## c/7 orthogonal spaceships

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

### Re: c/7 orthogonal spaceships

Somewhat off topic: following up on Dave Greene's question on wicks, I ran some searches for wicks that are always "in the same phase", that is, each generation looks like the previous generation, but shifted. The only things I found that might be useful are these 2 period-7 wicks that also "travel" at 2c/5 (probably already known):
`x = 46, y = 112, rule = B3/S23ob3o3bo21bo4bo3bo4bo\$2bobobo28b2ob2o\$bo2bobo22b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o22b2o2bobobobo2b2o\$ob2o4bo23bo9bo\$o3b3obo21bo4bo3bo4bo\$2bobobo28b2ob2o\$2bobo2bo21b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o23b2obobobobob2o\$o4b2obo21bo13bo\$ob3o3bo21bo4bo3bo4bo\$2bobobo28b2ob2o\$bo2bobo22b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o22b2o2bobobobo2b2o\$ob2o4bo23bo9bo\$o3b3obo21bo4bo3bo4bo\$2bobobo28b2ob2o\$2bobo2bo21b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o23b2obobobobob2o\$o4b2obo21bo13bo\$ob3o3bo21bo4bo3bo4bo\$2bobobo28b2ob2o\$bo2bobo22b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o22b2o2bobobobo2b2o\$ob2o4bo23bo9bo\$o3b3obo21bo4bo3bo4bo\$2bobobo28b2ob2o\$2bobo2bo21b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o23b2obobobobob2o\$o4b2obo21bo13bo\$ob3o3bo21bo4bo3bo4bo\$2bobobo28b2ob2o\$bo2bobo22b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o22b2o2bobobobo2b2o\$ob2o4bo23bo9bo\$o3b3obo21bo4bo3bo4bo\$2bobobo28b2ob2o\$2bobo2bo21b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o23b2obobobobob2o\$o4b2obo21bo13bo\$ob3o3bo21bo4bo3bo4bo\$2bobobo28b2ob2o\$bo2bobo22b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o22b2o2bobobobo2b2o\$ob2o4bo23bo9bo\$o3b3obo21bo4bo3bo4bo\$2bobobo28b2ob2o\$2bobo2bo21b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o23b2obobobobob2o\$o4b2obo21bo13bo\$ob3o3bo21bo4bo3bo4bo\$2bobobo28b2ob2o\$bo2bobo22b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o22b2o2bobobobo2b2o\$ob2o4bo23bo9bo\$o3b3obo21bo4bo3bo4bo\$2bobobo28b2ob2o\$2bobo2bo21b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o23b2obobobobob2o\$o4b2obo21bo13bo\$ob3o3bo21bo4bo3bo4bo\$2bobobo28b2ob2o\$bo2bobo22b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o22b2o2bobobobo2b2o\$ob2o4bo23bo9bo\$o3b3obo21bo4bo3bo4bo\$2bobobo28b2ob2o\$2bobo2bo21b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o23b2obobobobob2o\$o4b2obo21bo13bo\$ob3o3bo21bo4bo3bo4bo\$2bobobo28b2ob2o\$bo2bobo22b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o22b2o2bobobobo2b2o\$ob2o4bo23bo9bo\$o3b3obo21bo4bo3bo4bo\$2bobobo28b2ob2o\$2bobo2bo21b2o3bobobobo3b2o\$4bo28b2obobob2o\$b2obob2o21bob2obobobobob2obo\$b2o3b2o23b2obobobobob2o\$o4b2obo21bo13bo!`

It might be a little too hopeful to think that these will lead to a 2c/5 wickstretcher anytime soon (we only just completed that diagonal c/4 wickstretcher for a period-6 wick). The middle wick can be separated by stripes, but this probably would not help in making a wickstretcher:
`x = 25, y = 112, rule = B3/S23bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$b2o2bobobobobobobobo2b2o\$3bo5bobobobo5bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$2b2obobobobobobobobob2o\$bo7bobobobo7bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$b2o2bobobobobobobobo2b2o\$3bo5bobobobo5bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$2b2obobobobobobobobob2o\$bo7bobobobo7bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$b2o2bobobobobobobobo2b2o\$3bo5bobobobo5bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$2b2obobobobobobobobob2o\$bo7bobobobo7bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$b2o2bobobobobobobobo2b2o\$3bo5bobobobo5bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$2b2obobobobobobobobob2o\$bo7bobobobo7bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$b2o2bobobobobobobobo2b2o\$3bo5bobobobo5bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$2b2obobobobobobobobob2o\$bo7bobobobo7bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$b2o2bobobobobobobobo2b2o\$3bo5bobobobo5bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$2b2obobobobobobobobob2o\$bo7bobobobo7bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$b2o2bobobobobobobobo2b2o\$3bo5bobobobo5bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$2b2obobobobobobobobob2o\$bo7bobobobo7bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$b2o2bobobobobobobobo2b2o\$3bo5bobobobo5bo\$bo4bo2bobobobo2bo4bo\$6b2obobobobob2o\$2o3bobobobobobobobo3b2o\$4b2obobobobobobob2o\$ob2obobobobobobobobob2obo\$2b2obobobobobobobobob2o\$bo7bobobobo7bo!`

