDATE: with solved one removed), and the one period-6 oscillator.
`x = 188, y = 128, rule = B3/S233obo25b2o2b2o10bobobo10bob2o10bob2o11b2o2bobo10b2o11bo3b2o9b2ob2o10b2o2bo10b2ob2o\$obobo25bobo2bo9bob3obo8bob2obo9b2obo11bo2bob2o9bo2bob2o7b3o2bo10bobobobo7bo2bobo10bobo\$3obo27b2o11bo5bo8bo5bo11bob2o9bobo12bob2obo11b2o11bo2bob2o8b2o2bo9bo3bo\$o3bo25bo2bobo10b3obo10bob2obo8b2o2bobo10bo2b2o8b2obo2bo10bo2b3o9bobo12bobo10bob2o\$o3bo25b2o2b2o12b2o12b2obo9bob2o14b2obo12b2o11b2o3bo10b2o11bo2b2o10bobobo\$151b2o16b2o5\$30b2ob2o12bobo12b2o13b2o12b2ob2o9bobo12b2o13b2o13b2o13b2o\$31bobo12bob2o11bobo11bo2b3o9bobobo10b2obo11bo2b2o10bo2b2o10bo2b2o10bo2b2obo\$30bo3bo11bo3b2o8bo2bob2o8b2o4bo8bo5bo11bo13b2o2bo9b2obo11b2obo11b2o2b2o\$30bob2obo9b2o3bo9b2obo2bo9bob3o10bo3b2o8b2obob2o13b2o10bobobo10bobobo11bo\$31bobobo11b2obo12bobo10bobo13bobo10bobobobo9bob2o12bo2b2o8bo4b2o11bob2o\$34bo12bobo13b2o12bo15b2o13bo12b2obo11b2o12b2o17bobo5\$30b2o3b2o8b2o2bo10b2o2b2o9b2o2b2o9b2o2b2o9b2ob2o10b2ob2o13b2o10b2o2bo12b2o\$30bobobobo8bo2bobo9bo2bo2bo8bo2bo2bo8bo2bo2bo9bobo12bobobo10b3obo9bo3b3o11b3o\$32bobo11b3o2bo10b2ob2o9bobob2o9b2obobo9bo2b3o9bo2bobo8bo5bo9bo5bo8bo4bo\$31bob2o14b3o11bobo11bobo13bobo11b2o2bo10bobobo9bo5bo9bo3b2o7bob4o\$31bo16bo14bobo13bo13bo15bo13bobo11bob3o11bobo10bo\$30b2o16b2o14bo14b2o11b2o15b2o13bo13b2o14b2o12bo\$167b2o4\$32b2o13b2o13b2o11b2o13b2o3bo9b2ob2o12b2o11b2o\$32bobo11bo2bo11bobo12bo13bo2b3o9bo3bo11bobo2b2o7bo\$30b2o3bo9bo2b2o10bo2bobo10bob2o11b2o13bobo11bo6bo8b3o\$30bo5bo9b2o2b2o9b2obobo10bo2bo12bo13b2obo10b2o3bo11bo\$31bo3b2o11bobo12bo2bo11bobo12b3o13bobo10bo2bo13b2o\$32bobo13bobo12bobo10bobob2o14bo12bobo10bobo16bo\$33b2o14bo14bo11b2o17b2o13bo12bo17b3o\$144bo\$143b2o2\$30b2o13b2o3b2obo6b2ob2o11b2o13b2o14b2o11b2o\$30bobo12bobo2bob2o7bobo11bo2bo11bo2bo12bo2bob2o7bobo\$32b3o12b3o10bo3bo11b2o12b2obo11bobob2obo9bo2bo\$31bo3bob2o7bo14b3obo11bobob2o9bob2obo8bobo12b2obobo\$31b2o2b2obo7b2o15bo2bo9bo2b2obo9bobob2o10bo12bo2bobo\$65b2o9b2o15bo14b2o13bobo\$124bo4\$30b2o13b2o3b2o8b2ob2o11b2o12b2o2bo10b2o2b2o9b2o\$30bobo12bobo2bo2bo7bobo11bo2bo11bo2bobo9bo2bo2bo8bobo\$32b3o2b2o8b3o2b2o6bo3bo11b2o3b2o9b2obo11b2obobo9bo2b2o\$31bo3bo2bo7bo14b3obo11bobo2bo11bob2o11bobo9b2obobo\$31b2o2b2o9b2o15bo2bo9bo2b2o13bo2bo11bo11bo2bo\$64b2o10b2o17b2o11b2o13bobo\$124bo4\$3ob3obo21b2ob2ob2o8b2ob2o10b2ob2o9bob2ob2o8bo14b2o13b2ob2o10b2o13bob2ob2o8bob2ob2o\$obobobobo21bo3bobo8bobobo10bobobobo8b2obobo9b3o13bo13bo3bo11bo4b2o7b2obobo9b2obobo\$3ob3obo22bobo3bo7bo4bo9bo5bo15bo10bob2ob2o5bo4b2o9bobo12bob2o2bo12bobob2o10bo\$o3bo3bo21b2ob2ob2o8bo4bo9bo3bo15b2o9bo3bobo6b4o2bo8b2ob4o10bob2o13bo2b2obo11bo\$o3bo3bo38bobobo10bobo12b2obo11b2obo2bo9bobo15bo27b2o10b2ob3o\$46b2ob2o10b2ob2o11bob2o15b2o9bo2b2o13bo12b2obo24bob2o\$107b2o16b2o11bob2o4\$31b2ob2o9bob2ob2o11b2o10bob2ob2o8bob2ob2o8b2o2bo10b2o2b2o9b2ob2o10b2o14b2ob2o\$32bobobo8b2obobobo7bobob3o8b2obobo9b2obobo9bo3b3o8bo2bo2bo9bobo11bo16bobobobo\$31bo5bo14bo7b2o5bo14bo13bo9bo5bo8b2o2bobo7bo3bo11b3o11bo6b2o\$30bo7bo13b2o12b2o13b2o14bo9bo3bo14bo8b2ob2o13bo3b2o6b2o\$31b3o2bobo9bob2o8b2o16b2o12b2o2b2o10bobo10b2o16bob2o11b2o2bo8bob2o\$33bo2b2o10b2obo8bobobo13bob3o9bo2bo10bobob2o9bobobo13bo2bo12bobo9b2obo\$63b2o17bo11b2o10b2o16b2o14b2o12bo2b2o\$154b2o3\$3ob3o25bobo10b2o3bo9b2o3b2o8b2o15bobo12bobo10b2o4bo8b2o4bo8b2o4b2o7b2o4b2o\$obo3bo27bo10bo4bo9bobobobo8bobob2o12bo2bo11bo2bo8bo5bo8bobo3bo8bobo4bo7bobo2bobo\$3ob3o23b2o4bo9bobo2bo28bo9b2obobo9b2obobobo8bob2o2bo11bo2bo11bobo\$o3bo27bo27bo2bo2bo9bo2bo12bobob2o10bo3bo22bo2bo11bo2bo11bo2b2o2bo\$o3b3obo22bobo2b2o7b3obobo9bo3bo11bo13bo2bo11bobob2o8b3o2bobo8bo3bobo8bo3b3o8bo4bo\$50b2o9bo3bo11bobobo11bobo12bo17b2o8bo4b2o8bo14bo4bo\$34b3o43b2o4\$32b2o11b2o3b2o11bo12bo13b2o13b2o15bobo12bobo10b2o13b2o3bo9b2o\$31bobo11bobobobo11bobo10bo4b2o7bobo3bo8bobo3b2o11bo12bo2b2o8bobo3b2o7bo4bo9bobob2o\$33bob2o24bo4bo8bo2bobobo13bo15bo7b2o4bobo6bo2b2o17bo8bobo2bo13bo\$30b2obo2bo9bo2bo10bob4obo22bo2b2o2bo7bo2b2obo10bo4bo13b2o9bobobo24bo2bo\$33bobo11bo13bo4bo8bobobo2bo8bo14bo14bobo4b2o5b2o28b3obobo10bo\$32bobo12bobobo10bobo10b2o4bo9bo3bobo8bo3b3o12bo15bo9b3ob3o14bo9bobobo\$33bo16b2o12bo16bo14b2o27bobo9bobo31b2o14bo\$139bo46b2o3\$3ob3o23b2o13b2o13b2o14bo13b2o13bo14b2ob2o25b2o5b2o9b2o\$obo3bo23bo14bo9bo4bo15b2o12bobo2bobo7b3o4b2ob2o3bo4b2ob2o20bo5bobo8bo2bo\$3ob3o24bobo6bo5bobo5bobo4bobo15bo14bo2bo10bob2o4bo4b2o6bo21bob2o2b2o7bobobo\$o5bo26b2o2b3obo6b2o2b2obo7b2o12bo3b4o7bo5bo8bo6b2o8bobobo24bo12bo4b2o\$o3b3obo25bo2bo2bo8bo2bo11bo2bo9b2o2bo12b3obo8b2obobo11bo4b3o26bobo4b2ob2obo\$34bo2bo11bo2bo11bo2bo7bo2bo20bo12bo18bo21bobo3b2o7bo2bo\$67b2o6b2o19b3o55bo13bobo\$68bobo8b3o14bo72bo\$71bo\$70b2o\$30bo14b2o14bobo11b2o13b2o\$30b3o12bo14bo3bo11bo13bo\$33bo12bobo12bo3bo10bobo12bobo\$32bo2b2o18bo7b2o12bob2obo\$32bo4bob2o6bobo3b3o10bo2bo9bo2b3o7bobo\$33b2o2bobo7bo4bo12bo3bo7bobo12bo4b2o\$36bo2bo9bobobo11bo3bo24bobobo\$37b2o9b2o2b2o10b2obo8bo2bo13b2o2bo\$64b3o9bobo19b3o\$77bo22bo\$3ob3o23bo2b2o4bo\$obobo25b2o2bob2obo\$3ob3o27bobo\$o3bobo28b2o\$o3b3obo28bo\$37bo3bo\$39bobo\$40bo!`
mniemiec

