ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

Re: Synthesising Oscillators

Postby dvgrn » February 26th, 2018, 7:05 pm

calcyman wrote:I think this is getting somewhat off-topic, so this discussion should be migrated to either the Catagolue discussion thread, or to the old pre-Catagolue CACoin thread, or to the comments section in https://mathoverflow.net/a/277668/39521

Darn, and I had already written a long response. I guess I'll just post helpful links to

the Catagolue discussion thread

and

the old pre-Catagolue CACoin thread.

Seems like the CACoin thread is probably the better of the two places to put my long boring posting. In point of fact, calcyman posted a good shorter summary last year about how to even out the unevenness sufficiently.
User avatar
dvgrn
Moderator
 
Posts: 4565
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Synthesising Oscillators

Postby Goldtiger997 » February 27th, 2018, 7:38 pm

Back from the very interesting but off-topic topic of LifeCoin.

Goldtiger997 wrote:As I said I would before, I will create a collection of the cheapest 16-bit oscillator synthesis (separate to the rest because there is a lot). Most of these I can easily find from mniemiec's website (though some are outdated which I will attend to later), but I may need some help finding all the ones that are marked as unsolved.


This took me longer than expected to do. I have now transferred all the syntheses marked as solved (and "X+6") into a folder. I did many obvious improvements from newer still-life syntheses and converters. There are probably several more to be done. I also created this new 16-bit oscillator synthesis in 10 gliders:

x = 68, y = 33, rule = B3/S23
45bo$44bo$44b3o2$39bo$39bobo$39b2o2$38bo$36bobo$37b2o$bo22bo19bo$2bo
20bobo17bobo$3ob2o17bo2bo16bo2bo15bo3b2o$4bobo17b2o18b2o16bo4bo$4bo56b
o2bobo2$2bo57bobo2bo$obo18b2o18b2o16bo4bo$b2ob3o13bo2bo16bo2bo15b2o3bo
$4bo16bobo17bobo$5bo16bo19bo$48b2o$48bobo$48bo2$46b2o$45bobo$47bo2$40b
3o$42bo$41bo!


So here's the folder:
oscill16-mostlyfinished.zip
97 16-bit oscillator syntheses
(33.26 KiB) Downloaded 49 times


Suspiciously, it contains 97 syntheses, when it should only contain 96 because there are still 12 more to go and 108 16-bit oscillators in total. Somehow, an extra syntheses has snuck in. Maybe I'll find it when doing the last 12 syntheses (These are the ones that are marked as synthesized). I know where to find some of those syntheses, but I may need some help finding them all.
User avatar
Goldtiger997
 
Posts: 390
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Synthesising Oscillators

Postby mattiward » February 28th, 2018, 3:44 am

Hertz Oscillator with minimum population from 64 gliders:
x = 571, y = 243, rule = B3/S23
304bo$302b2o$153bobo147b2o$154b2o151bobo$154bo152b2o$308bo$314bo$312b
2o$313b2o2$142bobo$143b2o$143bo5$144bo154bo$145b2o152bobo$144b2o153b2o
5$149bo$147bobo146bo$148b2o117bo26b2o$265b2o28b2o$266b2o$186bo$184bobo
107bo$185b2o83bo23bobo$182bo80bo5bo24b2o$183bo79bobo3b3o$177bo3b3o79b
2o$175bobo$176b2o8bo$187b2o$186b2o11bo$190bo9bo$191b2o5b3o$190b2o4$
264bo$262b2o$263b2o4$200bo$201bo43bo$199b3o42bo$244b3o3$215bo$216b2o$
215b2o3$185bobo$186b2o$186bo55bo$242bobo$242b2o4$226bo$225bo$225b3o2$
221bo$222bo$220b3o2$212bobo$213b2o22bo$207bo5bo21b2o$208bo27b2o$206b3o
17bo$227bo$225b3o$229b2o$230b2o$229bo$240b2o$216bo22b2o3b3o$216b2o4bo
7bo10bo2bo$215bobo4b2o6b2o13bo$221bobo5bobo4$231b3o$231bo$232bo2$224b
3o$226bo$225bo3$209b2o$208bobo$210bo55bo$265b2o$265bobo3$236b2o$235b2o
$237bo3$206b3o$208bo42b3o$207bo43bo$252bo4$188b2o$189b2o$188bo4$261b2o
$252b3o5b2o$252bo9bo$253bo11b2o$264b2o$266bo8b2o$275bobo$188b2o79b3o3b
o$181b3o3bobo79bo$157b2o24bo5bo80bo$156bobo23bo83b2o$158bo107bobo$266b
o$185b2o$156b2o28b2o$157b2o26bo117b2o$156bo146bobo$303bo5$152b2o153b2o
$151bobo152b2o$153bo154bo5$309bo$308b2o$308bobo2$138b2o$139b2o$138bo$
144bo$144b2o152bo$143bobo151b2o$148b2o147bobo$149b2o$148bo32$335bo$
336bo$67bobo51bobo107bobo100b3o$68b2o52b2o108b2o104bo$14bo53bo53bo109b
o104bo$13bo323b3o$13b3o155bo$169bobo2bo219bo163bobo$9bo64bo53bo41b2o2b
obo61bo45bo50bobo52bo2bo160bo3b2o$10bo62bo53bo46b2o61bo47bo50b2o53bob
3o159b2o2bo4bo$8b3o62b3o51b3o107b3o43b3o50bo48bo3b3o162b2o6b2o$383bobo
177b2o$obo73b2o52b2o44b2o62b2o44b2o96b2o$b2o22bo38b2ob2o7bobo39b2ob2o
7bobo39b2o2bobo47b2o3b2o7bobo37b2o4bobo45b2o5b2o45b2o2bo2b2o52b2o52b2o
52b2o4bo4bobo$bo21b2o39bo3bo7bo41bo3bo7bo41bo5bo47bo2bo2bo7bo39bo2bo4b
o45bo2bobo2bo45bo2bobo2bo47b2obo2bo9bobo35b2obo2bo5bo41b2obo2bo3b2o4b
2o$24b2o39b3o51b3o51b5o49b5o49b7o47b3ob3o47b3ob3o35bobo10bob4o10b2o36b
ob4o6bobo39bob4o4bobo4bo$14bo416b2o28bo48b2o2b2o27bo$15bo51b3o51b3o51b
3o51b3o51b3o51b3o51b3o38bo12b3o51b3o12bobo27b2o7b3o3b2o$13b3o50bobobob
2o46bobobob2o46bobobob2o46bobobob2o46bobobob2o46bobobob2o46bobobob2o
46bobobob2o8bo29b2o6bobobob2o8bo28b2o7bobobobo2bo$17b2o47b2ob2ob2o46b
2ob2ob2o46b2ob2ob2o46b2ob2ob2o46b2ob2ob2o46b2ob2ob2o46b2ob2ob2o33b3o
10b2ob2ob2o7bo29bo2bo5b2ob2ob2o3b2o38bo2b2ob2obobo$18b2o43b2obo3bo46b
2obo3bo46b2obo3bo46b2obo3bo46b2obo3bo46b2obo3bo46b2obo3bo38bo7b2obo3bo
10b3o28b2o3b2obo3bo5bo2bo36bobobo3bo2bo$17bo45b2obobobo46b2obobobo46b
2obobobo46b2obobobo46b2obobobo46b2obobobo46b2obobobo37bo8b2obobobo37bo
8b2obobobo6b2o36bo2bobobobo7b2o$28b2o37b3o51b3o51b3o51b3o51b3o51b3o51b
3o51b3o12bo23bobo12b3o46b2o3b3o7b2o$4bo22b2o402bo28b2o23b2o2b2o74bo$4b
2o4bo7bo10bo39b3o51b3o49b5o49b5o47b7o47b3ob3o47b3ob3o35b2o10b4obo10bob
o26bobo6b4obo36bo4bobo4b4obo$3bobo4b2o6b2o40bo7bo3bo41bo7bo3bo47bo5bo
39bo7bo2bo2bo45bo4bo2bo45bo2bobo2bo45bo2bobo2bo33bobo9bo2bob2o41bo5bo
2bob2o36b2o4b2o3bo2bob2o$9bobo5bobo38bobo7b2ob2o39bobo7b2ob2o47bobo2b
2o37bobo7b2o3b2o45bobo4b2o45b2o5b2o45b2o2bo2b2o45b2o52b2o40bobo4bo4b2o
$59b2o52b2o60b2o42b2o60b2o116b2o$399bobo142b2o$61b3o51b3o103b3o59b3o
54bo52b3o3bo145b2o6b2o$19b3o41bo53bo59b2o44bo59bo55b2o48b3obo150bo4bo
2b2o$19bo42bo53bo59bobo2b2o39bo61bo54bobo49bo2bo154b2o3bo$20bo157bo2bo
bo206bo157bobo$181bo$12b3o322b3o$14bo53bo53bo105bo110bo$13bo53b2o52b2o
104b2o109bo$67bobo51bobo103bobo110b3o$340bo$341bo!
mattiward
 
