ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

Re: Synthesising Oscillators

Postby dvgrn » October 13th, 2015, 11:37 pm

Extrementhusiast wrote:
BlinkerSpawn wrote:This may not be the best place to ask this, but is there any sort of collection of synthesis components?

There was one on Pentadecathlon, before it went down, but Koenig may still have the files.

I didn't hear any rumors about the reason for pentadecathlon.com's recent downtime. Koenig maintains a large amount of server-side code that generates all those pages from his databases. It's all hosted on his own server, and sometimes a move or a hardware failure or an OS upgrade will cause temporary interruptions.

But rumors of the site's demise are a bit premature. Most of the Glider Construction pages seem to be responding pretty well this evening, anyway.
User avatar
dvgrn
Moderator
 
Posts: 4686
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Synthesising Oscillators

Postby mniemiec » October 13th, 2015, 11:45 pm

dvgrn wrote:But rumors of the site's demise are a bit premature. Most of the Glider Construction pages seem to be responding pretty well this evening, anyway.

Unfortunately, the Component Catalog page appears to be empty.
mniemiec
 
Posts: 921
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Bullet51 » October 17th, 2015, 6:14 am

Trivial last step to the Pentant:
x = 15, y = 11, rule = B3/S23
obo$obo3b2o$3o2bo2bob2o$6bobobo$5b2obobo$2o7bob2obo$2o9bob2o$5b2o4bo$
6bo3b2o$3b3o$3bo!
Still drifting.
Bullet51
 
Posts: 476
Joined: July 21st, 2014, 4:35 am

Re: Synthesising Oscillators

Postby mniemiec » October 17th, 2015, 9:36 am

Bullet51 wrote:Trivial last step to the Pentant:
x = 15, y = 11, rule = B3/S23
obo$obo3b2o$3o2bo2bob2o$6bobobo$5b2obobo$2o7bob2obo$2o9bob2o$5b2o4bo$
6bo3b2o$3b3o$3bo!

Nice!
By replacing the block with a glider, there is also no debris, for a net saving of two gliders:
x = 17, y = 11, rule = B3/S23
2bobo$2bobo3b2o$2b3o2bo2bob2o$8bobobo$7b2obobo$b2o8bob2obo$obo10bob2o$
2bo4b2o4bo$8bo3b2o$5b3o$5bo!

But why not save two more by eliminating the pi entirely?
x = 15, y = 11, rule = B3/S23
2bo$obo3b2o$b2o2bo2bob2o$6bobobo$5b2obobo$9bob2obo$11bob2o$5b2o4bo$6bo
3b2o$3b3o$3bo!
mniemiec
 
Posts: 921
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Extrementhusiast » October 17th, 2015, 2:18 pm

Bullet51 wrote:Trivial last step to the Pentant:
x = 15, y = 11, rule = B3/S23
obo$obo3b2o$3o2bo2bob2o$6bobobo$5b2obobo$2o7bob2obo$2o9bob2o$5b2o4bo$
6bo3b2o$3b3o$3bo!

There's also this method, taken from 65P13:
x = 29, y = 24, rule = B3/S23
18bo$19bo$17b3o$21bo$21bobo$12bo8b2o$13b2o$12b2o4$21b2ob2o$22bobo$22bo
bo$23bob2obo$8b2o15bob2o$7bobo9b2o4bo$9bo10bo3b2o$17b3o$17bo2$b2o$obo$
2bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1703
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby codeholic » October 18th, 2015, 5:32 am

Monogram in 12 gliders based on this soup found by Brett Berger.
x = 64, y = 62, rule = Life
62bo$61bo$61b3o2$o$b2o$2o44bo$46bobo$46b2o$22bo$20bobo$21b2o6$17bo$12b
o5bo17bo$13bo2b3o16bo$11b3o21b3o17$38b3o$8b3o27bo$10bo28bo$9bo17b2o$
27bobo$27bo$11b2o$10bobo$12bo14$48bo$47b2o$47bobo!
Ivan Fomichev
User avatar
codeholic
Moderator
 
Posts: 1140
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

Re: Synthesising Oscillators

Postby Extrementhusiast » October 20th, 2015, 5:32 pm

Two of Niemiec's components are unnecessarily large:
x = 34, y = 58, rule = B3/S23
10bo$8b2o$9b2o4$7bo$6bobo4bobo$6bobo4b2o17b2o$3bo3bo6bo15bo2bo$2bobo
24bob2o$bobobo22bobo$bobobo22bobo$2bobo5b2o17bo$3bo6bobo$10bo2$8bo$7b
2o$7bobo12$bobo$b2o$2bo5$3o$2bo8b2o18b2o$bo8b4o18bo$9b2ob2o17bo$3bo6b
2o18bo$2bobo24bo$bo2bo23bo$bobo24bobo$2bo26b2o$8b2o$7b2o$9bo2$4bo$4b2o
$3bobo2$6b3o$6bo$7bo!


15.387 in 14 gliders, from Catagolue:
x = 103, y = 65, rule = B3/S23
bo$2bo28bo$3o27bo$30b3o10$25bobo$25b2o$26bo$24bo$25bo$23b3o3$26bobo69b
2o$12bo13b2o69bobo$12bo14bo68bo3b2o$12bo83bob2o2bo$97bobobo$100bo10$
29b2o$29bobo$13b3o13bo$15bo$14bo$7b3o$9bo$8bo5$9bo$9b2o$8bobo$46b2o$
34bo11bobo$33b2o11bo$33bobo8$67b2o$67bobo$67bo!


Some more minor savings:
x = 110, y = 141, rule = B3/S23
45bobo$46b2o$46bo4$50bobo$51b2o$51bo2$56bo$56bobo$56b2o4$45bo30bo$44bo
bob2o3b2o20bobobo$22bobobo16bo2bob2o2bo2bo18bo2b2obo$43bobo6bo2bo18bob
o3bo$44bo8b2o20b2o3b2o$49b2o$49b2o4$47b2o$38b2o6b2o7b2o$39b2o7bo5b2o$
38bo3b3o11bo$42bo$43bo22$45bobo$46b2o$46bo3bo$51b2o9bobo$50b2o10b2o$
63bo5$51b2o26bobo$50bobo25bob2o$50bo27bo$22bobobo22b2obo24b2ob2o$51bob
o25bobo$51bobo5bobo17bo$41bo10bo6b2o17b2o$39bobo18bo$36b2o2b2o$35bobo$
37bo22b2o$44bo16b2o$44b2o14bo$43bobo36$58bobo$58b2o$59bo2$3bo76bobo$4b
2o75b2o$3b2o76bo2$48bo30b2o$44bob2o31bo$42bobo2b2o6b2o23bo3b2o20b2o$
21bo4bo16b2o6b2obobo24bobobo16b2obobo$22b2obo25b2obo27b2o18bob2o$21b2o
2b3o27b4o19b2o4b4o18b4o$58bo14bo4bobo3bo2bo18bo2bo$14bo42bo16b2o2bo$
15bo5bo35b2o14b2o$13b3o3b2o$20b2o$2o$b2o$o3$47b3o$49bo$27b2o19bo$26b2o
$28bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1703
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby mniemiec » October 24th, 2015, 1:17 pm

Bullet15 wrote:Trivial last step to the Pentant: ...

mniemiec wrote:By replacing the block with a glider, there is also no debris, for a net saving of two gliders: ...
But why not save two more by eliminating the pi entirely? ...

Extrementhiast wrote:There's also this method, taken from 65P13 ...