Posts: 905
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Seven predecessors and/or components:
`x = 179, y = 53, rule = B3/S237\$35b2o\$37b4obo3bo\$41b5o13bob2o17bobo2b2o22b2o\$59b2obo17b2obo2bo18b2obobo21b4o\$12b2ob2o2b2o17b2o22bob2o17bobo19bob2o22bo4bo8bo\$13bobo2b2o18bo2bo17b3obobo14b3obo24bo26bo9bo11b4o\$12bo2bo4bo18b3o2bo14bo2bo17bo2bo22b3obo23b2o8b2o\$12bobo10bo16b3o15b2o19b2o23bo2bo32b2ob3o14b2o3bo\$13bo9b2o16bo65b2o27b2o5b2o18bo2b2o\$24b2o15b2o27bo20bo44bo2b2o16bo2b2obobo\$16b2o2b2o47bo20bo26bo19b2obo16bo5bob2o\$16b2ob2o48b3o18b3o23bo21bobob2o14bo2bobo\$21bo44b2o19b2o27b3o18bo2b2obo14b2o2b2o\$62bo3bobo14bo3bobo23b2o22b2o18bo\$60bobo3bo14bobo3bo21bo3bobo40bo\$61b2o19b2o23bobo3bo\$108b2o\$17bo\$17bo\$15b5o\$17bo\$17bo5\$12b2ob2o\$13bobo\$12bo2bo\$12bobo\$13bo2\$9bo3bo\$7bobo2bobo\$4b2o2b2o2bobo\$3bobo7bo\$5bo9b3o\$9b3o3bo\$11bo4bo\$10bo!`

