ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

Re: Synthesising Oscillators

Postby Sokwe » November 22nd, 2013, 4:45 am

mniemiec wrote:Here are the new (7-glider) and traditional (10-glider) syntheses of this. The new one came up fairly recently. I'm not sure where or when (I don't have my notes handy at the moment on this computer - something I plan to remedy soon).

That natural predecessor is actually much more generous. After playing around with gencols for a while I managed to work out this 4-glider synthesis:
x = 8, y = 16, rule = B3/S23
5bo$5bobo$5b2o3$2bo$2o$b2o3$b2o$obo$2bo$5b3o$5bo$6bo!

Speaking of 4-glider syntheses, where did this one come from?
x = 15, y = 14, rule = B3/S23
3bobo$3b2o$4bo4$bo5b2o$b2o3b2o$obo5bo3$13b2o$12b2o$14bo!

Extrementhusiast used it in his synthesis of a period-6 oscillator. Speaking of which, his construction seems to lack these steps:
x = 81, y = 21, rule = B3/S23
75bo$74bo$40b3o31b3o$37bo2bo39bo$11bo26bo2bo36b2o$9b2o25b3o40b2o$2bo7b
2o20bo29bo$bobo11bo15bobo27bobob2o$bobo10bo16bobo2bo24bobobo$2obob2o7b
3o13b2obobobo22b2obobo$o2bob2o4bo18bo2bob2o23bo2bob2o$b2o7b2o19b2o28b
2o$10bobo$75b2o$74b2o$69b2o5bo$69bobo$69bo$65b3o$67bo$66bo!

(I think that this can be improved by skipping the table step, but I am not motivated enough to find the improvement).

mniemiec wrote:
Codeholic wrote:That makes the century eater synthesis in just 10 gliders:

These are some trivial stabilizer variants that may actually be useful

A variant can be synthesized in 8 gliders:
x = 19, y = 30, rule = B3/S23
2bo$3bo$b3o2$14bo$13bo$13b3o5$4b3o$6bo$5bo$8bo$7b2o$7bobo$2bo$2b2o13bo
$bobo12b2o$16bobo3$bo$b2o$obo2$8bo$7b2o$7bobo!


Here's a possibly known 6-glider synthesis:
x = 11, y = 23, rule = B3/S23
9bo$7b2o$8b2o$2bo$3b2o$2b2o$10bo$8b2o$9b2o7$2b2o$3b2o$2bo2$5b2o$bo3bob
o$b2o2bo$obo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby mniemiec » November 22nd, 2013, 5:06 am

Sokwe wrote:Here's a possibly known 6-glider synthesis:

I don't know that particular one as such. The "preferred" method for that still-life is another very similar 6-glider synthesis. However, the way the curl forms in the two is slightly different, so it's possible yours might be useful in some ways the old one isn't, and vice versa.
x = 11, y = 20, rule = B3/S23
9bo$7b2o$8b2o$2bo$3b2o$2b2o$10bo$8b2o$9b2o2$2bo$3b2o$2b2o4$5b2o$b2ob2o
$obo3bo$2bo!
mniemiec
 
Posts: 793
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Extrementhusiast » November 22nd, 2013, 5:46 pm

Another possible predecessor:
x = 93, y = 23, rule = B3/S23
18bo$17bo47bo$17b3o43bobo$15bo48b2o2bo$13bobo41bo9bo$14b2o42bo8b3o$56b
3o4bo$3b2o14b2o40bobo$2bo2bo12bo2bo19b2obo17b2o3b2obo16b2o$bobob3o9bob
ob3o10bo5bobob3o19bobob3o15b3o$o2bo4bo7bo2bo4bo10b2o2bo2bo4bo18bobo4bo
12bo4bo$b2ob4obo7b2ob4obo8b2o4b2ob4obo13b2o3bob4obo10bob4obo$3bo4bo10b
o4bo17bo4bo13bobo4bo4bo12bo4bo$3bob3o11bob3o18bob3o16bo6b3o15b3o$2b2ob
o12b2obo12b3o4b2obo24b2o16b2o$36bo$35bo$40bo$40b2o$39bobo$45b2o$45bobo
$45bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » November 22nd, 2013, 10:05 pm

The new four glider synthesis can improve the construction of one of the p12 oscillators:
x = 60, y = 23, rule = B3/S23
39bo$37bobo$38b2o7bo$46bo$46b3o$2bo11bo$obo10bo$b2o10b3o2$36b2ob2o16bo
bo$3b3o2bobo26bob2o16b2o$5bo2b2o27bo20bo$4bo4bo24b2obo10bo$34b2ob2o9bo
bo$48b2o$44b2o$44bobo4b2o$4b2ob2o25b2ob2o5bo5b2o$5bobobo25bobobo12bo$
3bobobobo23bobobobo$3b2o2bob2o22b2o2bob2o$7bo29bo$6b2o28b2o!

The second step could probably be done with only 5 gliders.

An extra glider can turn one of the blocks into a ship:
x = 20, y = 14, rule = B3/S23
5bo$6b2o9bobo$5b2o10b2o$18bo$8bo$8b2o2bo$7bobo2bobo$12b2o4$3o$2bo$bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » November 23rd, 2013, 1:21 pm

Sokwe wrote:An extra glider can turn one of the blocks into a ship:
x = 20, y = 14, rule = B3/S23
5bo$6b2o9bobo$5b2o10b2o$18bo$8bo$8b2o2bo$7bobo2bobo$12b2o4$3o$2bo$bo!

The ship is facing the wrong way, though. However, that four-glider synthesis of that SL saves twenty-two gliders!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » November 23rd, 2013, 7:07 pm

Sokwe wrote:[Extrementhusiast's] construction seems to lack these steps... I think that this can be improved by skipping the table step, but I am not motivated enough to find the improvement.

This was the reaction that I was thinking of (posted by Mark Niemiec in an earlier construction):
x = 47, y = 26, rule = B3/S23
30bo$31b2o$30b2o2$41bo$41bobo$41b2o3$11bo$9b2o$2bo7b2o20bo$bobo11bo15b
obo$bobo10bo16bobo2bo$2obob2o7b3o13b2obobobo$o2bob2o4bo18bo2bob2o$b2o
7b2o19b2o$10bobo2$44b3o$39b2o3bo$39bobo3bo$39bo$35b3o$37bo$36bo!


Here is an extremely obvious reduction to another recent synthesis (8 gliders cheaper):
x = 168, y = 67, rule = B3/S23
152bo$153b2o$75bo76b2o7bo$73b2o84b2o$74b2o80bo3b2o$2bobo152b2o$3b2o
151b2o$3bo68b3o$6bo34bo30bo$6bobo32bobo29bo$6b2o26b2o5b2o21b2o4bo23b2o
4b2o22b2o4b2o22b2o4b2o$34bo2bo26bo2bobobo22bo2bobobo22bo2bobobo22bo2bo
bobo$35b3o27b3ob2o24b3ob2o24b3ob2o24b3ob2o2$35b3o27b3ob2o24b3ob2o24b3o
b4o22b3ob4o$34bo2bo26bo2bobobo22bo2bobobo2bo19bo2bobo2bo21bo2bobo2bo$
6b2o26b2o5b2o21b2o4bo23b2o4bo3bobo17b2o28b2o2bo$6bobo32bobo60b2o$6bo
34bo$3bo102b2o22bo17b2o$3b2o100bobo21b2o16bobo$2bobo102bo21bobo17bo3b
3o$155bo5b3o$154bo6bo$127b3o32bo$129bo$128bo$130b3o$130bo$131bo4$18bo$
18bobo$18b2o$125bo$126bo$124b3o$128bo$127bo$127b3o$2bo2bobo$obo2b2o
149bo$b2o3bo94bo23bobo26bobo3bo$99bobo24b2o27b2o3bobo3bo$73bobo24b2o
24bo33b2o3bo$74b2o30bo58b3o$74bo26bo3bo$40b2o28b2o4bo23bobo2b3o23b2o
25bo2b2o$3b2o5b2o22bo2bobobo22bo2bobobo3bo18bo2bobo2bo21bo2bobo2bo21bo
2bobo2bo$3bo3bobobo22b4ob2o23b4ob2o4b3o16b4ob3o22b4ob3o22b4ob3o$4b4ob
2o$36bob5o23bob5o23bob2o26bob2o26bob2o$6bob5o23b2obo2bo23b2obo3bo22b2o
bo26b2obo26b2obo$6b2obo2bo59b2o3$41b2o28b3o$41bobo27bo$37b2o2bo26bo3bo
$36bobo29b2o$38bo28bobo2$42b2o$41b2o$43bo!


Edit: A cute little reduction by 3 gliders in the above synthesis:
x = 29, y = 12, rule = B3/S23
3bo2bobo$bobo2b2o$2b2o3bo3$7bo$6bobo15bo2b2o$o2bobo2bo11bo2bobo2bo$4ob
3o12b4ob3o2$2bob2o16bob2o$2b2obo16b2obo!


Unimportant converters:
x = 42, y = 33, rule = B3/S23
36bo$37bo$35b3o$39bo$30bo8bobo$31bo7b2o$29b3o7$32bo$31bobo$2o29b2o$obo
$bo29b2o$31bobo$32bo3$b2o$obo$2bo6b2o$9bobo$9bo19b3o$31bo7b2o$16bo13bo
8bobo$15b2o22bo$2b3o10bobo17b3o$4bo32bo$3bo32bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » November 24th, 2013, 1:40 pm

In reference to that p6, why don't I just fix the error and avoid dealing with the block-moving shenanigans?
x = 420, y = 31, rule = B3/S23
118bobo$119b2o9bobo$113bo5bo10b2o53bo$114b2o15bo53bobo$83bo29b2o70b2o$
61bo22b2o$62bo20b2o8bo31bo52bobo$60b3o29bobo21bobo5bobo7bo44b2o11bo$
92bobo22b2o5bobo6bo45bo12bobo16bo131bo$57b3o33bo23bo7bo7b3o18b2o28b2o
6b2o18bo131bo$bobo12bo42bo59bo34bobo27bobo23b3o129b3o2b2o$b2o12bo17bo
24bo3bo16bobo11bo24bo2bo3bo30bo29bo35bo18bo21bo23bo17bobo15bo22bo2bo
14bo20b2o6bo13b2o6bo$2bo12b3o14bobo26bobo16b2o10bobo23bo2bo2bobo28bob
2o9bobo14bob2o32bobo16bobo19bobo21bobo17b2o14bobo21bo2bo13bobo20bo5bob
o13bo5bobo$32bobo26bobo16bo11bobo19bo5bo3bobo28bobo4bobo3b2o15bobobo4b
obo12bo11bobo16bobo19bobo21bobo17bo15bobo22b2o14bobo20bobo3bobo13bobo
3bobo$bo3b2o24b2obob2o22b2obob2o17b2o5b2obob2o14bobo8b2obob2o24b2obo4b
2o5bo14b2obobo4b2o13b2o9b2obob2o12b2obob2o15b2obob2o17b2obob2o29b2obob
2o34b2obob2o18b2o2b2obob2o11b2o2b2obob2o$b2ob2o25bo2bob2o22bo2bob2o18b
2o4bo2bob2o15b2o8bo2bob2o24bo2b2o4bo20bo2b2o6bo12bobo9bo2b2obo12bo2b2o
bo15bo2b2obo17bo2b2obo13b2o14bo2b2obo34bo2b2obo22bo2b2obo18b2obo$obo3b
o25b2o27b2o21bo7b2o30b2o29b2o8bo19b2o34b2o17b2o20b2o22b2o16bobo15b2o
39b2o27b2o20b2o$29bo126bo7b2o20bo9b3o23bo14bo3bo17bo3bo19bo3bo18bo12bo
3bo36bo3bo24bo3bo17bo3bo$30bo30b2o29b2o30b2o27b3o8bobo16b3o10bo14b3o5b
3o15b4o18b4o20b4o32b4o37b4o17bo7b4o19b3o$11b2o15b3o30bobo28bobo22bo6bo
bo26bo29bo7b2o4bo15bo5bo131b2o26bobo$10b2o21b3o26bo30bo23b2o6bo7b3o56b
2o18bo24b2o20b2o22b4o32b4o29b2o6b4o16b2o7b4o19b3o$12bo20bo82bobo14bo
57bo45b2o20bobo6bo14bo2bo32bo3bo27bo8bo3bo24bo3bo18bo2bo$30b2o2bo99bo
125bo7bobo13b2o36b2o39b2o17b3o7b2o20b2o$29bobo209bo26b2o114bo$31bo91bo
112b2o2b2o23b2o19bo96bo$123b2o95b2o15b2obobo21b2o15b2o2b2o$122bobo86b
2o6b2o15bo29bo15b2obobo$212b2o7bo59bo$211bo3b3o19b2o$215bo21bobo$216bo
20bo!


Another note: Although this is more for saving gliders than actually building syntheses, Seeds of Destruction can really help with cleanup after the relevant part of a reaction is finished, e.g. the second-to-last step in my synthesis of the eighth 16-bitter.

EDIT: A relatively interesting component:
x = 45, y = 44, rule = B3/S23
12bo$13bo3bobo$11b3o6bo$20bo$17bo2bo$18b3o3$20bo$5bo13bo$bo4b2o11b3o$
2bo2b2o6bo$3o9bobo$12bobo$13bo2$12bo5bo17b2o4b2o$11bobo3bobo16bo2bobo
2bo$12b2o3b2o18b3ob3o7$12bo$13bo3bobo$11b3o6bo$20bo$3bo13bo2bo$4bo13b
3o$2b3o2$20bo$19bo$19b3o$13bo$12bobo$12bobo$5b2o6bo$6b2o$5bo6bo5bo18b
2o3b2o$11bobo3bobo16bo2bobo2bo$12b2o3b2o18b3ob3o!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » November 24th, 2013, 6:47 pm

Extrementhusiast wrote:In reference to that p6, why don't I just fix the error and avoid dealing with the block-moving shenanigans?

Oh, right...

Here is an improvement of a step in the p8 synthesis from a while back:
x = 20, y = 28, rule = B3/S23
11bo$11bobo$11b2o4bo$16bo$16b3o4$3bo$b3o$o13bo$b5o7b2o$3bo2bo6bobo$5b
2o3$9bo$9b2o$8bobo$12b3o$12bo$13bo4$17b3o$17bo$18bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » November 26th, 2013, 3:03 pm

Finished yet another 16-bitter in 59 gliders:
x = 447, y = 58, rule = B3/S23
398bo$397bo$397b3o8$71bobo$71b2o21bo$72bo19bobo$93b2o$122bo$3bo117bo
97bo$3bobo112bo2b3o96b2o$3b2o111bobo100b2o$61bo32b2o21b2o$2bo32bo21bob
2o33bo124bo$obo30bobo19bobo2b2o26bobo4bo43b2o23b2o22b2o18b2o8b2o20b2o
25b2o28b2o19b2o30b2o17b2o48b2o19b2o$b2o6b2o23b2o2bo2bo14b2o6b2obo2bo
18b2o5bobo2bo12bobo6b2obo2bo9bo2bo2bo18bo2bo2bo17bo2bo2bo13bo2bo2bo3bo
bo19bo2bo2bo15bo4bo2bo2bo4bo18bo2bo2bo14bo2bo2bo25bo2bo2bo12bo2bo2bo
43bo2bo2bo14bo2bo2bo$8b2o21b2o5b4o22b2ob4o18bo7b5o13b2o6bob5o11b5o20b
5o19b5o15b5o27b5o16bo5b5o3bo21b5o16b5o27b5o14b5o45b5o16b5o$10bo19bobo
82bo108b2o35b3o13b3o$32bo7b2o27b2o16bo11b3o25b3o13b3o22b3o21b3o15b5o8b
2o17b3o24b3o25b7o14b3ob3o25b3ob3o13bob4o44bob6o13bob2o$40bobo26bobo13b
obo11bo2bo16bo7bo2bo12bo2bo20bo2bo20bo2bo14bo4bo3b2o5bo15bo2bo14b2o7bo
3bo7b2o15bo2bo2bo13bo2bobo2bo23bo2bobo2bo12b2obo2bo43b2obo4bo12b2obo$
2b2o37bo28bo15b2o12b2o10bo6b2o7b2o14b2o20bobo21bobo16bobo6bobo20b2o15b
obo7b2ob2o7bobo34b2o5b2o23b2o2bo2b2o17b2o49bobo$bobo108b2o4bobo46bo17b
3obobo18b2o6bo41bo19bo145b2o$3bo84bo22bobo48bo24bo2bo153b3o42bo3b2o$6b
2o80b2o31b3o39b2o21bo26b2o108bo22bo3b2o37b2o2bobo32b2o$7b2o78bobo31bo
40b2o2b2o45bobo106b2o21bo3bobo3b2o31bobo2bo34bobo$6bo3b2o110bo42bobo
45bo25b2o81bobo26bo3bobo70bo$10bobo44b2o108bo70bobo6b2o50b2o54bo$10bo
47b2o12bo167bo6bobo48bobo2b2o$57bo13b2o174bo52bo2bobo14b3o$71bobo60b2o
122b2o21b2o20bo18bo$133bobo107b2o14b2o19b2o39bo$135bo7b3o97bobo12bo23b
o40b3o$143bo99bo79bo$144bo179bo$135b2o165b3o94b2o$134bobo165bo95b2o$
136bo166bo96bo10$397b3o$397bo$398bo$159b2o$158b2o$160bo!

Again, I'm pretty sure that the start can be made more cheaply. (Also, I'm not sure if my technique used in the last two steps is new.)

On another note, I did some work on the griddle variant requirement, and got to here. It isn't much, but it's something:
x = 93, y = 23, rule = B3/S23
18bo$17bo47bo$17b3o43bobo$15bo48b2o2bo$13bobo41bo9bo$14b2o42bo8b3o$56b
3o4bo$3b2o14b2o40bobo$2bo2bo12bo2bo19b2obo17b2o3b2obo16b2o$bobob3o9bob
ob3o10bo5bobob3o19bobob3o15b3o$o2bo4bo7bo2bo4bo10b2o2bo2bo4bo18bobo4bo
12bo4bo$b2ob4obo7b2ob4obo8b2o4b2ob4obo13b2o3bob4obo10bob4obo$3bo4bo10b
o4bo17bo4bo13bobo4bo4bo12bo4bo$3bob3o11bob3o18bob3o16bo6b3o15b3o$2b2ob
o12b2obo12b3o4b2obo24b2o16b2o$36bo$35bo$40bo$40b2o$39bobo$45b2o$45bobo
$45bo!

