ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

c/7 orthogonal spaceships

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

Re: c/7 orthogonal spaceships

Postby Sokwe » February 22nd, 2013, 5:05 am

Somewhat off topic: following up on Dave Greene's question on wicks, I ran some searches for wicks that are always "in the same phase", that is, each generation looks like the previous generation, but shifted. The only things I found that might be useful are these 2 period-7 wicks that also "travel" at 2c/5 (probably already known):
x = 46, y = 112, rule = B3/S23
ob3o3bo21bo4bo3bo4bo$2bobobo28b2ob2o$bo2bobo22b2o3bobobobo3b2o$4bo28b
2obobob2o$b2obob2o21bob2obobobobob2obo$b2o3b2o22b2o2bobobobo2b2o$ob2o
4bo23bo9bo$o3b3obo21bo4bo3bo4bo$2bobobo28b2ob2o$2bobo2bo21b2o3bobobobo
3b2o$4bo28b2obobob2o$b2obob2o21bob2obobobobob2obo$b2o3b2o23b2obobobobo
b2o$o4b2obo21bo13bo$ob3o3bo21bo4bo3bo4bo$2bobobo28b2ob2o$bo2bobo22b2o
3bobobobo3b2o$4bo28b2obobob2o$b2obob2o21bob2obobobobob2obo$b2o3b2o22b
2o2bobobobo2b2o$ob2o4bo23bo9bo$o3b3obo21bo4bo3bo4bo$2bobobo28b2ob2o$2b
obo2bo21b2o3bobobobo3b2o$4bo28b2obobob2o$b2obob2o21bob2obobobobob2obo$
b2o3b2o23b2obobobobob2o$o4b2obo21bo13bo$ob3o3bo21bo4bo3bo4bo$2bobobo
28b2ob2o$bo2bobo22b2o3bobobobo3b2o$4bo28b2obobob2o$b2obob2o21bob2obobo
bobob2obo$b2o3b2o22b2o2bobobobo2b2o$ob2o4bo23bo9bo$o3b3obo21bo4bo3bo4b
o$2bobobo28b2ob2o$2bobo2bo21b2o3bobobobo3b2o$4bo28b2obobob2o$b2obob2o
21bob2obobobobob2obo$b2o3b2o23b2obobobobob2o$o4b2obo21bo13bo$ob3o3bo
21bo4bo3bo4bo$2bobobo28b2ob2o$bo2bobo22b2o3bobobobo3b2o$4bo28b2obobob
2o$b2obob2o21bob2obobobobob2obo$b2o3b2o22b2o2bobobobo2b2o$ob2o4bo23bo
9bo$o3b3obo21bo4bo3bo4bo$2bobobo28b2ob2o$2bobo2bo21b2o3bobobobo3b2o$4b
o28b2obobob2o$b2obob2o21bob2obobobobob2obo$b2o3b2o23b2obobobobob2o$o4b
2obo21bo13bo$ob3o3bo21bo4bo3bo4bo$2bobobo28b2ob2o$bo2bobo22b2o3bobobob
o3b2o$4bo28b2obobob2o$b2obob2o21bob2obobobobob2obo$b2o3b2o22b2o2bobobo
bo2b2o$ob2o4bo23bo9bo$o3b3obo21bo4bo3bo4bo$2bobobo28b2ob2o$2bobo2bo21b
2o3bobobobo3b2o$4bo28b2obobob2o$b2obob2o21bob2obobobobob2obo$b2o3b2o
23b2obobobobob2o$o4b2obo21bo13bo$ob3o3bo21bo4bo3bo4bo$2bobobo28b2ob2o$
bo2bobo22b2o3bobobobo3b2o$4bo28b2obobob2o$b2obob2o21bob2obobobobob2obo
$b2o3b2o22b2o2bobobobo2b2o$ob2o4bo23bo9bo$o3b3obo21bo4bo3bo4bo$2bobobo
28b2ob2o$2bobo2bo21b2o3bobobobo3b2o$4bo28b2obobob2o$b2obob2o21bob2obob
obobob2obo$b2o3b2o23b2obobobobob2o$o4b2obo21bo13bo$ob3o3bo21bo4bo3bo4b
o$2bobobo28b2ob2o$bo2bobo22b2o3bobobobo3b2o$4bo28b2obobob2o$b2obob2o
21bob2obobobobob2obo$b2o3b2o22b2o2bobobobo2b2o$ob2o4bo23bo9bo$o3b3obo
21bo4bo3bo4bo$2bobobo28b2ob2o$2bobo2bo21b2o3bobobobo3b2o$4bo28b2obobob
2o$b2obob2o21bob2obobobobob2obo$b2o3b2o23b2obobobobob2o$o4b2obo21bo13b
o$ob3o3bo21bo4bo3bo4bo$2bobobo28b2ob2o$bo2bobo22b2o3bobobobo3b2o$4bo
28b2obobob2o$b2obob2o21bob2obobobobob2obo$b2o3b2o22b2o2bobobobo2b2o$ob
2o4bo23bo9bo$o3b3obo21bo4bo3bo4bo$2bobobo28b2ob2o$2bobo2bo21b2o3bobobo
bo3b2o$4bo28b2obobob2o$b2obob2o21bob2obobobobob2obo$b2o3b2o23b2obobobo
bob2o$o4b2obo21bo13bo!

It might be a little too hopeful to think that these will lead to a 2c/5 wickstretcher anytime soon (we only just completed that diagonal c/4 wickstretcher for a period-6 wick). The middle wick can be separated by stripes, but this probably would not help in making a wickstretcher:
x = 25, y = 112, rule = B3/S23
bo4bo2bobobobo2bo4bo$6b2obobobobob2o$2o3bobobobobobobobo3b2o$4b2obobob
obobobob2o$ob2obobobobobobobobob2obo$b2o2bobobobobobobobo2b2o$3bo5bobo
bobo5bo$bo4bo2bobobobo2bo4bo$6b2obobobobob2o$2o3bobobobobobobobo3b2o$
4b2obobobobobobob2o$ob2obobobobobobobobob2obo$2b2obobobobobobobobob2o$
bo7bobobobo7bo$bo4bo2bobobobo2bo4bo$6b2obobobobob2o$2o3bobobobobobobob
o3b2o$4b2obobobobobobob2o$ob2obobobobobobobobob2obo$b2o2bobobobobobobo
bo2b2o$3bo5bobobobo5bo$bo4bo2bobobobo2bo4bo$6b2obobobobob2o$2o3bobobob
obobobobo3b2o$4b2obobobobobobob2o$ob2obobobobobobobobob2obo$2b2obobobo
bobobobobob2o$bo7bobobobo7bo$bo4bo2bobobobo2bo4bo$6b2obobobobob2o$2o3b
obobobobobobobo3b2o$4b2obobobobobobob2o$ob2obobobobobobobobob2obo$b2o
2bobobobobobobobo2b2o$3bo5bobobobo5bo$bo4bo2bobobobo2bo4bo$6b2obobobob
ob2o$2o3bobobobobobobobo3b2o$4b2obobobobobobob2o$ob2obobobobobobobobob
2obo$2b2obobobobobobobobob2o$bo7bobobobo7bo$bo4bo2bobobobo2bo4bo$6b2ob
obobobob2o$2o3bobobobobobobobo3b2o$4b2obobobobobobob2o$ob2obobobobobob
obobob2obo$b2o2bobobobobobobobo2b2o$3bo5bobobobo5bo$bo4bo2bobobobo2bo
4bo$6b2obobobobob2o$2o3bobobobobobobobo3b2o$4b2obobobobobobob2o$ob2obo
bobobobobobobob2obo$2b2obobobobobobobobob2o$bo7bobobobo7bo$bo4bo2bobob
obo2bo4bo$6b2obobobobob2o$2o3bobobobobobobobo3b2o$4b2obobobobobobob2o$
ob2obobobobobobobobob2obo$b2o2bobobobobobobobo2b2o$3bo5bobobobo5bo$bo
4bo2bobobobo2bo4bo$6b2obobobobob2o$2o3bobobobobobobobo3b2o$4b2obobobob
obobob2o$ob2obobobobobobobobob2obo$2b2obobobobobobobobob2o$bo7bobobobo
7bo$bo4bo2bobobobo2bo4bo$6b2obobobobob2o$2o3bobobobobobobobo3b2o$4b2ob
obobobobobob2o$ob2obobobobobobobobob2obo$b2o2bobobobobobobobo2b2o$3bo
5bobobobo5bo$bo4bo2bobobobo2bo4bo$6b2obobobobob2o$2o3bobobobobobobobo
3b2o$4b2obobobobobobob2o$ob2obobobobobobobobob2obo$2b2obobobobobobobob
ob2o$bo7bobobobo7bo$bo4bo2bobobobo2bo4bo$6b2obobobobob2o$2o3bobobobobo
bobobo3b2o$4b2obobobobobobob2o$ob2obobobobobobobobob2obo$b2o2bobobobob
obobobo2b2o$3bo5bobobobo5bo$bo4bo2bobobobo2bo4bo$6b2obobobobob2o$2o3bo
bobobobobobobo3b2o$4b2obobobobobobob2o$ob2obobobobobobobobob2obo$2b2ob
obobobobobobobob2o$bo7bobobobo7bo$bo4bo2bobobobo2bo4bo$6b2obobobobob2o
$2o3bobobobobobobobo3b2o$4b2obobobobobobob2o$ob2obobobobobobobobob2obo
$b2o2bobobobobobobobo2b2o$3bo5bobobobo5bo$bo4bo2bobobobo2bo4bo$6b2obob
obobob2o$2o3bobobobobobobobo3b2o$4b2obobobobobobob2o$ob2obobobobobobob
obob2obo$2b2obobobobobobobobob2o$bo7bobobobo7bo!