EDIT: Griddle with cross-snake in 46 gliders:
`x = 323, y = 39, rule = B3/S233bo\$4b2o\$3b2o290bo\$294bo\$294b3o5bo\$285bo14b2o\$224bo61b2o13b2o\$223bo61b2o\$223b3o16bobo\$243b2o\$12bobo228bo41bo\$13b2o40b2o21b2o22b2o25b2o34b2o23b2o29b3o59b2o13b2o\$13bo39b3obo11bo6b3obo19b3obo22b3obo31b3obo20b3obo22b2o4bo19b2o13b2o26b2o6b2o4bobo19bo\$52bo4bo12bo4bo4bo18bo4bo14bo6bo4bo3bo26bo4bo19bo4bo20b3obo4bo17bobo11b3o22bobo8b3o5bo19bobo\$32bo20b4o11b3o5b4o19b5o16bo5b5o3bo27b5o20b5o20bo4bo24bo10bo4bo21b2o7bo4bo22bo4bo\$31bo86b3o13b3o75b5o8b3o25b6o21bo8b6o22b6o\$31b3o19b2o21b2o21b3o24b3o31b7o18b3ob3o33bo18bo25b3o\$29bo23b2o20bo2bo20bo2bo13b2o7bo3bo7b2o21bo2bo2bo17bo2bobo2bo17b3ob3o9bo17b2o5b4obo15bo16b2obo24b2obo\$28b2o19bo20b2o4b2o5bo17b2o12bobo7b2ob2o7bobo44b2o5b2o16bo2bobo2bo25bobo4bo2bob2o14bo17bob2o24bob2o\$28bobo19b2o19b2o8b2o34bo19bo71b2o2bo2b2o32b2o\$49b2o2b2o15bo11b2o196b3o\$53bobo130bo95bo\$53bo27bo104b2o34b2o57bo\$80b2o21b2o80bobo29bo3b2o20bo\$80bobo12b2o6bobo56b2o45bo6b2o5bo19b2o\$94bobo6bo57bobo2b2o41b2o5bobo23bobo\$96bo66bo2bobo18b3o18bobo\$115b2o21b2o26bo20bo\$99b2o15b2o19b2o49bo\$4b2o92bobo14bo23bo44b3o\$3bobo94bo85bo\$5bo179bo\$165b3o\$165bo\$166bo\$38b2o\$b2o35bobo\$obo35bo\$2bo!`

EDIT 2: Longer predecessor to another:
`x = 80, y = 25, rule = B3/S2333bo\$33bobo\$26bo6b2o\$24bobo\$25b2o2bo\$29bobo\$29b2o4\$3b2o26b2o19b2o10bo9b2o\$3bo2bob2obo19bo2bob2obo11bo2bob2obo3b2o8bo2bob2o\$2obob2obob2o10bobo3b2obob2obob2o11bob2obob2o3bobo7bob2obo\$ob2obo2bo14b2o3bob2obo2bo13b2obo2bo15b2obo2bo\$7b2o14bo11b2o18b2o19b2o4\$57b2o\$56bobo\$58bo2b2o\$61bobo\$53b2o6bo\$52bobo\$54bo!`