A somewhat more convoluted yet direct predecessor:
x = 15, y = 23, rule = B3/S23
7bo$6bo$6b3o$7bo$7b3o3bo$10b3obo$5b2o2bo2b2o$2b3ob3o$4bo$7b2o$6bob3o$
6bo4bo$4b2ob4obo$3bo2bo4bo$4bobob3o$3o2b2obo$2bo$bo4bo$5b2o$5bobo$b3o$
3bo$2bo!

Haven't yet worked on the tail-to-snake problem.

EDIT: Just did an initial check and came up with this predecessor:
x = 11, y = 8, rule = B3/S23
9bo$2b2o4bo$3bo2bobobo$3bobo2bobo$2obobo$o2bob2o$2bobob3o$3bo3bo!

...which could come from here:
x = 8, y = 7, rule = B3/S23
2b2o$3bo2b2o$3bobobo$2obobo$o2bob2o$2bobo2bo$3bo2b2o!

However, it turns the tail into an eater instead of a snake.

EDIT 2: Remember that context? This is what it is referring to:
x = 335, y = 39, rule = B3/S23
202bo$203bo$201b3o2$2bo$obo$b2o207bo$208bobo$106bo102b2o4bobo$6bo97bob
o70bo37b2o$4bobo16bo81b2o4bo66bo27bo4bo4bo$5b2o16bobo84bo5bobo57b3o13b
o12bobob2o$23b2o64bo16bo3b3o3b2o18bo11b2o11bo25bo3bo9b2o2bobo2b2o3b2o
31bo$17bo9bo40bo20bobo14b2o9bo17bo11b3o12bo10b3o12b2ob3o6bobo3bo7bo2bo
21b2o7bobo14b2o32b2o24b2o$15b2o9bo22bo18bobo18b2o2b2o10bobo26bo12b2o
14bo11bo11b2o13bo11bo2bo20bobo7b2o14bobo31bobo23bobo$13bo2b2o8b3o20bob
o16b2o2b2o18b2o40bo8bo4bo14bo10bo40b2o21bo25bo33bo5bo19bo$11bobo35b2o
2b2o16b2o21bo22bo5bo9bo9bo20bo14b2ob2o23b2ob2o23b2ob2o8bo12b2ob2o7b2o
4bo15b2ob2o4bobo14b2obo$12b2o38b2o19bo15bo26bobo2b2o10bo11b2o17bo14b2o
bo24b2obo24b2obo8b2o12b2obo7bo2bob2o16b2obo5b2o15b2obob2o$44b2o8bo7b2o
4bo13b2o4bobo18b2o4bobo4b2o9bo10bobo2b2o13bo17bo2b2o23bo2b2o23bo2b2o4b
obo14bo2b2o3bo2bo2b2o18bo2b2o21bob2o$44bobo2bo12bobo2bobo12bobo2bobo
19bobo2bobo16bo10bobobo2bo12bo14b2obobo2bo19b2obobo2bo19b2obobo2bo17b
2obobo2bo3b2o20b2obobo2bo17b2obobo$7bo37bo2bobo12bo2bobo14bo2bobo21bo
2bobo17bo8bo2bo2bo2bo4b2o6bo14bobo2bo2bo19bobo2bo2bo19bobo2bo2bo17bobo
2bo2bo25bobo2bo2bo17bobo2bo2b2o$7b2o14bobo20b2obo14b2obo16b2obo23b2obo
18bo12b2ob2o3b4o6bo17b2ob2o23b2ob2o23b2ob2o21b2ob2o29b2ob2o4b2o15b2ob
4o2b2o$6bobo14b2o23bo17bo19bo26bo8bo10bo6b4o4bo6b2o7bo19bo4bo22bo4bo
22bo4bo20bo4bo3bobo22bo4bo2bo17bo7bo$24bo23bobo15bobo17bobo24bobo6bobo
9bo5b2o6bob3o10bo20bob4o22bob4o22bob4o20bob4o3b2o2b3o18bob6o18bob6o$
49bobo15bobo17bobo24bobo5b2o10bo14bo2bo10bo21bo27bo27bo25bo8bo2bo21bo
25bo$21b3o26b2o16b2o18b2o25b2o18bo14b2o10bo23bob2o24bob2o24bob2o22bob
2o8bo21bob2o22bob2o$21bo114bo10bo5b2o6bo23b2ob2o23b2ob2o23b2ob2o21b2ob
2o3b2o24b2ob2o21b2ob2o$22bo97b2o25bobo100b2o22bo2bo$121b2ob3o19b2o102b
obo22b2o$120bo3bo21b2o102bo$16b2o107bo121b2o36b2o$17b2o227bobo24b3o9bo
bo$16bo10b3o218bo26bo9bo$27bo246bo$28bo2$32b3o$32bo$33bo!

It's a p10 with a missing step, which could theoretically be broken up into two steps. (45 gliders are used for the rest of the steps.)
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » November 27th, 2013, 4:01 am

Extrementhusiast wrote:Finished yet another 16-bitter in 59 gliders

Here are a couple of small improvements:
x = 47, y = 22, rule = B3/S23
44bobo$44b2o$45bo4$2o10bo17b2o$o2bo2bo4bo18bo2bo2bo$2b5o4b3o18b5o$42b
3o$2b5o7b2o15bob4o5bo$bo4bo7bobo14b2obo2bo5bo$bobo10bo21b2o$2b2o$42b3o
$42bo$43bo3$10bo$9b2o$9bobo!

When I was playing around with your original synthesis this came up (it's not at all interesting or useful, but there it is):
x = 30, y = 55, rule = B3/S23
27bo$26bo$26b3o19$5b2o$b2o3bo$bo2bo$2bob2o$b2obo$2bobo$obob2o$2o16bo3b
2o$18b2o2bobo$17bobo2bo10$28b2o$27b2o$29bo10$26b3o$26bo$27bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » November 27th, 2013, 2:47 pm

I'm currently looking for some way to synthesize the left step to get to the right. (An exploded pre-block is also needed, but that is presumably easy.)
x = 32, y = 12, rule = B3/S23
2o24b2o$o2b2o21bo2b2o$b2o2bo21b2o2bo$3b2obo22b2o$b2o2bo21b2o$o2bo4b2o
16bobo$b2o4b2o14bobo$6bo2bo13b2o$5bo$b3obo$3bobo$2bo!


EDIT: Yet another 16-bitter in 29 gliders and one LWSS:
x = 252, y = 37, rule = B3/S23
11bobo$11b2o$12bo$51bo$11b3o38bo165bobo$11bo38b3o166b2o$12bo206bo2$
224bobo$30bo30bo162b2o$30bobo27bo158bobo3bo$30b2o28b3o151bo5b2o$212bob
o5bo$63b2o148b2o$63bobo$50bo2b2o8bo22bo2b2o32bo2b2o16bo2b2o96b2o$50b4o
bo30b4o2bo30b4o2bo14b4o2bo35bo2b2o29bo2b2o20bo2b2o$55bo35b2o35b2o11bo
7b2o35b4o2bo27b4o2bo19b3o2bo$52b3o33b3o34b3o11bobo4b3o25bo3bo12b2o32b
2o23b2o$52bo34bo2bo33bo2bo12b2o3bo2bo23bobob2o5b2o3b3o23b2ob2o3b3o23b
2o$88b2o34b2o11b2o6b2o26b2o2b2o4b2o2bo2bo23b2ob2o2bo2bo22bobo$136bobo
48b2o32b2o25bo$98bo21bo17bo72b3o$97bo23bo19b2o70bo$97b3o19b3o19b2o40b
2o27bo4b2o$4bo89b2o87b2o32b2o5b3o$4b2o17b3o64bo3bobo22b3o19b2o81bo$3bo
bo17bo31b3o30bobo3bo26bo19b2o40b2o32b2o6bo$24bo30bo33b2o29bo62b2o32b2o
$44b3o9bo157b2o8b3o$46bo166bobo7bo2bo$bo43bo169bo10bo$b2o223bo$obo53b
3o164bobo$56bo99b3o$57bo100bo$157bo!


EDIT 2: Solved my question myself. A p6 in 72 gliders:
x = 542, y = 40, rule = B3/S23
465bo$463bobo5bo$464b2o3bobo$307bo162b2o$32bo275bo$33bo54bo64bo74bo77b
3o$31b3o52bobo29bo35bo72bo$87b2o27bobo12bo20b3o6bobo63b3o$117b2o12bobo
27b2o140bobo$27bo103b2o29bo63bo77b2o$28bo89bo30b2o3bobo45bobo22bo76bo$
26b3o89b2o11bo16bo2bo2b2o5b2o40b2o20b3o$70bo46bobo10b2o16bo2bo3bo4bo2b
o39bo66bo3bo$70b2o4bo53bobo16b2o9bo2bo45bo13bo9bo34bobob2o5b2o4bo27b2o
b2o4bo22b2o4bo24b2o4bo$51bo17bobo5bo83b2o3bo34b2o5bobo12b2o3b2o2bobo
34b2o2b2o4bobo2bobo26b2obobo2bobo20bo2bo2bobo22bo2bo2bobo34b2o4bo14b2o
4bo36b2o4bo24b2o3bo15b2o3bo$50bo24b3o87bo34bobo5bo2bo10bobo3bo3bo2bo
44bo3bo2bo21bo7bo3bo2bo20b2o3bo2bo22b2o3bo2bo32bo2bo2bobo12bo2bo2bobo
34bo2bo2bobo24bo2bobo15bo2bobo$50b3o68b2ob2o26b2ob2o5bo2b3o34bo3b2ob2o
18b3ob2o46b3ob2o23b2o6b3ob2o23b3ob2o25b3ob2o34b2o3bo2bo12b2o3bo2bo34b
2o3bo2bo20b3o3bo2bo11b3o3bo2bo$41bo5bo38b2o6bo27bobo28bobo5b2o44bobo
21bobo49bobo23b2o9bobo24bo3bo26bo3bo37b3ob2o15b3ob2o37b3ob2o21bo2b3ob
2o12bo2b3ob2o$25bo7bo6bobo5b2o24b3o8bo2bo4b2o27bo2bo27bo2bo4bobo43bo2b
o20bo2bo48bo2bo14b3o16bo2bo24b2o2bo26b2o2bo36bo3bo16bo3bo38bo3bo25bo3b
o14b2o2bobo$25b2o6b2o5b2o5b2o27bo9b2obo3bobo27b2obo27b2obo50b2obo20b2o
bo48b2obo15bo17b2obo25b2obo27b2obo36b2o2bo16b2o2bo38b2o2bo25b2o2bo14b
3o3bo$9bobo12bobo5bobo3b2o11b3o21bo7b3o2bo31b3o2bo25b3o2bo48b3o2bo18b
3o2bo46b3o2bo15bo15b3o2bo18bo5b2o2bo26b2o2bo7bo31b2o19b2o5bo14b2o19b2o
17bo10b2o15b2o2b2o$4bobo2b2o26bobo11bo31bo2bo33bo2bo27bo2bo31b3o16bo2b
o20bo2bo48bo2bo28bo4bo2bo18bobo4bo2bo23bo3bo2bo8bo30b2o12bo6b2o7bobo
11bobo17b2o17bobo8b2o19b2o$5b2o3bo27bo13bo31b2o35b2o29b2o32bo19b2o22b
2o50b2o27bobo5b2o20b2o5b2o23bobo3b2o9b3o19b3o5bobo13b2o3bobo7b2o14bo
18bo18b2o2b2o5bo20bo$5bo21b3o157bo124b2o60bobo37bo2bobo15b2o5bo43bobo
13b2o6b2o4bobo18bobo$10b2o17bo313bo31bo37bo3b2o29bo38b2o12bobo5bo7b2o
19b2o$9b2o17bo309b2o3b2o93bobo6b2o29bobo22bo$11bo325bobo2bobo79bo14b2o
6bobo29b2o$2o316b2o19bo83b2o14bo31b2o6bo$b2o249b3o62bobo103bobo46b2o$o
253bo51b3o10bo70bo46b2o32bo4b3o$35b2o216bo54bo12b3o40b3o7bo14b2o47b2o
38bo$36b2o10b2o257bo13bo44bo7b2o13bobo29b3o13bo39bo$35bo11b2o273bo42bo
7bobo47bo$39b3o7bo372bo$41bo382b3o$40bo383bo$425bo$399b2o$399bobo$399b
o!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby towerator » November 28th, 2013, 9:47 am

Here's my very first synthesis... Already known for sure, but still "yay!"
Spark coil on boat with 5 gliders...
x = 22, y = 8, rule = B3/S23
20bo$bo11bo4b2o$2bo11b2o3b2o$3o10b2o$4b3o$6bo13bo$5bo13b2o$19bobo!
This is game of life, this is game of life!
Loafin' ships eaten with a knife!
towerator
 
Posts: 326
Joined: September 2nd, 2013, 3:03 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » November 28th, 2013, 12:59 pm

Yet another 16-bitter in 18 gliders:
x = 95, y = 31, rule = B3/S23
55b2o$20bo33b2o$21bo28bobo3bo9bo$19b3o29b2o11b2o$51bo13b2o$26bo$25bo$
21bo3b3o20bobo$22bo26b2o$20b3o26bo$25bo$26bo$7bo16b3o15bobo$6bo36b2o
14b2o$6b3o12bo10bo10bo14bo2bo25b2obo$21b3o6b2o27b3o25bob2o$2bo21bo6b2o
29b2o4b3o20b2o$3bo17b3o35b3o2bo3bo19b3o2bo$b3o17bo37bo3bobo3bo18bo3bob
o$64bo28bo$3o$o23b2o$bo21bobo$25bo20bo$46b2o11b3o$45bobo11bo$60bo2$63b
o$62b2o$62bobo!


EDIT: A p3 in 28 gliders and one LWSS:
x = 190, y = 47, rule = B3/S23
140bo$141b2o$140b2o5$146bo$147bo$145b3o5$160bobo$160b2o$161bo$158bo$
156bobo$157b2o$150bo$151bo$149b3o2$22bobo16bo138b2o$2bo20b2o15bo31bobo
106bo$obo20bo16b3o30b2o3bo102bobo$b2o15bobo52bo2b2o33bobo68b2o$19b2o
48bo7b2o20bo12b2o6bo44bo19b2o$19bo23bo24bobo27bobo11bo6bobo8bo33bobo
18bobo$3o29bo8b2o21b2obobobo22b2obobobo13b2obobobo6bo33bobobo18bobo$2b
o29bo9b2o20bob2obobo22bob2obo2bo12bob2obo2bo5b3o31bobo2bo16b2o2bo$bo
30bo37bo29bobo18bobo40bobobo16bobobo$44b2o5bo22bobo24bo20bo42bobo18bob
o$44bobo3b2o22b2o90bo20bo$44bo5bobo22bo39b2o2b2o$34bo35b3o24b3o16b2ob
2o3b2o$22b2o10bobo33bo28bo15bo7b2ob2o$23b2o9b2o35bo26bo25b4o$22bo5b3o
69b3o15b2o5b2o$30bo69bo18b2o2bo$29bo71bo16bo3b2o$122bobo2$150b3o$152bo
$151bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » November 28th, 2013, 3:36 pm

Extrementhusiast wrote: A p3 in 28 gliders and one LWSS

Mark Niemiec constructed this in the same way back in July, but he used a much less efficient final step. Here are two variants that he also built with the final step replaced by your version:
x = 135, y = 70, rule = B3/S23
85bo$83bobo$84b2o5$89bo$90b2o$89b2o4$105bo$104bo$104b3o2$100bobo$101b
2o$101bo$93bo$51bo42b2o$51bobo39b2o$51b2o$44bo79b2o$43bo81bo$obo40b3o
79bob2o$b2o123bo$bo38bobo26bo39bo20bo$28bo12b2o5bo6b2o11bobo37bobo17b
2o$8bo18bobo11bo5bobo4b2o6bo4bobo37bobo20bo$6b2o20b2o6b3o9b2o6bo4bo5bo
bobo35bobobo18bobo$7b2o21b2o6bo11b2o9b3o4bobobo35bobobo16bobobo$30bobo
4bo8bo3bobo5bo10bo2bo36bo2bo17bo2bo$31bo15bo3bo5b2o11b2o38b2o19b2o$4bo
3b2o35b3o9bobo$4b2ob2o$3bobo3bo44b3o$56bo$55bo3$44b2o$45b2o$44bo49b2o$
95b2o$94bo8$103b2o19b2o$104bo20bo$104bob2o17bob2o$105bo20bo$109bo20bo$
107b2o19b2o$109bo20bo$109bobo8bo9bobo$108bobobo5b2o9bobobo$109bo2bo2b
2o2b2o9bo2bo$110b2o3bobo15b2o$115bo2$107b3o$109bo$108bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby mniemiec » November 28th, 2013, 7:22 pm

This messages has about a week worth of accumulated updates, so please bear with me (some have been superceded by subsequent posts).

extrementhusiast wrote:Finished a third in 32 gliders:

Since this reduced the original by 11 gliders, it also did the same for the following two that are based on it:
x = 176, y = 60, rule = B3/S23
152bo$138bo11boo$139bo11boo$137b3o$57bo83bo$58bo82bobo$14bobo39b3o29bo
bo50boo$o13boo72boo$boo12bo44bo28bo$oo57bo34bobo$59b3o28boobboo$24bo
38b3o16boo5bobo3bo6boo10boo6boo10boo6boo$23bo39bo14boobboo7bo6boobboo
9bobobboobboo9bobobboobboo$23b3o38bo13boo18boo13boo3boo13boo3boo$$26bo
$25boo15boo18boo18boo18boo18boo18boo$11boo7boo3bobo13bobo17bobo17bobo
17bobo17bobo17bobo25boo$8bobbo8bobo15bobbo16bobbo16bobbo16bobbo16bobbo
16bobbo26bobbo$7bobobobbo5bo16bobobobbo12bobobobbo12bobobobbo12bobobo
bbo12bobobobbo12bobobobbo7b3o12bobobobbo$8bobbobobo22bobbobobo12bobbob
obo12bobbobobo12bobbobobo12bobbobobo12bobbobobo6bo15bobbobobo$11bobbo
26bobbo16bobbo16bobbo16bobbo16bobbo16bobbo8bo17bobbo$10boo28boo18boo
18boo18boo18boo18boo28boo15$19boo18boo18boo18boo18boo18boo28boo18boo$
18bobbo16bobbo16bobbo16bobbo16bobbo16bobbo17bo8bobbo16bobbo$17bobobobb
o12bobobobbo12bobobobbo12bobobobbo12bobobobbo12bobobobbo15bo6bobobobbo
12bobobobbo$12bo5bobbobobo12bobbobobo12bobbobobo12bobbobobo12bobbobobo
12bobbobobo12b3o7bobbobobo12bobbobobo$10bobo8bobbo16bobbo16bobbo16bobb
o16bobbo16bobbo26bobbo16bobbo$5bobo3boo7boo17bobo17bobo17bobo17bobo17b
obo27bobo20boo$6boo31boo18boo18boo18boo18boo28boo$6bo$$7b3o48bo24boo
18boo18boo3boo23boo3boo$9bo49bo19boobboo14boobboo6bo7boobboobbobo19boo
bboobbobo$8bo48b3o19boo18boo6bo3bobo5boo6boo20boo6boo$61b3o43boobboo$
31boo30bo42bobo$17bo12boo30bo50bo$17boo13bo80boo$16bobo45b3o45bobo35b
oo$64bo84bobo$65bo85bo$153b3o$140boo11bo$141boo11bo$140bo!


extrementhusiast wrote:Finished an eighth in 52 gliders and one LWSS:

This one is down to 51, as one glider can be saved in the penultimate step by moving the pi-cleanup glider slightly so it doesn't leave a spurious block:
x = 53, y = 37, rule = B3/S23
28bobo$o27boo$boo26bo$oo6$31bo$31bobo$31boo$$10boo$5boo3boo33boo$5bobo
37bobo$8bo39bo$9bo39boboo$6b3o3bo33b3o3bo$6bobb4o33bobb3o$9bo12bo26bo$
10bo10boo$9boo10bobo4$28boo$28bobo$28bo$$16bobo$16boo$bboo13bo$bobo$3b
o12boo$16bobo$16bo!