Which yields this 29-glider synthesis:
x = 252, y = 39, rule = B3/S23
209bo$207bobo$208boo$$89bobo$90boo$90bo$171bo43bo$169bobo41bobo$170boo
42boo$$140bo85bo$139bo35bobo46boo$96boo41b3o29bo3boo48boo$92boobbobo
73boobbo$47bo43bobobbo39bobo32boo$7bo37bobo45bo43boo37bo53bo$8bo37boo
84bo4bo37bo16boo18boo15bo12boo$6b3o124boo6bo33b3o15bo19bo15b3o11bo$
132boo7bobo49bobo17bobo27bobo$9bobo129boo51boo18boo28boo4boo$9boo33boo
71bo19bo22bo19bo19bo19bo6boo22bo$10bo16boo16boo10boo18boo18boo17bobo
17bobo19b3o17b3o17b3o17b3o6bobo17b4o$bo25bo16bo12bo19bo19bo19bo19bo19b
o19bo19bo19bo9bo19bo$bbobbo6bo15b3o27b3o13bo3b3o13bo3b3o13bo3b3o13bo3b
3o13bo3b3o13bo3b3o13bo3b3o13bo3b3o23bo3b3o$3obbobo3bo13b3obbo16boo6b3o
bbo13b4obbo13b4obbo13b4obbo13b4obbo13b4obbo13b4obbo13b4obbo13b4obbo23b
4obbo$5boo4b3o10bobbo18bobo5bobbo19bo19bo19bo19bo19bo19bo19bo19bo29bo$
25boo21bo6boo19bo19bo19bo19bo19bo19bo19bo19bo29bo$76boo18boo18boo18boo
18boo18boo18boo18boo28boo$13boo$12boo$14bo$47boo10boo$46bobo6boobbobo$
48bo7boobo$55bo$64b3o$64bo$65bo!

(I haven't checked the 18-cell still-life syntheses, so I'm not sure if there is a better way to make the base still-life)
mniemiec
 
Posts: 921
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby gmc_nxtman » October 30th, 2015, 8:16 pm

If there is a component that works here, then we might have a synthesis for a p16 billiard table:

x = 34, y = 11, rule = B3/S23
2o19b2o9b2o$obo18bobo7bobo$2bo20bo7bo$2b2o19b2o5b2o$5bob2o17bob2o$2b5o
b3o12b5ob3o$bo9bo10bo9bo$b2ob2ob2ob2o10b2ob2ob2ob2o$5bobo18bobo$5bobo
18bobo$6bo20bo!
User avatar
gmc_nxtman
 
Posts: 1107
Joined: May 26th, 2015, 7:20 pm

Re: Synthesising Oscillators

Postby Bullet51 » October 31st, 2015, 12:44 am

gmc_nxtman wrote:If there is a component that works here, then we might have a synthesis for a p16 billiard table.


Much more promising than this one:
x = 17, y = 21, rule = B3/S23
4b2o$4b2o2$4b4ob2o$4bo2bobobo$9bobo$8b2obob2o$9bobobobo$3b2obo2bobobob
o$o2bob5obobob2o$bo9bobo$o2bob5obobob2o$3b2obo2bobobobo$9bobobobo$8b2o
bob2o$9bobo$4bo2bobobo$4b4ob2o2$4b2o$4b2o!
Still drifting.
Bullet51
 
Posts: 476
Joined: July 21st, 2014, 4:35 am

Re: Synthesising Oscillators

Postby Scorbie » October 31st, 2015, 1:19 am

Bullet51 wrote:
gmc_nxtman wrote:If there is a component that works here, then we might have a synthesis for a p16 billiard table.
Much more promising than this one:
x = 17, y = 21, rule = B3/S23
4b2o$4b2o2$4b4ob2o$4bo2bobobo$9bobo$8b2obob2o$9bobobobo$3b2obo2bobobob
o$o2bob5obobob2o$bo9bobo$o2bob5obobob2o$3b2obo2bobobobo$9bobobobo$8b2o
bob2o$9bobo$4bo2bobobo$4b4ob2o2$4b2o$4b2o!
Actually, they are different billiard tables... This would arguably be easier to invoke the p16 you are describing. (Edited the pattern)
x = 21, y = 19, rule = B3/S23
8b2o$4bo3bo$5bo3b3ob2o$3b3o5bobobo$13bobo$12b2obob2o$13bobobobo$13bobo
bobo$12b2obobob2o$11bo3bobo$12b2obobob2o$b2o10bobobobo$obo10bobobobo$
2bo9b2obob2o$13bobo$11bobobo$9b3ob2o$8bo$8b2o!
Incidentally,
x = 26, y = 24, rule = B3/S23
13b2o$7bo5bo$8bo5b3ob2o$6b3o7bobobo$18bobo$17b2obob2o$18bobobobo$18bob
obobo$17b2obobob2o$20bobo$17b2obobob2o$4b2o12bobobobo$3bobo12bobobobo$
5bo11b2obob2o$18bobo$16bobobo$14b3ob2o$13bo$13b2o3$3o$2bo$bo!
Although I'm pretty sure there are other solutions along these lines.
Best wishes to you, Scorbie
User avatar
Scorbie
 
Posts: 1350
Joined: December 7th, 2013, 1:05 am

Re: Synthesising Oscillators

Postby gmc_nxtman » November 1st, 2015, 11:39 am

Drifter found this weird, eater3-esque last step to a p10 billiard table:

x = 19, y = 19, rule = B3/S23
2bo$obo$b2o8bo$4b2o4bobo$3bo2bo3bobo$3bobo3b2ob2o$4bo11b2o$7b4ob2o2bo$
7bo2bobobobo$5bobo4bobo2b2o$3b3ob2o2bo3bobo$2bo7bob4obo$3b3ob3obo4bo$
5bobo3bo2b2o$8b2obobo$10b2obo$6b3o3bo$6bo2b3o$9bo!
User avatar
gmc_nxtman
 
Posts: 1107
Joined: May 26th, 2015, 7:20 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » November 2nd, 2015, 8:40 pm