EDIT 3: Even longer starting SL in 53 gliders:
`x = 320, y = 50, rule = B3/S23185bobo\$179bo5b2o\$180b2o4bo\$179b2o\$163bo90bobo\$161bobo24bo27bo37b2o10bo\$137bobo22b2o8bo14bo26bobo38bo10bobo\$137b2o31bobo14b3o25b2o49b2o\$138bo32b2o12bo\$184bobo56bo\$135bo48bobo55bo\$134b2o44bo4bo56b3o\$134bobo31bo12bo11bo\$169b2o8b3o9b2o\$126bo41b2o14bo7b2o49b2o\$126b2obobo52b2o56b2o\$125bobob2o44bo8b2o58bo\$130bo42bobo9bo\$86bo28bobo14b3o4bobo32b2o\$84bobo3bo25b2o14bo6b2o\$85b2o3bobo23bo16bo6bo\$15bo74b2o69bo37bo\$16b2o70bo73b2o3bo25bo3b2o\$15b2o70b2o72b2o5b2o4b2o9b2o4b2o5b2o\$87bobo77b2o5b2o9b2o5b2o102bo\$119bo17bo157bo\$19bo75bo23b2o15b2o153b2o2b3o\$20bo73bo23bobo15bobo151bo2bo\$18b3o32b2o25b2o12b3o29b2ob2o47b2ob2o51b2o3b2o45b2o2bob2o17b2o\$2bo43bo7bo2b2o22bo2b2o41bobo49bobo52bobobobo45bobobo20bobo\$obo22b2o20bo6bobobo5bo16bobobo41bobo49bobo54bobo49bobo22bo\$b2o15b3o4b2o18b3o5b2obo7bobo13b2obo42b2ob2o47b2ob2o52b2ob2o47b2ob2o20b2ob2o\$20bo35bo7b2o14bo2bo42bo2bo48bo2bo53bo2bo48bo2bo21bo2bo\$b2o16bo5b2o2bo26b2o24bo45bo2bo48bo2bo53bo2bo48bo2bo21bo2bo\$obo22b2o2bobo10bobo38b3o43b2obo48b2obo53b2obo48b2obo21b2obo\$2bo26b2o12b2o40bo46bo51bo56bo51bo24bo\$15b2o26bo88b2o50b2o55b2o50b2o23b2o\$16b2o147b2o27b2o\$15bo83b2o65b2o25b2o\$44b3o51b2o65bo29bo\$46bo10b3o40bo\$45bo11bo45b2o\$58bo6b2o35b2o\$65bobo36bo\$56b2o7bo14b2o\$55bobo21bobo15b2o\$57bo23bo15bobo\$61bo35bo\$60b2o\$60bobo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1696
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

I notice most non-synthetized oscillators have huge rotors with little stators.
This is game of life, this is game of life!
Loafin' ships eaten with a knife!
towerator

Posts: 328
Joined: September 2nd, 2013, 3:03 pm

### Re: Synthesising Oscillators

The griddle with two blocks can be done by a somewhat messy method. Here are the nontrivial steps (some of it can likely be reduced):
`x = 110, y = 32, rule = B3/S2346bo\$47b2o\$46b2o49bobo\$51bo45b2o\$o23bo26bobo29bo14bo\$b2o19b2o27b2o31bo23bo\$2o21b2o57b3o22bo\$49bo57b3o\$50bo\$48b3o36bo\$86bo\$86b3o\$78bo19b2o\$76bobo18bobo\$2bo19bo33bo20b2o13bo3bobo\$obo7b2ob2o7bobo30bobo32b3o2bobo\$b2o7bo3bo7b2o25bo2bo3bo32bo6bo\$11b3o35b7o33b7o\$3b3o13b3o\$5bo7b3o3bo29b2o2b3o33b2o2b3o\$4bo8bo2bo3bo28b2o2bo2bo32b2o2bo2bo\$15b2o37b2o38b2o9b2o\$104b2o\$106bo\$78bo\$3b2o73b2o\$2bobo72bobo\$4bo\$103b3o\$16b3o84bo\$16bo87bo\$17bo!`

Unfortunately, this doesn't seem to get us any closer to the other forms.

Extrementhusiast wrote:Block-based cuphook with cross-snake in 75 gliders and one LWSS

The step with the LWSS is unnecessarily complex. The standard converter works fine here:
`x = 23, y = 21, rule = B3/S232bo\$obo7bo\$b2o7bobo3bo\$10b2o3bo\$15b3o4\$2b2o2bo2b2o\$2bo2bobo2bo9bobo\$3b3ob3o10b2o\$21bo\$5b7o\$4bo6bo4bobo\$4b2o2b3o5b2o\$8bo8bo3\$19bo\$18b2o\$18bobo!`

An unrelated converter:
`x = 15, y = 18, rule = B3/S237b2o\$7bobob2obo\$9bobob2o\$9bo\$8b2o7\$5b2o\$4bobo2b2o\$6bo2bobo\$9bo\$bo\$b2o\$obo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1249
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

Sokwe wrote:
Extrementhusiast wrote:Block-based cuphook with cross-snake in 75 gliders and one LWSS

The step with the LWSS is unnecessarily complex. The standard converter works fine here:
`x = 23, y = 21, rule = B3/S232bo\$obo7bo\$b2o7bobo3bo\$10b2o3bo\$15b3o4\$2b2o2bo2b2o\$2bo2bobo2bo9bobo\$3b3ob3o10b2o\$21bo\$5b7o\$4bo6bo4bobo\$4b2o2b3o5b2o\$8bo8bo3\$19bo\$18b2o\$18bobo!`

I think that was left over from when I was trying to do something like this:
`x = 11, y = 9, rule = B3/S232bo\$bobo\$bobo\$2ob2o5bo\$10bo\$7o2bo\$o5bob2o\$3b3o\$3bo4bo!`

I found a different mechanism, but forgot to change that other bit back.