Here are a few other wicks that don't look very useful (organized by period):
`x = 261, y = 193, rule = B3/S2312bob2o55b2obo45b2o4b2o54b2o5b2obo53b2o4bob2o\$12b2obo55bob2o46bo5bo55bo5bob2o54bo4b2obo\$16b2o51b2o4b2o43bo5bo55bo10b2o51bo3b2o\$17bo51bo5bo44b2o4b2o54b2o9bo52b2o3bo\$16bo53bo5bo117bo55bo\$16b2o51b2o4b2o43b2o4b2o54b2o9b2o51b2o2b2o\$14b2o55b2obo46bo5bo55bo5b2obo54bo4bob2o\$15bo55bob2o45bo5bo55bo6bob2o53bo5b2obo\$14bo60b2o43b2o4b2o54b2o3b2o57b2o8b2o\$14b2o59bo111bo69bo\$12b2o62bo43b2o4b2o54b2o4bo57b2o8bo\$13bo61b2o44bo5bo55bo3b2o58bo8b2o\$12bo58b2obo45bo5bo55bo6b2obo53bo5bob2o\$12b2o57bob2o45b2o4b2o54b2o5bob2o53b2o4b2obo18\$o2b2o19b2o41b2obobobob2o33b2ob2o15b2o2b2o44bo6bobo3bo45b3ob2o2bobo5b3o\$b2obo15b2ob4ob2o40bobobo35b2o3b2o13b2o4b2o45b2obo4bobo48b4obo2bo7b2o\$3b2o15bo2b4o2bo40bobobo35b2obob2o13b2ob2ob2o49bo56b2obo2bobo4b2o\$bo19b3o2b3o43bo38bo3bo15bo4bo45b2o6bobo48bo2b2o3b2ob2ob3o\$o2b2o14bo2b2o2b2o2bo38b2obob2o34bo5bo13bo6bo43b2ob4ob5o47bo2bo5bob2o5bo\$b2obo15b2obo2bob2o39b2obob2o35bo3bo15bo4bo47b4o4b2o47bo5b2obob2o4bo\$3bo19bo2bo41bobo5bo34b5o15b6o43bo3bobo6bo49b2obo3bobo5bo\$b2o2bo14bob2o2b2obo38bo4b2obo35b3o17b4o45bobo4bob2o50b3o5b2o2bo2bo\$bob2o14bo2bo4bo2bo39b3obo35b3ob3o13b3o2b3o49bo53b2o7bobo2b2ob3o\$b2o17b2o6b2o37b2obobobob2o35bo19b2o47bobo6b2o49b2o4bobo2bob4o\$4bo17b2o2b2o42bobobo106b5ob4ob2o49b3ob2obo2bob2o\$b2o2bo14b3o4b3o40bobobo36b2ob2o15b2o2b2o44b2o4b4o50bo5b2ob2o3b2o2bo\$bob2o15bo8bo42bo37b2o3b2o13b2o4b2o43bo6bobo3bo47bo4b2obo5bo2bo\$2bo17b2o6b2o39b2obob2o34b2obob2o13b2ob2ob2o45b2obo4bobo48bo5bobob2o5bo\$o2b2o19b2o43b2obob2o35bo3bo15bo4bo50bo55bo2bo2b2o3bob2o\$b2obo15b2ob4ob2o38bo5bobo33bo5bo13bo6bo44b2o6bobo47b3ob2o2bobo5b3o\$3b2o15bo2b4o2bo38bob2o4bo34bo3bo15bo4bo44b2ob4ob5o48b4obo2bo7b2o\$bo19b3o2b3o41bob3o36b5o15b6o47b4o4b2o50b2obo2bobo4b2o\$o2b2o14bo2b2o2b2o2bo36b2obobobob2o34b3o17b4o44bo3bobo6bo47bo2b2o3b2ob2ob3o\$b2obo15b2obo2bob2o40bobobo35b3ob3o13b3o2b3o43bobo4bob2o49bo2bo5bob2o5bo\$3bo19bo2bo43bobobo38bo19b2o52bo53bo5b2obob2o4bo\$b2o2bo14bob2o2b2obo42bo109bobo6b2o50b2obo3bobo5bo\$bob2o14bo2bo4bo2bo38b2obob2o35b2ob2o15b2o2b2o44b5ob4ob2o48b3o5b2o2bo2bo\$b2o17b2o6b2o39b2obob2o34b2o3b2o13b2o4b2o43b2o4b4o50b2o7bobo2b2ob3o\$4bo17b2o2b2o40bobo5bo33b2obob2o13b2ob2ob2o43bo6bobo3bo47b2o4bobo2bob4o\$b2o2bo14b3o4b3o38bo4b2obo34bo3bo15bo4bo46b2obo4bobo49b3ob2obo2bob2o\$bob2o15bo8bo40b3obo35bo5bo13bo6bo49bo53bo5b2ob2o3b2o2bo\$2bo17b2o6b2o37b2obobobob2o33bo3bo15bo4bo45b2o6bobo49bo4b2obo5bo2bo\$o2b2o19b2o44bobobo36b5o15b6o44b2ob4ob5o48bo5bobob2o5bo\$b2obo15b2ob4ob2o40bobobo37b3o17b4o48b4o4b2o49bo2bo2b2o3bob2o\$3b2o15bo2b4o2bo42bo37b3ob3o13b3o2b3o42bo3bobo6bo46b3ob2o2bobo5b3o\$bo19b3o2b3o40b2obob2o37bo19b2o46bobo4bob2o50b4obo2bo7b2o\$o2b2o14bo2b2o2b2o2bo38b2obob2o111bo56b2obo2bobo4b2o\$b2obo15b2obo2bob2o38bo5bobo34b2ob2o15b2o2b2o45bobo6b2o48bo2b2o3b2ob2ob3o\$3bo19bo2bo41bob2o4bo33b2o3b2o13b2o4b2o43b5ob4ob2o47bo2bo5bob2o5bo\$b2o2bo14bob2o2b2obo40bob3o35b2obob2o13b2ob2ob2o43b2o4b4o50bo5b2obob2o4bo\$bob2o14bo2bo4bo2bo36b2obobobob2o33bo3bo15bo4bo44bo6bobo3bo48b2obo3bobo5bo\$b2o17b2o6b2o40bobobo35bo5bo13bo6bo45b2obo4bobo48b3o5b2o2bo2bo\$4bo17b2o2b2o42bobobo36bo3bo15bo4bo50bo53b2o7bobo2b2ob3o\$b2o2bo14b3o4b3o42bo38b5o15b6o45b2o6bobo49b2o4bobo2bob4o\$bob2o15bo8bo39b2obob2o36b3o17b4o45b2ob4ob5o49b3ob2obo2bob2o\$2bo17b2o6b2o39b2obob2o34b3ob3o13b3o2b3o46b4o4b2o47bo5b2ob2o3b2o2bo\$o2b2o19b2o42bobo5bo36bo19b2o45bo3bobo6bo48bo4b2obo5bo2bo\$b2obo15b2ob4ob2o38bo4b2obo104bobo4bob2o50bo5bobob2o5bo\$3b2o15bo2b4o2bo40b3obo36b2ob2o15b2o2b2o50bo55bo2bo2b2o3bob2o\$bo19b3o