Posts: 22
Joined: February 8th, 2018, 3:19 am

Re: Synthesising Oscillators

Postby Goldtiger997 » February 28th, 2018, 8:53 am

mattiward wrote:Hertz Oscillator with minimum population from 64 gliders:
rle

That's a nice synthesis mattiward. However, an 11 glider synthesis is listed on the LifeWiki. (Edit: Not true, as pointed out by mniemiec below. I assumed that the stator variant shown on the wiki was the same as in the synthesis without properly checking it. Sorry mattiward :oops: )

I've added the syntheses of all the 16-bit oscillators, except for three which I've been unable to locate:

x = 35, y = 6, rule = B3/S23
2bobo8b3o3bo7b3ob3o$3bo2bo12bo$2obobobo6bob2o2bo7bobobo$3bo3bo5bo13bo$
bobob2o6b2o3bobo6b2o3bobo$3bo15b2o12b2o!


Could someone point me towards those syntheses...

Also, there is not a complete synthesis for another 16-bit oscillator, so this will also need to be completed (unless there is another way). It looks like it should take around 21 gliders:

x = 75, y = 46, rule = B3/S23
5$31bo$32bo$31bo$31bo$33bo$31b2ob2o$32bobo$33bo$46b2o$45bo2bo$46b2o4$
35bo$34bobo$35bo6b3o2$60bo$59bobo$59bobo$58bo$43b2o13b3o5b3o$43b2o11b
2o3bo2b2o3bo$55bo5bo6bo$59bob3ob3o$57b2obo2b4o$53bo3bo$54bo3bo$11bo43b
2obo$11b2o44bo$10bobo!
Last edited by Goldtiger997 on February 28th, 2018, 6:51 pm, edited 1 time in total.
User avatar
Goldtiger997
 
Posts: 390
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Synthesising Oscillators

Postby mniemiec » February 28th, 2018, 9:35 am

mattiward wrote:Hertz Oscillator with minimum population from 64 gliders: ...

Goldtiger997 wrote:That's a nice synthesis mattiward. However, an 11 glider synthesis is listed on the LifeWiki.

Not true. The LifeWiki shows the minimum stator for the oscillator, but the synthesis there is David Buckingham's old synthesis for a larger (and much cheaper) stator variant. This new synthesis is for one of the 5 minimum-population stator variants (with blocks on two sides and snakes on the other two).
Goldtiger997 wrote:I've added the syntheses of all the 16-bit oscillators, except for three which I've been unable to locate: ... Could someone point me towards those syntheses... Also, there is not a complete synthesis for another 16-bit oscillator, so this will also need to be completed (unless there is another way). It looks like it should take around 21 gliders: ...

Here they the latest versions I have:
x = 270, y = 174, rule = B3/S23
3bobo121bo$4boo3bo115boo$4bobboo117boo$8boo113bo14bo$124bo13bobo$122b
3o13boo$19bo11bo19bo19bo19bo19bo19bo19bo$19bobo9bobo17bobo17bobo17bobo
17bobo17bobo17bobo$19boo8bo4bo14bo4bo14bo4bo14bo4bo14bo4bo14bo4bo7bo6b
o$3o4boo19bob5o13bob5o13bob5o13bob5o13bob5o13bob5o7bobo5b5o$bbo3boo21b
o19bo19bo19bo19bo19bo12boo5bo$bo6bo22boboo16boboo16boboo16boboo16boboo
7b3o6boboo16bobo$30booboo15booboo15booboo15booboo15boobobo8bo5boobobo
14bobbo$114bo8bo10bo4boo10boo$139bobo$71boo14boobboobboo27bo14bo$11b3o
37b3o17boo15boobooboo28boo$13bo5boo30bo35bo8bo26bobo3boo3b3o$12bo6bobo
30bo75boo4bo$19bo28b3o42boo35bo4bo$50bo41bobo$49bo44bo8$61bobo$61boo$
62bo7$3bobo$4boo$4bo$29bo$30boo$29boo6$49bo$47boo$48boo4$76b3o3bo$82bo
$77boboobbo$76bo$76boo3bobo$82boo4$57boo$57bobo$57bo$45bo$44boo$44bobo
$$53boo$52boo$54bo6boo$60boo$35bo26bo$33bobo$34boo4$47bo$46boo$42bo3bo
bo$43boo$42boo15$55bobo$bbo52boo8bobo$obo35bo17bo8boo$boo3bo29bobo27bo
$4boo17boo12boo14boo$5boo16bobo27bobo12bobo$25bo23boo4bo12boo$25boo21b
obo4boo12bo$50bo13bo$64bobo$44bo19boo$44boo46b3ob3o13b3ob3o13b3ob3o13b
3ob3o13b3ob3o13b3ob3o23b3ob3o13b3ob3o13b3ob3o$43bobo24boo$48bo20boo22b
obobo15bobobo15bobobo15bobobo15bobobo6bobo6bobobo25bobobo15bobobo15bob
obo$47boo22bo20bo5bo13bo5bo13bo5bo13bo5bo13bo5bo6boo5bo5bo9bo13bo19bo
19bo$47bobo24bo17boo3boo13boo3boo13boo3boo13boo3boo13boo3boo6bo6boo3b
oo8bo14boo3bobo12boo3bobo12boo3bobo$73boo127bo4b3o18boo18boo18boo$73bo
bo56boo18boo18b4o16b4o6bobo$113b3o16bobo17bobo6bo10bobbo11bo4bobbo6boo
$113bo19bo19bo7bobo9boo13boo3boo$59b3o52bo46boo24boo$59bo98boo44boo$
60bo96boo37bo7bobo12boo18boo$159bo35boo7bo14boobboo14boobboo$46b3o146b
obo25boo18boo$48bo191bo$47bo144b3o45boo$194bo44bobo$57b3o133bo$57bo$
58bo10$47bo$48boo$47boo$$59bo$57boo$58boo4$42bo$43bo$41b3o$5bo16bo29bo
22boo3boo32bo$4bo16bobo10boo15bobo21bo5bo22boo7bo30boo$boob3o13bobbo8b
ooboo13bobbo22bobobo21booboo6b3o26booboo$obo18boo9b4o15boo49b4o36b4o$
bbo30boo7boo17b3o12boobbo22boo7bo30boo7boo$41b4o3bo12bo16bobbo31bo37b
4o$41booboo3bo12bo17boo29b3obbo34booboo$43boobb3o66boo35boo$59boo54bob
o$36bo21boo$36boo22bo$35bobo$44boo4bo$44bobo3bobo$44bo5boo4$49b3o$51bo
$50bo!
mniemiec
 
Posts: 903
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Goldtiger997 » March 2nd, 2018, 9:13 pm

mniemiec wrote:
Goldtiger997 wrote:I've added the syntheses of all the 16-bit oscillators, except for three which I've been unable to locate: ... Could someone point me towards those syntheses... Also, there is not a complete synthesis for another 16-bit oscillator, so this will also need to be completed (unless there is another way). It looks like it should take around 21 gliders: ...