EDIT: Yet another predecessor:
`x = 11, y = 10, rule = B3/S238bo\$8bo\$2b2o4bo\$bobo2bobo\$o2bobo2b3o\$2obo2bo\$3bo3b2o\$3b2o2b3o\$8bo\$8bo!`

EDIT 2: Yet another 16-bitter in 21 gliders:
`x = 141, y = 24, rule = B3/S2373bo\$74bo\$72b3o2\$26bo71bo\$25bo45bo24b2o\$25b3o43b2o24b2o\$70bobo\$6bo16bo7b2o21b2o30b2o17bo10b2o19b2o\$4bobo17b2o4bo2bo16b2obo2bo25b2obo2bo16b2o3bob2obo2bo14b2obo2bo\$5b2o16b2o5b2obo15bobob2obo16b3o5bobob2obo15bobo3b2obob2obo15bob2obo\$26b2o5bob2o13bo5bob2o15bo5bobo4bob2o21bo2bob2o14bo2bob2o\$26bobo4b2obo19b2obo14bo7b2o4b2obo21b2o20b2o\$26bo\$6bo39bo\$6b2o38b2o\$obo2bobo37bobo63b2o\$b2o94b2o12bobo\$bo46b3o25b2o7b2o9b2o9b2o2bo\$48bo28b2o5bobo11bo7bobo\$b2o46bo26bo9bo21bo6b2o\$obo13bo98bobo\$2bo12b2o98bo\$15bobo!`

EDIT 3: Partial P2 predecessor:
`x = 10, y = 13, rule = B3/S23obo\$b2o\$bo2\$2b2ob2o\$2bo3bo\$3b2obob2o\$5bobobo\$5bobo\$6b2o\$3bo\$bob2ob2o\$4bob2o!`

A related predecessor:
`x = 14, y = 14, rule = B3/S235b2o\$5b3ob2o\$6b2ob3o\$8b3o\$2o4b2o\$4o2bobo\$2b3obobo\$5bobob3o\$5bobo2b4o\$6b2o4b2o\$3b3o\$2b3ob2o\$3b2ob3o\$7b2o!`

Another related predecessor:
`x = 16, y = 12, rule = B3/S237bobo\$7b2ob2o\$11bo\$2o5b2o\$2b2o3bobo\$4b2obobo\$6bobob2o\$6bobo3b2o\$7b2o5b2o\$4bo\$4b2ob2o\$6bobo!`

Better predecessor:
`x = 24, y = 20, rule = B3/S2317bo\$16bo\$16b3o\$21bo\$20bo\$4bo15b3o\$5bo6bo\$3b3o5bobo\$11bobo8bo\$3o5b2obobobo5bo\$2bo5bobobob2o5b3o\$bo8bobo\$10bobo5b3o\$11bo6bo\$b3o15bo\$3bo\$2bo\$5b3o\$7bo\$6bo!`

A different predecessor:
`x = 15, y = 18, rule = B3/S2310b2o\$11b3o\$9bo4bo\$8bob4o\$9bo\$10b2o\$2bo8bo\$obo8bobo\$b2o9b2o2\$3b3o\$5bo\$4bo3\$5b2o\$6b2o\$5bo!`

EDIT 3: That P2 in 23 gliders:
`x = 110, y = 46, rule = B3/S2342bobo\$42b2o\$43bo3\$30bobo\$31b2o\$31bo6\$85bo\$84bo\$84b3o\$89bo\$45bobo40bo\$29b3o13b2o25bo15b3o\$31bo14bo26bo6bo\$o6bo13bo8bo40b3o5bobo23bo\$b2o3bo12bobo14bo8b3o31bobo8bo12bobobo\$2o4b3o11b2o3bo9bobo7bo22b3o5b2obobobo5bo13bobobobo\$26bo7bobo9bo3b2o18bo5bobobob2o5b3o10bobobobo\$4b3o17b3o8bo14bobo16bo8bobo23bobobo\$6bo34bo8bo27bobo5b3o17bo\$5bo19bo14bo38bo6bo\$25b2o13b3o26b3o15bo\$24bobo44bo\$70bo\$73b3o\$75bo\$74bo6\$40bo\$39b2o\$39bobo3\$28bo\$28b2o\$27bobo!`

EDIT 4: Partial predecessor to the missing P6:
`x = 15, y = 10, rule = B3/S233b2o8b2o\$3bo3bo4b3o\$7bo3bo\$4b3o5b3o\$13b2o\$bo6bobo\$ob2o3bob2o\$3bo3bo\$b2o5b3o\$10bo!`

All that's needed is the synthesis of the northwest spark, and the few extra bits in the southeast.

EDIT 5: Farther along:
`x = 36, y = 21, rule = B3/S2322bo\$21bo\$6bo14b3o\$4bobo\$5b2o2\$30bo\$29bo\$16b2o4b2o5b3o\$4bo11b2o3bo2bo8b3o\$5bo16b2o9bo\$3b3o3b2o23bo\$8bobo7bobo\$10bo6bob2o\$17bo\$18b3o\$8bo11bo\$8b2o\$3o4bobo\$2bo\$bo!`

Now only the extra bits are needed.