Bullet51's P13 in 219 gliders:
x = 1411, y = 59, rule = B3/S23
738bo$737bo$737b3o4$725bo$726b2o68bo$725b2o67bobo472bo$795b2o473b2o$
727bo541b2o$726bo$726b3o$717bo$710bo4bobo507b2o$711b2o3b2o506b3o$710b
2o17bo494b2obo$430bo97bo200bobo74bo418b3o41bo17bo$431b2o84bo9bo201b2o
63bo9bobo419bo43b2o15bobo62bo$124bo305b2o84bo10b3o265bo9b2o462b2o16b2o
53bo8bo$125b2o42bo276bo69b3o98bo78bo37bo58b3o480bobo2bo61b2o6b3o$124b
2o43bobo273bo172bo76bo38bobo70bo468b2o3bobo2bo55b2o4bo$169b2o269bobo2b
3o168b3o76b3o36b2o70bo61bo408bo3b2o2b2o62bo$32bo89bo52bo100bobo130bo
30b2o184bobo62bo114b3o57bobo401b2o13bobo59b3o$33bo68bobo15bobo15bo29bo
4b2o101b2o126bo3bo24b2o6bo177bobo4b2o64bo174b2o394bo5bobo69bo33bo$31b
3o37bo30b2o17b2o14bobo27bobo4b2o101bo127b2ob3o21bo2bo80bobo100b2o6bo
62b3o3bo27bo14bo159b2o360bobo7bo67bobo34bo$bo68bo32bo33b2o28b2o235b2o
26bo2bo80b2o102bo73b2o27bobo13bobo156bobo3bobo266bo47bo40b2o36bo39b2o
3bo28b3ob2o$2bo31bo17b2o4b2o10b3o18b2o4b2o28b2o4b2o28b2o58bo23bo34bo
32bo27bo26bo29bo28bo3b2o33b2o36b2o9bo32b2o30b2o27b2o35b2o35b2o8b2o20b
2o5bobo12b2o22b2o32b2o40bo41bo18bo3b2o9bo32bo39bo39bo27bo29bo38bo23bo
24bo20bo26bo15bo38bo23bo11b2o3bo24b2o6b2o3bo22bo3bo17b2o3bo$3o30bo18bo
bo2bobo14b3o14bobo2bobo2b2o14bo9bobo2bobo2b2o20bo2bobo2b2o25bo24bo2bob
o18bo2bobo16b2o11bo2bobo27bo2bobo22bo2bobo21bo2bobo24bo2bobo23bo2bobo
33bo2bobo32bo2bobo38bo2bobo26bo2bobo23bo2bobo11bo19bo2bobo31bo2bobo26b
o2bobo6bo33bo2bobo9bobo16bo2bobo13bo22bo2bobo36bo2bobo22bo5bo2bobo27bo
2bobo34bo2bobo34bo2bobo22bo2bobo24bo2bobo33bo2bobo18bo2bobo21b3o16bo2b
obo23b3o11bo2bobo33bo2bobo20b3o11bo3bobo24b2o5bo3bobo20bo3bobo16bo3bob
o$4bo28b3o18b4o8b2o6bo18b4o4b2o15bo10b4o4b2o5bo14b4o4bobo20bo2bobo23b
4o2bo17b4o2bo14bobo11b4o2bo23bo2b4o2bo18bo2b4o2bo17bo2b4o2bo20bo2b4o2b
o19bo2b4o2bo29bo2b4o2b2o27bo2b4o2b2o33bo2b4o2b2obo19bo2b4o2b2obo16bo2b
4o2b2obo6b2o16bo2b4o2b2o26bo2b4o2b2o21bo2b4o2b2o35bo2b4o2b2ob2o4b2o14b
o2b4o2b2ob2o7bo20bo2b4o2bo32bo2b4o2bo27b4o2bo21b2o3b4o2bo28b2o3b4o2bo
33b4o2bo21b4o2bo23b4o2bo16bo15b4o2bo17b4o2bo25bobo11b4o2bo36b4o2bo23b
2o7b4o2bo34b4o2bo31b4o2bo20b4o2bo16b4o2bo$3bo43bobo3bo4bo7bobo6bo16bo
4bo5b2o11b3o9bo4bo5b2ob2o13b2o4bo4bo21b4o2bo20b2o4bobo15b2o4bobo5bo10b
o9b2o4bobo23b3o4bobo18b3o4bobo17b3o4bobo20b3o4bobo19b3o4bobo29b3o4bobo
28b3o4bobo34b3o4bobob2o19b3o4bobob2o16b3o4bobob2o6bobo15b3o4bobo2bo24b
3o4bobo2bo19b3o4bobo2bo33b3o4bobo3bo5bo14b3o4bobo3bo7b3o18b3o4bobo32b
3o4bobo23bob2o4bobo21bo2b2o4bobo28bo2b2o4bobo31b2o4bobo19b2o4bobo21b2o
4bobo17bo12b2o4bobo15b2o4bobo26b2o9b2o4bobo34b2o4bobo22bobo5b2o4bobo
22bo8b3o4bobo28b3o4bobo17b3o4bobo13b3o4bobo$3b3o19b2o21b2o3b2o2b2o7bo
24bobo2b2o5b2o15bo6bobo2b2o5b2o2b2o11bo2bo2b2o24b2o4bobo19bo2bo2b2ob2o
13bo2bo2b2ob2o2b2o20bo2bo2b2ob2o25bo2b2ob2o20bo2b2ob2o19bo2b2ob2o22bo
2b2ob2o21bo2b2ob2o31bo2b2o2bo30bo2b2o2bo11bo24bo2b2o27bo2b2o24bo2b2o
32bo2b2o3b2o27bo2b2o3b2o3b2o17bo2b2o3b2o3b2o31bo2b2o2b2o25bo2b2o2b2o
33bo2b2o2b2o33bo2b2o2b2o21b2o2bo2b2o2b2o20b2o2bo2b2o2b2o27b2o2bo2b2o2b
2o5bo22bo2bo2b2o2b2o16bo2bo2b2o2b2o18bo2bo2b2o2b2o13b3o11bo2bo2b2o2b2o
12bo2bo2b2o2b2o24bo9bo2bo2b2o2b2o31bo2bo2b2o2b2o15b3o4bo4bo2bo2b2o2b2o
20b2o7bo2bo2b2o2b2o26bo2bo2b2o2b2o15bo2bo2b2o2b2o11bo2bo2b2o2b2o$25b2o
21bo42b2o27b2o5b2o28b2o28bo2bo2b2ob2o19b2o11b2o9b2o6bo4b2o20b2o6bo25b
2o5bo20b2o5bo19b2o28b2o27b2o37b2o4b2o30b2o4b2o11b2o23b2o4bo25b2o4bo22b
2o4bo30b2o4bo11bobo16b2o4bo6bobo16b2o4bo6bobo30b2o4bobo9b2o14b2o4bobo
33b2o4bobo7bobo11bo11b2o4bobo25b2o4bobo24b2o4bobo31b2o4bobo4b2o24b3o4b
obo18b3o4bobo20b3o4bobo24bo4b3o4bobo14b3o4bobo36b3o4bobo15b2o16b3o4bob
o18bo10b3o4bobo20bobo8b3o4bobo23bo4b3o4bobo18b2o4bobo14b2o4bobo$119bob
o17bo29b2o17b2o39bo2bo12bo3bobo29b2obo29b2obo22b4obo5bo15b7o23b4ob2o
17bo4b4ob2o32b4o34b4o13bobo24b4o28b4o25b4o9b2o22b4o12b2o19b4o7bo20b4o
7bo34b4o2bo9bobo15b5obo35b5obo7b2o13b2o11b5obo15b2o10b5obo26b5obo23bo
9b5obo5b2o26b5obo21b5obo23b5obo25bo6b5obo17b5obo39b5obo16b2o18b5obo17b
o14b5obo34b5obo22bobo6b5obo20b5obo16b5obo$50b3o86b2o27b2o31bobo17bo7bo
2bo12b2o3b2o28bo2bo14bo2bo11bo2bo23bo2b2o4b2o16bo2bo2bo23bo2bob2o18bo
3bo2bob2o32bo2bo34bo2bo40bo31bo28bo12bobo21bo16bo19bo8bobo20bo7b2obo
34bo5b2o8bo17bo4bo36bo4bo9bo12b2o12bo4bo17b2o2bo6bo4bo27bo4bo24b2o8bo
4bo33bo5bo21bo5bo23bo5bo24b3o5bo5bo17bo5bo39bo5bo16bo19bo5bo32bo5bo34b
o5bo24b2o5bo5bo20bo5bo16bo5bo$20bo10bo20bo85bobo24b2o3bo30b2o17bobo2b
2o3b2o12bobo34b2o19bo11b2o5bo28b2o68b3o4b2o75b2o42bo31bo28b3o4b3o2bo
24b3o34b3o4bobo22b3o3bo2bo36b3o31b4o38b4o38b4o17bo3b2o7b4o29b4o24bobo
4b2o3b4o25bo9bob3o21bobob3o25bob3o33b2ob3o16bo2bob3o38bo2bob3o35bo2bob
3o5bobo23bo2bob3o25b3o5bo2bob3o30bo2bob3o19bo2bob3o15bo2bob3o$21bo7b2o
20bo34bobo34b3o40b2o34bo17bobo2bobo70bo3bo17bo119bobo51bo52b2o32bo29bo
6bo29bo36bo5bo25bo3bobo12b2o25bo10bo34bo61b2o31bobo33b3o38b2o30bobo8b
2obo24b2obo25bobobo23b2o5bo5bobo18b2obobo40b2obobo37b2obobo7b2o24b2obo
bo29bo5b2obobo17b2o13b2obobo21b2obobo17b2obobo$19b3o8b2o55b2o76bo51bo
3bo3bo25b3o21bo23b4o4bo12b3o26bo86b2o2b2o50bobo21bo63b2o35bo104bo12b2o
36b2o20b2o11b2o19bo7b2o27b3ob2o9b2o32b2o25bo5b2o38b2o24b2o2b2o25b2o34b
2o27b2o4b2o4bo23bo45bo42bo10bo25bobo30bo7bobo18bobo14bobo24bobo20bobo$
52b3o32bo114b2o13b2o11b3o18bo22b2o31b2o9bo29b2o25bo22b2o36bobo2bo24b2o
21b2o2b2o20b2o37bobo32b2o100b2o44bo35bobo19b2o11bobo16bobo7bobo28bo3bo
8b2o32b2o24bo6b2o26b3o9b2o4b2o15b2o6b2o25b2o61bo5bobo3b2o23b2o44b2o38b
2obo35bo2b2o36bo2b2o19bo3b2o8bo2b2o22bo2b2o18bo2b2o$32bo19bo149bobo11b
obo5bo5bo21bo17bo3bobo29bobo8b2o29bobo18b3o2b2o23b2o35bo30b2o19bobo24b
obo36b2o29b2o2bobo99bobo134b2o8bo28bo75b3o30bo16b2o15bobo5bo26bo3b3o
180b2ob2o34b2o39b2o25bobo8b2o25b2o21b2o$31b2o20bo33b2o113bo21b2o5bo39b
2o44bobo20b3o28bo2bobo21bo3b2o62bo3b2o18bo64bo30b2obo61bobo37bo107bo
143bo33bo4b3o10bo16bo36bo291bo$31bobo54b2o133bobo29b3o12b2o70bo27bo30b
2o21b2o14b2o27b2o26bo14b2o71bo7b2o56b2o2b3o136b2o2b2o30b3o111bo29b2o6b
o67bo26bobo$87bo106b2o31b2o26bo56b3o6b2o18bo61bo21b2o12b2o30bo25b2o12b
2o27b3o12b2o36bobo56bo2bo6b2o92b2o11b3o23b2obobo31bo140bobo7bo7b2o85b
2o95b2o$194bobo30bobo26bo47b2o6bo8bobo47b3o50bo8b3o5bo54bobo14bo28bo
12bobo15bo19bo62bo4b2o92bobo11bo24bo36bo14b3o126bo14b2o86bo3b3o27b3o
10b2o49b2o18b3o$187b2o5bo32bo77b2o6bo7bo49bo25b2o34bo31b2o74bo9bo3bo
17b2o88bo93bo12bo75bo145bo89bo31bo9b2o49bo43bobo$29b2o155bobo115bo67bo
25b2o34bo31b2o34bo48b2o19bobo137bo14b3o65b2o50bo229b2o4bo29bo12bo67bo
5bo19b2o2b2o$22b2o5bobo156bo208bo67bo36b2o46bobo159b2o13bo36bo30bobo
34b2o243bobo69b3o28bo13bo5bo19bo2bobo$21bobo5bo471bobo149b2o56bobo14bo
34b2o30bo35bobo145b2o96bo73bo28b2o12bo5bo24bo21b2o$23bo165b2o126b3o
332bobo61bo46bobo67bo144b2o170bo28bobo7b2o55b2o$189bobo125bo336bo61b2o
262bo207bobo5b3o20b3o20b2o4bo$189bo128bo174b3o219bobo387b2o44b3o36bo
30bo19b2o$495bo608bobo44bo68bo22bo$494bo276bo334bo45bo$770b2o$770bobo
2$1214b2o$1215b2o$1214bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1703
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby mniemiec » November 16th, 2015, 1:06 pm