Here they the latest versions I have:
4 oscillator syntheses


Thanks mniemiec, I've added those. I hadn't seen those syntheses before, which suggests to me that some of the syntheses that I have are not the best known ones. Either way, here is the folder of all the cheapest 16-bit oscillator syntheses:
oscill16.zip
(38.24 KiB) Downloaded 49 times

There is still suspiciously 109 syntheses in there instead of 108.
For the sake of completeness, I'm also attaching the 3-15 bit oscillator syntheses:
oscill3-15.zip
(22.32 KiB) Downloaded 50 times

If chris_c incorporates these syntheses into the display_synth script, it will make quite a nice feature for catagolue.
User avatar
Goldtiger997
 
Posts: 390
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Synthesising Oscillators

Postby mattiward » March 10th, 2018, 12:22 am

P-60 B-shuttle from 28 gliders:
x = 351, y = 57, rule = B3/S23
32bo$31bo$31b3o3$92b2o62b2o48b2o12b2o48b2o12b2o48b2o12b2o$36bo55b2o62b
2o48b2o12b2o48b2o12b2o48b2o12b2o$34b2o170b2o62b2o62b2o$35b2o169bo63bo
63bo$31b2o59b3o61b3o46bobo12b3o46bobo12b3o46bobo12b3o$30b2o55b2o2bob2o
56b2o2bob2o47bobob3o2b2o2bob2o41bo5bobob3o2b2o2bob2o47bobob3o2b2o2bob
2o$32bo45bo8b2o2b2o58b2o2b2o50bob4o2b2o2b2o41bobo6bob4o2b2o2b2o50bob4o
2b2o2b2o$28bo48bo13b2o34bo13bo13b2o51bo10b2o42b2o7bo10b2o51bo10b2o$19b
2o6b2o48b3o48bo11bobo$18bobo6bobo96b3o11bobo$20bo59b3o58bo$25bo54bo
259b3o$25b2o54bo57bo199bo2bo$24bobo111b2o199b2obo$138bobo$132b3o$134bo
$133bo$258bo$259bo$257b3o$123b3o$125bo$124bo107bo$231bo$231b3o$289b3o$
289bo$290bo$223bo$222bo$222b3o$216bobo$10bobo204b2o115bob2o$10b2o71bo
133bo116bo2bo$11bo72bo249b3o$16bo65b3o66bo63bo$7bobo6bobo131bobo61bobo
11b3o$8b2o6b2o67b3o62bobo61bobo11bo$8bo63b2o13bo48b2o13bo48b2o13bo13bo
34b2o10bo7b2o42b2o10bo$4bo67b2o2b2o8bo49b2o2b2o58b2o2b2o58b2o2b2o2b4ob
o6bobo41b2o2b2o2b4obo$5b2o63b2obo2b2o56b2obo2b2o56b2obo2b2o56b2obo2b2o
2b3obobo5bo41b2obo2b2o2b3obobo$4b2o64b3o61b3o61b3o61b3o12bobo46b3o12bo
bo$2o276bo63bo$b2o274b2o62b2o$o70b2o62b2o62b2o62b2o12b2o48b2o12b2o$71b
2o62b2o62b2o62b2o12b2o48b2o12b2o3$3b3o$5bo$4bo!
mattiward
 
Posts: 22
Joined: February 8th, 2018, 3:19 am

Re: Synthesising Oscillators

Postby mattiward » March 17th, 2018, 5:33 pm

Jason Summers's P36 hassler from 28 gliders:
x = 228, y = 45, rule = B3/S23
115bo$113b2o$114b2o$159bo49bo$159b3o47b3o$78bo83bo49bo$76b2o37bo45b2o
48b2o$77b2o34bobo$114b2o$148bo$66bobo47bo32b2o$67b2o45b2o32b2o$67bo10b
obo34b2o$78b2o41b2o48b2o48b2o$66bo12bo43bo49bo49bo$67bo44bo7bo49bo49bo
$65b3o16bo27bobo5bo3bo45bo3bo38b3o4bo3bo$16bo45bo20bo28b2o6bo3b4o42bo
3b4o35bo2bo3bo3b4o$15bo47bo19b3o24bo11bo49bo40bob2o5bo$15b3o43b3o44bob
o49b2o$109b2o48bo2bo$81b2o77b2o$3bo64bo12bobo$b2o63bobo12bo90b2o$2b2o
9b2o52b2o54b2o46bo2bo$12b2o109bobo46b2o$bo12bo46bo49bo11bo37bo49bo5b2o
bo$b2o4b3o46b4o3bo42b4o3bo6b2o34b4o3bo42b4o3bo3bo2bo$obo6bo49bo3bo45bo
3bo5bobo37bo3bo45bo3bo4b3o$8bo2b3o49bo49bo7bo41bo49bo$11bo48bo13b2o34b
o49bo49bo$12bo48b2o11bobo34b2o48b2o48b2o$74bo42b2o$9b2o107b2o64b2o$8bo
bo106bo65b2o$10bo174bo$118b2o$118bobo$118bo52b2o48b2o$171bo49bo$172b3o
47b3o$174bo49bo$118b2o$119b2o$118bo!

Please note: This oscillator mentioned on page 3
x = 29, y = 29, rule = B3/S23
18bo$16b3o$15bo$15b2o5$12b3o$11bo3bo$14bo12b2o$9bo4bo12bo$8bo16bobo$8b
o10bo5b2o$8bob2o5b2obo$2b2o5bo10bo$bobo16bo$bo12bo4bo$2o12bo$13bo3bo$
14b3o5$12b2o$13bo$10b3o$10bo!