Here are a few other wicks that don't look very useful (organized by period):
x = 261, y = 193, rule = B3/S23
12bob2o55b2obo45b2o4b2o54b2o5b2obo53b2o4bob2o$12b2obo55bob2o46bo5bo55b
o5bob2o54bo4b2obo$16b2o51b2o4b2o43bo5bo55bo10b2o51bo3b2o$17bo51bo5bo
44b2o4b2o54b2o9bo52b2o3bo$16bo53bo5bo117bo55bo$16b2o51b2o4b2o43b2o4b2o
54b2o9b2o51b2o2b2o$14b2o55b2obo46bo5bo55bo5b2obo54bo4bob2o$15bo55bob2o
45bo5bo55bo6bob2o53bo5b2obo$14bo60b2o43b2o4b2o54b2o3b2o57b2o8b2o$14b2o
59bo111bo69bo$12b2o62bo43b2o4b2o54b2o4bo57b2o8bo$13bo61b2o44bo5bo55bo
3b2o58bo8b2o$12bo58b2obo45bo5bo55bo6b2obo53bo5bob2o$12b2o57bob2o45b2o
4b2o54b2o5bob2o53b2o4b2obo18$o2b2o19b2o41b2obobobob2o33b2ob2o15b2o2b2o
44bo6bobo3bo45b3ob2o2bobo5b3o$b2obo15b2ob4ob2o40bobobo35b2o3b2o13b2o4b
2o45b2obo4bobo48b4obo2bo7b2o$3b2o15bo2b4o2bo40bobobo35b2obob2o13b2ob2o
b2o49bo56b2obo2bobo4b2o$bo19b3o2b3o43bo38bo3bo15bo4bo45b2o6bobo48bo2b
2o3b2ob2ob3o$o2b2o14bo2b2o2b2o2bo38b2obob2o34bo5bo13bo6bo43b2ob4ob5o
47bo2bo5bob2o5bo$b2obo15b2obo2bob2o39b2obob2o35bo3bo15bo4bo47b4o4b2o
47bo5b2obob2o4bo$3bo19bo2bo41bobo5bo34b5o15b6o43bo3bobo6bo49b2obo3bobo
5bo$b2o2bo14bob2o2b2obo38bo4b2obo35b3o17b4o45bobo4bob2o50b3o5b2o2bo2bo
$bob2o14bo2bo4bo2bo39b3obo35b3ob3o13b3o2b3o49bo53b2o7bobo2b2ob3o$b2o
17b2o6b2o37b2obobobob2o35bo19b2o47bobo6b2o49b2o4bobo2bob4o$4bo17b2o2b
2o42bobobo106b5ob4ob2o49b3ob2obo2bob2o$b2o2bo14b3o4b3o40bobobo36b2ob2o
15b2o2b2o44b2o4b4o50bo5b2ob2o3b2o2bo$bob2o15bo8bo42bo37b2o3b2o13b2o4b
2o43bo6bobo3bo47bo4b2obo5bo2bo$2bo17b2o6b2o39b2obob2o34b2obob2o13b2ob
2ob2o45b2obo4bobo48bo5bobob2o5bo$o2b2o19b2o43b2obob2o35bo3bo15bo4bo50b
o55bo2bo2b2o3bob2o$b2obo15b2ob4ob2o38bo5bobo33bo5bo13bo6bo44b2o6bobo
47b3ob2o2bobo5b3o$3b2o15bo2b4o2bo38bob2o4bo34bo3bo15bo4bo44b2ob4ob5o
48b4obo2bo7b2o$bo19b3o2b3o41bob3o36b5o15b6o47b4o4b2o50b2obo2bobo4b2o$o
2b2o14bo2b2o2b2o2bo36b2obobobob2o34b3o17b4o44bo3bobo6bo47bo2b2o3b2ob2o
b3o$b2obo15b2obo2bob2o40bobobo35b3ob3o13b3o2b3o43bobo4bob2o49bo2bo5bob
2o5bo$3bo19bo2bo43bobobo38bo19b2o52bo53bo5b2obob2o4bo$b2o2bo14bob2o2b
2obo42bo109bobo6b2o50b2obo3bobo5bo$bob2o14bo2bo4bo2bo38b2obob2o35b2ob
2o15b2o2b2o44b5ob4ob2o48b3o5b2o2bo2bo$b2o17b2o6b2o39b2obob2o34b2o3b2o
13b2o4b2o43b2o4b4o50b2o7bobo2b2ob3o$4bo17b2o2b2o40bobo5bo33b2obob2o13b
2ob2ob2o43bo6bobo3bo47b2o4bobo2bob4o$b2o2bo14b3o4b3o38bo4b2obo34bo3bo
15bo4bo46b2obo4bobo49b3ob2obo2bob2o$bob2o15bo8bo40b3obo35bo5bo13bo6bo
49bo53bo5b2ob2o3b2o2bo$2bo17b2o6b2o37b2obobobob2o33bo3bo15bo4bo45b2o6b
obo49bo4b2obo5bo2bo$o2b2o19b2o44bobobo36b5o15b6o44b2ob4ob5o48bo5bobob
2o5bo$b2obo15b2ob4ob2o40bobobo37b3o17b4o48b4o4b2o49bo2bo2b2o3bob2o$3b
2o15bo2b4o2bo42bo37b3ob3o13b3o2b3o42bo3bobo6bo46b3ob2o2bobo5b3o$bo19b
3o2b3o40b2obob2o37bo19b2o46bobo4bob2o50b4obo2bo7b2o$o2b2o14bo2b2o2b2o
2bo38b2obob2o111bo56b2obo2bobo4b2o$b2obo15b2obo2bob2o38bo5bobo34b2ob2o
15b2o2b2o45bobo6b2o48bo2b2o3b2ob2ob3o$3bo19bo2bo41bob2o4bo33b2o3b2o13b
2o4b2o43b5ob4ob2o47bo2bo5bob2o5bo$b2o2bo14bob2o2b2obo40bob3o35b2obob2o
13b2ob2ob2o43b2o4b4o50bo5b2obob2o4bo$bob2o14bo2bo4bo2bo36b2obobobob2o
33bo3bo15bo4bo44bo6bobo3bo48b2obo3bobo5bo$b2o17b2o6b2o40bobobo35bo5bo
13bo6bo45b2obo4bobo48b3o5b2o2bo2bo$4bo17b2o2b2o42bobobo36bo3bo15bo4bo
50bo53b2o7bobo2b2ob3o$b2o2bo14b3o4b3o42bo38b5o15b6o45b2o6bobo49b2o4bob
o2bob4o$bob2o15bo8bo39b2obob2o36b3o17b4o45b2ob4ob5o49b3ob2obo2bob2o$2b
o17b2o6b2o39b2obob2o34b3ob3o13b3o2b3o46b4o4b2o47bo5b2ob2o3b2o2bo$o2b2o
19b2o42bobo5bo36bo19b2o45bo3bobo6bo48bo4b2obo5bo2bo$b2obo15b2ob4ob2o
38bo4b2obo104bobo4bob2o50bo5bobob2o5bo$3b2o15bo2b4o2bo40b3obo36b2ob2o
15b2o2b2o50bo55bo2bo2b2o3bob2o$bo19b3o2b3o38b2obobobob2o32b2o3b2o13b2o
4b2o44bobo6b2o47b3ob2o2bobo5b3o$o2b2o14bo2b2o2b2o2bo39bobobo35b2obob2o
13b2ob2ob2o43b5ob4ob2o48b4obo2bo7b2o$b2obo15b2obo2bob2o40bobobo36bo3bo
15bo4bo44b2o4b4o53b2obo2bobo4b2o$3bo19bo2bo45bo37bo5bo13bo6bo43bo6bobo
3bo46bo2b2o3b2ob2ob3o$b2o2bo14bob2o2b2obo39b2obob2o35bo3bo15bo4bo46b2o
bo4bobo47bo2bo5bob2o5bo$bob2o14bo2bo4bo2bo38b2obob2o35b5o15b6o50bo53bo
5b2obob2o4bo$b2o17b2o6b2o38bo5bobo35b3o17b4o46b2o6bobo50b2obo3bobo5bo$
4bo17b2o2b2o40bob2o4bo33b3ob3o13b3o2b3o43b2ob4ob5o48b3o5b2o2bo2bo$b2o
2bo14b3o4b3o40bob3o38bo19b2o49b4o4b2o47b2o7bobo2b2ob3o$bob2o15bo8bo37b
2obobobob2o102bo3bobo6bo48b2o4bobo2bob4o$2bo17b2o6b2o40bobobo36b2ob2o
15b2o2b2o44bobo4bob2o51b3ob2obo2bob2o$o2b2o19b2o44bobobo35b2o3b2o13b2o
4b2o49bo53bo5b2ob2o3b2o2bo$b2obo15b2ob4ob2o42bo37b2obob2o13b2ob2ob2o
44bobo6b2o49bo4b2obo5bo2bo$3b2o15bo2b4o2bo39b2obob2o35bo3bo15bo4bo44b
5ob4ob2o48bo5bobob2o5bo$bo19b3o2b3o40b2obob2o34bo5bo13bo6bo43b2o4b4o
52bo2bo2b2o3bob2o$o2b2o14bo2b2o2b2o2bo37bobo5bo34bo3bo15bo4bo44bo6bobo
3bo45b3ob2o2bobo5b3o$b2obo15b2obo2bob2o38bo4b2obo34b5o15b6o46b2obo4bob
o48b4obo2bo7b2o$3bo19bo2bo43b3obo37b3o17b4o51bo56b2obo2bobo4b2o$b2o2bo
14bob2o2b2obo37b2obobobob2o32b3ob3o13b3o2b3o44b2o6bobo48bo2b2o3b2ob2ob
3o$bob2o14bo2bo4bo2bo39bobobo38bo19b2o46b2ob4ob5o47bo2bo5bob2o5bo$b2o
17b2o6b2o40bobobo109b4o4b2o47bo5b2obob2o4bo$4bo17b2o2b2o44bo38b2ob2o
15b2o2b2o43bo3bobo6bo49b2obo3bobo5bo$b2o2bo14b3o4b3o39b2obob2o34b2o3b
2o13b2o4b2o43bobo4bob2o50b3o5b2o2bo2bo$bob2o15bo8bo39b2obob2o34b2obob
2o13b2ob2ob2o49bo53b2o7bobo2b2ob3o$2bo17b2o6b2o38bo5bobo34bo3bo15bo4bo
45bobo6b2o49b2o4bobo2bob4o$o2b2o19b2o42bob2o4bo33bo5bo13bo6bo43b5ob4ob
2o49b3ob2obo2bob2o$b2obo15b2ob4ob2o40bob3o36bo3bo15bo4bo44b2o4b4o50bo
5b2ob2o3b2o2bo$3b2o15bo2b4o2bo37b2obobobob2o33b5o15b6o44bo6bobo3bo47bo