(I noticed that you use a 15-bit still-life. Your last step in creating this (boat+shillelagh to beehive+tab) takes 4 gliders in 1 step; much better than my previous 11 in 4 steps!)

Here is one trivial one I stumbled on by accident (e.g. the first step was old boilerplate, and I was expecting the last step to be hard, and surprised that one glider could do it), made from one of the final 15-bit ones. With 6 extra gliders, so this rings in at 69:
x = 107, y = 15, rule = B3/S23
bboo18boo18boo18boo18boo18boo$bobo17bobo17bobo17bobo17bobo17bobo$o3boo
14bo3boo14bo3boo14bo3boo14bo3boo15bobboo$oboobbo13boboobbo13boboobbo
13boboobbo13boboobbo15boobbo$bobobo15bobobo15bobobo15boboboo14boboboo
16boboo$4bo19bo19bo18bo13b3o3bo19bo$62boo15bobboo18boo$78bo$21boo18boo
bb3o$3o18boo18boobbo$bbo33bo9bo$bo34boo3bo$3b3o29bobobboo$3bo36bobo$4b
o!


Here is a second from 28 (once I realized I could use the same mechanism that's used for welding together a cis-shillelagh inducting a still-life. Back in the '90s, when I was building the 14-and 15-bit pseudo-still-lifes, that was the only geometry that was unusually difficult to synthesize from either side):
x = 153, y = 55
90bo$90bobo$90boo3$5bo3bo$6boobobo18boo18boo18boo18boo$5boobboo20bo19b
o19bo19bo47bo$26boobo16boobo16boobo16boobo16boobo16boobo7boo7boobo$26b
ob3o15bob3o15bob3o15bob3o3bo11bob4o14bob4o6boo6bob4o$94bobo15bo19bo19b
o$bo25boo10bo7boo18boo18boo5boo11boobboo14boobboo14boobbo$bbo7boo15boo
11bo6boo18bo19bo19bo19bo19bo3boo$3o6boo27b3o27bo19bo4bo14bo19bo19bo$5b
o5bo38bo16boo18boo3boo13boo18boo5boo11boo$5boo43bobo39bobo39bobo$4bobo
43boo82bo$131boo$11bo35bobo80bobo$10boo36boo82bo$10bobo35bo$$44boo$43b
obo$45bo14$6boobo16boobo16boobo16boobo16boobo16boobo$6bob4o14bob4o14bo
b4o14bob4o14bob4o14bob4o$12bo19bo19bo19bo19bo19bo$7boobbo15boobbo15boo
bbo15boobbo15boobbo15boobbo$7bo3boo14bo3boo14bo3boo14bo3boo14bo3boo14b
obbo$8bo19bo19bo19bo19bo19boo$7boo20bo19bo19bo19bo9bo$28boo18boo17bobo
17bobo9bobo$14bobo27bo9bo12boo18boo6boobboo$14boo29boo5boo41bobo$15bo
28boo7boo35boo3bo$91boo$3o12boo35bo29b3o5bo$bbo12bobo33boo31bo$bo9bo3b
o27b3o5bobo29bo$11boo30bo$10bobo31bo!


Matthias's new house-to-snake conversion allows this one to be made from 35 gliders:
x = 154, y = 98, rule = B3/S23
44bobo$45boo14bo$45bo13boo$60boo$54bo44bo$53bo44bo$53b3o42b3o$74b3o17b
3o$68boo18boo18boo18boo18boo$69bo19bo19bo19bo19bo$41boo25bo3bo15bo3bo
15bo3bo15bo3bo15bo3bo$40bobo25b5o15b5o15b5o15b5o15b5o$42bo$70bo19bo19b
o19bo17b3o$58boo9bobo17bobo17bobo10bo6bobo16bobbo$58bobo9bo19bo19bo9bo
bo7bo18boo$58bo62boo$124boo$53boo70boo$28boo18boobboo70bo$7bobo17bobbo
16bobbo3bo$8boo17bobbo16bobbo$8bo19boo18boo$$7boo$6bobo$8bo12$8boo18b
oo18boo18boo18boo18boo18boo18boo$9bo19bo19bo19bo19bo19bo19bo19bo$8bo3b
o15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo$8b5o15b5o15b5o15b5o
15b5o15b5o15b5o15b5o$$8b3o17b3o17b3o15b7o13b7o13b3ob3o13b3ob3o13b3ob3o
$8bobbo15bo3bo7bo7bo3bo7bo6bobbobbo13bobbobbo12bobbobobbo11bobbobobbo
11bobbobobbo$9boo16booboo5bobo7booboo7bobo43boo5boo11boo5boo11boobbobb
oo$38boo19boo$8bo$8boo30b3o13b3o72bo$7bobo32bo13bo73boo$12bo28bo15bo
72bobo$11boo75boo$11bobo73bobobboo$89bobbobo33b3o$37boo21boo30bo37bo$
38boo19boo68bo$37bo23bo69b3o$131bo$132bo$91b3o$91bo$92bo17$8boo18boo
18boo18boo18boo18boo$9bo19bo19bo19bo19bo19bo$8bo3bo15bo3bo15bo3bo15bo
3bo15bo3bo15bo3bo$8b5o15b5o15b5o15b5o15b5o15b5o$$6b3ob3o14bob4o14bob4o
14bob4o14bob4o14boboo$5bobbobobbo13boobobbo13boobobbo13boobobbo13boobo
bbo13boobo$5boobbobboo18boo18boo18bobo17bobobboo$boo54bo15bo19bobboo$o
bo52boo41bo$bbo3b3o37boo8boo34boo$8bob3o34boobbo39bobo$7bobbo35bo3boo
41bo$11bo38bobo$57b3o$57bo$58bo$54b3o$56bo$55bo!


Two more from standard boilerplate from 16 and 22 (first one wasn't on the list because it could have been made from the second; second one WAS on the list because it was presumed that it led to the first, rather than the other way around):
x = 157, y = 32, rule = B3/S23
10bo$o9bobo10bo$boo7boo10bo$oo20b3o110bo$9bo126bo$7bobo124b3o3bo$8boo
43bobo74bo7boo$54boo75boo6boo$54bo75boo$3bo83bobo$4bo53bo24bo3boo33bo$
bb3o52bo26boobbo34bo$22bo34b3o23boo23boo11b3o4boo$22bobo5boo18boo9b3o
6boo18boo16bobo17bobo20boo$22boo6bo19bo10bo8bo4boo13bo4boo14bo3boo14bo
3boo14bo3boo$32bo19bo9bo9bo3bo15bo3bo15bo3bo15bo3bo15bo3bo$31boo18boo
18boobbo15boobbo15boobbo15boobbo15boobbo$29bobbobo14bobbobo14bobbobo
14bobbobo14bobbobo14bobbobo14bobbobo$6bobo20boobboo14boobboo14boobbo
15boobbo15boobbo15boobbo15boobbo$7boo$7bo51boo$59bobo$59bo$$8b3o43b3o$
10bo45bo$9bo9boo34bo$19bobo37bo$19bo38boo$14boo42bobo$13boo$15bo!


Another two trivial ones (again, first was not on the list because it could have been made from the second). This didn't use standard mechanisms, but I just stubstituted a barge in a custom 14-bit synthesis with a tub w/tail and voila! (I tried unsuccessfully to start with the 14-bit object that had a tub, and then turn it into an eater. Then it occurred to me that it might be easier if it was just an eater to start with, and it worked!)
x = 158, y = 25, rule = B3/S23
92bo11bo$93boo7boo$92boo9boo$137bo$138bo$136b3o$140bo$49bo90bobo$11bo
36bo19bo14bobo12bo41boo$11bobobbo4boo18boo5b3o10boo4bobo14boo5boo4bobo
11boo18boo18boo$11boobboo5bo19bo19bo4bobo14bo7bo4bobo12bo3boo14bo3boo
14bobboo$bo13bobo4bobo17bobo6b3o8bobo3bo23bobo3bo13bobobbo14bobobbo14b
obobbo$boo20bobo17bobo5bo11bobo16boo9bobo17boboo16boboo16boboo$obo21bo
19bo7bo11bo16bobo10bo20bo19bo19bo$5b3o75bo29bobo17bobo17bobo$5bo107boo
18boo18boo$6bo78bo$85boo7boo$84bobo8boo$89boo3bo$88bobo$90bo$100boo$
99boo$101bo!


So, 5 more off the list; now it's down to 53 (now 52!).

This is a partial synthesis of one that has been on my list for years (part of the "let's make sure we can put a cis-shillelagh on anything" project). It relies on one of the 8 remaining unsolved 18-bit pseudo-still-lifes:
x = 138, y = 22, rule = B3/S23
109bo$108bo$108b3o$$23bo83bo$24bo3bo79bo$22b3oboo78b3o$27boo37bobo$62b
o3boo$bboboo14boo10boboo16boboo7boobbo4boboo16boboo9bo6boboo18boo$bboo
bo15boo9boobo16boobo6boo8boobo16boobo9boo5boobo17bobo$6boo12bo15boo18b
oo18boo18boo6bobo9boo14bo3boo$7bo29bo11boo6bo11boo6bo11boo6bo11boo6bo
13bo5bo$oobobo24boobobo13bobobobo13bobobobo12bobbobobo12bobbobobo15bob
obo$obooboo23bobooboo15booboo15booboo11boobbooboo11boobbooboo15booboo$
67bo$62bo3boo$60bobo3bobo34boo$61boo39bobo$23boo79bo$22bobo$24bo!


I have come up with a few incomplete syntheses for four more; two more snake-based ones (each missing one vital step), plus two trivial derived carrier-based ones. The first one lacks a suitable means of turning an eater into a snake - the same mechanism as is used in the second gets too close in the first. The second, on the other hand,needs a mechanism to collapse a tub - the same mechanism as used in the first also gets too close. There is a way of doing it with a glider and mutated LWSS, but I'm not sure how to get those in place. Perhaps you could figure these out?
x = 177, y = 125, rule = B3/S23
51bo31bo19bo19bo$49boo27boobbobo13boobbobo13boobbobo$5bo44boo26bobobbo
14bobobbo14bobobbo$3bobo19boo28boo23b3o17b3o17b3o$4boo19boo17bo10boo
22bo19bo19bo$boo39bobo19bo15bo19bo18boo$obo40boo18bo15boo14b3oboo$bbo
46bo13b3o31bo$40bo6bobo7boo37bo$41bo6boo7bobo$39b3o15bo$35b3o$37bo$36b
o23boo$60bobo$44b3o13bo$46bo$45bo$35b3o$37bo13b3o$36bo14bo$52bo11$147b
o$148bo$146b3o$156bobo$82bobo64bobo4boo$80bobobobo62boo6bo$81booboo64b
o$$43bo19bo19bo27b3o40bo$38boobbobo13boobbobo13boobbobo13boo3boo5bo3bo
3boo3boobo11boo3boobo6boo13boo3boo$38bobobbo6bo7bobobbobo12bobobbobo
12bobobbobo8bo3bobobboboo11bobobboboo6bobo12bobobbobbo$40b3o6boo9b3obb
o14b3obbo14b3obbo6boo6b3o17b3o27b3obboo$39bo9bobo7bo5boo12bo5boo12bo5b
oo5bo6bo19bo29bo$39boo18boo18boo18boo18boo18boo28boo$44boo66bo33boo$
43bobo6bo94boo3boo$45bo5boo93bo5bobo$51bobo98bo$$48b3o$50bo$49bo7$141b
3o$140bo3bo$144bo$142boo$142bo$80bobo67bo$74bo5boo60bo8bobo$69bobboo7b
o64boo3bobobo$70bobboo73b4oboo$68b3o$93bo19bo19bo19bo$73bo15boobobo14b
oobobo14boobobo14boobobo14boobboo$65bo6boo15bo3bo15bo3bo6bo8bo3bobo13b
o3bobo13bo3bobo$66bo5bobo15b3o17b3o6boo9b3obbo14b3obbo14b3obbo$64b3o
10b3o8bobo17bobo8bobo6bobo4boo11bobo4boo11bobo4boo$77bo10boo18boo18boo
18boo18boo$78bo35boo$60b3o50bobo6bo$62bo12bo39bo5boo$61bo12boo45bobo$
74bobo$118b3o$120bo$70b3o46bo$72bo$71bo10$61boo$60bobo$62bo$55bo$56bo$
54b3o$$13bo133bo$14bo47bobo83bo$12b3o47boo82b3o$16bo46bo92bobo$15bo
133bobo4boo$15b3o17boo18boo92boo6bo$35boo18boo93bo$$62bobo89bo$9boobb
oo14boobboo14boobboo7boo15boobboobo12boobboobo12boobboobo12boobboobo6b
oo14boobboo$9bo3bobo13bo3bobo13bo3bobo7bo15bo3boboo12bo3boboo12bo3bob
oo12bo3boboo6bobo13bo3bobbo$10b3obbo14b3obbo14b3obbo24b3o17b3o17b3o17b
3o27b3obboo$8bobo4boo11bobo4boo11bobo4boo8bo12bobo17bobo17bobo17bobo
27bobo$8boo18boo18boo15bobo10boo18boo18boo18boo28boo$65boo20boo18boo
37boo$87boo18boo38boo3boo$64bo81bo5bobo$63boo44boo41bo$49boo12bobo43bo
bo$48bobo58bo$50bo8b3o$59bo$60bo!