is actually the P18 (not the P36).
mattiward
 
Posts: 22
Joined: February 8th, 2018, 3:19 am

Re: Synthesising Oscillators

Postby Entity Valkyrie » March 22nd, 2018, 6:40 am

x = 411, y = 751, rule = B3/S23
252bo13bo$251b3o11b3o$251bob2o4bo5bob2o$252b3o3b3o5b3o$252b2o3b2o2bo4b
2o$257bo3bo$257bob2o$257b2o$277bo$251bo24b3o$250b3o22b2obo$250bob2o21b
3o$251b3o21b3o$251b3o22b2o$251b3o$251b2o3b3obo$256b3obobo$257bo3bo$
257b4o2$258bo14bo$256bobo13b3o$256b2o14bob2o$273b3o$273b2o$268bo$258bo
8b4o$257bobo6bo2b2o$256bo2bo5b2o2bo$256bo9b3o$256b2o9bo$260b2o6$257b2o
$256bo2bo$257b2o6$255bo$255bo$255bo4$259b2o$259b2o4$254b2o$254b2o17bo$
170bo13bo80bo6b3o$169b3o11b3o77bo2bo5bob2o$169bob2o4bo5bob2o76bo3bo5b
3o$170b3o3b3o5b3o75bo5bo4b3o$170b2o3b2o2bo4b2o76bobo8b3o$177b3o93b2o$
263b2o3bo$266bob3o$195bo61b2o9bo$169bo8bo15b3o60b2o5bob3obo$168b3o7bo
14b2obo68bobobo$168bob2o6bo14b3o70b4o$169b3o3bobo15b3o71bo$169b3o3bobo
16b2o$169b3o3b3o$169b2o4$173bo2b3o70bo$175b5o11bo56b3o$171bo8bo9b3o55b
ob2o$170bo2bobob3o10bob2o55b3o3bo$171b2obo3bo12b3o55b3o4b2o$191b2o56b
2o4b2o$174b3o$174bo2b2o$175b2o75bo$175b5o71b3o$251bob2o$252b3o$252b3o$
252b2o7$170bo7bobo$169bobo6bo2bo$169bobo5bo3bo$170bo7bo2bo$174b2o2b3o
78b2o$173bobo83b2o$174bo2$171b2o$171b2o$176bobo$176bobo$173bo3bo$172bo
bo$173bobo$174b3o$176b2o2$191bo$190b3o$173bo16bob2o$173bo17b3o$173bo
17b3o$191b3o125bo13bo$191b2o125b3o11b3o$317b2obo5bo4b2obo$177b2o138b3o
5b3o3b3o$177b2o139b2o4bo2b2o3b2o$324bo3bo$322bo3bobo$265bo$172b2o90b3o
56b2ob2o16bo$172b2o90bob2o50bo6bo17b3o$265b3o49b3o23bob2o$265b3o48b2ob
o24b3o$265b2o49b3o25b3o$316b3o25b2o$316b3o$167bo149b2o5bo$166b3o154bob
2o$166bob2o152b2o2b3o$167b3o5b2o147bo3bo$90bo13bo62b3o5b2o148b2obo$89b
3o11b3o61b2o158bo12bo$89bob2o4bo5bob2o163bo54b2o12b3o$90b3o3b3o5b3o
162b3o66b2obo$90b2o3b2obo5b2o64bo97b2obo66b3o$169b3o96b3o12bo43bo11b2o
$169bob2o95b3o11b3o41bo$170b3o95b3o11bob2o41bo$79bo15bo74b3o96b2o12b3o
$78b3o14b3o7bo64b2o111b3o38b2o$77b2obo15bo7b3o176b3o37bo2bo$77b3o16bo
2bo4bob2o175b2o39b2o$77b3o17b3o5b3o$78b2o25b3o166b2o$105b3o165b2o$105b
2o168bo2$322bo$322bo$95b2o225bo$83bo10bo85bo$82b3o9b3o84b2o$82bob2o9bo
84b2o$83b3o10b3o227b2o$83b2o15bo225b2o55b3o11b3o$98bobo281bo2bo10bo2bo
$99bo285bo4b3o6bo$385bo4bo2bo5bo$321b2o59bobo4bo3bo2bobo$90bobo228b2o
66b4o$90bo2bo296bo$90bo2bo7b3o228b2o$90b3o10bo228b2o38b3o$89b2o7b2o2b
2o268bo2bo22b3o$90bo7bo2bo75b2o193bo16b3o5bo2bo$99b3o75b2o150bo42bo3bo
13b2o8bo$329bo3b2o37bo17b2o4bo3bo$332bo2bo37bobo14b2ob2obo3bo$249b2o
73b2o5bo3bo4bo50bobo6bo$248b2o74b2o13b3o50bo4bobo$98b2o150bo81bo2bo2b
2obo$97bo2bo228bo2bob2o2b3o$98b2o226b2obo2bobo3b3o$325b3obob3o4b3o53bo
$317b3o5b2obo10b2o35b3o15bo$327b3o45bo2bo15bo$183bo143b2o49bo$182b3o
130bo62bo$101bo80bob2o129b2o58bobo$101bo81b3o131b4o69b2o$101bo81b3o
130bob3o69b2o$183b2o3$96b2o297b2o$96b2o288bo4bo3b2o$385bo$83bo301b3o$
82b3o231bo73bo$82bob2o15b2o212b3o72bo$83b3o15b2o211b2obo$83b3o228b3o
73b2o$83b3o228b3o69bo4bo$83b2o9b2o128b2o89b2o69b3o$223b2o162bob4o$225b
o165bobo$87b2o230bo69bo3bo$86bo3b2o226b3o67bo$86bo5bo224b2obo67bo3bo$
87bo10b2o217b3o69bobo$87bo5bo4b2o217b3o70bo$92b2o224b2o69b2o$89b3o296b
o2bo$326b2o59b2ob2o2bo3bo$326b2o57b3o6b2obobo$383b2o3bo4bo5bo$383b2obo
bo6b4o$107bo279bo9bo$106b3o$106bob2o$107b3o$107b3o266b3o$107b2o266bo2b
o$378bo$374bo3bo15bobo$98bobo3bo269bo3bo14bo$98b2o3b3o272bo14b2ob2o$
99bo3bob2o268bobo16b2obo$104b3o289b3o$104b3o52bo13bo57bo13bo144b2o2b2o
$104b2o52b3o11b3o55b3o11b3o143b2o2b2o$157b2obo5bo4b2obo55bob2o4bo5bob
2o146b2ob2o$157b3o5b3o3b3o28b2o27b3o3b3o5b3o147b2o$158b2o4bo2b2o3b2o
28b2o27b2o3b2o2bo4b2o148b2o$164bo3bo67bo3bo153b3o$165b2obo67bob2o$167b
2o67b2o$184bo35bo$158bo24b3o33b3o24bo$157b3o7bo15bob2o31b2obo15bo7b3o
142b2o$156b2obo6bobo15b3o31b3o15bobo6bob2o141b2o$156b3o6bo18b3o31b3o
18bo6b3o151b3o$156b3o3bo5bo15b2o33b2o15bo5bo3b3o150bo2bo$156b3o3b3o75b
3o3b3o153bo$96b2o59b2o4b2ob2o69b2ob2o4b2o154bo$96b2o67bo73bo156bobo3bo
$396bo2bobo2$332bo$165bobo12bo43bo12bobo91b3o63b3o$164bo2b3o9b3o41b3o
9b3o2bo89b2obo62bo2bo$165bobobo8b2obo41bob2o8bobobo90b3o66bo$166bo2bo
8b3o43b3o8bo2bo91b3o62bo3bo$166bo2bo9b2o43b2o9bo2bo92b2o66bo$160bo4bo
2bo67bo2bo4bo151bobo$158bo2bo3b3o69b3o3bo2bo$158bobo4bo73bo4bobo$159bo
85bo$164b3o71b3o$160b2o3b3o69b3o3b2o$160bo2bob3o69b3obo2bo$161b2o79b2o
$337bo$336b3o3bobo$336bob2o3b2o$166b2o69b2o98b3o3bo6bo$166b2o69b2o98b
3o9b3o$91bo245b3o8b2obo$90b3o244b2o9b3o$90bob2o254b3o$91b3o67b2o79b2o
104b3o$91b3o67b2o79b2o105b2o$91b2o2$170b2o61b2o$168b3obo59bob3o$166bo
3b2o61b2o3bo$166bo2bo2b2o57b2o2bo2bo$167b2o4bobo53bobo4b2o$163b2o8b2o
55b2o8b2o$163b3o73b3o140bo$86bo75bo9bo59bo9bo138bo$85b3o85bo28b2o27bo