4b2obo5bo2bo$bo19b3o2b3o41bobobo37b3o17b4o47b2obo4bobo48bo5bobob2o5bo$
o2b2o14bo2b2o2b2o2bo39bobobo35b3ob3o13b3o2b3o49bo55bo2bo2b2o3bob2o$b2o
bo15b2obo2bob2o42bo40bo19b2o47b2o6bobo47b3ob2o2bobo5b3o$3bo19bo2bo42b
2obob2o105b2ob4ob5o48b4obo2bo7b2o$b2o2bo14bob2o2b2obo39b2obob2o35b2ob
2o15b2o2b2o47b4o4b2o50b2obo2bobo4b2o$bob2o14bo2bo4bo2bo37bobo5bo33b2o
3b2o13b2o4b2o42bo3bobo6bo47bo2b2o3b2ob2ob3o$b2o17b2o6b2o38bo4b2obo33b
2obob2o13b2ob2ob2o43bobo4bob2o49bo2bo5bob2o5bo$4bo17b2o2b2o42b3obo36bo
3bo15bo4bo50bo53bo5b2obob2o4bo$b2o2bo14b3o4b3o37b2obobobob2o32bo5bo13b
o6bo44bobo6b2o50b2obo3bobo5bo$bob2o15bo8bo40bobobo36bo3bo15bo4bo44b5ob
4ob2o48b3o5b2o2bo2bo$2bo17b2o6b2o40bobobo36b5o15b6o44b2o4b4o50b2o7bobo
2b2ob3o$o2b2o19b2o46bo39b3o17b4o45bo6bobo3bo47b2o4bobo2bob4o$b2obo15b
2ob4ob2o39b2obob2o34b3ob3o13b3o2b3o45b2obo4bobo49b3ob2obo2bob2o$3b2o
15bo2b4o2bo39b2obob2o37bo19b2o52bo53bo5b2ob2o3b2o2bo$bo19b3o2b3o39bo5b
obo105b2o6bobo49bo4b2obo5bo2bo$o2b2o14bo2b2o2b2o2bo37bob2o4bo34b2ob2o
15b2o2b2o44b2ob4ob5o48bo5bobob2o5bo$b2obo15b2obo2bob2o40bob3o35b2o3b2o
13b2o4b2o46b4o4b2o49bo2bo2b2o3bob2o$3bo19bo2bo40b2obobobob2o32b2obob2o
13b2ob2ob2o42bo3bobo6bo46b3ob2o2bobo5b3o$b2o2bo14bob2o2b2obo40bobobo
36bo3bo15bo4bo44bobo4bob2o50b4obo2bo7b2o$bob2o14bo2bo4bo2bo39bobobo35b
o5bo13bo6bo49bo56b2obo2bobo4b2o$b2o17b2o6b2o42bo38bo3bo15bo4bo45bobo6b
2o48bo2b2o3b2ob2ob3o$4bo17b2o2b2o41b2obob2o35b5o15b6o44b5ob4ob2o47bo2b
o5bob2o5bo$b2o2bo14b3o4b3o39b2obob2o36b3o17b4o45b2o4b4o50bo5b2obob2o4b
o$bob2o15bo8bo38bobo5bo33b3ob3o13b3o2b3o43bo6bobo3bo48b2obo3bobo5bo$2b
o17b2o6b2o38bo4b2obo36bo19b2o48b2obo4bobo48b3o5b2o2bo2bo$o2b2o19b2o44b
3obo112bo53b2o7bobo2b2ob3o$b2obo15b2ob4ob2o37b2obobobob2o33b2ob2o15b2o
2b2o45b2o6bobo49b2o4bobo2bob4o$3b2o15bo2b4o2bo40bobobo35b2o3b2o13b2o4b
2o43b2ob4ob5o49b3ob2obo2bob2o$bo19b3o2b3o41bobobo35b2obob2o13b2ob2ob2o
46b4o4b2o47bo5b2ob2o3b2o2bo$o2b2o14bo2b2o2b2o2bo41bo38bo3bo15bo4bo43bo
3bobo6bo48bo4b2obo5bo2bo$b2obo15b2obo2bob2o39b2obob2o34bo5bo13bo6bo43b
obo4bob2o50bo5bobob2o5bo$3bo19bo2bo42b2obob2o35bo3bo15bo4bo50bo55bo2bo
2b2o3bob2o$b2o2bo14bob2o2b2obo38bo5bobo34b5o15b6o45bobo6b2o47b3ob2o2bo
bo5b3o$bob2o14bo2bo4bo2bo37bob2o4bo35b3o17b4o45b5ob4ob2o48b4obo2bo7b2o
$b2o17b2o6b2o40bob3o35b3ob3o13b3o2b3o43b2o4b4o53b2obo2bobo4b2o$4bo17b
2o2b2o39b2obobobob2o35bo19b2o46bo6bobo3bo46bo2b2o3b2ob2ob3o$b2o2bo14b
3o4b3o40bobobo108b2obo4bobo47bo2bo5bob2o5bo$bob2o15bo8bo40bobobo36b2ob
2o15b2o2b2o50bo53bo5b2obob2o4bo$2bo17b2o6b2o42bo37b2o3b2o13b2o4b2o44b
2o6bobo50b2obo3bobo5bo$o2b2o19b2o43b2obob2o34b2obob2o13b2ob2ob2o43b2ob
4ob5o48b3o5b2o2bo2bo$b2obo15b2ob4ob2o39b2obob2o35bo3bo15bo4bo47b4o4b2o
47b2o7bobo2b2ob3o$3b2o15bo2b4o2bo38bobo5bo33bo5bo13bo6bo42bo3bobo6bo
48b2o4bobo2bob4o$bo19b3o2b3o39bo4b2obo34bo3bo15bo4bo44bobo4bob2o51b3ob
2obo2bob2o$o2b2o14bo2b2o2b2o2bo39b3obo36b5o15b6o50bo53bo5b2ob2o3b2o2bo
$b2obo15b2obo2bob2o37b2obobobob2o34b3o17b4o46bobo6b2o49bo4b2obo5bo2bo$
3bo19bo2bo43bobobo35b3ob3o13b3o2b3o43b5ob4ob2o48bo5bobob2o5bo$b2o2bo
14bob2o2b2obo40bobobo38bo19b2o46b2o4b4o52bo2bo2b2o3bob2o$bob2o14bo2bo
4bo2bo41bo108bo6bobo3bo45b3ob2o2bobo5b3o$b2o17b2o6b2o39b2obob2o35b2ob
2o15b2o2b2o46b2obo4bobo48b4obo2bo7b2o$4bo17b2o2b2o41b2obob2o34b2o3b2o
13b2o4b2o49bo56b2obo2bobo4b2o$b2o2bo14b3o4b3o38bo5bobo33b2obob2o13b2ob
2ob2o44b2o6bobo48bo2b2o3b2ob2ob3o$bob2o15bo8bo38bob2o4bo34bo3bo15bo4bo
44b2ob4ob5o47bo2bo5bob2o5bo$2bo17b2o6b2o40bob3o35bo5bo13bo6bo46b4o4b2o
47bo5b2obob2o4bo$o2b2o19b2o41b2obobobob2o33bo3bo15bo4bo43bo3bobo6bo49b
2obo3bobo5bo$b2obo15b2ob4ob2o40bobobo36b5o15b6o44bobo4bob2o50b3o5b2o2b
o2bo$3b2o15bo2b4o2bo40bobobo37b3o17b4o51bo53b2o7bobo2b2ob3o$bo19b3o2b
3o43bo37b3ob3o13b3o2b3o44bobo6b2o49b2o4bobo2bob4o$o2b2o14bo2b2o2b2o2bo
38b2obob2o37bo19b2o46b5ob4ob2o49b3ob2obo2bob2o$b2obo15b2obo2bob2o39b2o
bob2o105b2o4b4o50bo5b2ob2o3b2o2bo$3bo19bo2bo41bobo5bo34b2ob2o15b2o2b2o
44bo6bobo3bo47bo4b2obo5bo2bo$b2o2bo14bob2o2b2obo38bo4b2obo33b2o3b2o13b
2o4b2o45b2obo4bobo48bo5bobob2o5bo$bob2o14bo2bo4bo2bo39b3obo35b2obob2o
13b2ob2ob2o49bo55bo2bo2b2o3bob2o$b2o17b2o6b2o37b2obobobob2o33bo3bo15bo
4bo45b2o6bobo47b3ob2o2bobo5b3o$4bo17b2o2b2o42bobobo35bo5bo13bo6bo43b2o
b4ob5o48b4obo2bo7b2o$b2o2bo14b3o4b3o40bobobo36bo3bo15bo4bo47b4o4b2o50b
2obo2bobo4b2o$bob2o15bo8bo42bo38b5o15b6o43bo3bobo6bo47bo2b2o3b2ob2ob3o
$2bo17b2o6b2o39b2obob2o36b3o17b4o45bobo4bob2o49bo2bo5bob2o5bo$o2b2o19b
2o43b2obob2o34b3ob3o13b3o2b3o49bo53bo5b2obob2o4bo$b2obo15b2ob4ob2o38bo
5bobo36bo19b2o47bobo6b2o50b2obo3bobo5bo$3b2o15bo2b4o2bo38bob2o4bo104b
5ob4ob2o48b3o5b2o2bo2bo$bo19b3o2b3o41bob3o36b2ob2o15b2o2b2o44b2o4b4o
50b2o7bobo2b2ob3o$o2b2o14bo2b2o2b2o2bo36b2obobobob2o32b2o3b2o13b2o4b2o
43bo6bobo3bo47b2o4bobo2bob4o$b2obo15b2obo2bob2o40bobobo35b2obob2o13b2o
b2ob2o45b2obo4bobo49b3ob2obo2bob2o$3bo19bo2bo43bobobo36bo3bo15bo4bo50b
o53bo5b2ob2o3b2o2bo$b2o2bo14bob2o2b2obo42bo37bo5bo13bo6bo44b2o6bobo49b
o4b2obo5bo2bo$bob2o14bo2bo4bo2bo38b2obob2o35bo3bo15bo4bo44b2ob4ob5o48b
o5bobob2o5bo$b2o17b2o6b2o39b2obob2o35b5o15b6o47b4o4b2o49bo2bo2b2o3bob
2o$4bo17b2o2b2o40bobo5bo35b3o17b4o44bo3bobo6bo$b2o2bo14b3o4b3o38bo4b2o
bo33b3ob3o13b3o2b3o43bobo4bob2o$bob2o15bo8bo40b3obo38bo19b2o52bo$2bo
17b2o6b2o37b2obobobob2o104bobo6b2o$24b2o44bobobo106b5ob4ob2o$20b2ob4ob
2o40bobobo106b2o4b4o$20bo2b4o2bo42bo$21b3o2b3o40b2obob2o$69b2obob2o$
68bo5bobo$68bob2o4bo$70bob3o!