2b3o38b2obobobob2o32b2o3b2o13b2o4b2o44bobo6b2o47b3ob2o2bobo5b3o\$o2b2o14bo2b2o2b2o2bo39bobobo35b2obob2o13b2ob2ob2o43b5ob4ob2o48b4obo2bo7b2o\$b2obo15b2obo2bob2o40bobobo36bo3bo15bo4bo44b2o4b4o53b2obo2bobo4b2o\$3bo19bo2bo45bo37bo5bo13bo6bo43bo6bobo3bo46bo2b2o3b2ob2ob3o\$b2o2bo14bob2o2b2obo39b2obob2o35bo3bo15bo4bo46b2obo4bobo47bo2bo5bob2o5bo\$bob2o14bo2bo4bo2bo38b2obob2o35b5o15b6o50bo53bo5b2obob2o4bo\$b2o17b2o6b2o38bo5bobo35b3o17b4o46b2o6bobo50b2obo3bobo5bo\$4bo17b2o2b2o40bob2o4bo33b3ob3o13b3o2b3o43b2ob4ob5o48b3o5b2o2bo2bo\$b2o2bo14b3o4b3o40bob3o38bo19b2o49b4o4b2o47b2o7bobo2b2ob3o\$bob2o15bo8bo37b2obobobob2o102bo3bobo6bo48b2o4bobo2bob4o\$2bo17b2o6b2o40bobobo36b2ob2o15b2o2b2o44bobo4bob2o51b3ob2obo2bob2o\$o2b2o19b2o44bobobo35b2o3b2o13b2o4b2o49bo53bo5b2ob2o3b2o2bo\$b2obo15b2ob4ob2o42bo37b2obob2o13b2ob2ob2o44bobo6b2o49bo4b2obo5bo2bo\$3b2o15bo2b4o2bo39b2obob2o35bo3bo15bo4bo44b5ob4ob2o48bo5bobob2o5bo\$bo19b3o2b3o40b2obob2o34bo5bo13bo6bo43b2o4b4o52bo2bo2b2o3bob2o\$o2b2o14bo2b2o2b2o2bo37bobo5bo34bo3bo15bo4bo44bo6bobo3bo45b3ob2o2bobo5b3o\$b2obo15b2obo2bob2o38bo4b2obo34b5o15b6o46b2obo4bobo48b4obo2bo7b2o\$3bo19bo2bo43b3obo37b3o17b4o51bo56b2obo2bobo4b2o\$b2o2bo14bob2o2b2obo37b2obobobob2o32b3ob3o13b3o2b3o44b2o6bobo48bo2b2o3b2ob2ob3o\$bob2o14bo2bo4bo2bo39bobobo38bo19b2o46b2ob4ob5o47bo2bo5bob2o5bo\$b2o17b2o6b2o40bobobo109b4o4b2o47bo5b2obob2o4bo\$4bo17b2o2b2o44bo38b2ob2o15b2o2b2o43bo3bobo6bo49b2obo3bobo5bo\$b2o2bo14b3o4b3o39b2obob2o34b2o3b2o13b2o4b2o43bobo4bob2o50b3o5b2o2bo2bo\$bob2o15bo8bo39b2obob2o34b2obob2o13b2ob2ob2o49bo53b2o7bobo2b2ob3o\$2bo17b2o6b2o38bo5bobo34bo3bo15bo4bo45bobo6b2o49b2o4bobo2bob4o\$o2b2o19b2o42bob2o4bo33bo5bo13bo6bo43b5ob4ob2o49b3ob2obo2bob2o\$b2obo15b2ob4ob2o40bob3o36bo3bo15bo4bo44b2o4b4o50bo5b2ob2o3b2o2bo\$3b2o15bo2b4o2bo37b2obobobob2o33b5o15b6o44bo6bobo3bo47bo4b2obo5bo2bo\$bo19b3o2b3o41bobobo37b3o17b4o47b2obo4bobo48bo5bobob2o5bo\$o2b2o14bo2b2o2b2o2bo39bobobo35b3ob3o13b3o2b3o49bo55bo2bo2b2o3bob2o\$b2obo15b2obo2bob2o42bo40bo19b2o47b2o6bobo47b3ob2o2bobo5b3o\$3bo19bo2bo42b2obob2o105b2ob4ob5o48b4obo2bo7b2o\$b2o2bo14bob2o2b2obo39b2obob2o35b2ob2o15b2o2b2o47b4o4b2o50b2obo2bobo4b2o\$bob2o14bo2bo4bo2bo37bobo5bo33b2o3b2o13b2o4b2o42bo3bobo6bo47bo2b2o3b2ob2ob3o\$b2o17b2o6b2o38bo4b2obo33b2obob2o13b2ob2ob2o43bobo4bob2o49bo2bo5bob2o5bo\$4bo17b2o2b2o42b3obo36bo3bo15bo4bo50bo53bo5b2obob2o4bo\$b2o2bo14b3o4b3o37b2obobobob2o32bo5bo13bo6bo44bobo6b2o50b2obo3bobo5bo\$bob2o15bo8bo40bobobo36bo3bo15bo4bo44b5ob4ob2o48b3o5b2o2bo2bo\$2bo17b2o6b2o40bobobo36b5o15b6o44b2o4b4o50b2o7bobo2b2ob3o\$o2b2o19b2o46bo39b3o17b4o45bo6bobo3bo47b2o4bobo2bob4o\$b2obo15b2ob4ob2o39b2obob2o34b3ob3o13b3o2b3o45b2obo4bobo49b3ob2obo2bob2o\$3b2o15bo2b4o2bo39b2obob2o37bo19b2o52bo53bo5b2ob2o3b2o2bo\$bo19b3o2b3o39bo5bobo105b2o6bobo49bo4b2obo5bo2bo\$o2b2o14bo2b2o2b2o2bo37bob2o4bo34b2ob2o15b2o2b2o44b2ob4ob5o48bo5bobob2o5bo\$b2obo15b2obo2bob2o40bob3o35b2o3b2o13b2o4b2o46b4o4b2o49bo2bo2b2o3bob2o\$3bo19bo2bo40b2obobobob2o32b2obob2o13b2ob2ob2o42bo3bobo6bo46b3ob2o2bobo5b3o\$b2o2bo14bob2o2b2obo40bobobo36bo3bo15bo4bo44bobo4bob2o50b4obo2bo7b2o\$bob2o14bo2bo4bo2bo39bobobo35bo5bo13bo6bo49bo56b2obo2bobo4b2o\$b2o17b2o6b2o42bo38bo3bo15bo4bo45bobo6b2o48bo2b2o3b2ob2ob3o\$4bo17b2o2b2o41b2obob2o35b5o15b6o44b5ob4ob2o47bo2bo5bob2o5bo\$b2o2bo14b3o4b3o39b2obob2o36b3o17b4o45b2o4b4o50bo5b2obob2o4bo\$bob2o15bo8bo38bobo5bo33b3ob3o13b3o2b3o43bo6bobo3bo48b2obo3bobo5bo\$2bo17b2o6b2o38bo4b2obo36bo19b2o48b2obo4bobo48b3o5b2o2bo2bo\$o2b2o19b2o44b3obo112bo53b2o7bobo2b2ob3o\$b2obo15b2ob4ob2o37b2obobobob2o33b2ob2o15b2o2b2o45b2o6bobo49b2o4bobo2bob4o\$3b2o15bo