149b3o$84b2obo80bob2obo28b2o27bob2obo$73bo10b3o80bo2b3o59b3o2bo$72b3o
9b3o80bobobobo57bobobobo$72bob2o8b3o81b3ob3o5bo43bo5b3ob3o$73b3o9b2o
72bo9bo3b2o4b3o41b3o4b2o3bo9bo$73b3o81bobo18b2obo41bob2o18bobo$73b3o
80bob2o18b3o43b3o18b2obo141b2o$73b2o81b2o20b3o43b3o20b2o141b2o$178b3o
43b3o157b3o$161b2o16b2o43b2o16b2o139bo2bo$83bo237bo64bo$83b2o235b2o60b
o3bo$82bobo235bobo63bo$383bobo10$156bo91bo$155b3o89b3o$154b2obo89bob2o
$154b3o91b3o$154b3o91b3o$155b2o91b2o3$159bo85bo$158b3o5b2o69b2o5b3o$
157b2obo5b2o69b2o5bob2o$157b3o85b3o$108bo48b3o85b3o48bo$108b2o48b2o85b
2o48b2o$107bobo185bobo12$202b2o$202b2o10$133bo137bo$133b2o135b2o$132bo
bo135bobo10$357bo$172bo59bo123bo$171b3o57b3o122b3o$170b2obo57bob2o$
170b3o59b3o70bo13bo$170b3o59b3o69b3o11b3o$171b2o59b2o70bob2o4bo5bob2o$
179bobo41bobo79b3o3b3o5b3o$180b2o41b2o80b2o3b2o2bo4b2o$180bo43bo85bo3b
o$310bob2o$310b2o$294bo$158bo87bo46b3o24bo$158b2o85b2o45b2obo15bo7b3o$
157bobo85bobo44b3o15bobo6bob2o$292b3o18bo6b3o$293b2o15bo5bo3b3o$314b3o
3b3o$311b2ob2o4b2o$313bo4$298bo$297b3o$297bob2o7bobo$202b2o94b3o7bob2o
$19b3o11b3o166b2o94b2o9b5o$18bo2bo10bo2bo275bobo$21bo4b3o6bo276b2o$21b
o4bo2bo5bo$18bobo4bo6bobo$30bo$24bo4bo275b2o$24bo280b2obo$8b3o15bo277b
o4bo7bo$8bo2bo14b2o6b3o266b4obo6bob3o$8bo18b3o3bo2bo146bo37bo80b5o6b3o
2b2o$8bo3bo15bo7bo146b2o35b2o81bo2bo6b2o$8bo23bo3bo145bobo35bobo81b2o
6bo2bobo$9bobo20bo3bo276b2ob2o$36bo276b2ob2o$28b2o3bobo279bo$26b5o$26b
o2b2o$26b2o2b2o281b2o$312bo2bo$12b3o298b2o$11bo2bo$14bo$14bo11b2o$11bo
bo12b2o2$316bo$26bo289bo$24b4o3b2o283bo$23bo4bo2b2o$23b2o$23bo4bo$25b
3o283b2o$298bo12b2o$297b3o$23b2o272bob2o$22bo2b2o271b3o$21bo3b2o271b3o
15b2o$28bo269b3o15b2o$22bobob4o268b2o$23b2o3b2o$25b2o$25b3o4$24bobo
171b2o5b2o94bo$24bo2bo6bo57bo13bo91b2o5b2o94bo11b2o17bo$20b2obo2bo6bob
o55b3o11b3o205b2o16bo$19bo5b2o2b2o2bobo54b2obo5bo4b2obo94b2o127b3o43bo
13bo$19b2ob4o4b2o2bo55b3o5b3o3b3o95b2o172b3o11b3o$29bo61b2o4bo2b2o3b2o
269bob2o4bo5bob2o$97bo3bo275b3o3b3o5b3o$98b2obo220bo54b2o3b2o2bo4b2o$
100b2o219b3o58bo3bo$81bo239bob2o57bob2o$80b3o24bo214b3o57b2o$12b3o65bo
b2o22b3o213b3o77bo$11bo2bo66b3o21b2obo213b2o52bo24b3o$14bo66b3o21b3o
267b3o22b2obo$10bo3bo14b5obo45b2o22b3o267bob2o21b3o$10bo3bo20bo69b3o
211bo56b3o21b3o$14bo15bo67bob3o3b2o210b3o55b3o22b2o$11bobo12b2o2bo2bo
62bobob3o215bob2o54b3o$26b2o3b3o63bo3bo210bobo4b3o54b2o3b3obo$98b4o
210b2o5b3o59b3obobo$313bo5b2o61bo3bo$85bo14bo279b2ob3o$30b3o51b3o13bob
o276bobob2o$83b2obo14b2o276bo2bo15bo$83b3o293bo2bo14b3o$84b2o294bo3b2o
11bob2o$90bo290bo3bo12b3o$26b2o60b4o8bo282b2o13b2o$26b2o60b2o2bo6bobo
280bo$89bo2b2o5bo2bo277b3o$90b3o9bo$36b3o52bo9b2o$31b2o2bo2bo58b2o$31b
2o5bo$34bo3bo345b2o$38bo345b2o$35bobo273b2o$311b2o$100b2o$33b3o63bo2bo
276b2o$32bo2bo64b2o277b2o$35bo$35bo$29bobo3bo355b2o$29bo2bobo355bo2bo$
384b2o2b5o$103bo280bo3b2obo$103bo284bo$103bo2$198b2o5b2o174b2o3bob2o$
198b2o5b2o174b2o2b2obo$98b2o286bo$98b2o102b2o$202b2o184b2o$390b2o$385b
o6bo$103b2o201bo68b2o3b2o2b2o3bob2o$85bo17b2o200b3o66bo2bobo4b2obobo$
84b3o6bo211bob2o65bobo3bo4bobob2o$83b2obo5bo2bo210b3o66bo5b6o4b2o5bo$
83b3o5bo3bo210b3o72b2o9b2o3b3o$83b3o4bo5bo209b2o84b2o3bob2o$83b3o8bobo
301b3o$84b2o312b3o$90bo3b2o302b3o$88b3obo305b2o$19bo70bo9b2o$18bo69bob
3obo5b2o$18b3o68bobobo$89b4o$91bo288bo$380b3o$382bo$377bo2$307bo69bo$
26b2o278bo$26b2o81bo196b3o70bo$108b3o268b2o$107b2obo263bo4b2o$20b3o80b
o3b3o263b3o$19bo2bo78b2o4b3o263bob2o$22bo79b2o4b2o264b3o$18bo3bo351b3o
7b2o$22bo351b2o8b2o$19bobo84bo$105b3o$104b2obo269bo$104b3o269b3o$104b
3o269bob2o$105b2o270b3o$377b3o$287bobo87b2o$287b2o$15b3o270bo$15bo2bo$
15bo$2b3o10bo3bo$bo2bo10bo3bo$4bo10bo182b2o5b2o$o3bo11bobo179b2o5b2o$o
3bo93b2o$4bo93b2o102b2o$bobo198b2o13$22b3o$24bo$23bo9$93bo301bo$92b3o
301b2o$91b2obo295bo4b2o$91b3o295b3o$91b3o295bob2o$92b2o296b3o$390b3o$
386bo3b2o$386bo6$47b3o38bo$49bo37b3o$48bo38bob2o304bo$75bo12b3o303b3o$
74b3o11b3o302b2obo$73b2obo11b3o302b3o12bo$73b3o12b2o303b3o11b3o$73b3o
317b3o11bob2o$73b3o122b2o5b2o187b2o12b3o$74b2o122b2o5b2o75bo125b3o$
281bo126b3o$83b2o117b2o77b3o124b2o$84b2o116b2o$83bo12$72b3o$74bo187bob
o$73bo188b2o$263bo120b2o$383b2o$385bo6$108b2o$109b2o$108bo12$97b3o$99b
o$98bo$359b2o$358b2o$360bo3$198b2o5b2o$198b2o5b2o2$133b2o67b2o$134b2o
66b2o$133bo12$122b3o$124bo$123bo$334b2o$333b2o$335bo4$257bo$256bo$158b
2o96b3o$159b2o$158bo12$147b3o$149bo87bobo$148bo88b2o$238bo70b2o$308b2o
$310bo3$198b2o5b2o$198b2o5b2o2$183b2o17b2o$184b2o16b2o$183bo12$172b3o$
174bo$173bo$284b2o$283b2o$285bo6$208b2o$209b2o$208bo12$197b3o$199bo$
198bo$259b2o$258b2o$260bo3$198b2o5b2o$198b2o5b2o25bo$231bo$202b2o27b3o
$202b2o4$211b2o$210b3o$209b3obo$208b3obo9b2o$209b4o9b2o$210b2o4$222b3o
$224bo$223bo$234b2o$233b2o$235bo!
Entity Valkyrie
 