The period-11 and period-12 wicks could potentially be used in a c/7 wickstretcher, but finding a stationary stabilization is currently well out of our capabilities.
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1146
Joined: July 9th, 2009, 2:44 pm

Re: c/7 orthogonal spaceships

Postby velcrorex » February 22nd, 2013, 12:57 pm

Loafer seems to be a fitting name. And I really can't think of anything better, so loafer it is.

While we're going off topic, on the topic of spaceships with some glide reflect symmetry found directly, there's one more ship worth mentioning. It's the 44P5H2V0 ship with a glide reflect tagalong. Not sure if this is previously known.
x = 15, y = 20
5bo5boo$4bo$4boo3bo3bo$5bo3bo$8boobbo$3bo3bo$4boo3boo$6b3o$$4bo5bo$bbo
bbo3bobbo$oo3bo3bo3boo$5bo3bo$o4bo3bo4bo$4boo3boo$bbobo5bobo$b3o7b3o$
bbobbo3bobbo$3b3o3b3o$4bo5bo!
-Josh Ball.
User avatar
velcrorex
 
Posts: 313
Joined: November 1st, 2009, 1:33 pm

Re: c/7 orthogonal spaceships

Postby Paul Tooke » February 22nd, 2013, 2:05 pm

Congratulations to Velcrorex on discovering the Loafer! I thought this search might be worthwhile spending some CPU time on but wouldn't have dreamed of anything being found so quickly.

Its fragility means that there aren't any really interesting non-destructive interactions with standard spaceships. However it can be turn an MWSS into a loaf. This enables it to be used in a tractor-beam sawtooth pattern. Here it is in a sawtooth with expansion factor of 4. It reaches a roughly linearly increasing maximum population near generation 42*4^n - 34 (n>=0), whilst decreasing to a population of around 1376/1378 at generation 30*4^n-51.
x = 197, y = 90, rule = B3/S23
141b2o$123b2o16b2o$37b2o84b2o$23b2o12b2o16b2o$5b2o16b2o30bo2bo33b2o$5b
2o67b2o16b2o27bo47bobo$5b2o52bo14b2o46bo8b2o34bo3bo$5bo116bo8b2o34bo
19bo$4bobo40b2o8b2o15bo85b2o4bo4bo14b4o$4bobo6b2o32b2o7bo16bobo18b2o
64b2o5bo12bo4b2obobo$5bo7b2o58bobo6b2o36b2o3b2o40bo3bo3bob2o5b3obo2bo
2b2o$74bo7b2o39bo17b3o25bobo2bob4o5b2obobo3b2o$53b2o3b2o60bo5bo13bo3bo
29b2o2b2o6b4o$2b2o3b2o12b2obob2o25b2o3b2o61b2ob2o13bo5bo41bo$2bobobobo
26b5o14b5o12b2obob2o12b2o3b2o25bobo15bo3bo$3b5o13bo5bo6bob3obo14bobo
13bo5bo13b5o27bo7b3o7b3o$4b3o28bo3bo32bo3bo14b2ob2o27bo6bo3bo6b3o34bob
o$5bo16b2ob2o9b3o8bo7b3o15b3o15b2ob2o33bo5bo40bo3bo$24bo12bo8b3o43b3o
34b2obob2o31bobo6bo12b2o$45b5o117b2o6bo4bo8b2o$13b3o28b2o3b2o117bo7bo$
12bo3bo115bo10b3o30bo3bo$11bo5bo17bo45b5o39bobo3bobo4bo3b2ob2o31bobo$
12bo3bo18bo17bo26bob3obo39b2o3bobo2b2o4b2ob2o$6bobo4b3o5bo12bobo5bo3b
3o3bo23bo4bo3bo34b3o3bo5b3ob3o3b5o26b2o$7b2o4b3o3b2o4b3o5b2ob2o2bobo3b
3o3b3o22bo4b3o4bo29bo3bo10b3o4b2o3b2o$7bo12b2o2bo3bo3bo5bo2b2o15bo16b
3o5bo5bobo3bo22bo5bo9b2o39bo10b2o$35bo8b2o11b3o29b2o3b3o21b2obob2o50bo
10b2o$16b2o5bo5bo2b2o3b2o5b2o10b5o32b5o71b2o12b2o6bo3b2o$2b3o11b2o5b2o
3b2o25b2o3b2o23b2o5bobobobo68bo3bo10b3o5bo3bobo$bo3bo79b2o5b2o3b2o22bo
20b2o22bo5bo10b2o6b5o$o5bo29bo33b5o45bobo38b2o2b2obo3bo13b2o4b3o$bo3bo
20bo9bo32bob3obo44bobo38b2o3bo5bo13b2o$2b3o20bobo9bo19b3o10bo3bo20bo
25bo45bo3bo$2b3o20bobo29b3o11b3o20bobo47b2o23b2o$25bo46bo21bobo24b2o
21b2o$25bo8b2o59bo25b2o$25bo2bo5b2o21b2o36b2o83bo$3b2o21b2o29b2o36b2o
80b5o$3b2o67b2o21b2o77bobo5bo$72b2o101bob2o2bo$179b2o$151b4o19bo$150bo
3bo18b2obo$76b3o62bo2bo9bo11b3o5bo2bo$33b2o40b5o17b4o22b2o20bo4bo2bo
11b5o4bo2bo$30b3ob2o39b3ob2o15bo3bo19b3ob2o15bo3bo19b3ob2o4b2o$30b5o
43b2o20bo19b5o17b4o22b2o$31b3o62bo2bo21b3o2$4b2o$4b2o21b2o$27b2o38b2o
55b2o62b2o$66b3o44b2o9b2o21b2o16b2o21b2o$54bo8bob2o9b2o12b2o21b2o32b2o
16bobo$54bobo6bo2bo4bo5bo12b2o74b3o$55bobo5bob2o5bo49bo44b2o20bo$42b2o
11bo2bo7b3o3bo3bo46bo43b2o19bobo$42b2o11bobo9b2o5bo48bo41bobo19bo3bo$
27bo26bobo109bo20b5o$10bobo4bo8b3o25bo36bo94b2o3b2o$10bob2ob4o6b5o59b
2ob2o20bo6b2o3b2o59b5o$2b5o5b2ob2o7bobobobo82b3o8bo38b2o3b2o5b2o11b3o$
bob3obo5b2o9b2o3b2o57bo5bo5b2o10b5o4bo5bo2b2o31b2o3b2o5b2o12bo$2bo3bo
6bob2o43b2o38b2o9bobobobo4b2ob2o2bobo14b3o$3b3o9bo43bo3bo7b2o15b2obob
2o16b2o3b2o5bobo5bo7b2o4bo3bo15b3o3b3o4bo5b2o$4bo19b2o32bo5bo7b2o50bo
14b2o3bo5bo14b3o5bo3bobo4bobo$5b2o17b2o22b2o8bo3bob2o5bo52bo20bo3bo16b
o5bo3bo3bo3bo$5bobo15bo24b2o8bo5bo29b2o15b2o33b3o27b5o$5bobo15b3o33bo
3bo29bobo15b2o32bo2bo26b2o3b2o$6bo20bo32b2o32bo8bo6bo21b2o3b2o6b3o28b
5o$13b5o5b5o65b2o7b3o5b3o13bo8bo8bob2o29b3o$12bob3obo6b2o37bo28b3o5b5o
8bo10b3o4bo5bo5bobo31bo$3b2obob2o3bo3bo34b2o10b2o28b2o4bobobobo3b5o9bo
3bo4b2ob2o7bo21b3o$3bo5bo4b3o35b2o9bobo26bo7b2o3b2o5b2o9bob3obo4bobo
30b3o16b3o$4bo3bo6bo6b2o3b2o14b2o3bo6b2o12b2o53b5o6bo30bo3bo14bo3bo$5b
3o15b5o15bobo3bo5b3o10bo3bo62bo6b2o3b2o$23b2ob2o16b5o6b2o10bo5bo3b2o
24bo5b2o3b2o26bobobobo16b2o3b2o12bo5bo$23b2ob2o17b3o4b2o13bo3bob2o2b2o
14bo8bobo5b5o28b5o36b2o3b2o$14b2o8b3o25b2o13bo5bo18b3o7bobo5b2ob2o29b
3o$14b2o52bo3bo18b5o7bo6b2ob2o30bo$69b2o19b2o3b2o6b2o6b3o20b2o42b2o7bo
$91b5o7b2o29b2o42b2o6bobo$91bo3bo7b2o81bobo$6b2o84bobo93bo$6b2o16b2o
67bo94bo$24b2o100b2o57bo2bo$111b2o13b2o16b2o22b2o16b2o$93b2o16b2o31b2o
22b2o$93b2o!
Paul Tooke
 