Here's an almost-synthesis of one of the 12 unsolved 19-bit pseudo-still-lifes. It's complete except for one vital step, that needs a very specialized spark, similar to the one produced by the period-12 Crown oscillator, but that doesn't quite work, as the back end of it needs to be missing:
x = 161, y = 141, rule = B3/S23
104bo$103bo$53bobo47b3o$54boo19boo18boo18boo18boo18boo$54bo19bobbo16bo
bbo16bobbo16bobbo16bobbo$75b3o17b3o17b3o17b3o17b3o$57boo4bo39bo$58boo
bbo12b3o17b3o4boo11b3o17b3o17b3o$57bo4b3o9bobbo16bobbo4bobo9bobb3o14bo
bb3o14bobb3o$74boo18boo18boo4bo13boo4bo13boo4bo$63bo55bobo17bobo17boo$
62boo34b3o18bobo17bobo$62bobo35bo19bo19bo$99bo42boo$95bo46bobo$95boobb
oo41bo$94bobobbobo$99bo16$5boo18boo18boo18boo18boo28boo18boo18boo$4bo
bbo16bobbo16bobbo16bobbo16bobbo26bobbo16bobbo16bobbo$5b3o17b3o17b3o17b
3o17b3o27b3o17b3o17b3o$$5b3o17b3o17b3o17b3o17b3o27b3o17b3o17b3o$4bobb
3o14bobb3o14bobb3o14bobb3o14bobb3o24bobb3o14bobb3o14bobb3o$4boo4bo13b
oo4bo13boo4bo13boo4bo13boo4bo23boo4bo13boo4bo13boo4bo$bo7boo18boo18boo
18boo3bobo12boo28boo18boo18boo$bbo21boo18boo18boo9boo7boo28boo18boo18b
oo$3o21bobo17bobo17bobo8bo8bobo9bobo15bobbo16bobbo16bobbo$5b3o17bo19bo
19boo18boo9boo17b3o17b3o17b3o$5bo91bo$bboobbo44boo60b3o17b3o17b3o$bobo
43bobboo40boo18bobbo16bobbo17bobbo$3bo43boo3bo39bobo5bo11boo18boo21boo
$46bobo43bo6boo$77b3o8boo9bobo$79bo7boo$78bo10bo$93bo$83boo7boo38boo$
82bobo7bobo33boobbobo$84bo42bobobbo$129bo$85boo$85bobo45bo$85bo47boo$
132bobo13$5boo18boo18boo18boo18boo18boo18bo9boo18boo$4bobbo16bobbo16bo
bbo16bobbo16bobbo16bobbo15bobobboo4bobbo16bobbo$5b3o17b3o17b3o17b3o17b
3o17b3o16boob3o5b3o17b3o$127boobo$5b3o17b3o17b3o17b3o17b3o17b3o20b3o4b
3o17b3o$4bobb3o14bobb3o14bobb3o14bobb3o14bobb3o14bobb3o19bo4bobb3o14bo
bb3o$4boo4bo13boo4bo13boo4bo13boo4bo13boo4bo13boo4bo23boo4bo13boo4bo$
9boo18boo18boo18boo18boo18boo28boo18boo$4boo18boo18boo18boo18boo18boo
23bo4boo18boo$4bobbo16bobbo16bobbo16bobbo16bobbo16bobbo19bobo4bobbo16b
obbo$5b3o17b3o17b3o17b3o17b3o17b3o20boo5b3o17b3o$123b3o$3b3o17b3o17b3o
17b3o17b3o17b5o17bo7b5o17b3o$3bobbo16bobbo16bobbo16bobbo16bobbo16bo4bo
15bo8bo4bo16bobbo$5boo18bobo17bobo17bobo17bobo18bobo27bobo18boo$o9bo
15bo19bo19bobo17bobob3o13boo28boo$boo5boo41bo15bo19bobbo37b3o$oo7boo
38boo40bo38bo$46boobboo77bo3boo$bbo43bobo85boo$bboo42bo86bo$bobo5b3o$
11bo$10bo11$74b3o$73bo3bo$77bo$75boo5bo42bo$75bo7bo39bobo$81b3o40boo$
5boo18boo18boo18boo8bo9boo$4bobbo16bobbo16bobbo16bobbo16bobbo18boo18b
oo$5b3o17b3o17b3o17b3o17b3o18boo18boo$$5b3o17b3o17b3o17b3o17b3o18boo
18boo18boo$4bobb3o14bobb3o14bobb3o14bobb3o10bo3bobb3o13bobob3o13bobob
3o13bobob3o$4boo4bo13boo4bo13boo4bo13boo4bo8bo4boo4bo12boo5bo12boo5bo
12boo5bo$9boo18boo18boo18boo6bo3boo6boo18boo18boo18boo$4boo18boo18boo
18boo13bo4boo17boo18boo18boo$4bobbo16bobbo16bobbo16bobbo12bo3bobbo15bo
bobo15bobobo15bobobo$5b3o17b3o17b3o17b3o17b3o18boo18boo18boo$$5b3o17b
3o17b3o17b3o17b3o18boo18boo$5bobbo15bobbo16bobbo16bobbo16bobbo18boo18b
oo$7boo15boo18boo19boo18boo$81b3o40boo$40boo41bo39bobo$39bobo40bo42bo$
41bo$43b3o$7boo34bo$6bobobboo31bo$8bobbobo$11bo$$7bo$6boo$6bobo!


Sokwe wrote:Here's an 8-glider synthesis of a 15-cell still life:

Update: I created the 7-glider synthesis on 2013-10-29. It was based on a predecessor that I found from a 20x20 methuselah from output collected from Andrzej Ostraczynski's screen saver, from a source suggested by Lewis (on the Accidental Discoveries thread, I think). There are hundreds of mundane objects logged there, plus dozens of exotic ones I had never seen before. The text files list each object, plus a number used to seed the random number generator to produce the initial 20x20 random muck that produces it. I think that many useful synthesis could be gleaned from them. I looked at a few so far, and only found a couple I could salvage, but there are bound to be many others. One was the above-mentioned 15-bit still-life (a 3-glider improvement), and another was this 16-bit still-life that I had spent a fair bit of time trying to unsuccessfully synthesize just a week earlier, before I found a very nice natural predecessor from the screen saver results:
x = 127, y = 36, rule = B3/S23
88bo$89bo3bobo$87b3o3boo$94bo$96b3o$96bo$97bo17bobo$108bo6boo$108bobo
5bo$108boo$$79bo$80boo$79boo3$6bo117boo$booboo18bo19bo19bo29bo28bobbo$
obobboo16bobo17bobo17bobo27bobo27bobo$bbo20boo18boo18boo28boo27booboo$
123bobo$123bobbo$63boo28boo29boo$42boo18bobbo26bobbo$41bobo19boo28boo$
43bo69bo$45boo65boo$45bobo64bobo$45bo4$107boo$79boo25boo$80boo26bo$79b
o!


Sokwe wrote:That natural predecessor is actually much more generous. After playing around with gencols for a while I managed to work out this 4-glider synthesis:

Much nicer! This also leads to the following trivial variants:
x = 151, y = 29
bobo39bo$bboo37bobo$bbo39boo3$12bo39bo39bo39bo$oo10bobo25b3o9bobo11boo
24bobo37bobo$boo6bobboo12boo14bo6bobboo11bobbo20bobboo35bobboo$o9bo14b
obbo12bo8bo14bobbo21bo15boo22bo15boo$8b3o15boo20b3o15boo20b3o15boo20b
3o15boo$30bo39bo39bo39bo$8bo17b5o17bo17b5o17bo17b5o17bo17b5o$7boo17bo
20boo17bo20boo17bo20boo17bo$7bobo19boo16bobo19boo16bobo19boo16bobo19b
oo$29boo38boo39bo39bo$108bo40bo$108boo38bo$11b3o37b3o37b3o37b3o13bo$
11bo39bo39bo39bo15boo$12bo39bo28boo9bo39bo$82boo4bo35bo$81bo5boo35boo$
87bobo33bobo$132bo$131boo$131bobo$125bo$125boo$124bobo!


Sokwe wrote:Speaking of 4-glider syntheses, where did this one come from?

Update: Early last year, B. Shemyakin sent out an email including many glider syntheses from 3-5 gliders. All of the 3-glider ones were previously known, but quite a few of the 4- and 5-glider ones were new. This is one of those. (See my web page data under 18.2403 for this one, or "still-lifes from 4 gliders" for all of them.).

Sokwe wrote:Extrementhusiast used it in his synthesis of a period-6 oscillator. Speaking of which, his construction seems to lack these steps:

That's odd. Not only did I miss that, my version of his synthesis starts with the block, rather than a ship on the inductor. However, the block on the upper half of the inductor (that I call a "hand") can be made more easily directly, from 7 gliders. But this is moot, since the block on the bottom half can be made from 5, and the location of the block doesn't matter, as the block-to-table transformation is indifferent to orientation:
x = 136, y = 73, rule = B3/S23
106bobo$107boo9bobo$101bo5bo10boo$102boo15bo$101boo$$113bo$104bobo5bob
o7bo$105boo5bobo6bo$105bo7bo7b3o7boo$62bobo12bo29bo23bobo$62boo12bo6bo
22bobbo3bo19bo$63bo12b3o3bobo21bobbobbobo17boboo$82bobo17bo5bo3bobo17b
obo$62bo3boo13booboboo12bobo8booboboo13boobo$62booboo14bobboboo13boo8b
obboboo13bobboo$61bobo3bo14boo28boo18boo$133bo$112boo16b3o$72boo31bo6b
obo15bo$71boo32boo6bo7b3o$73bo30bobo14bo$122bo$$111bo$111boo$110bobo9$
obo27bo$boo26bo$bo27b3o3$106bobo$107boo9bobo$101bo5bo10boo$102boo15bo$
10bo60bo29boo$11boo57bo51bo$10boo58b3o40bo7bo$47boo18boo35bobo5bobo6b
3o$46bobbo16bobbo35boo5bobo$47boo18boo36bo7bo17boo$107bo23bobo$43bo19b
o19bo22bobbo3bo19bo$42boboboo14boboboo14boboboo18bobbobboboboo14boboo$
42boboboo14boboboo14boboboo14bo5bo3boboboo14bobo$41boobo16boobo16boobo
15bobo8boobo16boobo$41bobbo16bobbo16bobbo16boo8bobbo16bobboo$42boo18b
oo18boo28boo18boo$133bo$112boo7b3o6b3o$105bo6bobo6bo8bo$18boo85boo6bo
8bo$17boo85bobo$19bo$15boo$14bobo94bo$16bo94boo$110bobo4$35b3o$35bo$
36bo!


Sokwe wrote:A variant can be synthesized in 8 gliders:

This also improves the tub-, beehive- and bookend- based versions by 1 (but not the snake one, as the convoluted mechanism needed to bring in a snake has too much close-by scaffolding that interferes with anything else coming from that direction).

Sokwe wrote:Elkies's P5 with tub in 28 gliders:

Update: Even though this doesn't improve that specific oscillator per se, the first step DOES improve the following 16-bit still-life by 1 (13 new way, 14 old way), plus at least 6 other related larger ones in my collection. It also allows Elkies's P5 with tub, boat, barge, etc. to be constructed from that still-life itself as a base:
x = 123, y = 122
6bo$7bo$5b3o$16bo$15bo$15b3o3$7bobo$8boo$8bo10bo$18bo85bo$18b3o83bobo$
104boo$21boo$21bobo12bobboo15bobboo15bobboo15bobboobboo11bo$21bo13bobo
bbo14bobobbo14bobobbo14bobobbobbobo9bobobobbo$5bo30boobo16boobo16boobo
16boobo3bo12boob4o$5boo4b3o24bo19bo19bo19bo19bo$4bobo6bo15bo8bobo17bob
o17bobo17bobo17bobo$12bo15bo10boo18boo18boo18boo18boo$28b3o$39boo18boo
$39boo18boo$14bo4b3o$14boo5bo39b3o$13bobo4bo40bo$62bo12$91bobo$92boo
11bobo$92bo13boo$106bo$11bo78boo$12boo6bobo68boo12bo$11boo7boo14bo3bo
15bo3bo15bo3bo9bo5bo3bo3boo10bo$21bo13bobobobo13bobobobo13bobobobo13bo
bobobobbobo8bobobobbo$14boo19boboboo14boboboo14boboboo14boboboo15boob
4o$15boobb3o14bo19bo19bo19bo21bo$14bo6bo60boo18boo14bobo$20bo41b3o17b
oo8bo9boo15boo$62bo29boo3boo$63bo27bobo4boo6b3o$59b3o35bo8bo$61bo40boo
3bo$60bo40boo$103bo14$60boo$59boo33bobo$55bobo3bo32boo$56boo37bo$56bo
58bo$79boo11bo6boo13bobobboo$52bo27bo12bo6bo14boo3bo$18bo3bo30boo24bo
11b3o5bo19bo$19boobobo27boo24bo19bo19bo$18boobboo16bo19bo17bobo9b3o5bo
bo17bobo$39bobo17bobo17bobo8bo8bobo17bobo$24b3o13bo19bo19bo10bo8bo19bo
$24bo$25bo24boo$49bobo$51bo7bo$58boo$58bobo8$58bo$49bobo5bo36bo$52bo4b
3o35bo$4bo3bo43bo40b3o$bboboboo41bobbo$3boobboo17bo23b3o3bo19boo18boo$
25bobo15bobo9bobo18boo18boo$3o23bo17boo10bo$bbo41bo$bo3bo19bo29bo$4bob
obboo13bobobboo23bobobboo15bobboo15bobboo15bobboo$5boo3bo14boo3bo24boo
3bo14bobobbo14bobobbo14bobobbo$9bo19bo29bo16boobo16boobo16boobo$8bo19b
o14b4o11bo19bo19bo19bo$8bobo17bobo11bo3bo11bobo17bobo17bobo17bobo$9bob
o17bobo14bo12bobo17bobo17bobo17bobo$10bo19bo11bobbo5boo7bo19bo19bo19bo
$50bobo$52bo$$56boo$45boo9bobo$46boo8bo$45bo$54boo$53bobo$55bo!


Update: I've counted 3, 5, 12 and 27 Elkie's P5 variants from 22-25 bits. These can be built from what is alredy known, plus these irreducible as-yet-unsynthesized bases (one 22, one 23, two 24, one 25-bit ones, plus two additional 27-bit ones and 28-bit one for interest):
x = 116, y = 10, rule = B3/S23
bo14bo14bo14bo14bo14bo14bo14bo$o2b3o9bo2b3o9bo2b3o9bo2b3o9bo2b3o9bo2b
3o9bo2b3o9bo2b3o$2bo14bo14bo14bo14bo14bo14bo14bo$3bobo2bo9bobo2bo9bobo
2bo9bobo2bo9bobo2bo9bobo2bo9bobo2bo9bobo2bo$2b2ob4o8b2ob4o8b2ob4o8b2ob
4o8b2ob4o8b2ob4o8b2ob4o8b2ob4o$bo2bo11bo2bo14bo11bo2bo11bo2bo14bo4b2o
5bo2bo11bo2bo$b2o3bo8bobo3bo12bob2obo7bobo2b2o7b2o2b2o12bobo2bo7bobobo
10bo2bob2o$5b2o9bo3b2o13b2ob2o8bo3b2o12bo13bobobo8bobobo10b2o3bo$65bo
15bobo10bo2bo15bobo$65b2o15bo12b2o17b2o!

The one with the siamese loaf could almost be made from this, if one could provide a suitably unobtrusive domino spark, which might allow a self-annihilating boat-bit:
x = 15, y = 11, rule = B3/S23
12b3o$8bo3bo$bboo5boobbo$bobbo3boo$bbobo$boob3o$obbo3bo$bobobboo$bbo7b
3o$10bo$11bo!


codeholic wrote:seeds

#1,3,5 are new still-lifes. I'm sure all could be synthesized using more conventional methods, but nowhere near as cheaply as these. #6 had a synthesis, but the new 9 glider one is much better than the previous 17 glider one (and if the spurious blinker and loaf could be cleaned up with one glider, it would be down to 8). #2 is the only one of these that doesn't dramatically improve the state of the art for general syntheses (as two blocks on two boats can already be made from 4 gliders).

Sokwe wrote:Unimportant converters:

The boat-to-shillelagh could come in very useful. I have found a few syntheses where I needed a way to do this with all the gliders coming from one side, and the alternatives are usually quite convoluted and gruesome. This could improve those quite considerably!

Extrementhusiast wrote:Finished yet another 16-bitter in 59 gliders:

This can be done much more cheaply, from 33 (from Sep. 5). The snake can be added much more cheaply if there's an unobtrusive overhanging tab, which is true with the carrier flipped:
x = 168, y = 98, rule = B3/S23
71bo$69b2o41bo$70b2o40bobo$59bo52b2o$36bobo18bobo29b2o18b2o$37b2o19b2o
29b2o18b2o$37bo$58bo$58b2o85bo$57bobo86bo$134bo9b3o3bo$135bo4bo7b2o$
133b3o5b2o6b2o$140b2o5$161b2o$80b2o18b2o18b2o18b2o19bo$80bo2bo2bo13bo
2bo2bo13bo2bo2bo13bo2bo2bo16bo2bo$82b5o15b5o15b5o15b5o15b5o$132b3o$84b
o19bo19bo9bo9bo19bo$83bobo17bobo17bobo7bo9bobo17bobo$38b2o44bo19bo19bo
19bo19bo$37bobo$39bo2$22b2o17b2o9b2o$bobo17bo2bo15bobo8bo2bo$2b2o17bo
2bo17bo8bo2bo$2bo19b2o28b2o$62b2o$b2o58b2o$obo60bo$2bo22$21b2o18b2o18b
2o18b2o18b2o18b2o18b2o18b2o$21bo19bo19bo19bo19bo19bo19bo19bo$23bo2bo
16bo2bo16bo2bo16bo2bo16bo2bo16bo2bo16bo2bo16bo2bo$22b5o15b5o15b5o4bo
10b5o15b5o15b5o12bo2b5o15b5o$70bo66bobo$15bo8bo17b3o17b3o5b3o9b3o17b3o
17b3o13b2o2b3o16bob2o$16bo6bobo16bo2bo16bo2bo15bo2bo16bo2bo16bo2bo16bo
2bo16b2obo$14b3o7bo18b2o18b2o16b2o18b2o17bobo17bobo$97bo9bo13bo15b2o2b
o$18bo37b2o40b2o5b2o29bobo$18b2o37b2o2bo35b2o7b2o30bo$17bobo36bo3b2o5b
3o71b2o$60bobo4bo37bo34b2o$68bo35b2o36bo$96b3o5bobo$96bo$97bo5$145bo$
135bo9bobo$133bobo9b2o$134b2o5$134bobo5b2o$135b2o5bo18b2o$135bo8bo2bo
13bo2bo2bo$143b5o15b5o$133bo$131bobo8bob2o16bob2o$132b2o8b2obo16b2obo
2$134bo$134b2o$133bobo!