Posts: 33
Joined: November 30th, 2017, 3:30 am

Re: Synthesising Oscillators

Postby Cclee » March 22nd, 2018, 10:07 am

That is not an oscillator
^
What ever up there likely useless
User avatar
Cclee
 
Posts: 56
Joined: October 5th, 2017, 9:51 pm
Location: de internet

Re: Synthesising Oscillators

Postby 77topaz » March 22nd, 2018, 4:34 pm

Yeah, it's not really relevant to this thread (though there are a bunch of still life syntheses as well as oscillator syntheses in here), and you posted it in three other threads as well, anyway. :P
User avatar
77topaz
 
Posts: 597
Joined: January 12th, 2018, 9:19 pm

Re: Synthesising Oscillators

Postby BobShemyakin » March 25th, 2018, 8:45 am

github_com_osc.rar
list of oscillator for display_synth script
(76.51 KiB) Downloaded 53 times
Goldtiger997 wrote:
mniemiec wrote:
Goldtiger997 wrote:I've added the syntheses of all the 16-bit oscillators, except for three which I've been unable to locate: ... Could someone point me towards those syntheses... Also, there is not a complete synthesis for another 16-bit oscillator, so this will also need to be completed (unless there is another way). It looks like it should take around 21 gliders: ...

Here they the latest versions I have:
4 oscillator syntheses


Thanks mniemiec, I've added those. I hadn't seen those syntheses before, which suggests to me that some of the syntheses that I have are not the best known ones. Either way, here is the folder of all the cheapest 16-bit oscillator syntheses:
The attachment oscill16.zip is no longer available

There is still suspiciously 109 syntheses in there instead of 108.
For the sake of completeness, I'm also attaching the 3-15 bit oscillator syntheses:
The attachment oscill3-15.zip is no longer available

If chris_c incorporates these syntheses into the display_synth script, it will make quite a nice feature for catagolue.


Me too, it's interesting.
I've learned to translate the link chain synthesis of rle format in the string that is used to describe this link in display_synth script.
This can be done semi-automatically via clipboard, and takes quite a long time (a few minutes link).
Much time is spent on the harmonization of the two links in the chain (the alignment position, orientation and phase oscillators , determining the optimal apgcode).
Cite this method received scripts for some oscillators (unzip and run ListOsc.html):
github_com_osc.rar
list of oscillator for display_synth script
(76.51 KiB) Downloaded 53 times

Work is still at the very beginning and is progressing slowly. In my plans to automate this process completely and get a full database of well-known chains of synthesis, to optimize it.

Bob Shemyakin
BobShemyakin
 
Posts: 206
Joined: June 15th, 2014, 6:24 am

Re: Synthesising Oscillators

Postby mniemiec » June 13th, 2018, 2:41 pm

The following Silver's P5 (which just happens to be the smallest basic oscillator involving two Silver's P5s on a still-life that I don't know how to synthesize) has popped up on Catagolue twice
[url=https://catagolue.appspot.com/object/xp5_4a96wstfzc8ee60gw23zy111/b3s23].
The first soup is useless, but the second could lead to a synthesis:
x = 31, y = 31, rule = B3/S23
4o2bo2bo2bo5bo2bo2bo2b4o$2o2b2ob3o11b3ob2o2b2o$obob3obobo3bobo3bobob3o
bobo$o2b2o2b2o2bob2ob2obo2b2o2b2o2bo$b3obob6ob3ob6obob3o$b2obo8b5o8bob
2o$obo3b4ob3obob3ob4o3bobo$bob2obob3obobobobob3obob2obo$b4ob2o4b3ob3o
4b2ob4o$2o2bob2obobob5obobob2obo2b2o$2bobo2bo2bo2bo3bo2bo2bo2bobo$3b2o
bo2bo2b7o2bo2bob2o$o3bob3o2b2o2bo2b2o2b3obo3bo$3bob2ob4o7b4ob2obo$2b4o
b3obo2b3o2bob3ob4o$4b3o2bob2ob3ob2obo2b3o$2b4ob3obo2b3o2bob3ob4o$3bob
2ob4o7b4ob2obo$o3bob3o2b2o2bo2b2o2b3obo3bo$3b2obo2bo2b7o2bo2bob2o$2bob
o2bo2bo2bo3bo2bo2bo2bobo$2o2bob2obobob5obobob2obo2b2o$b4ob2o4b3ob3o4b
2ob4o$bob2obob3obobobobob3obob2obo$obo3b4ob3obob3ob4o3bobo$b2obo8b5o8b
ob2o$b3obob6ob3ob6obob3o$o2b2o2b2o2bob2ob2obo2b2o2b2o2bo$obob3obobo3bo
bo3bobob3obobo$2o2b2ob3o11b3ob2o2b2o$4o2bo2bo2bo5bo2bo2bo2b4o!
mniemiec
 
Posts: 903
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Extrementhusiast » Today, 2:09 am

mniemiec wrote:The following Silver's P5 (which just happens to be the smallest basic oscillator involving two Silver's P5s on a still-life that I don't know how to synthesize) has popped up on Catagolue twice
[url=https://catagolue.appspot.com/object/xp5_4a96wstfzc8ee60gw23zy111/b3s23].
The first soup is useless, but the second could lead to a synthesis:
RLE


Done with a lot of finagling:
x = 69, y = 69, rule = B3/S23
12bo$13b2o$12b2o46bo$58b2o$59b2o4$43b2o$42b3o$42b2obo$43b3o$obo41bo$b
2o$bo39bobo$40bo12bo$40bo7bobo2bobo3bo$28bo11bo2bo4b2o3b2o3bo$26bobo
11b3o6bo8b3o6bo$27b2o37bo$66b3o$49bo$48bo$48b3o$34bo$33bobo$18bo9bo3bo
bo$19bo7bobo3bo$17b3o6bobo$27bo16b4o$44bo3bo$44bo$26bo18bo2bo$25bobo$
24bobo22b2o$25bo11b2o9b2o$36bobo11bo$35bobo$35b2o2$15b4o39b2o$14bo3bo
39bobo$9b2o7bo39bo$8b4o2bo2bo$8b2ob2o16b3o$10b2o17bo2bo$29bo$29bo$16b
2o4b2o6bobo2bo$17b2o2bobo10b2o$16bo6bo10bobo3$15b3o$17bo$16bo3$3bo13b
2o21b3o$3b2o11bobo21bo$2bobo13bo22bo6$19b2o$18bobo$20bo!


I highly suspect that there's a better, more direct way based on this (or something similar):
x = 39, y = 55, rule = B3/S23
33bo$32bo$8bobo21b3o$9b2o$9bo2$25bo$25bobo$25b2o10$36bo$36bobo$36b2o3$
8bob2o$8b2obo10$10b3o$12bo$11bo12b2o$23b2o$25bo7b3o$28b3o2bo$28bo5bo$
29bo4$b3o$3bo$2bo2$28b2o$27b2o$29bo$2o$b2o$o!


(Say, anything else in particular on the Most-Wanted List?)
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1694
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby mniemiec » Today, 6:06 am

Extrementhusiast wrote:Done with a lot of finagling: ... (Say, anything else in particular on the Most-Wanted List?)

Nice! This also trivially solves the related 30-bit one with a pond instead of a loaf.