EDIT 6: Complete synthesis in 25 gliders:
`x = 109, y = 32, rule = B3/S2378bo\$78bobo\$78b2o\$70bo\$68b2o\$51bobo15b2o\$52b2o\$30bo21bo\$28bobo\$29b2o\$25bo6bo49bo\$23bobo6bobo28b2o4b2o9b2o\$10bobo11b2o6b2o16bo12b2o3bo2bo9b2o\$10b2o9b2o28b2o16b2o6b2o\$11bo8bobo27b2o4bo19b2o\$22bo4bobo26b2o7bobo10bo18bo2b2o4bo\$6bo19bob2o6bo18bobo6bob2o15bo13b2o2bob2obo\$4bobo19bo9bobo25bo17bo18bobo\$bo3b2o20b3o6b2o27b3o14b3o17b2o\$b2o26bo3b2o32bo2b2o32bo\$obo4b2o24bobo18b3o13b2o32bo3bo\$7bobo23bo13b2o7bo49bobo\$7bo40b2o5bo51bo\$47bo31bo\$78b2o\$78bobo4b3o\$70b2o13bo\$61b2o6b2o15bo\$62b2o7bo\$61bo3b3o\$65bo\$66bo!`

EDIT 7: Stillator predecessor:
`x = 120, y = 27, rule = B3/S2347bo\$47bobo\$47b2o41bo\$91bo\$89b3o3bo\$74bo10bo7b2o\$27b2o43bobo11b2o6b2o\$23b2o2bobo43b2o10b2o\$22bobo2bo\$24bo74bo\$97b2o\$98b2o\$79bo\$3bo48bo25bobo5bo14bo13b2o\$b3o46b3o25bo2bo2b3o14bobo10bo2bo\$o3b2o43bo3b2o24b2o2bo3b2o12b2o10bobobo\$bobo2bob2o40bobo2bob2o25bobo2bob2o20bo4b2o\$2ob2obobobo38b2ob2obobobo23b2ob2obobobo18b2ob2obo\$3bo2bobobo41bo2bobobo26bo2bobobo21bo2bo\$3bobo3bo42bobo3bo27bobo3bo22bobo\$4bo48bo33bo28bo\$82b2o\$81b2o\$83bo\$71b3o24b3o\$73bo24bo\$72bo26bo!`

EDIT 8: Reposting a one-sided HWSS synthesis by codeholic:
`x = 10, y = 30, rule = B3/S235bobo\$6b2o\$6bo9\$obo\$b2o\$bo2\$7bo\$8b2o\$bo5b2o\$2b2o\$b2o8\$5b2o\$4bobo\$6bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1696
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Extrementhusiast wrote:Block-based cuphook with cross-snake in 75 gliders and one LWSS:

(This also solves the trivially derived 21-bit version with tub instead of eater head (+3 gliders)). The first 7 steps of this make a 16-bit still-life from 28 gliders. I have a totally different way of making this from 2003, also from 28 gliders:
`x = 117, y = 59, rule = B3/S23106bo\$104boo\$101bo3boo\$96bobboo\$97bobboo\$95b3o\$\$9bobo45bo47bo\$10boo46bo38bobo3boo\$10bo45b3obbo35boo5boo\$32bo19bo8bobo8bo19bo5bo13bo\$31bobo17bobo7boo8bobo17bobo8bo8boboboo\$31bobo17bobo17bobo17bobo7boo8boboboo\$6bo5boo16boobobo14boobobo14booboboo13booboboo4bobo6boobo\$7boo4boo19boo18boo17bobbo16bobbo16bo\$6boo4bo3boo55boo18boo18boo\$16bobo80boo\$16bo82bobo\$57bobo39bo\$8boo47boo\$7boo43b3o3bo\$9bo44bo\$53bo4boo\$58bobo\$58bo13\$104bo\$102boo\$103boo\$91bo\$92boo\$85bobo3boo\$86boo\$50b3o33bo\$47bobbo\$48bobbo\$46b3o33bobo\$9bobo71boo\$9boo54boo16bo11boo17bo\$bbo7bo11bo3bo15bo3bo15bobbo26bobbo17bobo\$boboboo14bobobobo13bobobobo13bobobo15bo9bobobo17bobo\$boboboo14boboboo14boboboo14boboboo12bobo9boboboo13booboboo\$oobo5b3o8boobo16boobo16boobo16boo8boobo16boobo\$3bo5bo13bo19bo19bo29bo19bo\$3boo5bo12boo18boo18boo17bo10boo18boo\$8bo73boo\$8boo71bobo\$7bobo!`

towerator wrote:I notice most non-synthetized oscillators have huge rotors with little stators.

Yes. Constructing still-lifes (and, by extension, stators), is like sculpting clay, and can be done at one's leisure. In contrast, constructing rotors is more like doing open heart surgery on a beating heart. It's usually extremely difficult to do, unless one can form the rotor spontaneously, somewhat like the painting "Venus on the Half Shell", where venus emerges from the ocean, fully formed. Similarly, constructing spaceships is like assembling racecars with engines running, so it usually makes sense to create the rear part first, and let it catch up to the front part which is built later (rather than vice versa).

Sokwe wrote:The griddle with two blocks can be done by a somewhat messy method. Here are the nontrivial steps (some of it can likely be reduced):

Nice! I will have to see whether this same methods can be used with some of the other unsolved griddle-based oscillators.