Posts: 111
Joined: May 19th, 2010, 7:35 am
Location: Cambridge, UK

Re: c/7 orthogonal spaceships

Postby Sokwe » February 23rd, 2013, 1:27 am

Off topic: Here are c/2 supports for one of the wicks that I posted (the front support is certainly suboptimal):
x = 81, y = 65, rule = B3/S23
3o74b3o$o2bo4b3o3b3o14bo16bo14b3o3b3o5bo2bo$o6bo2bo2bo2bo5b3o5b3o14b3o
5b3o4bo2bo2bo2bo5bo$o6b2obo2bo3bo4bo2bo3b3ob2o10b2ob3o4bo2bo3b2o2bo5bo
4bo$bobob2o2bo2b2o8bo2bo2b2o3bo12bo3b2o2bo8b4obo2b3o4bobo$5b3o2b2ob2ob
3o2bobob2o2bobobob2o6b2obo2bobo2bobo2bo3bo2bo2b3o2b2o$6b3ob3o3b2o4bo2b
o4bob2ob2o6b2o3bob5obobob2o3bo8b2o$4bo3b3obo10b7o3b2o2bo5bo3b2o8bo3bo
4bo7bo$5bo7bo2bo12bo3bobo5bo5bo2b7o5b3o5bo$18b2o2bob5ob3o5b4o14bo5b2o
6bo$16bo5bo4bo9bo2b2o8bo3bo$39bo7b2o5bo$38bob2o$38b2o2bo$41bo$38b2o$
38bob2o$38b2o2bo$40bo$38b2obo$37bo2b2o$38bo$40b2o$38b2obo$37bo2b2o$39b
o$38bob2o$38b2o2bo$41bo$38b2o$38bob2o$38b2o2bo$40bo$38b2obo$37bo2b2o$
38bo$40b2o$38b2obo$37bo2b2o$39bo$38bob2o$38b2o2bo$41bo$38b2o$38bob2o$
38b2o2bo$40bo$38b2obo$37bo2b2o$38bo$40b2o$38b2obo$37bo2b2o$39bo$38bob
2o$38b2o2bo$41bo$38b2o$38bob2o$38b2o2bo$40bo$38b3o$40bo2$39b2o!

I haven't looked for a stationary p7 stabilization.

@Josh Ball
That p10 ship is impressive, and it doesn't seem to be in any of the relevant pattern collections. As far as I can tell, this is the smallest period-10 2c/5 spaceship. Did you find it recently?

Edit: I just noticed that a known p6 wick stabilization also works for the period-12 variant, and it looks like this puts the c/5 wickstretcher within reach!
x = 76, y = 21, rule = B3/S23
50bo$48b3o8bobo7b2o$47bo7b2obob2o2bo3bo2bo2b2o$44b2o2b5o2bob2o5b3o2b2o
bo2bo$44bob2o5bobo4b4o3b2o3bobo$45bo3bob2obob4o4b3o2b2obob2o$44b3obobo
bobo6b2o4bobo4bo$2bo5bo5bo5bo5bo5bo5bo4bob2obo3bo2bob2o4b2o2bo2b3obo$
3b2obo2b2o4b2obo2b2o4b2obo2b2o4b2obobo3bo5b2ob2obo4b2o2bo3bo$2ob2o2b4o
b2ob2o2b4ob2ob2o2b4ob2ob2o7bobobo6bo8b5o2$2ob2o2b4ob2ob2o2b4ob2ob2o2b
4ob2ob2o7bobobo6bo8b5o$3b2obo2b2o4b2obo2b2o4b2obo2b2o4b2obobo3bo5b2ob
2obo4b2o2bo3bo$2bo5bo5bo5bo5bo5bo5bo4bob2obo3bo2bob2o4b2o2bo2b3obo$44b
3obobobobo6b2o4bobo4bo$45bo3bob2obob4o4b3o2b2obob2o$44bob2o5bobo4b4o3b
2o3bobo$44b2o2b5o2bob2o5b3o2b2obo2bo$47bo7b2obob2o2bo3bo2bo2b2o$48b3o
8bobo7b2o$50bo!

Was this already known?
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1146
Joined: July 9th, 2009, 2:44 pm

Re: c/7 orthogonal spaceships

Postby alhensel » February 23rd, 2013, 12:14 pm

Back on topic:

Congrats to Paul Tooke on the loafer-based sawtooth. I have independently verified that this is the only collision back-end *WSS collision that does not destroy the loafer, aside from the LWSS variant which destroys the LWSS and leaves just the loafer. There are 579 possible back-end *WSS collisions (180 LWSS, 199 MWSS, and 200 HWSS).

If you're doing arbitrarily distant constructions, though, destroying the loafer is fine. All that is really needed is a *WSS collision that produces a forward glider, and a *WSS collision that produces a backward glider, and then your powers of arbitrarily distant construction are great. Fortunately, both exist.

Loafer + HWSS = forward glider:
x = 29, y = 15, rule = B3/S23
$21b6o$21bo5bo$21bo$22bo4bo$b2o2bob2o15b2o$o2bo2b2o$bobo$2bo$8bo$6b3o$
5bo$6bo$7b2o!

For backward gliders, you have 7 choices:
x = 108, y = 52, rule = B3/S23
62b4o$18b4o40bo3bo$2b2o2bob2o8bo3bo19b2o2bob2o12bo19b2o2bob2o$bo2bo2b
2o9bo22bo2bo2b2o14bo2bo14bo2bo2b2o$2bobo14bo2bo19bobo37bobo$3bo39bo39b
o$9bo39bo39bo$7b3o37b3o37b3o$6bo39bo39bo11b4o$7bo39bo39bo10bo3bo$8b2o
38b2o38b2o8bo$99bo2bo9$62b5o$18b5o39bo4bo$2b2o2bob2o8bo4bo18b2o2bob2o
12bo19b2o2bob2o$bo2bo2b2o9bo22bo2bo2b2o14bo3bo13bo2bo2b2o$2bobo14bo3bo
18bobo20bo16bobo$3bo17bo21bo39bo$9bo39bo39bo$7b3o37b3o37b3o$6bo39bo39b
o$7bo39bo39bo$8b2o38b2o38b2o3$102b5o$102bo4bo$102bo$103bo3bo$105bo4$
18b6o$2b2o2bob2o8bo5bo$bo2bo2b2o9bo$2bobo14bo4bo$3bo17b2o$9bo$7b3o$6bo
$7bo$8b2o!


The loafer is simple enough that many of the collisions devolve into simple objects, providing opportunities for optimizing distant constructions.

Arbitrarily distant blocks (8 choices):
x = 109, y = 96, rule = B3/S23
2$55b5o$55bo4bo$15b4o36bo$15bo3bo36bo3bo$15bo42bo$3b2o2bob2o5bo2bo23b
2o2bob2o32b2o2bob2o$2bo2bo2b2o32bo2bo2b2o32bo2bo2b2o$3bobo37bobo37bobo
$4bo39bo39bo$10bo39bo39bo$8b3o37b3o37b3o$7bo39bo39bo$8bo39bo39bo8b6o$
9b2o38b2o38b2o6bo5bo$97bo$98bo4bo$100b2o9$3b2o2bob2o12b4o16b2o2bob2o$
2bo2bo2b2o13bo3bo14bo2bo2b2o5b5o$3bobo17bo19bobo9bo4bo$4bo19bo2bo16bo
10bo$10bo39bo5bo3bo$8b3o37b3o7bo$7bo39bo$8bo39bo$9b2o38b2o7$96b5o$96bo
4bo$96bo$97bo3bo$99bo$83b2o2bob2o$82bo2bo2b2o$83bobo$84bo$90bo$88b3o$
87bo$88bo$89b2o12$43b2o2bob2o$42bo2bo2b2o$43bobo$44bo16b5o$50bo10bo4bo
$48b3o10bo$47bo14bo3bo$48bo15bo$49b2o8$102b5o$102bo4bo$102bo$103bo3bo$
83b2o2bob2o14bo$82bo2bo2b2o$83bobo$84bo$90bo$88b3o$87bo$88bo$89b2o!


Arbitrarily distant beehives (vertical, 7 choices):
x = 109, y = 79, rule = B3/S23
$2b2o2bob2o$bo2bo2b2o$2bobo$3bo$9bo$7b3o$6bo$7bo$8b2o$17b4o$17bo3bo$
17bo$18bo2bo18$2b2o2bob2o32b2o2bob2o32b2o2bob2o$bo2bo2b2o32bo2bo2b2o
32bo2bo2b2o$2bobo37bobo12b5o20bobo$3bo39bo13bo4bo20bo$9bo39bo7bo31bo$
7b3o37b3o8bo3bo24b3o$6bo39bo13bo25bo15b5o$7bo39bo39bo14bo4bo$8b2o38b2o
38b2o12bo$17b5o81bo3bo$17bo4bo82bo$17bo$18bo3bo$20bo17$2b2o2bob2o32b2o
2bob2o32b2o2bob2o$bo2bo2b2o32bo2bo2b2o32bo2bo2b2o$2bobo37bobo12b6o19bo
bo$3bo39bo13bo5bo19bo$9bo39bo7bo31bo$7b3o37b3o8bo4bo23b3o$6bo39bo13b2o
24bo$7bo39bo39bo$8b2o38b2o38b2o$17b6o$17bo5bo$17bo$18bo4bo69b6o$20b2o
71bo5bo$93bo$94bo4bo$96b2o!