This is my current wish list of unsolved small object syntheses:
Not shown: still-lifes (because there are thousands of 19-bit ones).
Rows 1-4: The remaining 14/199 17-bit and 26/484 18-bit P2 oscillators (9 of which are trivial pole-extensions of the 17s).
Row 5: the 2/216 P3s up to 21 bits and the 7 non-trivial P4s up to 25 bits.
Row 6: the 4 Elkies' P5s up to 28 bits; the other non-trivial P5s up to 30 bits,
mold on mold (the only remaining non-trivial pseudo-P4 up to 32 bits);
blocker and two clocks (the smallest non-trivial P8).
Row 7: the 9 non-trivial pseudo-P3s up to 28 bits.
Row 8: the 7 spaceships up to 32 bits.
x = 174, y = 132, rule = B3/S23
oo4bo8boobboo9boobboo10bobb3o8boo13boobb3o8b3o12b3o12boo13boobb3o$obob
obboo6bobbobo9bobobbo10bo13bobobo10bo36boo6bobbobo9bo$4bo11bo17bo10bo
bbobboo11bobo9bobobboo8boboob3o7boboobobo8bobbobo8bobobboo$bbo3bo12bo
11bo30bo5bo21bo14bo21bo$bo13bobo12bobbobo9bobobobbo8bo6bo8bobbobbo6boo
3bobo7boo3bobbo7boo4bo9bo3bo$boob3o8bobobboo8boo4bo8boo3bo10boobobobo
9bo3bo15bo13bo11boo13bo$15bo3bo15boo13bo15bo11bo3bo14boo13bo9boo11boo
bbo$124bo12bo8$3bo11boo14boo13boo12boo4boo7boo3bobo8bo3bo9boo13boobboo
10bo3bo$3boboboo6bobo13bobo12bobo11bobo4bo7bo4bo10bobobboo7bobobboo8bo
bobbo10bo3bobo$bo6bo41bo13bobo9bobo4boo6bobo15bobo12bo10bobbo$7bo7bobb
oob3o7bobboo10bo3bo11bo19bo12bo11bo13bo21boo$oo14bo19bo14bo13bo10bo3bo
11bo17bo9bobbobo10boo$6bobo7bo3bobo7boo13boo14bobobbo8bobbobo13bobo9bo
bo11boo21bo$bbobobboo14bo12bobo12bobo7boobboo8boo13boobbobo9boobbobo
12bobo7b3obobo$4bo17boo8bobobboo8bobobboo38bo3bo14boo13boo13bo$34bo14b
o7$oo13boo13boo4bo8boo3bo10bo3bo9boo17bo11boo12boo4bo10boo$obo5bo6bo7b
oo5bo5bo8bo4bobo8bo3bobo7bobo14bobo11bobo11bo5bo11bo$4bobobo7bobo3bobo
6bobobobbo7bobo11bobbo15bobo8bo5bobo11bo10bobobobbo8bo3bo$bbo3bobo44b
oo13boo7bo3bo8bo7bobo5bobbobo27bobobo$15b3oboobo10bo3boo8bo13boo20bo6b
obo7bo10bo11bo3boo6boo6bo$bbobobbo38bo6bo13bobbo6bobo4boo6bobo5bo4boo
35bobo$bboobbo14b3o9b3ob3o6boobobo11bobo3bo7boobbo14bobo12bobo8bobobo
9bo5bo$6bo44bo13bo3bo11bobo12bo10bobobboo8bobo13bobo$109bo12bo15bo7$bo
14boo12b3o12boo13boo13boo3bo9boo3bo11bobo12bobo12bobo$bo14bobo26bobo
12bobo12bo4bobo7bo4bobo11bo14bo14bo$obbo16bobo8boboob3o37bobo12bobo11b
oo4bo8boo4bo8boo4bo$8boo6bo3bo9bo14bobboo3bo6bobboob3o14boo13boo7bo4b
oo8bo4boo8bo$oboboobobo13boo5boo3bobo8bo6bo7bo16bo14bo30bo16boo$oo13b
oo5bo23bo3boobbo6bo3bobo11bo3bo10boobbo9boo4bo9bo4bo8boo$6bobbo11bobo
13bobo39bo30bo4boo8bo4boo11bo$8bo8bobo18boo12bobo12bobo11bobo12bobo13b
o14bo11bo4boo$8bo10bo33boo13boo12boo13boo13bobo12bobo11bo$141bobo6$oo
13boo13boo8boo4bo16boo10b3obobbobo12bo18boo17boo$o14bo14bobo4boobbo3bo
boo12bobo3boo7bobobobobbo10bobo10boo6boboo4bo10bobboo$bobo12bobo12b3ob
o12boobboo6bo3bobobo16bo20boobo5bo7bobbo3boo4bobobbo$10bo22bo3b3o6bobo
bobbo7bo3bo12bo16bobboobobo7bo3boobboboboboboobbo5bobboo$bbobo3b3o6bob
o17bo13boo25bobbobobobo7boo3bobbobobobboo8bo24bo$bbo4bo9bo4boo10bobo
11bobbo11b4obbo9bobobbob3o12bo4bo21bobo10boobb3o$4bobobo10bobobo12bo
14boo17bo58bo9boboobbo$3boobboo9boobbo24bobo17bobo69bobo$23b3o21boo17b
oo71bo$25bo113bo6$bo14bo14bo14bo15boo11boo13boo14boo7boo4bo$obb3o9bobb
3o9bobb3o9bobb3o11bo4boo6bo14bo14bobbo5bobbo4boo$bbo14bo14bo14bo15bo3b
obo7boo13boo11bobobbobobbobobboo4boo$3bobobbo9bobobbo9bobobbo9bobobbo
9boo5bo35bo9bo5bo3boo$bboob4o8boob4o8boob4o8boob4o7bobbo6bo6bobo12bobo
11booboboboo$4bo4boo5bobbo11bobbo11bobbo10bo9boo37bo3bo12bo$4bobobbo7b
obobo10bobobo10bobboboo6boo18bobo12bobo27bobo$5bobobo8bobobo10bobobo
10boo3bo71bobbo$6bobo10bobbo11bobbo15bobo12boo12bobo12bobo26bobbo$7bo
12boo15boo15boo13boobo11bo14bo$71boo13bo14bo24bo4bo$66bobo16boo13boo
24boo4boo$66boo19boo13boo26boo$87bo14bo29bo$89boo13bo$104bobo$90bobo$
106bobo$92bobo$108bobo$94bobo$96bo13boo$98bo14bo$97boo13boo7$b3o5b3o
10b3o16bo19b3o5b3o9boo18b3o17bo20b3o16boo$5bobo12bo20bo23bobo12bobbo
21bob3o11bo24bob3o9bobbo$o4bobo4bo7bo4bo15bo18bo4bobo4bo7bobobbo4b3o7b
o4boboo12bo19bo4boboo10bobobbo$4bo3bo12bo19boo21bo3bobbobo7bo4bobo15bo
3boo11boo17bobobbo3boo10bo4bob3o$boo7boo11boo3bo15bo4b3o9boo7bobbo12bo
bo4bo7boo5bo15bo15bobbo5bo16boboo$bo9bo12bo3bo11bo4bobo13bo9boo9b3o4bo
11bo9boo7bo4bob3o11boo9boo8b3o4boo$bo9bo12bo3bo16bobo4bo8bo29boo8bo6b
oobo13boboo20boobo16bo$bo9bo12bo3boo11b3o4bo12bo30bo8bo7bo11b3o4boo20b
o21boo$31bo18boo40bo16bo18bo21bo18boobo$27bo4bo18bo40bo38boo37bo$32bo
18bo76boobo38bo$28b3o20bo77bo$129bo$$24boo$4boo20bo$3bo19boobo37bo$bo
bb5obo14bo36boobo$o7bo15boobo92bobbo$3o5bobbo13bobo15booboo12bo6bo47bo
bbobboo22bobbo$8bo23bo8bo8bobo7boboboo3bo20bo23bo3booboo17bobbobboo$
25b3obobo8bo4bobobo11bo3bo4bo18bobbobo21b3o20bo3booboo$9boo13b3o4boo7b
o3bobobbo3bo7bo4bo3bo9bobbo7bo3bo20bo13bobbo7b3o$10boo12bo4b3o8bo3bo4b
o3bo6bo3bo5bo10boobbo5b4o11boo3bobbo16boobbo5bo$8bo13bo17bo8bo10bo6bo
bbo10booboo3bo3bo11bo6boo17booboo3bo$7bo12boo18bobbo5bobbo7bobbo4b3o
14b4o17b3ob3o22b4o$7b3o11boo17b3o6b3o8b3o24bo22bo26bo!