One of the objects on my to-do list has been a griddle w/siamese integral w/hook (and similar objects), for which I have long had a synthesis that comes close, but doesn't quite work. A recent apgsearch find of a related object prompted me to search Catagolue, and while none of the syntheses there seemed practical, one did have a promising immediate predecessor. Here are a few partial attempts to synthesize this predecessor. As a bonus, since this grows the griddle from a claw, it also works with other claw-like still-lifes. In particular, it could make the griddle on cis-snake much more cheaply:
x = 116, y = 71, rule = B3/S23
69bo$48b3o3boo12bo3bobbo$48b8o19bo$47boobb3o11bo$44b5o15bo4boo13boo3bo
bo18bo$45b3obboo12bo4b3o19bo18bobo$47bobbobbo13b4obbo14bo4bo14bo4bo$
48bobb3o17b3o14b6o14b6o$$50boboo16boboo16boboo16boboo$50boobo16boobo
16boobo16boobo10$69bo$48b3o3boo12bo3bobbo$48b8o19bo$47boobb3o11bo$44b
5o15bo4boo13boo3bobo18bo$45b3obboo12bo4b3o19bo18bobo$47bobbobbobo11b4o
bbobo12bo4bobo12bo4bobo$48bobbooboo15booboo12b5oboo12b5oboo$52bo19bo
19bo19bo$50bobo17bobo17bobo17bobo$50boo18boo18boo18boo5$bo$bbo$3o$4bo
25boo18boo$4bobo23boo$4boo23boo18bo3boo$30b6o19bo$30b6o19bo$31b3o16bo$
10boo13boo23bo18boo18bobo18bo$oo8bobo17boo15bobboo17b3o19bo18bobo$obbo
bo4bo14b3obbobbobo11bobbobbobo11b4obbobo12bo4bobo12bo4bobo$booboo18b4o
3booboo12bobbooboo15booboo12b5oboo12b5oboo$bbo21b4o4bo19bo19bo19bo19bo
$obo22boo3bobo17bobo17bobo17bobo17bobo$oo23boo3boo18boo18boo18boo18boo
8$69boo17bobbo$48b4o16b4o$27b6o14bo4bo15b3obo15bo$27b6o19bo36bo$25b6o
14bo$25boo22bo$24b4o41boo18bobo18bo$24b4obboo16boboo17b3o19bo18bobo$
25b3obbobbobo8bobbobbobbobo11b4obbobo12bo4bobo12bo4bobo$31booboo11bo3b
ooboo15booboo12b5oboo12b5oboo$25boo5bo19bo19bo19bo19bo$30bobo17bobo17b
obo17bobo17bobo$30boo18boo18boo18boo18boo!
mniemiec
 
Posts: 921
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby chris_c » November 16th, 2015, 7:24 pm

mniemiec wrote:One of the objects on my to-do list has been a griddle w/siamese integral w/hook (and similar objects), for which I have long had a synthesis that comes close, but doesn't quite work.


This works:

x = 27, y = 24, rule = B3/S23
15bo$5bo10bo$3bobo8b3o$4b2o12bo$18bobo$18b2o$5bo$6bo$4b3o$24b2o$14b2o
8bobo$14bo2bobo4bo$15b2ob2o$16bo$14bobo$14b2o2$4b3o$6bo$5bo2$2o$b2o$o!


There are other 3 glider collisions that (almost) produce the necessary spark but I couldn't clean any of them up in less than 2 gliders. Maybe someone else can do better.