Extrementhusiast wrote:Yet another 16-bitter in 29 gliders and one LWSS:

This is a 26-glider synthesis (from Oct. 24) that does it in a different way:
x = 127, y = 74, rule = B3/S23
93bo$94bo19bo$11bo80b3o18bobo$12b2o99bobo$11b2o76b3o22bo$16bo46bo27bo$
14b2o3b3o41bobo24bo$15b2o2bo14bob2o16bob2o5b2o9bob2ob2o13bob2ob2o13bob
2ob2o$20bo13b2obo16b2obo2b2o12b2obob2o13b2obob2o13b2obob2o$18bo41bobo
61b2o$18b2o40bo43bobo16bo2bo$17bobo84b2o17bo2bo$105bo18b2o2$105b2o$
105bobo$105bo10$47bo$48b2o8bo$47b2o7bobo$57b2o2$4bo19bo29bo4bo$3bobo
17bobo24bo2bobob2o$3bobo17bobo22bobo2bobo2b2o$4bo19bo24b2o3bo$78b2o18b
2o18b2o$78bo19bo19bo$4bob2ob2o13bob2ob2o23bob2ob2o13bob2o2bo13bob2o2bo
13bob2o2bo$4b2obob2o13b2obob2o23b2obob2o13b2obob2o13b2obob2o13b2obob2o
$bo12b2o18b2o11bo16b2o13bo19bo19bo$2bo10bo2bo16bo2bo8bobo15bo2bo12bobo
17bobo17bobo$3o10bo2bo8bo7bo2bo9b2o7bo7bo2bo13b2o18b2o18b2o$14b2o8bobo
7b2o14b2o2bobo2b2o3b2o$3b3o18bobo22bobo2bobo2bobo$5bo19bo25bo3bo3bo$4b
o59b3o18bo19bo$58bo5bo19bobo17bobo$58b2o5bo18bobo17bobo$57bobo25bo19bo
$107b2o$107bobo$107bo11$88bo$86bobo$50bo36b2o$51b2o5b2o10bo7b2o10bo7b
2o18b2o$50b2o6bo10bobo6bo10bobo6bo19bo$54bob2o2bo8bobo4b2o2bo8bobo4b2o
2bo15b2o2bo$50b2o2b2obob2o9bo4bobob2o9bo4bobob2o14bobob2o$51b2o6bo16bo
2bo16bo2bo16bo2bo$50bo8bobo17bobo17bobo17bobo$53b2o5b2o18b2o18b2o18b2o
$53bobo$53bo!


Extrementhusiast wrote:Yet another 16-bitter in 18 gliders;

Very nice. I spent a lot of time trying to make this just this past week, without success.

Extrementhusiast wrote:A p3 in 28 gliders and one LWSS:

Nice. I had a synthesis of this from 36 gliders, by using a hat and turning it into an eater. This is cheaper. This also makes a similar reduction in the two 20-bit versions of this oscillator (which Sokwe just pointed out).
mniemiec
 
Posts: 793
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Sokwe » November 29th, 2013, 3:27 am

mniemiec wrote:Matthias's new house-to-snake conversion allows this one to be made from 35 gliders

In this specific case that last hook can be removed with 3 gliders, bringing the total down to 31:
x = 154, y = 92, rule = B3/S23
44bobo$45b2o14bo$45bo13b2o$60b2o$54bo44bo$53bo44bo$53b3o42b3o$74b3o17b
3o$68b2o18b2o18b2o18b2o18b2o$69bo19bo19bo19bo19bo$41b2o25bo3bo15bo3bo
15bo3bo15bo3bo15bo3bo$40bobo25b5o15b5o15b5o15b5o15b5o$42bo$70bo19bo19b
o19bo17b3o$58b2o9bobo17bobo17bobo10bo6bobo16bo2bo$58bobo9bo19bo19bo9bo
bo7bo18b2o$58bo62b2o$124b2o$53b2o70b2o$28b2o18b2o2b2o70bo$7bobo17bo2bo
16bo2bo3bo$8b2o17bo2bo16bo2bo$8bo19b2o18b2o2$7b2o$6bobo$8bo12$8b2o18b
2o18b2o18b2o18b2o18b2o18b2o18b2o$9bo19bo19bo19bo19bo19bo19bo19bo$8bo3b
o15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo$8b5o15b5o15b5o15b5o
15b5o15b5o15b5o15b5o2$8b3o17b3o17b3o15b7o13b7o13b3ob3o13b3ob3o13b3ob3o
$8bo2bo15bo3bo7bo7bo3bo7bo6bo2bo2bo13bo2bo2bo12bo2bobo2bo11bo2bobo2bo
11bo2bobo2bo$9b2o16b2ob2o5bobo7b2ob2o7bobo43b2o5b2o11b2o5b2o11b2o2bo2b
2o$38b2o19b2o$8bo$8b2o30b3o13b3o72bo$7bobo32bo13bo73b2o$12bo28bo15bo
72bobo$11b2o75b2o$11bobo73bobo2b2o$89bo2bobo33b3o$37b2o21b2o30bo37bo$
38b2o19b2o68bo$37bo23bo69b3o$131bo$132bo$91b3o$91bo$92bo14$58bo$58bobo
$58b2o$8b2o18b2o18b2o18b2o$9bo19bo19bo7bo11bo$8bo3bo15bo3bo15bo3bo3b2o
10bo3bo$8b5o15b5o15b5o3bobo9b5o2$6b3ob3o14bob4o14bob4o14bob2o$5bo2bobo
2bo13b2obo2bo13b2obo2bo3bo9b2obo$5b2o2bo2b2o18b2o18b2o2b2o$b2o53bobo$o
bo$2bo3b3o$8bob3o$7bo2bo$11bo!


mniemiec wrote:
Extrementhusiast wrote:Finished yet another 16-bitter in 59 gliders:

This can be done much more cheaply, from 33 (from Sep. 5). The snake can be added much more cheaply if there's an unobtrusive overhanging tab, which is true with the carrier flipped

There is a more direct way to convert a bun to a bookend with tub that I found a while back which reduces the synthesis to 29 gliders:
x = 167, y = 94, rule = B3/S23
71bo$69b2o41bo$70b2o40bobo$59bo52b2o$36bobo18bobo29b2o18b2o$37b2o19b2o
29b2o18b2o$37bo$58bo$58b2o85bo$57bobo86bo$134bo9b3o3bo$135bo4bo7b2o$
133b3o5b2o6b2o$140b2o5$161b2o$80b2o18b2o18b2o18b2o19bo$80bo2bo2bo13bo
2bo2bo13bo2bo2bo13bo2bo2bo16bo2bo$82b5o15b5o15b5o15b5o15b5o$132b3o$84b
o19bo19bo9bo9bo19bo$83bobo17bobo17bobo7bo9bobo17bobo$38b2o44bo19bo19bo
19bo19bo$37bobo$39bo2$22b2o17b2o9b2o$bobo17bo2bo15bobo8bo2bo$2b2o17bo
2bo17bo8bo2bo$2bo19b2o28b2o$62b2o$b2o58b2o$obo60bo$2bo14$144bo$134bo9b
obo$132bobo9b2o$133b2o5$21b2o18b2o18b2o18b2o18b2o18b2o10bobo5b2o$21bo
19bo19bo19bo19bo19bo12b2o5bo18b2o$23bo2bo16bo2bo16bo2bo16bo2bo16bo2bo
16bo2bo7bo8bo2bo13bo2bo2bo$22b5o15b5o15b5o15b5o12bo2b5o15b5o15b5o15b5o
$97bobo32bo$15bo8bo17b3o17b3o17b3o13b2o2b3o16bob2o5bobo8bob2o16bob2o$
16bo6bobo16bo2bo16bo2bo15bo2bo16bo2bo16b2obo6b2o8b2obo16b2obo$14b3o7bo
18b2o18b2o15bobo17bobo$81bo15b2o2bo31bo$18bo77bobo34b2o$18b2o78bo33bob
o$17bobo81b2o$100b2o$102bo$55b3o$57bo2b2o$56bo3bobo$60bo2$56b3o$58bo$
57bo12$76bo$75b2o$75bobo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby towerator » November 29th, 2013, 7:35 am

What 20 or less cell objects haven't been synthetised yet?
This is game of life, this is game of life!
Loafin' ships eaten with a knife!
towerator
 
Posts: 326
Joined: September 2nd, 2013, 3:03 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » November 29th, 2013, 3:48 pm

Block-based cuphook with cross-snake in 75 gliders and one LWSS:
x = 601, y = 34, rule = B3/S23
445bo$86bo359b2o$86bobo29bobo190bo111bo21b2o3bobo$86b2o30b2o189b2o113b
o28bo$74bo44bo190b2o110b3o28bo$75bo350bo23bo2bo$73b3o32bobo10bo180bo
29bobo90bo25b3o$89bo19b2o10bobo123bo52bobo30b2o90b3o$87b2o20bo11b2o
124bobo11bobo37b2o6bo23bo$88b2o157b2o13b2o45bobo26bobo109bo26bobo$262b
o8bo37b2o27b2o43bo18bo20bobo22bobo3bo23b2o$107bo138bo4bo17bobo67bo37bo
5bobo17bo20b2o23b2o4b2o21bo$4bo103bo138b2obo19b2o103b2o6b2o16b3o20bo
29b2o3bobo$2b2o102b3o137b2o2b3o123b2o2b2o77b2o$3b2o24bo194bobo45b2o96b
2o8bobo21b2o54bo$20b2o5b2o20bo29bo24b2o114bo3b2o47b2o7b2o18b2o24b2o4b
2o28b2o4bo9bo17b2o4bobo15b2o5b2o14b2o2bo2b2o31b2o$21bo6b2o18bobo27bobo
22bobo7bo2bo20b2o46b2o17b2o15b2o2bo3b2o17b2o22bo9bobo17bo2bo2bo19bo2bo
3bo7bobo18bo2bo3bo26bo2bo4bo15bo2bobo2bo14bo2bobo2bo24bobo4bo2bob2o17b
ob2o19bob2o25bob2o29bob2o$3o15b3o27b2o28b2o11bo13bo7b4o20b2o46b2o17b2o
14b2o7b2o17b2o33b2o18b6o20b6o8b2o20b7o27b7o17b3ob3o16b3ob3o9bobo14b2o
5b4obo17b2obo19b2obo25b2obo10bo18b2obo$o17bo71bo63bo4bo184bo117b2o15bo
14bo20bo22bo28bo5b2o25bo$bo46b4o26b4o8b3o20b6o16b6o14b2obo24b6o13b6o
19b6o13b6o21b3o5b6o18b6o20b6o30b7o27b7o17b7o16b7o8bo24b7o14b7o16b7o22b
7o6b2o18b7o$48bo3bo25bo3bo30bo4bo16bo4bo13b2o2b3o22bo5bo12bo5bo18bo5bo
11bo6bo22bo4bo6bo16bo6bo18bo6bo8bo19bo6bo26bo6bo16bo6bo15bo6bo22bo9bo
20bo22bo28bo32bo$19b3o19bo9b2o28b2o33b2o20b2o46b3o16b3o22b3o12b2o2b3o
22bo5b2o2b3o17b2o2b3o19b2o2b3o9bobo17b2o2b3o27b2o2b3o17b2o2b3o16b2o2b
3o4bobo14bobo9b2o2b2o15b2o2b2o17b2o2b2o23b2o2b2o27b2o3bo$21bo20bo13bob
o22bo6b2o26bo21bo47bo18bo19bo4bo18bo34bo23bo25bo11b2o22bo33bo23bo22bo
6b2o16b2o13b2o19b2o21bobo26bobo30b2o$20bo19b3o13b2o20b2obo6bobo22b2obo
18b2obo44b2obo16bobo14bo3b2o233bo76bo28bobo$57bo19bo2bo7bo23bo2bo18bo
2bo44bo2bo17b2o13bobo3bobo118bo115bo16bo37bo24bo24bo$16b2o60b2o33b2o
20b2o46b2o34b2o123b2o114b2o16b2o31b2o2b2o22b2o$17b2o26b2o12bo119b3o23b
2o137bobo113bobo14bobo32b2obobo18b2o2b2o$16bo27bobo12bobo119bo23bobo
303bo24bobo$46bo12b2o20b2o82b3o12bo24bo330bo28bo$80bobo82bo346b2o41bo
8b2o$41b2o15bo23bo66b2o15bo345bobo40b2o7bobo4b3o$42b2o13b2o89b2o362bo
41bobo3b2o9bo$41bo15bobo90bo409bobo9bo$560bo!


towerator wrote:What 20 or less cell objects haven't been synthetised yet?