2b4o2bo40bobobo35b2o3b2o13b2o4b2o43b2ob4ob5o49b3ob2obo2bob2o\$bo19b3o2b3o41bobobo35b2obob2o13b2ob2ob2o46b4o4b2o47bo5b2ob2o3b2o2bo\$o2b2o14bo2b2o2b2o2bo41bo38bo3bo15bo4bo43bo3bobo6bo48bo4b2obo5bo2bo\$b2obo15b2obo2bob2o39b2obob2o34bo5bo13bo6bo43bobo4bob2o50bo5bobob2o5bo\$3bo19bo2bo42b2obob2o35bo3bo15bo4bo50bo55bo2bo2b2o3bob2o\$b2o2bo14bob2o2b2obo38bo5bobo34b5o15b6o45bobo6b2o47b3ob2o2bobo5b3o\$bob2o14bo2bo4bo2bo37bob2o4bo35b3o17b4o45b5ob4ob2o48b4obo2bo7b2o\$b2o17b2o6b2o40bob3o35b3ob3o13b3o2b3o43b2o4b4o53b2obo2bobo4b2o\$4bo17b2o2b2o39b2obobobob2o35bo19b2o46bo6bobo3bo46bo2b2o3b2ob2ob3o\$b2o2bo14b3o4b3o40bobobo108b2obo4bobo47bo2bo5bob2o5bo\$bob2o15bo8bo40bobobo36b2ob2o15b2o2b2o50bo53bo5b2obob2o4bo\$2bo17b2o6b2o42bo37b2o3b2o13b2o4b2o44b2o6bobo50b2obo3bobo5bo\$o2b2o19b2o43b2obob2o34b2obob2o13b2ob2ob2o43b2ob4ob5o48b3o5b2o2bo2bo\$b2obo15b2ob4ob2o39b2obob2o35bo3bo15bo4bo47b4o4b2o47b2o7bobo2b2ob3o\$3b2o15bo2b4o2bo38bobo5bo33bo5bo13bo6bo42bo3bobo6bo48b2o4bobo2bob4o\$bo19b3o2b3o39bo4b2obo34bo3bo15bo4bo44bobo4bob2o51b3ob2obo2bob2o\$o2b2o14bo2b2o2b2o2bo39b3obo36b5o15b6o50bo53bo5b2ob2o3b2o2bo\$b2obo15b2obo2bob2o37b2obobobob2o34b3o17b4o46bobo6b2o49bo4b2obo5bo2bo\$3bo19bo2bo43bobobo35b3ob3o13b3o2b3o43b5ob4ob2o48bo5bobob2o5bo\$b2o2bo14bob2o2b2obo40bobobo38bo19b2o46b2o4b4o52bo2bo2b2o3bob2o\$bob2o14bo2bo4bo2bo41bo108bo6bobo3bo45b3ob2o2bobo5b3o\$b2o17b2o6b2o39b2obob2o35b2ob2o15b2o2b2o46b2obo4bobo48b4obo2bo7b2o\$4bo17b2o2b2o41b2obob2o34b2o3b2o13b2o4b2o49bo56b2obo2bobo4b2o\$b2o2bo14b3o4b3o38bo5bobo33b2obob2o13b2ob2ob2o44b2o6bobo48bo2b2o3b2ob2ob3o\$bob2o15bo8bo38bob2o4bo34bo3bo15bo4bo44b2ob4ob5o47bo2bo5bob2o5bo\$2bo17b2o6b2o40bob3o35bo5bo13bo6bo46b4o4b2o47bo5b2obob2o4bo\$o2b2o19b2o41b2obobobob2o33bo3bo15bo4bo43bo3bobo6bo49b2obo3bobo5bo\$b2obo15b2ob4ob2o40bobobo36b5o15b6o44bobo4bob2o50b3o5b2o2bo2bo\$3b2o15bo2b4o2bo40bobobo37b3o17b4o51bo53b2o7bobo2b2ob3o\$bo19b3o2b3o43bo37b3ob3o13b3o2b3o44bobo6b2o49b2o4bobo2bob4o\$o2b2o14bo2b2o2b2o2bo38b2obob2o37bo19b2o46b5ob4ob2o49b3ob2obo2bob2o\$b2obo15b2obo2bob2o39b2obob2o105b2o4b4o50bo5b2ob2o3b2o2bo\$3bo19bo2bo41bobo5bo34b2ob2o15b2o2b2o44bo6bobo3bo47bo4b2obo5bo2bo\$b2o2bo14bob2o2b2obo38bo4b2obo33b2o3b2o13b2o4b2o45b2obo4bobo48bo5bobob2o5bo\$bob2o14bo2bo4bo2bo39b3obo35b2obob2o13b2ob2ob2o49bo55bo2bo2b2o3bob2o\$b2o17b2o6b2o37b2obobobob2o33bo3bo15bo4bo45b2o6bobo47b3ob2o2bobo5b3o\$4bo17b2o2b2o42bobobo35bo5bo13bo6bo43b2ob4ob5o48b4obo2bo7b2o\$b2o2bo14b3o4b3o40bobobo36bo3bo15bo4bo47b4o4b2o50b2obo2bobo4b2o\$bob2o15bo8bo42bo38b5o15b6o43bo3bobo6bo47bo2b2o3b2ob2ob3o\$2bo17b2o6b2o39b2obob2o36b3o17b4o45bobo4bob2o49bo2bo5bob2o5bo\$o2b2o19b2o43b2obob2o34b3ob3o13b3o2b3o49bo53bo5b2obob2o4bo\$b2obo15b2ob4ob2o38bo5bobo36bo19b2o47bobo6b2o50b2obo3bobo5bo\$3b2o15bo2b4o2bo38bob2o4bo104b5ob4ob2o48b3o5b2o2bo2bo\$bo19b3o2b3o41bob3o36b2ob2o15b2o2b2o44b2o4b4o50b2o7bobo2b2ob3o\$o2b2o14bo2b2o2b2o2bo36b2obobobob2o32b2o3b2o13b2o4b2o43bo6bobo3bo47b2o4bobo2bob4o\$b2obo15b2obo2bob2o40bobobo35b2obob2o13b2ob2ob2o45b2obo4bobo49b3ob2obo2bob2o\$3bo19bo2bo43bobobo36bo3bo15bo4bo50bo53bo5b2ob2o3b2o2bo\$b2o2bo14bob2o2b2obo42bo37bo5bo13bo6bo44b2o6bobo49bo4b2obo5bo2bo\$bob2o14bo2bo4bo2bo38b2obob2o35bo3bo15bo4bo44b2ob4ob5o48bo5bobob2o5bo\$b2o17b2o6b2o39b2obob2o35b5o15b6o47b4o4b2o49bo2bo2b2o3bob2o\$4bo17b2o2b2o40bobo5bo35b3o17b4o44bo3bobo6bo\$b2o2bo14b3o4b3o38bo4b2obo33b3ob3o13b3o2b3o43bobo4bob2o\$bob2o15bo8bo40b3obo38bo19b2o52bo\$2bo17b2o6b2o37b2obobobob2o104bobo6b2o\$24b2o44bobobo106b5ob4ob2o\$20b2ob4ob2o40bobobo106b2o4b4o\$20bo2b4o2bo42bo\$21b3o2b3o40b2obob2o\$69b2obob2o\$68bo5bobo\$68bob2o4bo\$70bob3o!`