x = 713, y = 92, rule = B3/S23
8bo98bo99bobo98bo100bo98bo98bobo98bo$9bo98b2o98b2o99bo97bobo99bo98b2o
99bo$7b3o97b2o99bo98b3o98b2o97b3o98bo98b3o3$611bo$9bo204bo97bo199bo96b
obo$7bobo202bobo95bobo99bo97bobo97b2o$8b2o203b2o96b2o97bobo98b2o$110bo
300b2o297bo$108bobo597bobo$109b2o598b2o3$607b3o$8b2o501b3o95bo$7bobo
205b2o93b2o97b3o101bo94bo$9bo206b2o93b2o98bo100bo$215bo94bo99bo$110b2o
598b3o$111b2o599bo$110bo600bo51$199b2o$199b2o$4b3o$2bo199b3o$bo91b3o6b
3o96bo3bo187b3o6b3o88b3o6b3o188b3o6b3o$bo90bo3bo5bo2bo95b2o101bo87bo3b
o5bo2bo86bo3bo5bo2bo186bo3bo5bo2bo$4bobo89bo5bo3bo95b2o2bo96bo2bo89bo
5bo3bo89bo5bo3bo94b2o3bo89bo5bo3bo$ob3obo88bo110bo96bo91bo99bo107b2obo
88bo$7bo84bo2bobo9bo96bo2bo99bo84bo2bobo9bo84bo2bobo9bo95bo3bo84bo2bob
o9bo$91b2ob2o2bo4b2obo94b3o99b2obo84b2ob2o2bo4b2obo84b2ob2o2bo4b2obo
95bobo86b2ob2o2bo4b2obo$92bo2bobo3b2o3bo94b2obobo94bo4bo85bo2bobo3b2o
3bo85bo2bobo3b2o3bo99bo85bo2bobo3b2o3bo$bo3bo84bob2o8bo98b2ob2o184bob
2o8bo87bob2o8bo95bo91bob2o8bo$2b3o84b2obo9bo2bo97bo185b2obo9bo2bo83b2o
bo9bo2bo183b2obo9bo2bo$89bob3o9b2o284bob3o9b2o84bob3o9b2o94b5o85bob3o
9b2o$88b3o3bo293b3o3bo93b3o3bo106b3o84b3o3bo$93b2o298b2o98b2o198b2o$
89b5obo3bo289b5obo3bo89b5obo3bo189b5obo3bo$89b3o2b2o2bobo288b3o2b2o2bo
bo88b3o2b2o2bobo188b3o2b2o2bobo$91bo6bobo290bo6bobo90bo6bobo190bo6bobo
$99bo299bo99bo199bo!
chris_c
 
Posts: 825
Joined: June 28th, 2014, 7:15 am

Re: Synthesising Oscillators

Postby mniemiec » November 16th, 2015, 8:05 pm

chris_c wrote:
mniemiec wrote:One of the objects on my to-do list has been a griddle w/siamese integral w/hook (and similar objects), for which I have long had a synthesis that comes close, but doesn't quite work.


This works:

x = 27, y = 24, rule = B3/S23
15bo$5bo10bo$3bobo8b3o$4b2o12bo$18bobo$18b2o$5bo$6bo$4b3o$24b2o$14b2o
8bobo$14bo2bobo4bo$15b2ob2o$16bo$14bobo$14b2o2$4b3o$6bo$5bo2$2o$b2o$o!

Excellent, thanks!

chris_c wrote:There are other 3 glider collisions that (almost) produce the necessary spark but I couldn't clean any of them up in less than 2 gliders. Maybe someone else can do better.

I know a lot of 3-glider collisions that make a "J" spark, but all of them with the stem part facing foward, which is not useful here. I found a few ways to make it the right way, but none that would't also attack the inducting curl.
mniemiec
 
Posts: 921
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Extrementhusiast » November 16th, 2015, 8:56 pm

Meanwhile, cauldron in 114 gliders:
x = 749, y = 43, rule = B3/S23
372bo$371bo$371b3o139bo204bo$8bobo503bo34bo28bo137b2o$9b2o8bo492b3o32b
2o30bo133bo3b2o$9bo8bo350bo146bo31b2o27b3o66bo64bobo$18b3o349bo144bo
23bo41bo64bobo63b2o$16bo162bo188b3o114bo29b3o22bo39bo65b2o$14bobo163bo
235bo31bo37bo51b3o16bobo20b3o131bo$11bo3b2o8bobo142bobo5b3o194bo39bo
30bobo35b3o70b2o154bo$9bobo13b2o28bo2bobo110b2o195b3o3b2o39b3o29b2o64b
obo42bo52bo101b3o$10b2o14bo26bobo2b2o111bo190bo7bo3bobo5bo30bo73bobo
24b2o62bobo28bobo3bo25bo35bo$54b2o3bo303bo5bo11bo32bo26bo8bo36b2o25bo
6bo57b2o29b2o3bobo3bo20bo32bobo32bobo5bo$169b2o7b2o181b3o17b3o28b3o27b
2ob2ob2o38bo32bobo55bo35b2o3bo19b3o33b2o28b2o3b2o4bo$15bo7bo146b2o5b2o
262b2o2b2o2b2o70b2o30bo66b3o84b2o2bo5b3o$13bobo5bobo35bo109bo9bo25bo
31bo37bo26bo36bo34bo142b2o22b2ob2o8b2o82b2o38b2o26bo$14b2o6b2o12bo21bo
bo39b2o39b2o31b2o28bobo29bobo35bobo24bobo34bobo19bo12bobo8bo99bo32bobo
20bobobobo6b2o2bobo17b2o5b2o23b2o2bo2b2o19bobo7b2o28bobo63bo$35bo21bo
2bo30bo6bo2bo37bo2bo29bo2bo26bo2bo28bo2bo34bo2bo23bo2bo33bo2bo20b2o9bo
2bo8b2o27b2ob2o27b2ob2o31b2obobo28b2obobo20bo5bo10b2o18bo2bobo2bo23bo
2bobo2bo21bo7bo2bob2o23bo4bob2o26bob2o26bobo$35b3o19b3o31bobo4b3o38b3o
30b3o27b3o29b3o35b3o24b3o34b3o20bobo9b3o9bobo19bo6b2ob2o27b2ob2o6bo24b
2ob2o29b2ob2o22b5o12bo19b3ob3o25b3ob3o31b4obo24b6obo26b2obo27bo$22bo
68b2o15bo153bo28bo114b2o45b2o$7bo15bo33b3o29bo8b3o5b2o31b3o30b3o27b3o
29b3o26b2o7b3o17b2o5b3o34b3o32b3o31b2o5b5o27b5o5b2o24b5o29b5o22b5o32b
5o27b5o33b5o27b5o25b5o26b5o$5bobo13b3o32bobobo26bobo7bobobo5b2o21b2o6b
obobo28bobobo25bobobo27bobobo24b2o7bobobo15b2o5bobobo32bobobo22b3o5bob
obo5b3o19b2o7bo5bo23bobo5bo7b2o18bobo5bobo23bobo5bobo16bobo5bobo26bobo
5bobo21bobo5bobo27bobo5bobo21bobo5bobo19bobo5bobo20bobo5bobo$2o4b2o48b
obobo27b2o7bobobo10bo16bo2bo5bobobo2bo22bo2bobobo2bo19bo2bobobo2bo21bo
2bobobo2bo27bo2bobobo2bo8bo10bobobo2bo4bo21bo2bobobo24bo5bobobo5bo20bo
bo8b5o24b2ob5o8bobo17b2ob5ob2o23b2ob5ob2o16b2ob5ob2o26b2ob5ob2o21b2ob
5ob2o27b2ob5ob2o21b2ob5ob2o19b2ob5ob2o20b2ob5ob2o$b2o50b2obobobob2o30b
2obobobob2o3bo2bo18b2o3b2obobobobobo20bobobobobobobo17bobobobobobobo
19bobobobobobobo25bobobobobobobo8bo2bo3b2obobobobobo2b2o20bobobobobobo
21bo4bobobobobo4bo21bo6bobobobobo25bobobobo6bo22bobobo29bobobo22bobobo
32bobobo27bobobo33bobobo27bobobo25bobobo26bobobo$o52b2obo3bob2o30b2obo
3bob2o2b2o2b3o12bo8b2obo3bob2o20bo2bobo3bob2o17bo2bobo3bob2o19bo2bobo
3bob2o25bo2bobo3bob2o7b3o2b2o2b2obo3bob2o3bobo20b2obo3bob3o22b3obo3bob
3o29b3obo3bob3o23bo3bob3o27bo3bo29bo3bo22bo3bo32bo3bo27bo3bo33bo3bo27b
o3bo25bo3bo26bo3bo$18bo38b3o38b3o6bobo14bobo12b3o25b2o3b3o22b2o3b3o24b
2o3b3o30b2o3b3o15bobo6b3o22b3o9b3o5bo20bo5b3o5bo27bo5b3o5bo23b3o5bo27b
3o31b3o24b3o34b3o29b3o35b3o29b3o27b3o28b3o$18b2o105b2o2b2o195bo16b2o
20b2o11b2o27b2o11b2o30b2o$5b2o10bobo35b3o38b5o27bobo6b5o28b7o23b3ob3o
25b3ob3o19bo4bobo4b4obo23b2obo22bo10b2obo31b2obo27b2o9b2obo28b2obo8b2o
22b2obo30b2obo23b2obo33b2obo28b2obo34b2obo28b2obo26b2obo27b2obo$4bobo
47bo3bo7bo28bo5bo28bo5bo2bo2bo7bo18bo2bo4bo21bo2bobo2bo23bo2bobo2bo18b
2o4b2o3bo2bob2o23bob2o3b3o27bob2o31bob2o26bobo9bob2o28bob2o8bobo21bob
2o30bob2o23bob2o33bob2o28bob2o34bob2o28bob2o26bob2o27bob2o$6bo24b3o20b
2ob2o7bobo26b2o2bobo34b2o3b2o7bobo16b2o4bobo21b2o5b2o23b2o2bo2b2o17bob
o4bo4b2o35bo21b2o73bo53bo$31bo34b2o31b2o49b2o23b2o130bo19bobo2b2o73b2o
43b2o$32bo209b3o18b2o64bob2o74bobo41bobo$63b3o81b3o22b3o26bo35b2o3bo
21b2o6b2o30b3o26bo63b2o8bo45bo8b2o$13bo49bo33b2o48bo26bo26b2o29b2o3bob
o3bo19bo4bo2b2o30bo2bo89bobo63bobo$13b2o49bo28b2o2bobo48bo24bo26bobo
28bobo3bo30b2o3bo32bo91bo63bo$12bobo77bobo2bo135bo33bobo36bo17b2o$94bo
208bobo17bobo$22bo179b3o120bo$21b2o35b2o82b2o58bo$21bobo33bobo81bobo
59bo$59bo83bo55b3o$201bo$200bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1703
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby gmc_nxtman » November 17th, 2015, 12:23 am