Yet another 16-bitter in 21 gliders:

Very good!

Extrementhusiast wrote:Partial P2 predecessor:

I'm not sure what you're trying to do here. What P2, and at what generation does part of it show up?

Extrementhusiast wrote:That P2 in 23 gliders:

Very nice! I was always fond of this one. Long ago, Dave Buckingham and I found an extensible series of P2s that were essentially like grass waving in the wind - sets of lines whose ends would alternately bend and straighten. We called them "Cha chas". This is the second smallest of this form (with the clock being the smallest).

Extrementhusiast wrote:Complete synthesis in 25 gliders:

Wow! Very impressive! I personally find synthesis of oscillators with little more than frothing stators to be somewhat black magic. This synthesis is one worthy of Buckingham!

Extrementhusiast wrote:Stillator predecessor:

Billiard table synthesis is also somewhat of a black art. The base still-life is not one I've seen per se, but it looks like it could well be consructible using known techniques.

Extrementhusiast wrote:Reposting a one-sided HWSS synthesis by codeholic:

I don't think I've seen this one. I'll have to check it against all my HWSS flotillae - about half of them can be made with traditional cheap (3-4 glider) HWSS components, but about half require ridiculusly complex Rube-Goldberg insertions that could definitely use some improvement.

The griddle-ific 16-bit still-life from 19 gliders:
`x = 114, y = 63, rule = B3/S2388bo\$87bo\$87b3o\$83bo\$84bo\$82b3o\$48bo20boo18boo13boo3boo\$49boobboo13bob3o15bob3o11boobbob3o\$48boobboo14bo4bo14bo4bo14bo4bo\$54bo14b4o16b4o11boo3b4o\$49bo33bobo17bobbo\$49boo18boo13boo3boo12bobbobboo\$48bobo18boo13bo4boo13boo3boo\$\$83boo\$82bobo\$44bo39bo\$44boo\$43bobo3\$52boo\$52bobo\$52bo10\$87bo\$85boo\$86boo\$83bo\$5bo78bo\$3bobo76b3o\$4boo81bo\$85boo\$6bo33bobo43boo\$oboboo34boo\$boobboo34bo\$bo37bo23bo19bo\$24bo15bo3bo17bobo17bobo\$4boo3boo12bobo3boo7b3obbobo3boo12bobo3boo12bobo3boo18boo\$4boobbob3o11boobbob3o11boobbob3o11boobbob3o11boobbob3o17b3o\$8bo4bo14bo4bo14bo4bo14bo4bo14bo4bo14bo4bo\$4boo3b4o11boo3b4o11boo3b4o11boo3b4o11boo3b4o14bob4o\$3bobbo16bobbo16bobbo16bobbo16bobbo21bo\$3bobbobboo12bobbobboo12bobbobboo12bobbobboo12bobbobboo19bo\$4boo3boo13boo3boo13boo3boo13boo3boo13boo3boo18boo5\$81b3o\$83bo\$82bo\$87b3o\$87bo\$88bo!`

I wonder if it's possible that this siamese-snake mechanism might improve some of the recent syntheses. Adding a table on the opposite side might sometimes be cheaper than many house/tables/bookends/snake convolutions:
`x = 29, y = 14, rule = B3/S2313bo\$bo11bobo\$bbobbo7boo\$3obbobo\$5boo\$11bo\$3boo4boo\$4bo5boo\$4boboo5b3o10boo\$3booboo5bo9boobbo\$4bo9bo9bobo\$4boboo16boboo\$5bobbo16bobbo\$6boo18boo!`

This is an extension of the recent 3-glider eater-to-integral conversion that was posted here (in the Snark thread this summer). Two extra gliders turn the integral head directly into an up boat (1 cheaper than doing so after it's formed). I was trying for a tub, but I'll take what I can get:
`x = 36, y = 20, rule = B3/S23obo\$boo10bo\$bo11bobo\$13boo5\$30boo\$30bobo\$12boo17bobo\$13bo19bo\$13bobo17bobo\$8bo5boo18boo\$9bo\$7b3o\$\$4boo3boo\$3bobo3bobo\$5bo3bo!`

A slightly modified way of adding a tail-first siamese eater, allowing cheap synthesis of a 21-bit candelfrobra variant. The basic mechanism is one of the standard ones, but I'm not sure if this particular way of making of invoking it (via block on boat) was previously known. It's less obtrusive in one direction than any methods I had seen or come up with previously. Also, in this particular case, it can come one cell closer to the target object than usual because its fatal spark can just happen to induct nicely against the rotor:
`x = 114, y = 23, rule = B3/S2388bobo\$88boo\$89bo\$80bobo\$81boo\$81bo3\$11bo19bo19bo19bo19bo19bo\$10bobo17bobo11bo5bobo17bobo17bobo17bobo\$11bo19bo13bo5bo13bo5bo13bo5bo19bo\$bbo9bo19bo10b3o6bo11bobo5bo11bobo5bo13boo4bo\$obo9bo19bo19bo12boo5bo12boo5bo13bo5bo\$boo6bo3bo15bo3bo15bo3bo15bo3bo15bo3bo13b3o3bo\$4boo3b4o12boobb4o12boobb4o12boobb4o12boobb4o16b4o\$3bobo19boo18boo18boo18boo\$5bo3boo18boo18boo18boo18boo18boo\$9boo18boo11b3o4boo18boo9bo8boo18boo\$44bo35boo\$43bo35bobo\$84boo\$83boo\$85bo!`