The period-11 and period-12 wicks could potentially be used in a c/7 wickstretcher, but finding a stationary stabilization is currently well out of our capabilities.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1249
Joined: July 9th, 2009, 2:44 pm

### Re: c/7 orthogonal spaceships

Loafer seems to be a fitting name. And I really can't think of anything better, so loafer it is.

While we're going off topic, on the topic of spaceships with some glide reflect symmetry found directly, there's one more ship worth mentioning. It's the 44P5H2V0 ship with a glide reflect tagalong. Not sure if this is previously known.
`x = 15, y = 205bo5boo\$4bo\$4boo3bo3bo\$5bo3bo\$8boobbo\$3bo3bo\$4boo3boo\$6b3o\$\$4bo5bo\$bbobbo3bobbo\$oo3bo3bo3boo\$5bo3bo\$o4bo3bo4bo\$4boo3boo\$bbobo5bobo\$b3o7b3o\$bbobbo3bobbo\$3b3o3b3o\$4bo5bo!`
-Josh Ball.

velcrorex

Posts: 339
Joined: November 1st, 2009, 1:33 pm

### Re: c/7 orthogonal spaceships

Congratulations to Velcrorex on discovering the Loafer! I thought this search might be worthwhile spending some CPU time on but wouldn't have dreamed of anything being found so quickly.