Synthesis of a little unix-based p6:

x = 45, y = 42, rule = B3/S23
24bo$22bobo$23b2o3$2bo29bobo$obo29b2o$b2o30bo3$26bo$27bo$25b3o2$24b3o$
24bo$25bo2$19b3o$21bo$20bo16b2o$37bobo$37bo3$33bo$32b2o$32bobo2$16bo$
16b2o$15bobo2$35b2o$8b3o23b2o$10bo25bo$4b2o3bo$3bobo37bo$5bo36b2o$16b
2o24bobo$17b2o$16bo!


This is based on a small six-glider block to unix component:

x = 23, y = 15, rule = B3/S23
2bo$obo10b2o$b2o10b2o4$13b2o$8b3ob2o$10bo3bo$4b2o3bo$3bobo15bo$5bo14b
2o$16b2o2bobo$17b2o$16bo!


Here is a version with double tables instead of a hat:

x = 43, y = 40, rule = B3/S23
22bobo$23b2o$23bo2$31bo$obo27bo$b2o27b3o$bo2$24bobo$20bo3b2o$21b2o2bo$
20b2o4$17b2o$18b2o$17bo6b3o9bo$24bo10b2o$25bo9bobo4$30b3o$30bo$31bo2$
15b3o$17bo$16bo$33b2o$8b2o23bobo$9b2o22bo$4bo3bo$4b2o$3bobo34b3o$16b2o
22bo$15bobo23bo$17bo!


Also, this makes for two 12-glider syntheses of double unices:

x = 73, y = 30, rule = B3/S23
57bo$19bo35bobo$19bobo34b2o$19b2o29bo$26bo24b2o5bo$18bo5b2o24b2o6bobo$
16bobo6b2o16bo14b2o$17b2o25bo17bo$14bo27b3o16bo$2bo12bo45b3o$obo10b3o
49b3o$b2o6b3o53bo$11bo54bo$10bo2$63bo$13bo48b2o$13b2o47bobo$12bobo3$
19b2o43bo$8b3o7b2o30b2o11b2o$10bo9bo28bobo11bobo$4b2o3bo41bo$3bobo21bo
17b3o$5bo20b2o19bo23b2o$16b2o8bobo17bo11bo11b2o$17b2o39b2o12bo$16bo40b
obo!
User avatar
gmc_nxtman
 
Posts: 1107
Joined: May 26th, 2015, 7:20 pm

Re: Synthesising Oscillators

Postby BobShemyakin » November 21st, 2015, 7:24 am

gmc_nxtman wrote:
Also, this makes for two 12-glider syntheses of double unices:

x = 73, y = 30, rule = B3/S23
57bo$19bo35bobo$19bobo34b2o$19b2o29bo$26bo24b2o5bo$18bo5b2o24b2o6bobo$
16bobo6b2o16bo14b2o$17b2o25bo17bo$14bo27b3o16bo$2bo12bo45b3o$obo10b3o
49b3o$b2o6b3o53bo$11bo54bo$10bo2$63bo$13bo48b2o$13b2o47bobo$12bobo3$
19b2o43bo$8b3o7b2o30b2o11b2o$10bo9bo28bobo11bobo$4b2o3bo41bo$3bobo21bo
17b3o$5bo20b2o19bo23b2o$16b2o8bobo17bo11bo11b2o$17b2o39b2o12bo$16bo40b
obo!

You can continue left synthesis:
x = 226, y = 43, rule = B3/S23
20bo$19bo$19b3o2$17bo7bobo$18bo6b2o$16b3o7bo$48b4o26b4o25b2o28b2o29b4o
36b4o$bo12bo32bo4bo24bo4bo24b2o2b2o24b2o2b2o24bo4bo34bo4bo$2bo9bobo31b
obo3bo23bobo3bo22b2obo2b2o22b2obo2b2o23bobo3bo33bobo3bo$3o10b2o30bobo
3bo10bo12bobo3bo23b3o27b3o27bobo3bo33bobo3bo$9b2o34bo14bobo12bo89bo39b
o$8bobo34bo15b2o12bo89bo39bo$10bo34bo2bo26bo2bo27b2o28b2o27bo2bo36bo2b
o$46b2o28b2o27bo2bo26bo2bo27b2o38b2o$59b3o46bo29bo$61bo46bo29bo$12b2o
32b3o11bo5bo9b3o18b2o3bo3bobo18b2o3bo3bobo19b4o4b3o29b4o4b3o$13b2o26b
2o2bob2o18bo3b2o2bob2o18b2o2bo3bobo19b2o2bo3bobo19bo4bo2bob2o28bo4bo2b
ob2o$12bo28b2o2b2o18b3o3b2o2b2o18b2obo2bo4bo18b2obo2bo4bo19bobo3bo2b2o
29bobo3bo2b2o$45b2o28b2o18b3o4b4o19b3o4b4o19bobo3bo3b2o15bo12bobo3bo3b
2o$20bo134bo24bobo12bo$8b2o9b2o44bo47bobo39bo25b2o12bo$7bobo9bobo43b2o
29b2o16b2o10b2o27bo2bo36bo2bo22bobobo$9bo54bobo29b2o16bo11b2o28b2o38b
2o$3b3o173b3o$5bo21b2o152bo$4bo11bo9b2o34b2o92b3o21bo5bo9b3o$16b2o10bo
34b2o61b2o23b2o2bob2o28bo3b2o2bob2o$15bobo44bo58b2o3bobo22b2o2b2o28b3o
3b2o2b2o$72b2o48b2o2bo28b2o38b2o$71b2o44bo3bo$73bo43b2o66bo$116bobo14b
3o49b2o$129b2o2bo50bobo$128bobo3bo$130bo$182b2o$183b2o$182bo$192b2o$
191b2o$193bo!

and get the unix-week.

BobShemyakin
BobShemyakin
 
Posts: 207
Joined: June 15th, 2014, 6:24 am

Re: Synthesising Oscillators

Postby mniemiec » November 21st, 2015, 6:22 pm

gmc_nxtman wrote:Synthesis of a little unix-based p6: ...