More beehives (horizontal, 8 choices):
x = 159, y = 52, rule = B3/S23
$13b4o$13bo3bo$13bo$14bo2bo2$2b2o2bob2o32b2o2bob2o32b2o2bob2o42b2o2bob
2o$bo2bo2b2o32bo2bo2b2o32bo2bo2b2o42bo2bo2b2o$2bobo37bobo10b4o23bobo
47bobo$3bo39bo11bo3bo23bo49bo$9bo39bo5bo33bo49bo$7b3o37b3o6bo2bo27b3o
7b4o36b3o$6bo39bo39bo10bo3bo34bo$7bo39bo39bo9bo39bo14b5o$8b2o38b2o38b
2o8bo2bo36b2o12bo4bo$152bo$153bo3bo$155bo19$2b2o2bob2o32b2o2bob2o32b2o
2bob2o42b2o2bob2o$bo2bo2b2o5b4o23bo2bo2b2o32bo2bo2b2o9b4o29bo2bo2b2o$
2bobo9bo3bo23bobo37bobo13bo3bo29bobo$3bo10bo28bo39bo14bo34bo16b6o$9bo
5bo2bo30bo39bo9bo2bo36bo10bo5bo$7b3o37b3o37b3o47b3o10bo$6bo39bo39bo49b
o14bo4bo$7bo39bo39bo49bo15b2o$8b2o38b2o38b2o48b2o3$57b4o$57bo3bo$57bo$
58bo2bo!

Or suppose you're interested in a loaf without the loafer surviving (5 choices):
x = 102, y = 47, rule = B3/S23
2$94b6o$94bo5bo$94bo$95bo4bo$97b2o$b2o2bob2o32b2o2bob2o32b2o2bob2o$o2b
o2b2o32bo2bo2b2o32bo2bo2b2o$bobo37bobo37bobo$2bo10b4o25bo39bo$8bo4bo3b
o30bo39bo$6b3o4bo32b3o12b4o21b3o$5bo8bo2bo27bo15bo3bo19bo$6bo39bo14bo
24bo$7b2o38b2o13bo2bo21b2o19$94b6o$94bo5bo$94bo$b2o2bob2o72b2o2bob2o6b
o4bo$o2bo2b2o72bo2bo2b2o9b2o$bobo77bobo$2bo10b5o64bo$8bo4bo4bo69bo$6b
3o4bo72b3o$5bo8bo3bo66bo$6bo9bo69bo$7b2o78b2o!

The cute thing about the one in the middle is that it just destroys the back end of the loafer, leaving the loaf.

You can also get a blinker, a boat, a long boat, a ship, or a tub, before you get into multi-object patterns such as honey farms and traffic lights. You can also place a pi heptomino, forward or backward:
x = 77, y = 22, rule = B3/S23
3$2b2o2bob2o42b2o2bob2o$bo2bo2b2o42bo2bo2b2o$2bobo47bobo$3bo49bo$9bo
49bo$7b3o47b3o$6bo49bo$7bo9b5o35bo$8b2o7bo4bo35b2o$17bo$18bo3bo$20bo$
70b6o$70bo5bo$70bo$71bo4bo$73b2o!
alhensel
 
Posts: 6
Joined: February 23rd, 2013, 2:03 am

Re: c/7 orthogonal spaceships

Postby alhensel » March 3rd, 2013, 7:34 pm

Here are 5 stable loafer eaters. The first 2 have already been seen in this thread, but the other 3 are new:

x = 73, y = 49, rule = B3/S23
64b2o$25b2o37b2o$26bo$26bobo$27b2o$5b2o2bob2o22b2o2bob2o11b2o9b2o2bob
2o$4bo2bo2b2o22bo2bo2b2o12bobo7bo2bo2b2o$5bobo27bobo17bo9bobo$6bo29bo
29bo$12bo29bo29bo$10b3o27b3o27b3o$9bo29bo29bo$10bo29bo29bo$2b2o7b2o28b
2o28b2o$bobo$bo31b2o28b2o$2o32bo29bo$31b3o27b3o$31bo29bo10$59bo$33b2o
24b3o$33b2o27bo$61b2o4$35b2o2bob2o13b2o7b2o2bob2o$34bo2bo2b2o14bobo5bo
2bo2b2o$35bobo19bo7bobo$36bo29bo$42bo29bo$40b3o27b3o$39bo29bo$40bo29bo
$41b2o28b2o2$33b2o28b2o$34bo29bo$31b3o27b3o$31bo29bo!

Why would you look for new eaters when a single fishhook eater will do? Because what I'm really trying to do is coax out a glider or a herschel. In fact, if you take the block off the top of the one in the upper right, you get a herschel, but you also get a destructive pi heptomino, and I'm not sure there's a way to fix that.
alhensel
 
Posts: 6
Joined: February 23rd, 2013, 2:03 am

Re: c/7 orthogonal spaceships

Postby skomick » March 4th, 2013, 1:42 am

loafer -> B-hep:
x = 19, y = 21, rule = B3/S23
5bo$5b3o$8bo$7b2o4$2o9b2o2bob2o$obo7bo2bo2b2o$bo9bobo$12bo$18bo$16b3o$
15bo$16bo$17b2o2$9b2o$10bo$7b3o$7bo!
Shannon Omick
skomick
 
Posts: 67
Joined: February 11th, 2011, 11:41 pm

Re: c/7 orthogonal spaceships

Postby alhensel » March 4th, 2013, 8:53 am

Nice. Herschel and block at gen 90. Unfortunately, the herschel is travelling back along the path of the incoming loafer, and quickly emits a glider that destroys one of the fishhooks. Can a herschel conduit still be attached? It doesn't look hopeful, but I haven't played with herschel conduits in years.
alhensel
 
Posts: 6
Joined: February 23rd, 2013, 2:03 am

Re: c/7 orthogonal spaceships

Postby dvgrn » March 4th, 2013, 11:44 am

alhensel wrote:Nice. Herschel and block at gen 90. Unfortunately, the herschel is travelling back along the path of the incoming loafer, and quickly emits a glider that destroys one of the fishhooks. Can a herschel conduit still be attached?

I don't see anything that's really worth pursuing, though substituting an eater2 for the fishhook eater will solve the immediate problem there. The block will take extra circuitry to clean up, though, so it probably makes more sense to keep looking for cleaner conversion reactions.

A slow conversion is technically possible with this reaction with Fx77+Fx119, I think -- it looks like Fx119 alone doesn't really give enough clearance for the output Herschel:

#C partial loafer-to-Herschel conversions -- Fx77+Fx119, and Fx119 alone.
#C   Lots of extra gliders available, but ship and/or block still need cleanup
x = 155, y = 51, rule = LifeHistory
47.A$47.3A5.2A$50.A4.2A$49.2A2$66.C$50.2A14.C.D$50.2A3.2A9.3C$55.2A
11.C9$20.A$20.3A$23.A$22.2A11.2A11.C$35.2A9.3C$5.A40.C.D66.A$5.3A38.C
68.3A$8.A109.A$7.2A108.2A$7.5B2.2B2.2B97.5B2.2B2.2B$9.12BD97.12BC$4.
17BDBD18B72.17BCBD18B$2A.7B2D9B3D12B2A2BAB2A66.2A.7B2D9B3C12B2A2BAB2A
$A.A7B2D11BD11BA2BA2B2AB66.A.A7B2D11BC11BA2BA2B2AB$.AB.32BABA4B68.AB.
32BABA4B$5.32BA6B71.32BA6B$7.36BAB72.36BAB$10.23B2D6B3AB75.31B3AB$9.
24BDBD4BA3B75.31BA3B$10.24B2D5BA2B76.31BA2B$10.32B2A76.32B2A$9.5B105.
5B$7.A.2AB105.A.2AB$5.3AB2A104.3AB2A6.2A$4.A4.B104.A4.B8.A$5.3A.2A
104.3A.2A4.3A12.2A11.C$7.A.A107.A.A5.A9.2A3.2A9.3C$7.A.A107.A.A15.2A
14.C.D$8.A109.A32.C2$134.2A$135.A4.2A$132.3A5.2A$132.A!

I haven't really learned how to apply all of Guam's new discoveries yet, though. Some of those do manage to clean up that leftover B-heptomino block. But I think -- haven't confirmed this, so someone else please go ahead! -- that they all need catalysts behind the Herschel on both sides, and here the incoming loafer track seems too wide and existing catalysts are likely to get in the way anyway.
dvgrn
Moderator
 
Posts: 3995
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: c/7 orthogonal spaceships

Postby Tropylium » March 4th, 2013, 6:51 pm

This two-block approach might yield something? Couple variants:
x = 13, y = 23, rule = B3/S23
7b2o$7b2o4$2o3b2o2bob2o$2o2bo2bo2b2o$5bobo$6bo$12bo$10b3o$9bo$10bo$11b
2o6$8b2o$9bo$6b3o$6bo!

x = 21, y = 29, rule = B3/S23
7b2o$7b2o4$2o3b2o2bob2o$2o2bo2bo2b2o$5bobo$6bo$12bo$10b3o$9bo$10bo$11b
2o14$19b2o$19b2o!
User avatar
Tropylium
 
Posts: 406
Joined: May 31st, 2011, 7:12 pm
Location: Finland

Re: c/7 orthogonal spaceships

Postby dvgrn » March 6th, 2013, 2:56 pm

Tropylium wrote:This two-block approach might yield something?