Its fragility means that there aren't any really interesting non-destructive interactions with standard spaceships. However it can be turn an MWSS into a loaf. This enables it to be used in a tractor-beam sawtooth pattern. Here it is in a sawtooth with expansion factor of 4. It reaches a roughly linearly increasing maximum population near generation 42*4^n - 34 (n>=0), whilst decreasing to a population of around 1376/1378 at generation 30*4^n-51.
`x = 197, y = 90, rule = B3/S23141b2o\$123b2o16b2o\$37b2o84b2o\$23b2o12b2o16b2o\$5b2o16b2o30bo2bo33b2o\$5b2o67b2o16b2o27bo47bobo\$5b2o52bo14b2o46bo8b2o34bo3bo\$5bo116bo8b2o34bo19bo\$4bobo40b2o8b2o15bo85b2o4bo4bo14b4o\$4bobo6b2o32b2o7bo16bobo18b2o64b2o5bo12bo4b2obobo\$5bo7b2o58bobo6b2o36b2o3b2o40bo3bo3bob2o5b3obo2bo2b2o\$74bo7b2o39bo17b3o25bobo2bob4o5b2obobo3b2o\$53b2o3b2o60bo5bo13bo3bo29b2o2b2o6b4o\$2b2o3b2o12b2obob2o25b2o3b2o61b2ob2o13bo5bo41bo\$2bobobobo26b5o14b5o12b2obob2o12b2o3b2o25bobo15bo3bo\$3b5o13bo5bo6bob3obo14bobo13bo5bo13b5o27bo7b3o7b3o\$4b3o28bo3bo32bo3bo14b2ob2o27bo6bo3bo6b3o34bobo\$5bo16b2ob2o9b3o8bo7b3o15b3o15b2ob2o33bo5bo40bo3bo\$24bo12bo8b3o43b3o34b2obob2o31bobo6bo12b2o\$45b5o117b2o6bo4bo8b2o\$13b3o28b2o3b2o117bo7bo\$12bo3bo115bo10b3o30bo3bo\$11bo5bo17bo45b5o39bobo3bobo4bo3b2ob2o31bobo\$12bo3bo18bo17bo26bob3obo39b2o3bobo2b2o4b2ob2o\$6bobo4b3o5bo12bobo5bo3b3o3bo23bo4bo3bo34b3o3bo5b3ob3o3b5o26b2o\$7b2o4b3o3b2o4b3o5b2ob2o2bobo3b3o3b3o22bo4b3o4bo29bo3bo10b3o4b2o3b2o\$7bo12b2o2bo3bo3bo5bo2b2o15bo16b3o5bo5bobo3bo22bo5bo9b2o39bo10b2o\$35bo8b2o11b3o29b2o3b3o21b2obob2o50bo10b2o\$16b2o5bo5bo2b2o3b2o5b2o10b5o32b5o71b2o12b2o6bo3b2o\$2b3o11b2o5b2o3b2o25b2o3b2o23b2o5bobobobo68bo3bo10b3o5bo3bobo\$bo3bo79b2o5b2o3b2o22bo20b2o22bo5bo10b2o6b5o\$o5bo29bo33b5o45bobo38b2o2b2obo3bo13b2o4b3o\$bo3bo20bo9bo32bob3obo44bobo38b2o3bo5bo13b2o\$2b3o20bobo9bo19b3o10bo3bo20bo25bo45bo3bo\$2b3o20bobo29b3o11b3o20bobo47b2o23b2o\$25bo46bo21bobo24b2o21b2o\$25bo8b2o59bo25b2o\$25bo2bo5b2o21b2o36b2o83bo\$3b2o21b2o29b2o36b2o80b5o\$3b2o67b2o21b2o77bobo5bo\$72b2o101bob2o2bo\$179b2o\$151b4o19bo\$150bo3bo18b2obo\$76b3o62bo2bo9bo11b3o5bo2bo\$33b2o40b5o17b4o22b2o20bo4bo2bo11b5o4bo2bo\$30b3ob2o39b3ob2o15bo3bo19b3ob2o15bo3bo19b3ob2o4b2o\$30b5o43b2o20bo19b5o17b4o22b2o\$31b3o62bo2bo21b3o2\$4b2o\$4b2o21b2o\$27b2o38b2o55b2o62b2o\$66b3o44b2o9b2o21b2o16b2o21b2o\$54bo8bob2o9b2o12b2o21b2o32b2o16bobo\$54bobo6bo2bo4bo5bo12b2o74b3o\$55bobo5bob2o5bo49bo44b2o20bo\$42b2o11bo2bo7b3o3bo3bo46bo43b2o19bobo\$42b2o11bobo9b2o5bo48bo41bobo19bo3bo\$27bo26bobo109bo20b5o\$10bobo4bo8b3o25bo36bo94b2o3b2o\$10bob2ob4o6b5o59b2ob2o20bo6b2o3b2o59b5o\$2b5o5b2ob2o7bobobobo82b3o8bo38b2o3b2o5b2o11b3o\$bob3obo5b2o9b2o3b2o57bo5bo5b2o10b5o4bo5bo2b2o31b2o3b2o5b2o12bo\$2bo3bo6bob2o43b2o38b2o9bobobobo4b2ob2o2bobo14b3o\$3b3o9bo43bo3bo7b2o15b2obob2o16b2o3b2o5bobo5bo7b2o4bo3bo15b3o3b3o4bo5b2o\$4bo19b2o32bo5bo7b2o50bo14b2o3bo5bo14b3o5bo3bobo4bobo\$5b2o17b2o22b2o8bo3bob2o5bo52bo20bo3bo16bo5bo3bo3bo3bo\$5bobo15bo24b2o8bo5bo29b2o15b2o33b3o27b5o\$5bobo15b3o33bo3bo29bobo15b2o32bo2bo26b2o3b2o\$6bo20bo32b2o32bo8bo6bo21b2o3b2o6b3o28b5o\$13b5o5b5o65b2o7b3o5b3o13bo8bo8bob2o29b3o\$12bob3obo6b2o37bo28b3o5b5o8bo10b3o4bo5bo5bobo31bo\$3b2obob2o3bo3bo34b2o10b2o28b2o4bobobobo3b5o9bo3bo4b2ob2o7bo21b3o\$3bo5bo4b3o35b2o9bobo26bo7b2o3b2o5b2o9bob3obo4bobo30b3o16b3o\$4bo3bo6bo6b2o3b2o14b2o3bo6b2o12b2o53b5o6bo30bo3bo14bo3bo\$5b3o15b5o15bobo3bo5b3o10bo3bo62bo6b2o3b2o\$23b2ob2o16b5o6b2o10bo5bo3b2o24bo5b2o3b2o26bobobobo16b2o3b2o12bo5bo\$23b2ob2o17b3o4b2o13bo3bob2o2b2o14bo8bobo5b5o28b5o36b2o3b2o\$14b2o8b3o25b2o13bo5bo18b3o7bobo5b2ob2o29b3o\$14b2o52bo3bo18b5o7bo6b2ob2o30bo\$69b2o19b2o3b2o6b2o6b3o20b2o42b2o7bo\$91b5o7b2o29b2o42b2o6bobo\$91bo3bo7b2o81bobo\$6b2o84bobo93bo\$6b2o16b2o67bo94bo\$24b2o100b2o57bo2bo\$111b2o13b2o16b2o22b2o16b2o\$93b2o16b2o31b2o22b2o\$93b2o!`
Paul Tooke