This can be done with 13 gliders, saving one glider.

gmc_nxtman wrote:This is based on a small six-glider block to unix component: ...

This can be done with 5 gliders.

gmc_nxtman wrote:Also, this makes for two 12-glider syntheses of double unices: ...

These can be done with 8 gliders.

See the syntheses (and others) here: http://codercontest.com/mniemiec/p6.htm#p6-lg

BobShemyakin wrote:You can continue left synthesis: ...

There are several other multi-unix variants (including Unicycle, which is slightly trickier) on the above page.
mniemiec
 
Posts: 921
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Sokwe » November 21st, 2015, 6:23 pm

gmc_nxtman wrote:Synthesis of a little unix-based p6.... This is based on a small six-glider block to unix component.

This is a known mechanism, and it can often be improved by using a 3-glider synthesis of the long barge (see Mark Niemiec's site here).
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1255
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » December 3rd, 2015, 5:51 pm

Extrude one layer of blocks from another:
x = 1183, y = 49, rule = B3/S23
1036bobo$1036b2o$731bo305bo$732b2o$288b2o441b2o31bobo$287b3o257bobo
214b2o$133bo153b3o179bobo75b2o216bo$35bobo95bobo50bo100b2obo181bo69bo
5bo$35b2o96b2o50bo102b3o71bo109bo7bobo60b2o$36bo94bo53b3o101bo71bo107b
o2bo7b2o60b2o$34bo90bo3bobo29bobo27bo169b3o106b3o8bo55bo15bo$35bo90bo
3b2o29b2o19bobo6bobo344bo5bo6b2o429bo179bo$33b3o9bobo76b3o35bo20b2o6b
2o166bo112bo63b3o4bo8b2o427bo35bo3bo37bo56bobo36bo6bobo$45b2o85bo50bo
108bo65bo114bo2bobo64b3o38bo3bo392b3o32bobo2bobo36bo56b2o3bo30bobo6b2o
$46bo83b2o4bo26b2o126bo38bo27b3o61b3o46b3o3b2o103bobo3bobo366bobo56bob
o2b2o35b3o32bo23bo2b2o32b2o$36bobo92b2o3bobo23b2o23b2o102b3o31bo3bo89b
o2bo54bo105b2o3b2o367b2o25b3o30bo75bobo25b2o34bo$36b2o98b2o26bo23bo25b
2o36b2o30b2o40b2ob3o28bo32b2o25bo2bo129bo404bo25bo41bo34bobo29b2o62bob
o$9bo27bo121b2o26bo27bo4bobo30bo31bo39b2o32b2o26bobo3bobo22b3o131b2o
30b3o29bo210bo157bo35bo4bobo32b2o26bo25bo37b2o2b2o$9bobo56b2o30b2o25b
2o31bo25bo27bo5b2o30bo8bobo20bo74bobo26b2o3bo84b2o21b2o41b2o6bobo29bo
31bobo207bo132b2o59bo5b2o28bo5bo25bo25bobo35bobo$2ob2o4b2o15b2ob2o33b
2obobo26b2obobo21b2obobo26b2obo23b2obo24b2obo7bo7bo18b2obo9b2o17b2obo
30b2obo14b2o13b2obo26b2obo7bo20b2obo23b2obo4b2o23b2obo4bobo16b2obo2bo
36b2obo2bo2b2o22b2ob2ob2o5bo19b2ob2ob2o3b2o16b2ob2ob2o22b2ob2ob2o5bobo
16b2ob2ob2o31b2ob2ob2o37b2ob2ob2o26b2ob2ob2o4b3o23b2ob2ob2o21b2ob2ob2o
23b2ob2ob2o20b2ob2ob2o11bobo12b2ob2ob2o28b2ob2ob2o2b3o26b2ob2obobo18b
2ob2ob2o4b3o16b2ob2obobo29b2ob2obobo21b2ob2ob2o$2ob2o21b2ob2o33b2ob2o
27b2ob2o22b2ob2o5b2o20b2ob2o22b2ob2o23b2ob2o13bo19b2ob2o9bo17b2ob2o29b
2ob3o11b2o14b2ob3o24b2ob3o26b2ob3o3bo17b2ob3o2bo7bo16b2ob3o2bo18b2ob2o
bob2o33b2ob2obobobo22b2ob2obobo24b2ob2obobo20b2ob2obo23b2ob2obo6b2o17b
2ob2obo32b2ob2obo38b2ob2obo27b2ob2obo31b2ob2obo22b2ob2obo24b2ob2obo21b
2ob2obo12bo14b2ob2obo29b2ob2obo32b2ob2obobo18b2ob2obo24b2ob2obo31b2ob
2obo23b2ob2ob2o$9bo24b2o97bobo57bo34b3o23b2o4bo25b2o32bo12bo19bo29bob
2o28bobobo22bobo6bo23bobo24bobo8bo4b2o25bobo7b2o21bobo30bobo4b3o19bo2b
o26bo2bo4bo23bo38bo44bo2b2o29bo2b2o33bo28bo5bobo22bo27bo33bo8b2o25bo6b
3o29bob2o23bo30bo37bo4bobo$2ob2o3b2o16b2ob2o2bo2bo27b2ob2o27b2ob2o22b
2ob2o5bo21b2ob2o22b2ob2o6bobo14b2ob2o9b3o21b2ob2obo4b2o5bo13b2ob2obobo
5bobo17b2ob2obo26b2ob2obo2b2o19b2ob2obobo23b2ob2obob2o17b2ob2obob2o5b
3o15b2ob2obobobo16b2ob2obobobo5bo4b2o20b2ob2obob2o5b2o16b2ob2obob2o23b
2ob2obobobo2bo15b2ob2obobobo19b2ob2obobobo21b2ob2obob2o29b2ob2obob2o
35b2ob2obobo2bo22b2ob2obobobo27b2ob2obob2o8bo10b2ob2obob2o2b2o2b3o12b
2ob2obob2o18b2ob2obob2o7bo16b2ob2obob2obo3bobo18b2ob2obob2o3bo25b2ob2o
bo20b2ob2ob2o5b3o15b2ob2ob2o8bo21b2ob2ob2o3b2o17b2ob2ob2o$2ob2o3bobo
15b2ob2o2bo2bo27b2ob2o5bo21b2ob2o22b2ob2o27b2ob2o22b2ob2o6b2o15b2ob2o
9bo6b2o15b2ob2obo4bobo3b2o13b2ob2obobo5b2o18b2ob2obob2o23b2ob2obobobo
19b2ob2obobo23b2ob2obo20b2ob2obo26b2ob2obo2b2o16b2ob2obo2b2o5b3o4bo19b
2ob2obo10bo15b2ob2obo26b2ob2obo2b2o3bo14b2ob2obo2b2o19b2ob2obobobo2b2o
17b2ob2obobo30b2ob2obobobo34b2ob2obobob2o22b2ob2obobo29b2ob2obobo8bo
11b2ob2obob2o3bo2bo14b2ob2obobobo17b2ob2obobobo5b2o16b2ob2obobob2o3bo
20b2ob2obob2o4bo24b2ob2obo20b2ob2o8bo17b2ob2o11bobo19b2ob2o3bo3bo17b2o
b2ob2o$34b2o38bobo113b2o25b2o6bo5bobo20b2o9bobo18b2o7bo24b2obo29b2o28b
2o30bo26bo32bo26bo42bo32bo32bo28bo29bob2o2b2o24bobobo4bo29bobobo4b2o2b
2o30bobo31bobo3b3o29bobo8b3o15bo10bo19bo2bo24bo2bo6bobo21bobo33bo38b2o
25b2o6bo22b2o4b2o2b2o26b2o$2ob2o21b2ob2o33b2ob2o5b2o20b2ob2o22b2ob2o
27b2ob2o22b2ob2o3bobo17b2ob2o2b2o12bo16b2ob2o27b2ob2o29b2ob2o28b2ob2o
25b2ob2o27b2ob3o21b2ob3o10b3o4bo9b2ob3o21b2ob3o37b2ob3o27b2ob3o27b2ob
3o23b2ob3o24b2ob3o8bo17b2ob3o3b2o4bobo21b2ob3o3bo6b2obobo23b2ob3o2bo6b
2o17b2ob2obob2o2bo25b2ob2obob2o19b2ob2obo5b2o17b2ob2obo21b2ob2obo27b2o
b2obobo27b2ob2obo32b2ob2obo20b2ob2obo24b2ob2obo4b2o6b2o17b2ob2obo23b2o
b2ob2o$2ob2o21b2ob2o33b2obobo26b2obo23b2obo28b2obo23b2obo4bo19b2obo34b
2obo28b2obo13bo16b2obo29b2obo26b2obo28b2obo23b2obo12bo5b2o9b2obo23b2ob
o13b3o23b2obo29b2obo29b2obo25b2obo26b2obo28b2obo11b2o22b2obo11bo3bo25b
2obo4bobo4bobo16b2obo2bo6bo24b2obo2bo22b2ob2ob2o3b2o18b2ob2ob2o4bobo
13b2ob2ob2o2bo23b2ob2ob2o28b2ob2obobo30b2ob2obobo18b2ob2obobo22b2ob2ob
obo4bo5bobo16b2ob2obobo2bobo16b2ob2ob2o$68b2o31bo25bo31bo26bo27bo37bo
31bo12bobo18bo32bo29bo4b2o65bo4bobo52bo132bobo140b2o4bo23b2o36b2o6b3o
26bo29b2o24b3o64b2o37b2o25b2o29b2o10bo25b2o2b2o$37bo62b2o26bo31bo26bo
27bo7b3o27bo31bo11b2o20bo32bo29bo2b2o127bo131b2o60b3o116b3o35bo59bo27b
o33b2o168bo2b2o$36b2o39b2o26bo23bo31bo26bo25b2o7bo28b2o30b2o32b2o9b2o
20b2o11b2o15b2o4bo253b3o3bo60bo117bo2bo36bo85b2o29bo2b2o172bobo$36bobo
33b2o3bobo23b2o23b2o30b2o25b2o35bo71bo32bobo31b2o278bo65bo78bo40bo96b
3o54b2o3bo171bo$71b2o4bo26b2o189b2o32bo35bo19b3o254bo4b2o133b3o3b2o35b
o3bo96bo32bo22bobo$73bo109bo111bobo87bo2bo257bobo135bo2bobo39bo26b3o
68bo30b2o$33b3o29b3o35bo79b2o6b2o28bo163bo262bo134bo42bobo20b3o4bo89b
2o10bobo$35bo31bo3b2o29b2o78bobo6bobo26b3o8bo153bo3bo461bo5bo87bobo$
34bo31bo3bobo29bobo86bo28bob2o6b2o153bo395b3o8bo57bo96bo$36bo35bo112b
3o33b3o6bobo153bobo391bo2bo7b2o62b2o98b3o$35b2o37b2o109bo35b2o560bo7bo
bo62b2o97bo$35bobo36bobo109bo596bo71bo5bo94bo$74bo705bobo77b2o$860bobo
3$760b2o$760bobo$760bo$725b2o$726b2o$725bo!