I believe that this is an up-to-posted-date list:
x = 816, y = 119, rule = B3/S23
2o2b2o10bobobo25bob2o10bob2o11b2o2bobo55b2o38b3o11b3ob3o8b2o13b2o13b2o
4b2o7b3o3b2o10bo13bobo10b2o13b2o29b2o18b2o38b2o19bo18b2o18bo146b2o38bo
2b2o4bo10b2ob2o15b2ob2o15b2ob2o45b2o46b3o3b3o$obo2bo9bob3obo23bob2obo
9b2obo11bo2bob2o54bo2bob2o63bobob3o8bobob2o9bo6bo14bo8bobobo12bo2bo8bo
4b3o7bobo2b3o23bo19bo9bo29bo20b2o17bobo2bobo12b3o4b2ob2o28b2o8b2o9bo
21b2o62bo39b2o2bob2obo10b2obobo14b2obobo14b2obobo42bo2bo46bo2bobo2bo$
2b2o11bo5bo23bo5bo11bob2o9bobo57bob2obo34b2o2bobo9bobobo29bo10bob2obo
9bob2obo9bobobobo7b2obobobo8bobo43bobo6bo10bobo5bobo29bobo20bo19bo2bo
15bob2o4bo28bobo4b2o2bo8bob2o17bobo64bo2bo39bobo99bo3bo4bo42bo7bo$o2bo
bo10b3obo25bob2obo8b2o2bobo10bo2b2o53b2obo2bo39bo9bo5bo8bo2bobo10bo2bo
25bo14bobobobo11bo3bo11bobo8bo2b2obo27b2o2b3obo11b2o2b2obo32b2o17bo3b
4o12bo5bo13bo6b2o30b3obo17b2o2b2o11bo69b2o40b2o13b2ob3o14b2ob3o14b2ob
3o40b2obo3b2o39bo3bo7bo$2o2b2o12b2o27b2obo9bob2o14b2obo57b2o36bo4b2o7b
2o3b2o9bo4bo10bo12b3o2b3o7b2o3b3o9bobobo9bobob2o8b3o4bo8bo5bo27bo2bo2b
o13bo2bo36bo2bo14b2o2bo17b3obo13b2obobo35bo3b3o11bobobo2bo12bo2b4o62bo
3bo39bo12bo4bo14bo4bo14bo4bo87b3o2bo7bo$179bo27bo3b2o10bobobo42bo13bo
17b2o8bo4b2o27bo2bo16bo2bo36bo2bo12bo2bo25bo17bo39bo18b2o81bo4b3o37bo
3bo10bo19bo19bo47b2o3bob2o34bob2o2bobobobo$179bobo44b2o181b2o11b2o24b
3o55bobo16bo2bo18bo3bo59b2o6bo38bobo10bo3b2o14bo3b2o14bo3b2o41bo4bo3bo
35b3o$410bobo13b3o19bo59bo19b2o14bobobo3bo65bo40bo13bo3bo15bo3bo15bo3b
o44bo2bo37b3o5bo$413bo110bobo17b2o3bobo63bobo58b2o18bobo17bobo43b2o39b
2o5b3o$137bobo272b2o110b2o22b2o65b2o80bo19b2o91b3o$o3b2o24b2ob2o10b2o
13b2o3b2obo6b2o2bo10b2ob2o25b2ob2o11bob2o$3o2bo25bobobobo7bobo12bobo2b
ob2o6bo2bobo10bobo27bobo12bo3b2o$3b2o26bo2bob2o9b3o12b3o11b2o2bo9bo3bo
25bo3bo10b2o3bo$2bo2b3o24bobo11bo3bob2o7bo15bobo10bob2o26bob2obo11b2ob
o668bo3bo$2b2o3bo25b2o11b2o2b2obo7b2o13bo2b2o10bobobo25bobobo11bobo
669bo3bo$76b2o16b2o28bo51b2o4b2o7b3o3bo8b3ob3o10b2o11b2o3b2o11bo11b2o
13b2o16bo13bobo26b2ob2o35b2o5b2o14b2o15bo19b2o19bobo342bobobobo$176bob
o4bo13bo26bo11bo5bo11bobo9bo14bobob3o9bobobo11bo2b2o24bo4b2ob2o30bo5bo
bo13bo2bo14b3o17bo19bo3bo343b3o$180bobo9bob2o2bo8bobobo9b2obob2o9bobob
o10bo4bo9bobob3o23bo5bo7bo2b2o27b2o6bo31bob2o2b2o12bobobo17bo17bobo17b
o3bo342b3o$176bo2bo11bo14bo17bo2bo23bob4obo22bo2bobo9bobo4bobo11b2o27b
obobo34bo17bo4b2o14bo2b2o23bo12b2o344bo$135b2o40bo3b3o7b2o3bobo7b2o3bo
bo8bobobo10b2o2bo10bo4bo8b3obobo9bo15bo5bo6b2o33bo4b3o36bobo9b2ob2obo
15bo4bob2o11bobo3b3o15bo2bo$2b2o43b2o27b2ob2o9bobo27b2o13bo2b2o37bo19b
2o13b2o9bobo13bo2bo10bobo17bo8bo3bobo11bobobo12bo35bo31bobo3b2o12bo2bo
16b2o2bobo12bo4bo17bo3bo$bobo41bo2b3o24bobobo10b2obo26bo2b2o11b2obo84b
o16b2o12bo16b2o13b2o13bo10bobo70bo18bobo20bo2bo14bobobo16bo3bo$o2bob2o
38b2o4bo23bo5bo11bo28b2o2bo10bobobo173bo90bo22b2o14b2o2b2o15b2obo$2obo
2bo39bob3o25bo3b2o8b2obob2o28b2o10bo2b2o324b3o$3bobo40bobo28bobo10bobo
bobo24bob2o11b2o$3b2o42bo30b2o13bo27b2obo5$2o13b2o43b2o3b2o8b2o2bo10b
2o2b2o9b2o2b2o9b2o2b2o50b2o13b2ob2o11bo4bo8b2o13b2o5b2o6b2o5b2o6b2o4bo
8b2o3b3o7b2o2b2o9b2o2b2o25b2o18b2o38b2o10b2o6b2o4bo2bo30b2o$o2b2o10bo
2b2obo38bobobobo8bo2bobo9bo2bo2bo8bo2bo2bo8bo2bo2bo49bobobo11bobo11bob
o2bobo7bobo4b2o6bobo3bobo6bobo3bobo6bobobo2b2o6bo14bo2bobo9bobo2bo26bo
18bo39bo11bo8bo4bo2bo31bo10b2o$b2obo11b2o2b2o40bobo11b3o2bo10b2ob2o9bo
bob2o9b2obobo53bo10bo2bob2o8bob4obo15bo40bo11bob2obo9bo17bo27bobo17bob
o37bobo6bobo8bobob2o2b2o30bobo9bo$2bobobo11bo42bob2o14b3o11bobo11bobo
13bobo52bo2bo9b2obo12bo4bo10bob2obo9bobobo8bo2b2obo10bo3bo27bo11bo31bo
b2obo55b2o2b3obo10bobo5bobo29bobo5bobo$o4b2o11bob2o39bo16bo14bobo13bo
13bo53bo16bobo12bobo40bo14bo13b3o3bobo6bobo12bo2bobo29bo2b3o12bobo39bo
2bo2bo12bo9bo29bob2o2b2o$2o17bobo38b2o16b2o14bo14b2o11b2o53b2obobo11b
2o13bo12b3o2b3o7b3ob3o8bo3b3o8b2ob3o15b2o6bobo2b2o8b2o4bo26bobo17bo4b
2o35bo2bo24b2o32bo2bo$183bo112bo3bo15b2o48bobobo97bo2bo$182b2o159bo2bo
18b2o2bo$343bobo24b3o$135b2o2bo204bo27bo$2ob2o10b2ob2o10b2ob2o13b2o27b
2o27b2o13b2o12bo3b3o$bobo12bobo12bobobo10b3obo25bo2bob2o22bo2bo11bo2bo
12bo5bo$bo2b3o8bo3bo11bo2bobo8bo5bo23bobob2obo23b2o12b2obo13bo3b2o$2b
2o2bo9b3obo11bobobo9bo5bo23bobo28bobob2o9bob2obo10bobo$4bo13bo2bo11bob
o11bob3o26bo27bo2b2obo9bobob2o11b2o$4b2o14b2o12bo13b2o28b2o26b2o15bo
53bo2b3o8b2o13b2o13b2o13b2o13b2o13b2o2b3o8b3o12b3o12b3o3bo24b2o18b2o
18b2o18b2o19bobo$177bo13bo14bo6b2o6bobo12bobo2b3o7bobobo10bo36b2o12bo
24bo19bo2b2o15bo2b2o15bobo2bobo12bo3bo$176bo2bo2b2o8bobo3b2o7bobo4bo
12b3o25bobo9bobo2b2o8bob2ob3o7bob2obobo7bob2o2bo24bobo6bo14bo19bo18bo
2bo13bo3bo$199bo11bobo9bobo10bo2b2obo10bo5bo21bo14bo14bo33b2o2b3obo9bo
bobo15bobobo16bo5bo14b2o$135b2o39bobobo2bo10bobobo8bo2bo15bobo8bo14bo
6bo8bo2bo2bo6b2o3bobo7b2o3bo2bo6b2o3bobo27bo2bo2bobo8bo3bobo13bo3bobo
16b3obo17bo$47b2o13b2o13b2o13b2o27b2o13bo39b2o3bo26bo3b3o7b3o4bo7bo4bo
bo7b2obobobo9bo3bo15bo13bo15bo26bo2bo4bo9b3obobo13b3obobo20bo14bo2bo2b
o$48b3o11bobo11bo2bo11bobo26bo2bo12bob2o41bo11b3ob3o8bo19b2o13b2o12bo
11bo3bo14b2o13bo14b2o34b2o10bo2bo16bobobo17b3o16bob4o$46bo4bo8b2o3bo9b
o2b2o10bo2bobo25b2obo12bo2bo226b2o20bo17bo20bo$45bob4o9bo5bo9b2o2b2o9b
2obobo25bobo13bobo266b2o21bo$46bo14bo3b2o11bobo12bo2bo25bob2o10bobob2o
287b2o$48bo13bobo13bobo12bobo27bo2bo9b2o$47b2o14b2o14bo14bo29b2o4$15b
2o28b2o3bo9b2ob2o12b2o11b2o84b2o13b2o13b2o3b2o8b2o2b3o11bo11b2o13b2o
13b2o13b2o14b2o$15bobo27bo2b3o9bo3bo11bobo2b2o7bo85bo2bobo9bobo3b2o7bo
5bo8bo17bobob2o6bobo12bobo12bobo3bo8bobob3o9bobo$17bo28b2o13bobo11bo6b
o8b3o84bo2bobo14bo8bobobo10bobo2b2o8bo6bo42bo$16b2ob2o27bo13b2obo10b2o
3bo11bo89bo9bobobo45bo9bobob3o6bo2b2ob3o8bobo2bo7bo2bobo10bo2b2o$16bo
2bobo26b3o13bobo10bo2bo13b2o81b2o4bo23b2o2bo11bo3bo8b2o29bo29bo19bo$
18bo2bo29bo12bobo10bobo16bo83b2o11bo2b2o11bo15bo16bobo7b3obobo8bo3bobo
8b3obobo8bo3bobo7b2o$19b2o29b2o13bo12bo17b3o79b2o12bo2bo15bobo7b2o2bo
12bobo2b2o14bo14bo14bo14bo12bobo$99bo80bo11b2o18b2o9bo16bo17b2o13b2o
13b2o13b2o8bobo2b2o$98b2o215bo6$2o13b2o3b2o9b2o27b2o2bo10b2o2b2o$obo
12bobo2bo2bo6bo2bo26bo2bobo9bo2bo2bo95b2o12b2o13b2o$2b3o2b2o8b3o2b2o7b
2o3b2o24b2obo11b2obobo94bobo11bo3b2o9bobo$bo3bo2bo7bo15bobo2bo26bob2o
11bobo99bo10bobobo13bo$b2o2b2o9b2o13bo2b2o28bo2bo11bo97bo3bo26bo2b2o$
31b2o32b2o11b2o102bo9b2o2bo$176b2o16bo13bobobo$182bobo11bobo9b2o$178bo
bo2b2o14bo12bobo$180bo17b2o13b2o24$581b2ob2o15b2o18b2o18b2ob2o$581b2ob
o16bobo17bobo17b2obobo$585bo2bo17b2ob2o15b2o21b2o$186b2ob2o2bo7b2ob2o
2bo7b2ob2o10b2ob2o11b2ob2o10b2ob2o9bob2ob2o10b2ob2o50b2ob2o15b2ob2o15b
2o18b2o177b2o15b2obob2o13b2obo19b2obo$186b2obobobo7b2obobobo7b2obobob
2o6b2obobobo9bobo12bobobo8b2obobo10bobobobo49b2obo16b2obo9bo6b2o18b2o
177bo3bo11b2o18b2o21b2o$193bo14bo15bo13bo8bo5bo7bo22bo6bo60bobo6bo10bo
bo5bobo203bo4b3o$191bo14bo13bo2bo12bo2bo6bo5b2o7b2o4bobo13b2o7b2o4bobo
53b2o2b3obo11b2o2b2obo6b2o18b2o176b2o6bo14b2o18b2ob2o18b2o$193bo14bo
12bo13bo11b3o13bo4b2o9b2o12bo5b2o54bo2bo2bo13bo2bo9bo19bo9bo174bo11b2o
3bo14b2o3bob2o14b2o3bo$189bobobo10b2o3bo11bobobo9b2obobo8bo2b2o9b3o14b
o2b2o7bo62bo2bo16bo2bo10bobo6bo10bobo5bobo170bobo13bo2bo16bo2bo19bo2bo
$189b2o2bo12bob2o14b2o13b2o8bobobo12bo13bobobo8b3o95b2o2b3obo11b2o2b2o
bo171b2o14bobo17bobo20bobo$250bo14b2o14bo13bo96bo2bo2bo13bo2bo191bo19b
o22bo$392bo2bo16bo2bo!


Correct me if there are any patterns which were solved that I missed removing from this list.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby mniemiec » November 29th, 2013, 5:03 pm

Extrementhusiast wrote:Finished yet another 16-bitter in 59 gliders:

Update: the 5-glider bookend-to-curl step near the end looks new; this may slightly reduce some larger billiard tables. The resulting bookend-deleter may also improve some.

Extrementhusiast wrote:I'm currently looking for some way to synthesize the left step to get to the right. (An exploded pre-block is also needed, but that is presumably easy.)

This comes close. It makes one extra toxic (and hard to remove) bit, but it might offer some ideas:
x = 51, y = 17, rule = B3/S23
12bobo$13boo$13bo$17bo$o5boo8bo19boo$boo3bobboo5b3o17bobboo$oo5boobbo
8b3o10bo3boobbo4bobobo$9boobo7bo13bo4boobbobbobobo$7boobboo8bo15boo$6b
obbo6boo18bobobbo3bo$3bo3boo7bobo16bo10bo$bbobo11bo15bobo10bo$bboo28b
oo$12b3o$6b3o3bo$8bo4bo$7bo!


Extrementhusiast wrote:Block-based cuphook with cross-snake in 75 gliders and one LWSS:

YAY! It hadn't occurred to me to try to use the new to-snake conversions, but this makes sense. I wonder a similar mechanism could be used for the griddle on cis snake? I suspect it might be a bit harder, as there's no known way yet to expand the sides of a live griddle, although the still-life that makes it is probably more amenable to mutation before it's activated. Here are some partial attempts at some of the as-yet-unsynthesized griddles:
x = 128, y = 121, rule = B3/S23
62boo60boo$61bobbo58bobbo$62boo60boo$30bo66bo$31bo64bo$23bo5b3o64b3o5b
o$24boo14bo46bo14boo$23boo13boo48boo13boo$39boo46boo3$40bo46bo$26boo
13boo42boo13boo$25bobo4boo6boo21bo22boo6boo4bobo21bo$27bo5b3o8bobo16bo
bo15bobo8b3o5bo21bobo$31bo4bo7boo15bo4bo15boo7bo4bo24bo4bo$31b6o8bo15b
6o15bo8b6o24b6o$$31boobo26boobo26boobo26boobo$31boboo26boboo26boboo26b
oboo$$43b3o36b3o$43bo40bo$44bo38bo7$62boo$61bobbo$62boo$30bo$31bo$23bo
5b3o$24boo14bo$23boo13boo$39boo$$103bobo$40bo62boo$26boo13boo61bo$b3o
8boo11bobo4boo6boo21bo29bo29bo$o3bo8b3o11bo5b3o8bobo16bobo27bobo27bobo
$4bo6bo4bo14bo4bo7boo15bo4bo24bo4bo24bo4bo$bboo6bob4obo12bob4obo7bo14b
ob4obo22bob4obo6boo14bob4obo$bbo8bo4bo14bo4bo24bo4bo24bo4bo7bobo14bo4b
o$13b3o17b3o27b3o20bo6b3o8bo17bobo$bbo9boo18boo28boo23boo3boo6b3o21bo$
86boo14bo$43b3o55bo$43bo$44bo$98b3o$83b3o12bo$85bo4bo8bo$84bo5boo$89bo
bo$$122boo$121bobbo$122boo$$104bo$102boo$96bo6boo$97boo$96boo3$101bobo
$101boo$21b3o9bo19bo19bo19bo8bo20bo$20bo3bo8bobo17bobo17bobo17bobo27bo
bo$24bo6bo4bo14bo4bo14bo4bo14bo4bo24bo4bo$22boo6bob4obo12bob4obo12bob
4obo12bob4obo22bob5o$22bo7bobobbobo12bobobbobo12bobobbobo12bobobbobo
22bobo$31bo4bo14bo4bo14bo4bo14bo4bo7boo15bo3boo$22bo38bo41booboo17boo$
60bo43b4o$60b3o14bo19bo7boo$76bobo17bobo$57b3o16bobo12bo4bobo$57bo19bo
13boo4bo$58bo31bobo$$93b3o$93bo$94bo6$85bo$83bobo$84boo3bo$89bobo$89b
oo$$86bo$87bo$14bo19bo19bo19bo10b3o5bo19bo$12bobo17bobo17bobo17bobo18b
obo17bobo$11bo4bo14bo4bo14bo4bo14bo4bo14bo4bo14bo4bo$10bob5o13bob5o13b
ob5o13bob5o13bob5o14b6o$10bobo17bobo17bobo17bobo8bobbo5bobo$11bo3boo
14bo3boo14bo3boo14bo3boo8bo5bo3boo14boobboo$15boo18boo18boo18boo4bo3bo
9boo14boobboo$82b4o15bo$70boo18boo8bo$35boo12bobo3boo12bobbobboo12bobb
obboo3b3o$15boo18bobo12boo3bobo11bobbobbobo11bobbobbobo$10b3oboo20boo
12bo5boo12boo4boo12boo4boo$12bo3bo$11bo37boo46bo$48bobo46boo$12boo36bo
45bobo3boo$12bobo87bobo$12bo89bo!


Sokwe wrote:In this specific case that last hook can be removed with 3 gliders, bringing the total down to 31:

Sokwe wrote:There is a more direct way to convert a bun to a bookend with tub that I found a while back which reduces the synthesis to 29 gliders:

Thanks! Both of these should provide similar reductions to several other syntheses, especially billiard tables, or similar objects.

towerator wrote:Here's my very first synthesis... Already known for sure, but still "yay!"

Congratulations! Everybody has to start somewhere, and one learns by experience.

towerator wrote:What 20 or less cell objects haven't been synthetised yet?

There are many - way too many to list here. Here is a summary:
- Still-lifes: 52 (and falling!) 16-bit, 328* 17-bit, 772* 18-bit, 1766* 19-bit, 4116* 20-bit (* plus many derived from smaller sizes).
- Pseudo-still-lifes: 8 18-bit, 12 19-bit, 89 20-bit.
- Period-2 oscillators: 1 14-bit, 3 15-bit, 17 16-bit, 32 17-bit, 49 18-bit, 73 19-bit, 114 20-bit.
- Period-2 pseudo-oscillators (all trivial based on above 15-16 bit p2s): 4 19-bit, 28 20-bit.
- Period-3 oscillators: 2 17-bit, 1 18-bit, 2 19-bit, 10 20-bit (UPDATE: 9! as Extrementhusiast just solved one!).
- Period-6 oscillators: 1 20-bit.