I'm sure many of the P2s can be solved by combining pieces that have been used to construct some other P2s by brute force. The two P3s should also be possible. I have no idea how to even approach the P4s.
The Elkies' P5s are probably not too difficult. The dual Silver's P5 on canoe looks like it might be possible adding one side at a time, using your new 11-glider component with some modifications (although after messing with it for about an hour, I wasn't able to get all the pieces to come together nicely). I have no idea how one would go about gluing a pseudo-barber-pole onto something else.
The dual mold looks tantalyzingly close to being doable. The P8 needs a way to edge-shoot a clock, which might also benefit some other syntheses that need clocks as rocks. The pseudo-P3s need better ways to edge-shoot caterers and jams.
Some of the P3 spaceships might be not too difficult, as they are made of similar components
to some of the smaller P3 spaceships.

As for which of these I would personally like to see solve first, my choice would probably be the two 20-bit P3s (and the 21-bit P4) for completeness (i.e. that would solve everything 21 bits or less with period above 2), and the mold-on-mold because it's so close.
(These are all pretty academic; about the only "useful" object in the entire lot would probably be the 25-bit T-nosed P4).

Also, if anyone cares:
rows 1-5: the 45/70637 remaining 20-bit pseudo-still-lifes (plus 2 trivial ones derived from these)
rows 6-8: the 25/972040 remaining 19-bit quasi-still-lifes (plus 3 trivial ones derived from these)
x = 145, y = 114, rule = B3/S23
ooboobo8booboobo8booboboo8booboobo8booboobboo7booboo10booboo9boo13boob
oo10booboobo$obooboo8booboboo8bobooboo8bobooboo9bobobbobo6bobobo10bobo
bobo8bobbooboo8bobobboo8boboboo$60bo3bobo8bo4b3o7bo6bo8bobo3bo7bo3bobo
9bo$obooboo8booboboo9booboobo8booboobo7booboobbo8bo5bo8bo3b3o7boobbobo
8booboobbo9bo$ooboboo8bobooboo9booboboo8bobooboo13boo9bobobo10bobo12bo
boboo12bobo10boboboo$76booboo10booboo11boo16boo10booboobo10$oo3boo9boo
boo10booboo10booboo9bobooboo8boo13boo13boo13boobbo10boobboo$o5bo10bobo
bo10bobobo8bobobo10boobobo10bo14bobbo10bo4boo8bo3b3o8bo3bo$bbobo11bo5b
o8bo4bo8bo4bo16bo7bo5boo7bo3b3o10bobbobo8bo5bo8bo3bo$booboo9bo4boo8bo
5boo8bo4bo14boo7b4obobo7boo5bo8boo4bo7boo4bo8boo4bo$bo3bo9bobobbo9bobo
4bo9bo4bo9boobo12bobo10bo4bo8bo5bo8bo4bo9bo6bo$bbobo11boo3bo9boobbo12b
obobo8bobboo11bo3bo9bobobo10bobobo11bobo12bob3o$booboo14boo13boo10boob
oo9boo14booboo10booboo10booboo9booboo10boobo9$oobboo9boobo11boobobboo
7booboo12booboo9boboo11boobbo10booboo9boboobo9boboobo$obobbo9boboo11bo
boo3bo7boobo14bobo10boobo10bobobb3o9bobobo8boobob3o7boobob3o$bbobo16b
oo11b3o11bobboo9bo3bo15boo6bo7bo7bo5bo15bo14bo$bobb4o7boboo3bo8boobo
13boobbo8bo5bo7boboo4bo7bo5bo7bo7bo13boo10booboo$boo4bo7boobobbo10bo
16bobo8bo7bo6boobbobbo9bo3bo8bobo3bobo9boobbo11bo$6bo11bobo11bobo13bo
bboo8b3ob3o10bobbo11bobo10boobbobo10bobobo9bobo$6boo10boo13boo13boo13b
obo13boo11booboo14bo14bo10boo9$obooboo8bobooboo8boobboo9booboo10booboo
10booboo11booboo10booboo10booboo9boo$oobobo9boobobobo7bobbobo10bobo12b
oboo10bo3bo12bobo12bobo12bobobbo8bo4boo$6bo16bo8boo11bo3bo10bo6boo7bob
o3boo7bo3bo9bo4bo10bo4boo8boboobbo$7bo13boo10bobo9booboobbo7booboo3bo
6booboo3bo6bo5bo8boo4bo8bo16boboo$bboo4bo8boobbo10bobb3o11bobobo10bobb
o11bobbo7bobo4bo8bo5bo8b3o$bbobb3o9bobobo10boo4bo10bobbo11bobo12bobo9b
obobboo8bobobboo10b3o11boboo$4boo14bo16boo9boo15bo14bo12bo13bobo16bo
10boobbo$93boo13bo16boo13boo8$oo13booboo11booboo9bo14boo15boobo11boobo
$obo3boo7bo3bo12bobo10b3o4boo6bobo12bobbob3o7bobbob3o$bbo3bo9bobo3bo8b
o3b3o10bo4bo8bo3boo7boo6bo6boo6bo$bboo3bo7boob5o7bo7bo8bobb3o9boobbo
15boo10booboo$6boo22boo5bo9boobo17bo9boobbo11bo$bboobbo13bo15bo11bo13b
oo3boo9bobobo9bobo$bbobobo12bobo11bobo12bobo11bobobo14bo10boo$5bo14bo
12boo14boo14boo8$bobboo10bobboo9boo3boobo6boboo3boo6boobboo10bo13boo
13boo15bo14boobbo$obobbo9bobobbo9bobobboboo6boobobbobbo6bo3bo9bobo12bo
4boo8bobo5bo7bobobboo9bo3b3o$bo3boboo7bo3boboo8bo18boboo5bo3bo11bobboo
11bo3bo11bobb3o6bobo4bo10bo5bo$4boobbo10boobo9boo16boo8boo3b3o12bo10b
oobbo10boobbo9bo5bo8b3o5bo$bbobbobo9bobbobo11boboo10bobbo9bo5bo9bobbob
oo6bo5b3o7bo4bo9bo5b3o5bo6bo$bboobbo10boobbo12boobo10boo11bobo12bobobo
bbo7bobo4bo8bobboo10bobo4bo9bobo$62boo13booboo10boo12boo15boo14boo9$ob
ooboo8booboo12boobo10boo13boobo12boo13boo13boo12bo13boo$oobobobo8bobob
o10bobboo10bobboobo8boboo12bobobo9bobbo11bobbo10bobo12bo$4bo3bo7bobbo
bboo6bobo3boo10booboo12boo13boo9bobo3boo6bobobobboo7bobbooboo7bo3bo$9b
o7boo4bo7bo4bo28bobo8bo5boo6booboo3bo7bobo4bo11boboo8bobb3o$5bobboo12b
o14bo7boo13boo4bo8bobo4bo14bo9bo4bo9bobbo9bobo5bo$4bobo16b3o7bobboo8bo
bboo9bobo13bo3bobo13bo14bo9bobobo9boo5bo$5bo19bo6bobo11bobobo12bobo13b
obo11bobo12bobo11bobo14bobo$33bo13bo16boo14bo12boo13boo13bo15boo8$oob
oo10bo14boo13boo13boo14boo3boo9booboo8boo$oobo11b3o4bo7bo14bo8bo6bo13b
obbobbobbo5bobbobobo8bo$3bo3boo9bobbobo7b3o12b3o3b3o6boboo10boobo4boo
5boobbo3bo7boboo$3boo3bo8bo4bobo8bobboo10bobbo10bobo13boo19bo7bobo$7bo
9boo5bo12bo14bo25bobbo13bobboo$6bo16bo9bobbo11bobboo12bo14boo12bobo13b
obboo$3bobo14bobo9bobobb3o7bobo14boboboo25bo13bobobbo$3boo15boo11bo5bo
8bo14bobboobo38bobboo$63boo43boo!
mniemiec
 
Posts: 903
Joined: June 1st, 2013, 12:00 am

Previous

Return to Patterns

Who is online

Users browsing this forum: No registered users and 5 guests