I haven't yet developed the general case of putting blocks onto a surface, but it would likely be based off of this moving wick:
x = 2, y = 10, rule = B3/S23:T0,10
o$2o$o$2o$o$2o$o$2o$o$2o!

The only thing that I've seen generate anything close to it (so far) is this soup:
x = 17, y = 10, rule = B3/S23:T0,10
o2b2obo2b2obob2o$2o7b2ob5o$9bo2bob3o$obo2bobobo3bo$o3bo2bo2b7o$3ob3o3b
2o2b2o$3b4o3bo2bo2bo$bob2obob2o2b2o$o4b2o3b3o2bo$5bobobob2obobo!

(I find that T0,10 offers a good balance between everything going linear and requiring a large number of tries for it to go linear just once.)
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1703
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby mniemiec » December 3rd, 2015, 11:41 pm

Extrementhusiast wrote:Extrude one layer of blocks from another: ...[/code]

Excellent! I have been thinking about ways of growing a 3xN array of blocks for some time, but with no success (or even anything close). The 3x3 case allows synthesis of the the first pseudo-still-life ever found that can be broken into more than 2 distinct partitions, but not 2 (i.e. replace the 4 corner blocks with rotationally-symmetrical tables).
mniemiec
 
Posts: 921
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Bullet51 » December 4th, 2015, 9:29 am

Not sure if the double candelabra can be synthesized:
x = 19, y = 9, rule = B3/S23
8bobo$9bo2$3b2o2b2ob2o2b2o$3bo3b2ob2o3bo$2obo11bob2o$2obob4ob4obob2o$
3bobo2bobo2bobo$3b2o4bo4b2o!
Still drifting.
Bullet51
 
Posts: 476
Joined: July 21st, 2014, 4:35 am

Re: Synthesising Oscillators

Postby Extrementhusiast » December 4th, 2015, 4:52 pm

Bullet51 wrote:Not sure if the double candelabra can be synthesized:
x = 19, y = 9, rule = B3/S23
8bobo$9bo2$3b2o2b2ob2o2b2o$3bo3b2ob2o3bo$2obo11bob2o$2obob4ob4obob2o$
3bobo2bobo2bobo$3b2o4bo4b2o!

It definitely can be:
x = 181, y = 21, rule = B3/S23
48bobo10bo10bobo$49b2o11bo9b2o$49bo10b3o10bo$64bo$64bobo$64b2o$45bo31b
o60bobo$46b2o27b2o62b2o$o7bo10bo7bo17b2o10bo7bo10b2o61bo$3o3b3o10b3o3b
3o29b3o3b3o$3bobo16bobo18bo16bobo16bo8b2ob2o2b2ob2o2b2ob2o26b2o2b2ob2o
2b2o19b2o9b2o$2b2ob2o14b2ob2o18bo9b2o3b2ob2o3b2o9bo9b2obo3b2ob2o3bob2o
26bo3b2ob2o3bo19bo11bo$33bobobo4b3o10bo11bo10b3o10bo11bo10bobobo11b2ob
o11bob2o13b2obo11bob2o$bo5bo13b2ob2o29bob4ob4obo23bob4ob4obo26bo2bob4o
b4obo2bo13bo2bob4ob4obo2bo$b2o3b2o12bobobobo27b2obo2bobo2bob2o21b2obo
2bobo2bob2o27b2obo2bobo2bob2o17b2obo2bobo2bob2o$obo3bobo12bo3bo32b2o3b
2o29b2o3b2o35b2o3b2o25b2o3b2o3$44b2o31b2o$45b2o29b2o$44bo33bo!

All missing steps are standard boilerplate, and can probably be found by looking up small portions (like block on table).

One can also combine two steps, although it's significantly more complex:
x = 70, y = 22, rule = B3/S23
12bobo$12b2o$13bo$9bo17bo$7bobo17bobo3bo2bo$8b2o8bo8b2o3bo$17bobo12bo
3bo$17bobo12b4o$18bo$13bo9bo$12bobo7bobo$3bobo7b2o7b2o$4b2o24b2o$4bo
11b2ob2o8bo2bo18b2ob2o9b2ob2o$11b2o3b2ob2o3b2o3bo2bo18b2obo11bob2o$2bo
9bo11bo5b2o5b3o14bo11bo$obo9bob4ob4obo12bo16bob4ob4obo$b2o8b2obo2bobo
2bob2o12bo14b2obo2bobo2bob2o$15b2o3b2o35b2o3b2o$3bo30b2o$3b2o29bobo$2b
obo29bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1703
Joined: June 16th, 2009, 11:24 pm
Location: USA

PreviousNext

Return to Patterns

Who is online

Users browsing this forum: No registered users and 6 guests