I posted an abridged list here a while ago. Here are some of the hilights:
- 38 unique 16-bit still-lifes, plus two sets of 7 where one from either set can make one from the other set, or vice versa
- 18-19-bit still-lifes (the last of which is derived from an 18),
- 14-16-bit period-2 oscillators (the last 3 of which are trivial, based on 15s),
- 17-20-bit period-3 oscillators (UPDATE: with solved one removed), and the one period-6 oscillator.
x = 188, y = 128, rule = B3/S23
3obo25b2o2b2o10bobobo10bob2o10bob2o11b2o2bobo10b2o11bo3b2o9b2ob2o10b2o
2bo10b2ob2o$obobo25bobo2bo9bob3obo8bob2obo9b2obo11bo2bob2o9bo2bob2o7b
3o2bo10bobobobo7bo2bobo10bobo$3obo27b2o11bo5bo8bo5bo11bob2o9bobo12bob
2obo11b2o11bo2bob2o8b2o2bo9bo3bo$o3bo25bo2bobo10b3obo10bob2obo8b2o2bob
o10bo2b2o8b2obo2bo10bo2b3o9bobo12bobo10bob2o$o3bo25b2o2b2o12b2o12b2obo
9bob2o14b2obo12b2o11b2o3bo10b2o11bo2b2o10bobobo$151b2o16b2o5$30b2ob2o
12bobo12b2o13b2o12b2ob2o9bobo12b2o13b2o13b2o13b2o$31bobo12bob2o11bobo
11bo2b3o9bobobo10b2obo11bo2b2o10bo2b2o10bo2b2o10bo2b2obo$30bo3bo11bo3b
2o8bo2bob2o8b2o4bo8bo5bo11bo13b2o2bo9b2obo11b2obo11b2o2b2o$30bob2obo9b
2o3bo9b2obo2bo9bob3o10bo3b2o8b2obob2o13b2o10bobobo10bobobo11bo$31bobob
o11b2obo12bobo10bobo13bobo10bobobobo9bob2o12bo2b2o8bo4b2o11bob2o$34bo
12bobo13b2o12bo15b2o13bo12b2obo11b2o12b2o17bobo5$30b2o3b2o8b2o2bo10b2o
2b2o9b2o2b2o9b2o2b2o9b2ob2o10b2ob2o13b2o10b2o2bo12b2o$30bobobobo8bo2bo
bo9bo2bo2bo8bo2bo2bo8bo2bo2bo9bobo12bobobo10b3obo9bo3b3o11b3o$32bobo
11b3o2bo10b2ob2o9bobob2o9b2obobo9bo2b3o9bo2bobo8bo5bo9bo5bo8bo4bo$31bo
b2o14b3o11bobo11bobo13bobo11b2o2bo10bobobo9bo5bo9bo3b2o7bob4o$31bo16bo
14bobo13bo13bo15bo13bobo11bob3o11bobo10bo$30b2o16b2o14bo14b2o11b2o15b
2o13bo13b2o14b2o12bo$167b2o4$32b2o13b2o13b2o11b2o13b2o3bo9b2ob2o12b2o
11b2o$32bobo11bo2bo11bobo12bo13bo2b3o9bo3bo11bobo2b2o7bo$30b2o3bo9bo2b
2o10bo2bobo10bob2o11b2o13bobo11bo6bo8b3o$30bo5bo9b2o2b2o9b2obobo10bo2b
o12bo13b2obo10b2o3bo11bo$31bo3b2o11bobo12bo2bo11bobo12b3o13bobo10bo2bo
13b2o$32bobo13bobo12bobo10bobob2o14bo12bobo10bobo16bo$33b2o14bo14bo11b
2o17b2o13bo12bo17b3o$144bo$143b2o2$30b2o13b2o3b2obo6b2ob2o11b2o13b2o
14b2o11b2o$30bobo12bobo2bob2o7bobo11bo2bo11bo2bo12bo2bob2o7bobo$32b3o
12b3o10bo3bo11b2o12b2obo11bobob2obo9bo2bo$31bo3bob2o7bo14b3obo11bobob
2o9bob2obo8bobo12b2obobo$31b2o2b2obo7b2o15bo2bo9bo2b2obo9bobob2o10bo
12bo2bobo$65b2o9b2o15bo14b2o13bobo$124bo4$30b2o13b2o3b2o8b2ob2o11b2o
12b2o2bo10b2o2b2o9b2o$30bobo12bobo2bo2bo7bobo11bo2bo11bo2bobo9bo2bo2bo
8bobo$32b3o2b2o8b3o2b2o6bo3bo11b2o3b2o9b2obo11b2obobo9bo2b2o$31bo3bo2b
o7bo14b3obo11bobo2bo11bob2o11bobo9b2obobo$31b2o2b2o9b2o15bo2bo9bo2b2o
13bo2bo11bo11bo2bo$64b2o10b2o17b2o11b2o13bobo$124bo4$3ob3obo21b2ob2ob
2o8b2ob2o10b2ob2o9bob2ob2o8bo14b2o13b2ob2o10b2o13bob2ob2o8bob2ob2o$obo
bobobo21bo3bobo8bobobo10bobobobo8b2obobo9b3o13bo13bo3bo11bo4b2o7b2obob
o9b2obobo$3ob3obo22bobo3bo7bo4bo9bo5bo15bo10bob2ob2o5bo4b2o9bobo12bob
2o2bo12bobob2o10bo$o3bo3bo21b2ob2ob2o8bo4bo9bo3bo15b2o9bo3bobo6b4o2bo
8b2ob4o10bob2o13bo2b2obo11bo$o3bo3bo38bobobo10bobo12b2obo11b2obo2bo9bo
bo15bo27b2o10b2ob3o$46b2ob2o10b2ob2o11bob2o15b2o9bo2b2o13bo12b2obo24bo
b2o$107b2o16b2o11bob2o4$31b2ob2o9bob2ob2o11b2o10bob2ob2o8bob2ob2o8b2o
2bo10b2o2b2o9b2ob2o10b2o14b2ob2o$32bobobo8b2obobobo7bobob3o8b2obobo9b
2obobo9bo3b3o8bo2bo2bo9bobo11bo16bobobobo$31bo5bo14bo7b2o5bo14bo13bo9b
o5bo8b2o2bobo7bo3bo11b3o11bo6b2o$30bo7bo13b2o12b2o13b2o14bo9bo3bo14bo
8b2ob2o13bo3b2o6b2o$31b3o2bobo9bob2o8b2o16b2o12b2o2b2o10bobo10b2o16bob
2o11b2o2bo8bob2o$33bo2b2o10b2obo8bobobo13bob3o9bo2bo10bobob2o9bobobo
13bo2bo12bobo9b2obo$63b2o17bo11b2o10b2o16b2o14b2o12bo2b2o$154b2o3$3ob
3o25bobo10b2o3bo9b2o3b2o8b2o15bobo12bobo10b2o4bo8b2o4bo8b2o4b2o7b2o4b
2o$obo3bo27bo10bo4bo9bobobobo8bobob2o12bo2bo11bo2bo8bo5bo8bobo3bo8bobo
4bo7bobo2bobo$3ob3o23b2o4bo9bobo2bo28bo9b2obobo9b2obobobo8bob2o2bo11bo
2bo11bobo$o3bo27bo27bo2bo2bo9bo2bo12bobob2o10bo3bo22bo2bo11bo2bo11bo2b
2o2bo$o3b3obo22bobo2b2o7b3obobo9bo3bo11bo13bo2bo11bobob2o8b3o2bobo8bo
3bobo8bo3b3o8bo4bo$50b2o9bo3bo11bobobo11bobo12bo17b2o8bo4b2o8bo14bo4bo
$34b3o43b2o4$32b2o11b2o3b2o11bo12bo13b2o13b2o15bobo12bobo10b2o13b2o3bo
9b2o$31bobo11bobobobo11bobo10bo4b2o7bobo3bo8bobo3b2o11bo12bo2b2o8bobo
3b2o7bo4bo9bobob2o$33bob2o24bo4bo8bo2bobobo13bo15bo7b2o4bobo6bo2b2o17b
o8bobo2bo13bo$30b2obo2bo9bo2bo10bob4obo22bo2b2o2bo7bo2b2obo10bo4bo13b
2o9bobobo24bo2bo$33bobo11bo13bo4bo8bobobo2bo8bo14bo14bobo4b2o5b2o28b3o
bobo10bo$32bobo12bobobo10bobo10b2o4bo9bo3bobo8bo3b3o12bo15bo9b3ob3o14b
o9bobobo$33bo16b2o12bo16bo14b2o27bobo9bobo31b2o14bo$139bo46b2o3$3ob3o
23b2o13b2o13b2o14bo13b2o13bo14b2ob2o25b2o5b2o9b2o$obo3bo23bo14bo9bo4bo
15b2o12bobo2bobo7b3o4b2ob2o3bo4b2ob2o20bo5bobo8bo2bo$3ob3o24bobo6bo5bo
bo5bobo4bobo15bo14bo2bo10bob2o4bo4b2o6bo21bob2o2b2o7bobobo$o5bo26b2o2b
3obo6b2o2b2obo7b2o12bo3b4o7bo5bo8bo6b2o8bobobo24bo12bo4b2o$o3b3obo25bo
2bo2bo8bo2bo11bo2bo9b2o2bo12b3obo8b2obobo11bo4b3o26bobo4b2ob2obo$34bo
2bo11bo2bo11bo2bo7bo2bo20bo12bo18bo21bobo3b2o7bo2bo$67b2o6b2o19b3o55bo
13bobo$68bobo8b3o14bo72bo$71bo$70b2o$30bo14b2o14bobo11b2o13b2o$30b3o
12bo14bo3bo11bo13bo$33bo12bobo12bo3bo10bobo12bobo$32bo2b2o18bo7b2o12bo
b2obo$32bo4bob2o6bobo3b3o10bo2bo9bo2b3o7bobo$33b2o2bobo7bo4bo12bo3bo7b
obo12bo4b2o$36bo2bo9bobobo11bo3bo24bobobo$37b2o9b2o2b2o10b2obo8bo2bo
13b2o2bo$64b3o9bobo19b3o$77bo22bo$3ob3o23bo2b2o4bo$obobo25b2o2bob2obo$
3ob3o27bobo$o3bobo28b2o$o3b3obo28bo$37bo3bo$39bobo$40bo!
mniemiec
 
Posts: 793
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Extrementhusiast » November 30th, 2013, 1:34 pm

Seven predecessors and/or components:
x = 179, y = 53, rule = B3/S23
7$35b2o$37b4obo3bo$41b5o13bob2o17bobo2b2o22b2o$59b2obo17b2obo2bo18b2ob
obo21b4o$12b2ob2o2b2o17b2o22bob2o17bobo19bob2o22bo4bo8bo$13bobo2b2o18b
o2bo17b3obobo14b3obo24bo26bo9bo11b4o$12bo2bo4bo18b3o2bo14bo2bo17bo2bo
22b3obo23b2o8b2o$12bobo10bo16b3o15b2o19b2o23bo2bo32b2ob3o14b2o3bo$13bo
9b2o16bo65b2o27b2o5b2o18bo2b2o$24b2o15b2o27bo20bo44bo2b2o16bo2b2obobo$
16b2o2b2o47bo20bo26bo19b2obo16bo5bob2o$16b2ob2o48b3o18b3o23bo21bobob2o
14bo2bobo$21bo44b2o19b2o27b3o18bo2b2obo14b2o2b2o$62bo3bobo14bo3bobo23b
2o22b2o18bo$60bobo3bo14bobo3bo21bo3bobo40bo$61b2o19b2o23bobo3bo$108b2o
$17bo$17bo$15b5o$17bo$17bo5$12b2ob2o$13bobo$12bo2bo$12bobo$13bo2$9bo3b
o$7bobo2bobo$4b2o2b2o2bobo$3bobo7bo$5bo9b3o$9b3o3bo$11bo4bo$10bo!


EDIT: Griddle with cross-snake in 46 gliders:
x = 323, y = 39, rule = B3/S23
3bo$4b2o$3b2o290bo$294bo$294b3o5bo$285bo14b2o$224bo61b2o13b2o$223bo61b
2o$223b3o16bobo$243b2o$12bobo228bo41bo$13b2o40b2o21b2o22b2o25b2o34b2o
23b2o29b3o59b2o13b2o$13bo39b3obo11bo6b3obo19b3obo22b3obo31b3obo20b3obo
22b2o4bo19b2o13b2o26b2o6b2o4bobo19bo$52bo4bo12bo4bo4bo18bo4bo14bo6bo4b
o3bo26bo4bo19bo4bo20b3obo4bo17bobo11b3o22bobo8b3o5bo19bobo$32bo20b4o
11b3o5b4o19b5o16bo5b5o3bo27b5o20b5o20bo4bo24bo10bo4bo21b2o7bo4bo22bo4b
o$31bo86b3o13b3o75b5o8b3o25b6o21bo8b6o22b6o$31b3o19b2o21b2o21b3o24b3o
31b7o18b3ob3o33bo18bo25b3o$29bo23b2o20bo2bo20bo2bo13b2o7bo3bo7b2o21bo
2bo2bo17bo2bobo2bo17b3ob3o9bo17b2o5b4obo15bo16b2obo24b2obo$28b2o19bo
20b2o4b2o5bo17b2o12bobo7b2ob2o7bobo44b2o5b2o16bo2bobo2bo25bobo4bo2bob
2o14bo17bob2o24bob2o$28bobo19b2o19b2o8b2o34bo19bo71b2o2bo2b2o32b2o$49b
2o2b2o15bo11b2o196b3o$53bobo130bo95bo$53bo27bo104b2o34b2o57bo$80b2o21b
2o80bobo29bo3b2o20bo$80bobo12b2o6bobo56b2o45bo6b2o5bo19b2o$94bobo6bo
57bobo2b2o41b2o5bobo23bobo$96bo66bo2bobo18b3o18bobo$115b2o21b2o26bo20b
o$99b2o15b2o19b2o49bo$4b2o92bobo14bo23bo44b3o$3bobo94bo85bo$5bo179bo$
165b3o$165bo$166bo$38b2o$b2o35bobo$obo35bo$2bo!


EDIT 2: Longer predecessor to another:
x = 80, y = 25, rule = B3/S23
33bo$33bobo$26bo6b2o$24bobo$25b2o2bo$29bobo$29b2o4$3b2o26b2o19b2o10bo
9b2o$3bo2bob2obo19bo2bob2obo11bo2bob2obo3b2o8bo2bob2o$2obob2obob2o10bo
bo3b2obob2obob2o11bob2obob2o3bobo7bob2obo$ob2obo2bo14b2o3bob2obo2bo13b
2obo2bo15b2obo2bo$7b2o14bo11b2o18b2o19b2o4$57b2o$56bobo$58bo2b2o$61bob
o$53b2o6bo$52bobo$54bo!


EDIT 3: Even longer starting SL in 53 gliders:
x = 320, y = 50, rule = B3/S23
185bobo$179bo5b2o$180b2o4bo$179b2o$163bo90bobo$161bobo24bo27bo37b2o10b
o$137bobo22b2o8bo14bo26bobo38bo10bobo$137b2o31bobo14b3o25b2o49b2o$138b
o32b2o12bo$184bobo56bo$135bo48bobo55bo$134b2o44bo4bo56b3o$134bobo31bo
12bo11bo$169b2o8b3o9b2o$126bo41b2o14bo7b2o49b2o$126b2obobo52b2o56b2o$
125bobob2o44bo8b2o58bo$130bo42bobo9bo$86bo28bobo14b3o4bobo32b2o$84bobo
3bo25b2o14bo6b2o$85b2o3bobo23bo16bo6bo$15bo74b2o69bo37bo$16b2o70bo73b
2o3bo25bo3b2o$15b2o70b2o72b2o5b2o4b2o9b2o4b2o5b2o$87bobo77b2o5b2o9b2o
5b2o102bo$119bo17bo157bo$19bo75bo23b2o15b2o153b2o2b3o$20bo73bo23bobo
15bobo151bo2bo$18b3o32b2o25b2o12b3o29b2ob2o47b2ob2o51b2o3b2o45b2o2bob
2o17b2o$2bo43bo7bo2b2o22bo2b2o41bobo49bobo52bobobobo45bobobo20bobo$obo
22b2o20bo6bobobo5bo16bobobo41bobo49bobo54bobo49bobo22bo$b2o15b3o4b2o
18b3o5b2obo7bobo13b2obo42b2ob2o47b2ob2o52b2ob2o47b2ob2o20b2ob2o$20bo
35bo7b2o14bo2bo42bo2bo48bo2bo53bo2bo48bo2bo21bo2bo$b2o16bo5b2o2bo26b2o
24bo45bo2bo48bo2bo53bo2bo48bo2bo21bo2bo$obo22b2o2bobo10bobo38b3o43b2ob
o48b2obo53b2obo48b2obo21b2obo$2bo26b2o12b2o40bo46bo51bo56bo51bo24bo$
15b2o26bo88b2o50b2o55b2o50b2o23b2o$16b2o147b2o27b2o$15bo83b2o65b2o25b
2o$44b3o51b2o65bo29bo$46bo10b3o40bo$45bo11bo45b2o$58bo6b2o35b2o$65bobo
36bo$56b2o7bo14b2o$55bobo21bobo15b2o$57bo23bo15bobo$61bo35bo$60b2o$60b
obo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby towerator » November 30th, 2013, 5:27 pm

I notice most non-synthetized oscillators have huge rotors with little stators.
This is game of life, this is game of life!
Loafin' ships eaten with a knife!
towerator
 
Posts: 326
Joined: September 2nd, 2013, 3:03 pm

Re: Synthesising Oscillators

Postby Sokwe » December 1st, 2013, 5:17 am

The griddle with two blocks can be done by a somewhat messy method. Here are the nontrivial steps (some of it can likely be reduced):
x = 110, y = 32, rule = B3/S23
46bo$47b2o$46b2o49bobo$51bo45b2o$o23bo26bobo29bo14bo$b2o19b2o27b2o31bo
23bo$2o21b2o57b3o22bo$49bo57b3o$50bo$48b3o36bo$86bo$86b3o$78bo19b2o$
76bobo18bobo$2bo19bo33bo20b2o13bo3bobo$obo7b2ob2o7bobo30bobo32b3o2bobo
$b2o7bo3bo7b2o25bo2bo3bo32bo6bo$11b3o35b7o33b7o$3b3o13b3o$5bo7b3o3bo
29b2o2b3o33b2o2b3o$4bo8bo2bo3bo28b2o2bo2bo32b2o2bo2bo$15b2o37b2o38b2o
9b2o$104b2o$106bo$78bo$3b2o73b2o$2bobo72bobo$4bo$103b3o$16b3o84bo$16bo
87bo$17bo!

Unfortunately, this doesn't seem to get us any closer to the other forms.

Extrementhusiast wrote:Block-based cuphook with cross-snake in 75 gliders and one LWSS

The step with the LWSS is unnecessarily complex. The standard converter works fine here:
x = 23, y = 21, rule = B3/S23
2bo$obo7bo$b2o7bobo3bo$10b2o3bo$15b3o4$2b2o2bo2b2o$2bo2bobo2bo9bobo$3b
3ob3o10b2o$21bo$5b7o$4bo6bo4bobo$4b2o2b3o5b2o$8bo8bo3$19bo$18b2o$18bob
o!


An unrelated converter:
x = 15, y = 18, rule = B3/S23
7b2o$7bobob2obo$9bobob2o$9bo$8b2o7$5b2o$4bobo2b2o$6bo2bobo$9bo$bo$b2o$
obo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1132
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » December 1st, 2013, 2:33 pm

Sokwe wrote:
Extrementhusiast wrote:Block-based cuphook with cross-snake in 75 gliders and one LWSS

The step with the LWSS is unnecessarily complex. The standard converter works fine here:
x = 23, y = 21, rule = B3/S23
2bo$obo7bo$b2o7bobo3bo$10b2o3bo$15b3o4$2b2o2bo2b2o$2bo2bobo2bo9bobo$3b
3ob3o10b2o$21bo$5b7o$4bo6bo4bobo$4b2o2b3o5b2o$8bo8bo3$19bo$18b2o$18bob
o!


I think that was left over from when I was trying to do something like this:
x = 11, y = 9, rule = B3/S23
2bo$bobo$bobo$2ob2o5bo$10bo$7o2bo$o5bob2o$3b3o$3bo4bo!

I found a different mechanism, but forgot to change that other bit back.

EDIT: Yet another predecessor:
x = 11, y = 10, rule = B3/S23
8bo$8bo$2b2o4bo$bobo2bobo$o2bobo2b3o$2obo2bo$3bo3b2o$3b2o2b3o$8bo$8bo!


EDIT 2: Yet another 16-bitter in 21 gliders:
x = 141, y = 24, rule = B3/S23
73bo$74bo$72b3o2$26bo71bo$25bo45bo24b2o$25b3o43b2o24b2o$70bobo$6bo16bo
7b2o21b2o30b2o17bo10b2o19b2o$4bobo17b2o4bo2bo16b2obo2bo25b2obo2bo16b2o
3bob2obo2bo14b2obo2bo$5b2o16b2o5b2obo15bobob2obo16b3o5bobob2obo15bobo
3b2obob2obo15bob2obo$26b2o5bob2o13bo5bob2o15bo5bobo4bob2o21bo2bob2o14b
o2bob2o$26bobo4b2obo19b2obo14bo7b2o4b2obo21b2o20b2o$26bo$6bo39bo$6b2o
38b2o$obo2bobo37bobo63b2o$b2o94b2o12bobo$bo46b3o25b2o7b2o9b2o9b2o2bo$
48bo28b2o5bobo11bo7bobo$b2o46bo26bo9bo21bo6b2o$obo13bo98bobo$2bo12b2o
98bo$15bobo!


EDIT 3: Partial P2 predecessor:
x = 10, y = 13, rule = B3/S23
obo$b2o$bo2$2b2ob2o$2bo3bo$3b2obob2o$5bobobo$5bobo$6b2o$3bo$bob2ob2o$
4bob2o!