Sure looks like it! Has anyone tried 'catalyst' or 'ptbsearch' on these? A two- or three-catalyst search is almost guaranteed to produce a clean loafer-to-glider conversion from one of these, and a Herschel output wouldn't be at all surprising.

Just a few minutes of blockheaded bumbling around by hand produced lots of entertaining near-miss loafer-to-glider converters:

x = 33, y = 122, rule = LifeHistory
7.2A$7.2A4$2A23.2A2.B.2A$2A22.A2.2A.3A$25.A.A$26.A$32.A$30.3A$29.A$
30.2A$31.AB3$23.2A$23.2A$6.2A$6.2A31$7.2A$7.2A4$2A23.2A2.B.2A$2A22.A
2.2A.3A$25.A.A$26.A$32.A$30.3A$29.A$30.2A$31.AB3$23.2A$23.2A33$7.2A$
7.2A4$2A23.2A2.B.2A$2A22.A2.2A.3A$25.A.A$26.A$32.A$30.3A$29.A$30.2A$
31.AB3$23.2A$23.2A3$11.2A$11.2A!

If anyone wants help getting 'catalyst' or 'catgl' up and running for this kind of problem, just let me know. It would be easy enough to write this up as a sample search, with a quick explanation of how to format the input file and how to interpret the output file.
dvgrn
Moderator
 
Posts: 3995
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: c/7 orthogonal spaceships

Postby dvgrn » March 7th, 2013, 3:09 pm

dvgrn wrote:Sure looks like it! Has anyone tried 'catalyst' or 'ptbsearch' on these? A two- or three-catalyst search is almost guaranteed to produce a clean loafer-to-glider conversion from one of these, and a Herschel output wouldn't be at all surprising.

I didn't have any luck immediately on searches starting with two blocks, though I might certainly have missed something. But a four-catalyst search starting with just a loafer eventually turned up a clean loafer-to-glider converter:

#C stable loafer-to-glider converter -- recovery time 237 ticks
x = 65, y = 20, rule = B3/S23
8bo$7bobo$7bobo$5b3ob2o9bo$4bo13b3o$5b3ob2o6bo$7bob2o6b2o$2b2o$3bo$3bo
bo$4b2o$23b2o2bob2o26b2o4b2o$22bo2bo2b2o26bo2b2ob3o$23bobo31bobo$24bo
33bo$30bo33bo$bo26b3o31b3o$obo24bo33bo$2o26bo33b2o$29b2o32bo!

No loafer-to-Herschel yet, unfortunately.

There's a link to the 'catgl' search utility in this forum thread, with a little explanation of how it differs from 'catalyst'. More detail can be found in the ReadMe.txt file in the ZIP archive. If you want the precompiled Windows executable rather than building the code yourself, just rename the "exe_" file to "catgl.exe". Same for the sample batch file.

The input file for this search looks like the following. I didn't use any of the pattern-matching features I added to 'catgl', actually, so the same search might have worked in the original 'catalyst'. I did rely on the "glider(s) escaped" output to mark the interesting cases where gliders were detected at the edge of the search field.

loafer-converter.txt:
y
.oo..o.oo..o.o.o.o.o.o.o.o.o.o.o.
o..o..oo.........................
.o.o.......o.o.o.o.o.o.o.o.o.o.o.
..o..............................
........o..o.o.o.o.o.o.o.o.o.o.o.
......ooo........................
.....o.....o.o.o.o.o.o.o.o.o.o.o.
......o..........................
.......oo..o.o.o.o.o.o.o.o.o.o.o.!
n

199
99
4

Edit: Key to sample input
    y = print output to file reactions.txt
    [.oo.o.oo ... !] = starting pattern
    n = don't customize catalysts, use them all
    1 = first generation to place catalysts
    199 = last generation to place catalysts
    99 = number of ticks each catalyst must survive
    4 = maximum number of catalysts to be placed
Then to actually perform the search, I run a batch file to pipe in the input text.

search.bat:
catgl < loafer-converter.txt
pause

It looks as if I should rebuild the executable with a larger upper time limit. The current limit is 299 ticks. It's often nice to be able to run a pattern a few hundred ticks before starting to add catalysts. In this case, I added extra dots to the right of the loafer to prevent catalysts from being placed on the loafer's input lane. I could have simply started searching at T=175 instead of T=0, but then there might not have been enough time left before T=299 to place and validate all the catalysts.
dvgrn
Moderator
 
Posts: 3995
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: c/7 orthogonal spaceships

Postby Sokwe » March 9th, 2013, 12:36 am

I've just had an idea on the possibility of a c/7 wickstretcher. I noted earlier that a known stabilization of a p6 wick worked for a related p12 wick due to the way it "ate" two different but similar pieces. Since this idea couldn't be used to create a stabilization for the other end of the wick, I thought that there wouldn't be much of a chance of a c/7 wickstretcher (the potential c/7 wickstretcher travels in the opposite direction of the potential c/5 wickstretcher relative to the wick). However, instead of stretching the p12 wick, the c/7 stretcher could potentially stretch the p6 wick and "eat" the two different units analogously to the p6 termination for the p12 wick. Here is a partial result to show what I mean:
x = 103, y = 37, rule = B3/S23
b4o4b2o25b2o4b4o11b4o4b2o25b2o4b4o$2ob2o3b3obo4bo11bo4bob3o3b2ob2o9b2o
b2o3b3obo4bo11bo4bob3o3b2ob2o$7bo7b3o11b3o7bo23bo7b3o11b3o7bo$2b3ob2ob
ob3o4bo9bo4b3obob2ob3o13b3ob2obob3o4bo9bo4b3obob2ob3o$o4b2ob2o4b2ob5o
3b5ob2o4b2ob2o4bo9bo4b2ob2o4b2ob5o3b5ob2o4b2ob2o4bo$o11bobo2b3o7b3o2bo
bo11bo9bo11bobo2b3o7b3o2bobo11bo$b2o3b2o2bo3b2obo3bo3bo3bob2o3bo2b2o3b
2o11b2o3b2o2bo3b2obo3bo3bo3bob2o3bo2b2o3b2o$14b2o15b2o37b2o15b2o$21b2o
b2o51b2ob2o$21b2ob2o51b2ob2o$20bo5bo49bobobobo$22bobo53bobo$22bobo52bo
3bo2$21b2ob2o51b2ob2o$21b2ob2o51b2ob2o$20bo5bo49bobobobo$22bobo53bobo$
22bobo52bo3bo2$21b2ob2o51b2ob2o$21b2ob2o51b2ob2o$20bo5bo49bobobobo$22b
obo53bobo$22bobo52bo3bo2$21b2ob2o51b2ob2o$21b2ob2o51b2ob2o$20bo5bo49bo
bobobo$22bobo53bobo$22bobo52bo3bo2$21b2ob2o51b2ob2o$21b2ob2o51b2ob2o$
20bo5bo49bobobobo$22bobo53bobo$22bobo52bo3bo!

Note that the wick on the right is out of phase with the wick on the left, but after 7 generations, the front part that connects to the wick looks the same. Hopefully, this idea will lead to a complete stretcher. Since p6 is generally within the range of current searches, I am confident that a stationary stabilization for the wick can be found.
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1146
Joined: July 9th, 2009, 2:44 pm

Re: c/7 orthogonal spaceships

Postby MikeP » March 9th, 2013, 9:37 am

Stable loafer to B-heptomino converter, feeding into a standard conduit:

x = 26, y = 17, rule = B3/S23
3b2o$3bo$2obo$ob2ob2o$5bo12b2o2bob2o$5bo11bo2bo2b2o$2b2ob2o11bobo$3bo
15bo$3bob2o18bo$2b2ob2o16b3o$22bo$23bo$bob2o19b2o$b2obo2$10b2o$10b2o!
MikeP
 
Posts: 76
Joined: February 7th, 2010, 9:51 am
Location: Cambridge, UK

Re: c/7 orthogonal spaceships

Postby dvgrn » March 9th, 2013, 10:39 am

MikeP wrote:Stable loafer to B-heptomino converter, feeding into a standard conduit:

Beautiful! Much better than my awkward slow L-to-G, since you can get as many gliders as you want from a clean Herschel output.

The repeat time for this converter is wonderfully short -- only 93 ticks. I don't think we even know how to construct loafers that close together; the current limit seems to be somewhere around 150 ticks.
dvgrn
Moderator
 
Posts: 3995
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: c/7 orthogonal spaceships

Postby 137ben » March 9th, 2013, 8:48 pm

The minimum distance between loafers in a single lane is 73 ticks:
x = 21, y = 10, rule = B3/S23
12b2obo$b2o2bob2o3b5o$o2bo2b2o3bo5b2o$bobo8b7o$2bo10b3o$8bo9b3o$6b3o
10b2o$5bo10b2obo$6bo9bo2bo$7b2o8b2o!


This doesn't rule out closer packings of multi-lane streams.
137ben
 
Posts: 343
Joined: June 18th, 2010, 8:18 pm

Re: c/7 orthogonal spaceships

Postby alhensel » March 10th, 2013, 12:53 pm

MikeP's loafer-to-herschel converter is amazing. That still life looks so dense and vulnerable, but it just repairs itself. How did he find that?

Has anyone applied the same search technique to look for *WSS-to-herschel conversions? Can we dare to hope for direct *WSS reflectors?

The repeat time of the 8-glider synthesis is 154 ticks, only about 50 of which are from the first glider collision to a fully-baked loafer, and the other 100 or so are just waiting for the loafer to slowly get out of the way. So dvgrn is correct: this converter is more than fast enough for any period loafer stream we can construct with today's loafer technology.

Here's an example of loafer-to-glider with MikeP's converter:
x = 26, y = 55, rule = B3/S23
3b2o$3bo$2obo$ob2ob2o$5bo12b2o2bob2o$5bo11bo2bo2b2o$2b2ob2o11bobo$3bo
15bo$3bob2o18bo$2b2ob2o16b3o$22bo$23bo$bob2o19b2o$b2obo2$10b2o$10b2o7$
20b2o$20bo$18bobo$18b2o4$o$3o$3bo$2b2o10$22b2o$22b2o9$7b2o$7b2o!