Posts: 111
Joined: May 19th, 2010, 7:35 am
Location: Cambridge, UK

### Re: c/7 orthogonal spaceships

Off topic: Here are c/2 supports for one of the wicks that I posted (the front support is certainly suboptimal):
`x = 81, y = 65, rule = B3/S233o74b3o\$o2bo4b3o3b3o14bo16bo14b3o3b3o5bo2bo\$o6bo2bo2bo2bo5b3o5b3o14b3o5b3o4bo2bo2bo2bo5bo\$o6b2obo2bo3bo4bo2bo3b3ob2o10b2ob3o4bo2bo3b2o2bo5bo4bo\$bobob2o2bo2b2o8bo2bo2b2o3bo12bo3b2o2bo8b4obo2b3o4bobo\$5b3o2b2ob2ob3o2bobob2o2bobobob2o6b2obo2bobo2bobo2bo3bo2bo2b3o2b2o\$6b3ob3o3b2o4bo2bo4bob2ob2o6b2o3bob5obobob2o3bo8b2o\$4bo3b3obo10b7o3b2o2bo5bo3b2o8bo3bo4bo7bo\$5bo7bo2bo12bo3bobo5bo5bo2b7o5b3o5bo\$18b2o2bob5ob3o5b4o14bo5b2o6bo\$16bo5bo4bo9bo2b2o8bo3bo\$39bo7b2o5bo\$38bob2o\$38b2o2bo\$41bo\$38b2o\$38bob2o\$38b2o2bo\$40bo\$38b2obo\$37bo2b2o\$38bo\$40b2o\$38b2obo\$37bo2b2o\$39bo\$38bob2o\$38b2o2bo\$41bo\$38b2o\$38bob2o\$38b2o2bo\$40bo\$38b2obo\$37bo2b2o\$38bo\$40b2o\$38b2obo\$37bo2b2o\$39bo\$38bob2o\$38b2o2bo\$41bo\$38b2o\$38bob2o\$38b2o2bo\$40bo\$38b2obo\$37bo2b2o\$38bo\$40b2o\$38b2obo\$37bo2b2o\$39bo\$38bob2o\$38b2o2bo\$41bo\$38b2o\$38bob2o\$38b2o2bo\$40bo\$38b3o\$40bo2\$39b2o!`

I haven't looked for a stationary p7 stabilization.

@Josh Ball
That p10 ship is impressive, and it doesn't seem to be in any of the relevant pattern collections. As far as I can tell, this is the smallest period-10 2c/5 spaceship. Did you find it recently?

Edit: I just noticed that a known p6 wick stabilization also works for the period-12 variant, and it looks like this puts the c/5 wickstretcher within reach!
`x = 76, y = 21, rule = B3/S2350bo\$48b3o8bobo7b2o\$47bo7b2obob2o2bo3bo2bo2b2o\$44b2o2b5o2bob2o5b3o2b2obo2bo\$44bob2o5bobo4b4o3b2o3bobo\$45bo3bob2obob4o4b3o2b2obob2o\$44b3obobobobo6b2o4bobo4bo\$2bo5bo5bo5bo5bo5bo5bo4bob2obo3bo2bob2o4b2o2bo2b3obo\$3b2obo2b2o4b2obo2b2o4b2obo2b2o4b2obobo3bo5b2ob2obo4b2o2bo3bo\$2ob2o2b4ob2ob2o2b4ob2ob2o2b4ob2ob2o7bobobo6bo8b5o2\$2ob2o2b4ob2ob2o2b4ob2ob2o2b4ob2ob2o7bobobo6bo8b5o\$3b2obo2b2o4b2obo2b2o4b2obo2b2o4b2obobo3bo5b2ob2obo4b2o2bo3bo\$2bo5bo5bo5bo5bo5bo5bo4bob2obo3bo2bob2o4b2o2bo2b3obo\$44b3obobobobo6b2o4bobo4bo\$45bo3bob2obob4o4b3o2b2obob2o\$44bob2o5bobo4b4o3b2o3bobo\$44b2o2b5o2bob2o5b3o2b2obo2bo\$47bo7b2obob2o2bo3bo2bo2b2o\$48b3o8bobo7b2o\$50bo!`

-Matthias Merzenich
Sokwe
Moderator

Posts: 1249
Joined: July 9th, 2009, 2:44 pm

### Re: c/7 orthogonal spaceships

Back on topic:

Congrats to Paul Tooke on the loafer-based sawtooth. I have independently verified that this is the only collision back-end *WSS collision that does not destroy the loafer, aside from the LWSS variant which destroys the LWSS and leaves just the loafer. There are 579 possible back-end *WSS collisions (180 LWSS, 199 MWSS, and 200 HWSS).

If you're doing arbitrarily distant constructions, though, destroying the loafer is fine. All that is really needed is a *WSS collision that produces a forward glider, and a *WSS collision that produces a backward glider, and then your powers of arbitrarily distant construction are great. Fortunately, both exist.