A related predecessor:
x = 14, y = 14, rule = B3/S23
5b2o$5b3ob2o$6b2ob3o$8b3o$2o4b2o$4o2bobo$2b3obobo$5bobob3o$5bobo2b4o$
6b2o4b2o$3b3o$2b3ob2o$3b2ob3o$7b2o!


Another related predecessor:
x = 16, y = 12, rule = B3/S23
7bobo$7b2ob2o$11bo$2o5b2o$2b2o3bobo$4b2obobo$6bobob2o$6bobo3b2o$7b2o5b
2o$4bo$4b2ob2o$6bobo!


Better predecessor:
x = 24, y = 20, rule = B3/S23
17bo$16bo$16b3o$21bo$20bo$4bo15b3o$5bo6bo$3b3o5bobo$11bobo8bo$3o5b2obo
bobo5bo$2bo5bobobob2o5b3o$bo8bobo$10bobo5b3o$11bo6bo$b3o15bo$3bo$2bo$
5b3o$7bo$6bo!


A different predecessor:
x = 15, y = 18, rule = B3/S23
10b2o$11b3o$9bo4bo$8bob4o$9bo$10b2o$2bo8bo$obo8bobo$b2o9b2o2$3b3o$5bo$
4bo3$5b2o$6b2o$5bo!


EDIT 3: That P2 in 23 gliders:
x = 110, y = 46, rule = B3/S23
42bobo$42b2o$43bo3$30bobo$31b2o$31bo6$85bo$84bo$84b3o$89bo$45bobo40bo$
29b3o13b2o25bo15b3o$31bo14bo26bo6bo$o6bo13bo8bo40b3o5bobo23bo$b2o3bo
12bobo14bo8b3o31bobo8bo12bobobo$2o4b3o11b2o3bo9bobo7bo22b3o5b2obobobo
5bo13bobobobo$26bo7bobo9bo3b2o18bo5bobobob2o5b3o10bobobobo$4b3o17b3o8b
o14bobo16bo8bobo23bobobo$6bo34bo8bo27bobo5b3o17bo$5bo19bo14bo38bo6bo$
25b2o13b3o26b3o15bo$24bobo44bo$70bo$73b3o$75bo$74bo6$40bo$39b2o$39bobo
3$28bo$28b2o$27bobo!


EDIT 4: Partial predecessor to the missing P6:
x = 15, y = 10, rule = B3/S23
3b2o8b2o$3bo3bo4b3o$7bo3bo$4b3o5b3o$13b2o$bo6bobo$ob2o3bob2o$3bo3bo$b
2o5b3o$10bo!

All that's needed is the synthesis of the northwest spark, and the few extra bits in the southeast.

EDIT 5: Farther along:
x = 36, y = 21, rule = B3/S23
22bo$21bo$6bo14b3o$4bobo$5b2o2$30bo$29bo$16b2o4b2o5b3o$4bo11b2o3bo2bo
8b3o$5bo16b2o9bo$3b3o3b2o23bo$8bobo7bobo$10bo6bob2o$17bo$18b3o$8bo11bo
$8b2o$3o4bobo$2bo$bo!

Now only the extra bits are needed.

EDIT 6: Complete synthesis in 25 gliders:
x = 109, y = 32, rule = B3/S23
78bo$78bobo$78b2o$70bo$68b2o$51bobo15b2o$52b2o$30bo21bo$28bobo$29b2o$
25bo6bo49bo$23bobo6bobo28b2o4b2o9b2o$10bobo11b2o6b2o16bo12b2o3bo2bo9b
2o$10b2o9b2o28b2o16b2o6b2o$11bo8bobo27b2o4bo19b2o$22bo4bobo26b2o7bobo
10bo18bo2b2o4bo$6bo19bob2o6bo18bobo6bob2o15bo13b2o2bob2obo$4bobo19bo9b
obo25bo17bo18bobo$bo3b2o20b3o6b2o27b3o14b3o17b2o$b2o26bo3b2o32bo2b2o
32bo$obo4b2o24bobo18b3o13b2o32bo3bo$7bobo23bo13b2o7bo49bobo$7bo40b2o5b
o51bo$47bo31bo$78b2o$78bobo4b3o$70b2o13bo$61b2o6b2o15bo$62b2o7bo$61bo
3b3o$65bo$66bo!


EDIT 7: Stillator predecessor:
x = 120, y = 27, rule = B3/S23
47bo$47bobo$47b2o41bo$91bo$89b3o3bo$74bo10bo7b2o$27b2o43bobo11b2o6b2o$
23b2o2bobo43b2o10b2o$22bobo2bo$24bo74bo$97b2o$98b2o$79bo$3bo48bo25bobo
5bo14bo13b2o$b3o46b3o25bo2bo2b3o14bobo10bo2bo$o3b2o43bo3b2o24b2o2bo3b
2o12b2o10bobobo$bobo2bob2o40bobo2bob2o25bobo2bob2o20bo4b2o$2ob2obobobo
38b2ob2obobobo23b2ob2obobobo18b2ob2obo$3bo2bobobo41bo2bobobo26bo2bobob
o21bo2bo$3bobo3bo42bobo3bo27bobo3bo22bobo$4bo48bo33bo28bo$82b2o$81b2o$
83bo$71b3o24b3o$73bo24bo$72bo26bo!


EDIT 8: Reposting a one-sided HWSS synthesis by codeholic:
x = 10, y = 30, rule = B3/S23
5bobo$6b2o$6bo9$obo$b2o$bo2$7bo$8b2o$bo5b2o$2b2o$b2o8$5b2o$4bobo$6bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby mniemiec » December 6th, 2013, 12:12 am

Extrementhusiast wrote:Block-based cuphook with cross-snake in 75 gliders and one LWSS:

(This also solves the trivially derived 21-bit version with tub instead of eater head (+3 gliders)). The first 7 steps of this make a 16-bit still-life from 28 gliders. I have a totally different way of making this from 2003, also from 28 gliders:
x = 117, y = 59, rule = B3/S23
106bo$104boo$101bo3boo$96bobboo$97bobboo$95b3o$$9bobo45bo47bo$10boo46b
o38bobo3boo$10bo45b3obbo35boo5boo$32bo19bo8bobo8bo19bo5bo13bo$31bobo
17bobo7boo8bobo17bobo8bo8boboboo$31bobo17bobo17bobo17bobo7boo8boboboo$
6bo5boo16boobobo14boobobo14booboboo13booboboo4bobo6boobo$7boo4boo19boo
18boo17bobbo16bobbo16bo$6boo4bo3boo55boo18boo18boo$16bobo80boo$16bo82b
obo$57bobo39bo$8boo47boo$7boo43b3o3bo$9bo44bo$53bo4boo$58bobo$58bo13$
104bo$102boo$103boo$91bo$92boo$85bobo3boo$86boo$50b3o33bo$47bobbo$48bo
bbo$46b3o33bobo$9bobo71boo$9boo54boo16bo11boo17bo$bbo7bo11bo3bo15bo3bo
15bobbo26bobbo17bobo$boboboo14bobobobo13bobobobo13bobobo15bo9bobobo17b
obo$boboboo14boboboo14boboboo14boboboo12bobo9boboboo13booboboo$oobo5b
3o8boobo16boobo16boobo16boo8boobo16boobo$3bo5bo13bo19bo19bo29bo19bo$3b
oo5bo12boo18boo18boo17bo10boo18boo$8bo73boo$8boo71bobo$7bobo!


towerator wrote:I notice most non-synthetized oscillators have huge rotors with little stators.


Yes. Constructing still-lifes (and, by extension, stators), is like sculpting clay, and can be done at one's leisure. In contrast, constructing rotors is more like doing open heart surgery on a beating heart. It's usually extremely difficult to do, unless one can form the rotor spontaneously, somewhat like the painting "Venus on the Half Shell", where venus emerges from the ocean, fully formed. Similarly, constructing spaceships is like assembling racecars with engines running, so it usually makes sense to create the rear part first, and let it catch up to the front part which is built later (rather than vice versa).

Sokwe wrote:The griddle with two blocks can be done by a somewhat messy method. Here are the nontrivial steps (some of it can likely be reduced):

Nice! I will have to see whether this same methods can be used with some of the other unsolved griddle-based oscillators.

Yet another 16-bitter in 21 gliders:

Very good!

Extrementhusiast wrote:Partial P2 predecessor:


I'm not sure what you're trying to do here. What P2, and at what generation does part of it show up?

Extrementhusiast wrote:That P2 in 23 gliders:

Very nice! I was always fond of this one. Long ago, Dave Buckingham and I found an extensible series of P2s that were essentially like grass waving in the wind - sets of lines whose ends would alternately bend and straighten. We called them "Cha chas". This is the second smallest of this form (with the clock being the smallest).

Extrementhusiast wrote:Complete synthesis in 25 gliders:

Wow! Very impressive! I personally find synthesis of oscillators with little more than frothing stators to be somewhat black magic. This synthesis is one worthy of Buckingham!

Extrementhusiast wrote:Stillator predecessor:

Billiard table synthesis is also somewhat of a black art. The base still-life is not one I've seen per se, but it looks like it could well be consructible using known techniques.

Extrementhusiast wrote:Reposting a one-sided HWSS synthesis by codeholic:

I don't think I've seen this one. I'll have to check it against all my HWSS flotillae - about half of them can be made with traditional cheap (3-4 glider) HWSS components, but about half require ridiculusly complex Rube-Goldberg insertions that could definitely use some improvement.

The griddle-ific 16-bit still-life from 19 gliders:
x = 114, y = 63, rule = B3/S23
88bo$87bo$87b3o$83bo$84bo$82b3o$48bo20boo18boo13boo3boo$49boobboo13bob
3o15bob3o11boobbob3o$48boobboo14bo4bo14bo4bo14bo4bo$54bo14b4o16b4o11b
oo3b4o$49bo33bobo17bobbo$49boo18boo13boo3boo12bobbobboo$48bobo18boo13b
o4boo13boo3boo$$83boo$82bobo$44bo39bo$44boo$43bobo3$52boo$52bobo$52bo
10$87bo$85boo$86boo$83bo$5bo78bo$3bobo76b3o$4boo81bo$85boo$6bo33bobo
43boo$oboboo34boo$boobboo34bo$bo37bo23bo19bo$24bo15bo3bo17bobo17bobo$
4boo3boo12bobo3boo7b3obbobo3boo12bobo3boo12bobo3boo18boo$4boobbob3o11b
oobbob3o11boobbob3o11boobbob3o11boobbob3o17b3o$8bo4bo14bo4bo14bo4bo14b
o4bo14bo4bo14bo4bo$4boo3b4o11boo3b4o11boo3b4o11boo3b4o11boo3b4o14bob4o
$3bobbo16bobbo16bobbo16bobbo16bobbo21bo$3bobbobboo12bobbobboo12bobbobb
oo12bobbobboo12bobbobboo19bo$4boo3boo13boo3boo13boo3boo13boo3boo13boo
3boo18boo5$81b3o$83bo$82bo$87b3o$87bo$88bo!


I wonder if it's possible that this siamese-snake mechanism might improve some of the recent syntheses. Adding a table on the opposite side might sometimes be cheaper than many house/tables/bookends/snake convolutions:
x = 29, y = 14, rule = B3/S23
13bo$bo11bobo$bbobbo7boo$3obbobo$5boo$11bo$3boo4boo$4bo5boo$4boboo5b3o
10boo$3booboo5bo9boobbo$4bo9bo9bobo$4boboo16boboo$5bobbo16bobbo$6boo
18boo!


This is an extension of the recent 3-glider eater-to-integral conversion that was posted here (in the Snark thread this summer). Two extra gliders turn the integral head directly into an up boat (1 cheaper than doing so after it's formed). I was trying for a tub, but I'll take what I can get:
x = 36, y = 20, rule = B3/S23
obo$boo10bo$bo11bobo$13boo5$30boo$30bobo$12boo17bobo$13bo19bo$13bobo
17bobo$8bo5boo18boo$9bo$7b3o$$4boo3boo$3bobo3bobo$5bo3bo!


A slightly modified way of adding a tail-first siamese eater, allowing cheap synthesis of a 21-bit candelfrobra variant. The basic mechanism is one of the standard ones, but I'm not sure if this particular way of making of invoking it (via block on boat) was previously known. It's less obtrusive in one direction than any methods I had seen or come up with previously. Also, in this particular case, it can come one cell closer to the target object than usual because its fatal spark can just happen to induct nicely against the rotor:
x = 114, y = 23, rule = B3/S23
88bobo$88boo$89bo$80bobo$81boo$81bo3$11bo19bo19bo19bo19bo19bo$10bobo
17bobo11bo5bobo17bobo17bobo17bobo$11bo19bo13bo5bo13bo5bo13bo5bo19bo$bb
o9bo19bo10b3o6bo11bobo5bo11bobo5bo13boo4bo$obo9bo19bo19bo12boo5bo12boo
5bo13bo5bo$boo6bo3bo15bo3bo15bo3bo15bo3bo15bo3bo13b3o3bo$4boo3b4o12boo
bb4o12boobb4o12boobb4o12boobb4o16b4o$3bobo19boo18boo18boo18boo$5bo3boo
18boo18boo18boo18boo18boo$9boo18boo11b3o4boo18boo9bo8boo18boo$44bo35b
oo$43bo35bobo$84boo$83boo$85bo!


This, in turn, leads to a way to convoluted way to add a bridged eater tail-first, something that wasn't possible before. This now makes possible the following 19-bit pseudo-still-life from 29 gliders:
x = 171, y = 62, rule = B3/S23
18bobo$19boo$19bo9bo$25bobbo$20bobboo3b3o41bo$21bobboo45bo$19b3o20bob
oo16boboo5b3o8boboo16boboo16boboo16boboo16boboo$42boobo16boobo16boobo
3boo11boobo3boo11boobo3boo11boobo3boo11boobo3boo$70bo19bo19bo19bo19bo
19bo$41boboo16boboo4boo10boboobb3o11boboobb3o11boboobb3o11boboobb3o11b
oboobb3o$25b3o13boobo16boobo4bobo9boobobbo13boobobbo13boobobbo13boobo
bbo13boobobbo$21boobbo99boo18boo18boo$16b3o3boobbo$18bobbo$17bo9bo77b
oo57boo$26boo78boo36b3o17boo$26bobo76bo3boo33bo$108boo35bo$110bo30b3o$
143bo$104boo36bo$105boo$104bo9$98boo$97b3o$97boobo$98b3o$99bo4$95bo$
96boo57bo$95boo10bo46bo$105boo47b3o$106boo22b3o17b3o3$bboboo16boboo16b
oboo26boboo16boboo26boboo16boboo16boboo$bboobo3boo11boobo3boo11boobo3b
oo21boobo3boo11boobo3boo21boobo16boobo16boobo$10bo19bo19bo29bo19bo$bob
oobb3o11boboobb3o11boboobb3o9bo11boboobb3o11boboobb3o21boboo16boboo16b
oboo$boobobbo13boobobbo13boobobbo11bobo9boobobbo4b3o6boobobbo4b3o3bo
12boobo16boobo16boobo$5boo18boo18boo12boo14boo18boo10bo17boo18boo18boo
$107b3o16bo19bo19bo$56b3o67bobo17bobo17bobo$4boo18booboo15booboo7bo17b
ooboo15booboo28boo18boo18boo$4boobboo14boobobo14boobobo7bo16boobobo9bo
4boobobo$boo5bobo17bo19bo29bo8bobo8bo$obo5bo79boo$bbo101b3o$90b3o11bo$
92bo12bo$91bo!


In the process of finding the above, I tried several other unsuccessful approaches, one of which created something unexpected: the desired eater, with an extra ship tied to it, also from 29 gliders:
x = 186, y = 55, rule = B3/S23
107bo$105bobo$bbobo101boo$3boo$3bo9bo94bo$9bobbo95bobo$4bobboo3b3o93b
oo51boo$5bobboo145bobo3bobo$3b3o20boboo16boboo26boboo16boboo26boboo16b
oboo6boo3bo14boboo$26boobo16boobo26boobo16boobo26boobo16boobo6bo19boob
o$59bobo21bo19bo80boo$25boboo16boboo10boo14boboo4bo11boboo4bo21boboobb
oobo10boboobboobo20boboobboobbo$9b3o13boobo16boobo11bo14boobo4bo11boob
o4bo21boobobboboo10boobobboboo20boobobboboo$5boobbo104boo$3o3boobbo46b
oo54boo45boo$bbobbo50boo57bo40bobboo$bo9bo46bo97boo3bo$10boo143bobo$
10bobo17$159bobo$159boo$160bo$26boboo16boboo16boboo16boboo16boboo16bob
oo16boboo26boboo$26boobo16boobo16boobo16boobo16boobo16boobo16boobo26b
oobo$34boo18boo18boo18boo18boo18boo18boo26boo$25boboobboobbo9boboobboo
bbo9boboobboobbo9boboobboobbo9boboobboobbo9boboobboobbo9boboobboobbo
19boboobbobo$25boobobboboo10boobobboboo10boobobboboo10boobobboboo10boo
bobboboo10boobobboboo10boobobboboo7bo12boobobboo$49boo18boo18boo18boo
18boo18boo10bo17boo$161b3o16bo$180bobo$29boo57boo18boo18booboo15booboo
28boo$30boo36b3o17boo18boobboo14boobobo9bo4boobobo$29bo3boo33bo36boo5b
obo17bo8bobo8bo$32boo35bo34bobo5bo29boo$34bo30b3o38bo51b3o$67bo76b3o
11bo$28boo36bo79bo12bo$29boo114bo$28bo!
mniemiec
 
Posts: 793
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Extrementhusiast » December 6th, 2013, 5:19 pm

Two completely separate but related converters:
x = 22, y = 26, rule = B3/S23
20bo$2bo16bo$obo16b3o$b2o7$9bo2bo$9b4o2$9b4o$9bo2bo7$b2o$obo$2bo15b3o$
18bo$19bo!

Not exactly sure how useful these would be.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1637
Joined: June 16th, 2009, 11:24 pm
Location: USA

PreviousNext

Return to Patterns

Who is online

Users browsing this forum: No registered users and 4 guests

cron