I like that one. It's pretty simple, and it maintains the minimum 93-tick repeat time, but you can make dozens of others from the old HtoG26Oct2006 collection.

Also:
x = 153, y = 100, rule = B3/S23
130b2o$130bo$127b2obo$127bob2ob2o$132bo12b2o2bob2o$132bo11bo2bo2b2o$
129b2ob2o11bobo$130bo15bo$130bob2o18bo$129b2ob2o16b3o$149bo$150bo$128b
ob2o19b2o$128b2obo2$137b2o$137b2o5$106b2o$106b2o3$108b2o$108b2o39bo$
121b2o24b3o$121bo24bo$119bobo23bobo$46bo9bo15bo46b2o25bo$16b2o28b3o5b
3o13b3o50b2o2b2o$16bo17b2o13bo3bo15bo53b2o3bo$14bobo17bo13b2o3b2o14b2o
57bobo13b2o$14b2o19bo93b2o13b2o$34b2o3$2o$2o108b2o$79b2o29b2o$31b2o46b
2o$31b2o2$91bo$90bobo$91b2o37b2o15b2o$82b2o46b2o15bobo$62b2o19bo65bo$
21b2o19bo6b2o11bobo17bo66b2o$21bo18b3o6b2o13bo17b2o$22b3o14bo24b2o51b
2o$24bo14b2o76b2o21bo$138b3o$137bo$137b2o9$66bo$66b3o37bo$42bo26bo36b
3o35b2o$40b3o25b2o39bo34b2o$39bo68b2o$39b2o$15b2o$15b2o42bo79b2o$57b3o
79b2o$56bo86b2o$43b2o11b2o85b2o$43b2o$99b2o$99b2o36b2o$122b2o13b2o$11b
2o109bobo$11b2o111bo$112b2o10b2o$112bo$68b2o32b2o9b3o$32b2o34b2o11b2o
20bo11bo$32bobo46bo20bo$34bo47b3o17b2o$34b2o48bo2$64b2o$64bo$14b2o27b
2o20b3o$14b2o28bo22bo$41b3o$41bo2$22bo$21bobo$21bobo$22bo!
alhensel
 
Posts: 6
Joined: February 23rd, 2013, 2:03 am

Re: c/7 orthogonal spaceships

Postby dvgrn » March 10th, 2013, 1:38 pm

alhensel wrote:Has anyone applied the same search technique to look for *WSS-to-herschel conversions? Can we dare to hope for direct *WSS reflectors?

Well, there's always hope, of course! My sense is that direct reflectors of any sort -- *WSSes, swimmers, 2c/3 signals, or you name it -- are just a matter of looking carefully at a large enough volume of search space. Given the size of the task, for most of these a completely automated search utility will be needed, which is actually looking for such things and is capable of recognizing them when it sees them.

As soon as a traveling signal has been converted into a miscellaneous active reaction, the sky is the limit -- anything is possible... but there's no *particular* reason why you should get the same kind of signal back, as opposed to some other kind. What you'll mostly get is the most common types of output signals.

So for most kinds of signals you have to look pretty hard -- you'll find a dozen clean glider outputs before you see your first Herschel output, and maybe a hundred Herschel outputs for every *WSS output -- based on experience so far with Herschel conduits, anyway. (Actually I'm really surprised that a direct Herschel-to-*WSS hasn't been found yet; spaceships aren't really that uncommon as output from an active reaction -- I keep seeing *WSSes show up when I'm looking for something else!)

Anyway, maybe for every ten clean *WSS outputs, you'd find a 2c/3 signal output or a swimmer, and for every hundred of those you might even get a direct loafer output ... but meanwhile you'd have passed by hundreds or thousands of new Herschel conduits. It can be kind of hard not to get distracted.

There are several good possibilities for search engines that could be completely automated and left to search for interesting direct converters. Guam has a search utility that is clearly capable of finding new things; Paul Chapman is working on another approach at the moment, more along the lines of Gabriel Nivasch's 'catalyst' but perhaps with more ability to handle transparent catalysts, along the lines of Paul Callahan's 'ptbsearch'.

I'm still holding out hope for one of these options to be adaptable into a large-scale distributed search, perhaps run through Golly along the lines of Nathaniel Johnston's Soup Search from a few years ago. There's an awful lot of processing power going to waste out there these days...!

Direct *WSS-to-Herschel conversions are an interesting case. As with gliders, *WSSes are small and fragile enough that they don't tend to hit a catalyst, bounce off without damaging it, and spawn a big new catalyzable active reaction. They hit and convert quickly into a still life, or disappear completely -- or they destroy the object they hit, and then the problem of restoring that sacrificial object and getting a clean Herschel out requires examining a very large search space.

Loafers are just big enough to be on the other side of that mysterious dividing line: you can catalyze the leading edge of the loafer, and the rest of it collapses into an active reaction that's big enough, and far enough away from the initial catalyst, that you have a good chance of modifying it with more catalysts and getting something useful out.
dvgrn
Moderator
 
Posts: 3995
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: c/7 orthogonal spaceships

Postby MikeP » March 12th, 2013, 7:20 am

alhensel wrote:MikeP's loafer-to-herschel converter is amazing. That still life looks so dense and vulnerable, but it just repairs itself. How did he find that?


It's a backtracking search which starts with an evolving Life pattern and a set of cells whose state is unknown (but assumed to contain a stable catalyst). It evolves the pattern forwards until the value of one of the unknown cells is needed to calculate the next generation; at that point it splits the search into two subproblems, one where the cell is live and one where it's dead, and recurses.

The real magic is in pruning the search tree to avoid enumerating every possible state of the universe. Obviously the assumed catalyst has to be stable, and this is where most branches of the tree get pruned, but I also abort the search if too many cells in the catalyst differ from their stable state, or if the pattern takes too long to repair itself after the interaction has finished. I'm sure there are much cleverer things I could be doing too.

alhensel wrote:Has anyone applied the same search technique to look for *WSS-to-herschel conversions? Can we dare to hope for direct *WSS reflectors?


I've spent a bit of time searching for things that react with *WSSes, without finding anything other than the odd exotic eater.

Most of the time I feed it gliders, or collisions between gliders and small objects. The "holy grail" I'd like to find is a small stable 90 degree reflector.
MikeP
 
Posts: 76
Joined: February 7th, 2010, 9:51 am
Location: Cambridge, UK

Re: c/7 orthogonal spaceships

Postby Tropylium » March 13th, 2013, 12:19 am

MikeP wrote:I've spent a bit of time searching for things that react with *WSSes, without finding anything other than the odd exotic eater.

Most of the time I feed it gliders, or collisions between gliders and small objects. The "holy grail" I'd like to find is a small stable 90 degree reflector.

Have you tried looking for stable glider-to-LWSS converters BTW? Plenty of smallish still lifes can quickly catalyze this, some can even partially survive, finding one that regenerates probably wouldn't be impossible.
x = 7, y = 12, rule = B3/S23
2bo$obo$b2o3$2b2o$3bo$bo$ob4o$o5bo$b5o$3bo!

x = 34, y = 22, rule = B3/S23
22bo$21bobo$21bobo$18b2obobob2o$13b2o3bo2bobo2bo$14b2o4bo3bo$13bo7b3o
8b2o$31b2o$23b3o7bo$23bo2bo$25b2o5$9bo2b2o$8bobo2bo2bo$8bob2obobobo$5b
2obobo2bo2bo$2o3bo2bo3b2o$b2o4bobo$o7bo!
User avatar
Tropylium
 
Posts: 406
Joined: May 31st, 2011, 7:12 pm
Location: Finland

Re: c/7 orthogonal spaceships

Postby MikeP » March 14th, 2013, 6:55 am

It doesn't filter on particular output objects. Most of the searches I've been running would have reported a glider-to-LWSS converter as a solution if they'd found one, but I haven't seen one yet.

I've tried searching for small objects that turn into LWSSes when hit by gliders, like the ones you've shown. They're a lot easier to find.
MikeP
 
Posts: 76
Joined: February 7th, 2010, 9:51 am
Location: Cambridge, UK

Re: c/7 orthogonal spaceships

Postby HartmutHolzwart » March 20th, 2013, 6:58 am

can someone provide a c/2 rake that creates a sideways loafer streams?

Thanks in advance,
Hartmut
HartmutHolzwart
 
Posts: 377
Joined: June 27th, 2009, 10:58 am
Location: Germany

Re: c/7 orthogonal spaceships

Postby DivusIulius » March 20th, 2013, 6:43 pm

MikeP wrote:The "holy grail" I'd like to find is a small stable 90 degree reflector.


Same here. I can't believe how bulky and ugly the smallest/fastest stable 90 degree reflector are. :wink: *tongue-in-cheek*

466-tick reflector
487-tick reflector
User avatar
DivusIulius
 
Posts: 89
Joined: April 1st, 2009, 11:23 am

Re: c/7 orthogonal spaceships

Postby velcrorex » April 2nd, 2013, 11:33 pm

I just finished searching at width 9 for a c/7 asymmetric ship with no results. That makes the loafer, at width 10, the narrowest c/7 ship possible.
-Josh Ball.
User avatar
velcrorex
 
Posts: 313
Joined: November 1st, 2009, 1:33 pm

Re: c/7 orthogonal spaceships

Postby HartmutHolzwart » April 3rd, 2013, 2:58 am

Did you also try to find small tagalongs for the loafer? Any interesting partial results?
HartmutHolzwart
 
Posts: 377
Joined: June 27th, 2009, 10:58 am
Location: Germany

PreviousNext

Return to Patterns

Who is online

Users browsing this forum: Yahoo [Bot] and 6 guests