This, in turn, leads to a way to convoluted way to add a bridged eater tail-first, something that wasn't possible before. This now makes possible the following 19-bit pseudo-still-life from 29 gliders:
`x = 171, y = 62, rule = B3/S2318bobo\$19boo\$19bo9bo\$25bobbo\$20bobboo3b3o41bo\$21bobboo45bo\$19b3o20boboo16boboo5b3o8boboo16boboo16boboo16boboo16boboo\$42boobo16boobo16boobo3boo11boobo3boo11boobo3boo11boobo3boo11boobo3boo\$70bo19bo19bo19bo19bo19bo\$41boboo16boboo4boo10boboobb3o11boboobb3o11boboobb3o11boboobb3o11boboobb3o\$25b3o13boobo16boobo4bobo9boobobbo13boobobbo13boobobbo13boobobbo13boobobbo\$21boobbo99boo18boo18boo\$16b3o3boobbo\$18bobbo\$17bo9bo77boo57boo\$26boo78boo36b3o17boo\$26bobo76bo3boo33bo\$108boo35bo\$110bo30b3o\$143bo\$104boo36bo\$105boo\$104bo9\$98boo\$97b3o\$97boobo\$98b3o\$99bo4\$95bo\$96boo57bo\$95boo10bo46bo\$105boo47b3o\$106boo22b3o17b3o3\$bboboo16boboo16boboo26boboo16boboo26boboo16boboo16boboo\$bboobo3boo11boobo3boo11boobo3boo21boobo3boo11boobo3boo21boobo16boobo16boobo\$10bo19bo19bo29bo19bo\$boboobb3o11boboobb3o11boboobb3o9bo11boboobb3o11boboobb3o21boboo16boboo16boboo\$boobobbo13boobobbo13boobobbo11bobo9boobobbo4b3o6boobobbo4b3o3bo12boobo16boobo16boobo\$5boo18boo18boo12boo14boo18boo10bo17boo18boo18boo\$107b3o16bo19bo19bo\$56b3o67bobo17bobo17bobo\$4boo18booboo15booboo7bo17booboo15booboo28boo18boo18boo\$4boobboo14boobobo14boobobo7bo16boobobo9bo4boobobo\$boo5bobo17bo19bo29bo8bobo8bo\$obo5bo79boo\$bbo101b3o\$90b3o11bo\$92bo12bo\$91bo!`

In the process of finding the above, I tried several other unsuccessful approaches, one of which created something unexpected: the desired eater, with an extra ship tied to it, also from 29 gliders:
`x = 186, y = 55, rule = B3/S23107bo\$105bobo\$bbobo101boo\$3boo\$3bo9bo94bo\$9bobbo95bobo\$4bobboo3b3o93boo51boo\$5bobboo145bobo3bobo\$3b3o20boboo16boboo26boboo16boboo26boboo16boboo6boo3bo14boboo\$26boobo16boobo26boobo16boobo26boobo16boobo6bo19boobo\$59bobo21bo19bo80boo\$25boboo16boboo10boo14boboo4bo11boboo4bo21boboobboobo10boboobboobo20boboobboobbo\$9b3o13boobo16boobo11bo14boobo4bo11boobo4bo21boobobboboo10boobobboboo20boobobboboo\$5boobbo104boo\$3o3boobbo46boo54boo45boo\$bbobbo50boo57bo40bobboo\$bo9bo46bo97boo3bo\$10boo143bobo\$10bobo17\$159bobo\$159boo\$160bo\$26boboo16boboo16boboo16boboo16boboo16boboo16boboo26boboo\$26boobo16boobo16boobo16boobo16boobo16boobo16boobo26boobo\$34boo18boo18boo18boo18boo18boo18boo26boo\$25boboobboobbo9boboobboobbo9boboobboobbo9boboobboobbo9boboobboobbo9boboobboobbo9boboobboobbo19boboobbobo\$25boobobboboo10boobobboboo10boobobboboo10boobobboboo10boobobboboo10boobobboboo10boobobboboo7bo12boobobboo\$49boo18boo18boo18boo18boo18boo10bo17boo\$161b3o16bo\$180bobo\$29boo57boo18boo18booboo15booboo28boo\$30boo36b3o17boo18boobboo14boobobo9bo4boobobo\$29bo3boo33bo36boo5bobo17bo8bobo8bo\$32boo35bo34bobo5bo29boo\$34bo30b3o38bo51b3o\$67bo76b3o11bo\$28boo36bo79bo12bo\$29boo114bo\$28bo!`
mniemiec

Posts: 905
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Two completely separate but related converters:
`x = 22, y = 26, rule = B3/S2320bo\$2bo16bo\$obo16b3o\$b2o7\$9bo2bo\$9b4o2\$9b4o\$9bo2bo7\$b2o\$obo\$2bo15b3o\$18bo\$19bo!`

Not exactly sure how useful these would be.
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1696
Joined: June 16th, 2009, 11:24 pm
Location: USA

PreviousNext