Loafer + HWSS = forward glider:
`x = 29, y = 15, rule = B3/S23\$21b6o\$21bo5bo\$21bo\$22bo4bo\$b2o2bob2o15b2o\$o2bo2b2o\$bobo\$2bo\$8bo\$6b3o\$5bo\$6bo\$7b2o!`

For backward gliders, you have 7 choices:
`x = 108, y = 52, rule = B3/S2362b4o\$18b4o40bo3bo\$2b2o2bob2o8bo3bo19b2o2bob2o12bo19b2o2bob2o\$bo2bo2b2o9bo22bo2bo2b2o14bo2bo14bo2bo2b2o\$2bobo14bo2bo19bobo37bobo\$3bo39bo39bo\$9bo39bo39bo\$7b3o37b3o37b3o\$6bo39bo39bo11b4o\$7bo39bo39bo10bo3bo\$8b2o38b2o38b2o8bo\$99bo2bo9\$62b5o\$18b5o39bo4bo\$2b2o2bob2o8bo4bo18b2o2bob2o12bo19b2o2bob2o\$bo2bo2b2o9bo22bo2bo2b2o14bo3bo13bo2bo2b2o\$2bobo14bo3bo18bobo20bo16bobo\$3bo17bo21bo39bo\$9bo39bo39bo\$7b3o37b3o37b3o\$6bo39bo39bo\$7bo39bo39bo\$8b2o38b2o38b2o3\$102b5o\$102bo4bo\$102bo\$103bo3bo\$105bo4\$18b6o\$2b2o2bob2o8bo5bo\$bo2bo2b2o9bo\$2bobo14bo4bo\$3bo17b2o\$9bo\$7b3o\$6bo\$7bo\$8b2o!`

The loafer is simple enough that many of the collisions devolve into simple objects, providing opportunities for optimizing distant constructions.

Arbitrarily distant blocks (8 choices):
`x = 109, y = 96, rule = B3/S232\$55b5o\$55bo4bo\$15b4o36bo\$15bo3bo36bo3bo\$15bo42bo\$3b2o2bob2o5bo2bo23b2o2bob2o32b2o2bob2o\$2bo2bo2b2o32bo2bo2b2o32bo2bo2b2o\$3bobo37bobo37bobo\$4bo39bo39bo\$10bo39bo39bo\$8b3o37b3o37b3o\$7bo39bo39bo\$8bo39bo39bo8b6o\$9b2o38b2o38b2o6bo5bo\$97bo\$98bo4bo\$100b2o9\$3b2o2bob2o12b4o16b2o2bob2o\$2bo2bo2b2o13bo3bo14bo2bo2b2o5b5o\$3bobo17bo19bobo9bo4bo\$4bo19bo2bo16bo10bo\$10bo39bo5bo3bo\$8b3o37b3o7bo\$7bo39bo\$8bo39bo\$9b2o38b2o7\$96b5o\$96bo4bo\$96bo\$97bo3bo\$99bo\$83b2o2bob2o\$82bo2bo2b2o\$83bobo\$84bo\$90bo\$88b3o\$87bo\$88bo\$89b2o12\$43b2o2bob2o\$42bo2bo2b2o\$43bobo\$44bo16b5o\$50bo10bo4bo\$48b3o10bo\$47bo14bo3bo\$48bo15bo\$49b2o8\$102b5o\$102bo4bo\$102bo\$103bo3bo\$83b2o2bob2o14bo\$82bo2bo2b2o\$83bobo\$84bo\$90bo\$88b3o\$87bo\$88bo\$89b2o!`

Arbitrarily distant beehives (vertical, 7 choices):
`x = 109, y = 79, rule = B3/S23\$2b2o2bob2o\$bo2bo2b2o\$2bobo\$3bo\$9bo\$7b3o\$6bo\$7bo\$8b2o\$17b4o\$17bo3bo\$17bo\$18bo2bo18\$2b2o2bob2o32b2o2bob2o32b2o2bob2o\$bo2bo2b2o32bo2bo2b2o32bo2bo2b2o\$2bobo37bobo12b5o20bobo\$3bo39bo13bo4bo20bo\$9bo39bo7bo31bo\$7b3o37b3o8bo3bo24b3o\$6bo39bo13bo25bo15b5o\$7bo39bo39bo14bo4bo\$8b2o38b2o38b2o12bo\$17b5o81bo3bo\$17bo4bo82bo\$17bo\$18bo3bo\$20bo17\$2b2o2bob2o32b2o2bob2o32b2o2bob2o\$bo2bo2b2o32bo2bo2b2o32bo2bo2b2o\$2bobo37bobo12b6o19bobo\$3bo39bo13bo5bo19bo\$9bo39bo7bo31bo\$7b3o37b3o8bo4bo23b3o\$6bo39bo13b2o24bo\$7bo39bo39bo\$8b2o38b2o38b2o\$17b6o\$17bo5bo\$17bo\$18bo4bo69b6o\$20b2o71bo5bo\$93bo\$94bo4bo\$96b2o!`

More beehives (horizontal, 8 choices):
`x = 159, y = 52, rule = B3/S23\$13b4o\$13bo3bo\$13bo\$14bo2bo2\$2b2o2bob2o32b2o2bob2o32b2o2bob2o42b2o2bob2o\$bo2bo2b2o32bo2bo2b2o32bo2bo2b2o42bo2bo2b2o\$2bobo37bobo10b4o23bobo47bobo\$3bo39bo11bo3bo23bo49bo\$9bo39bo5bo33bo49bo\$7b3o37b3o6bo2bo27b3o7b4o36b3o\$6bo39bo39bo10bo3bo34bo\$7bo39bo39bo9bo39bo14b5o\$8b2o38b2o38b2o8bo2bo36b2o12bo4bo\$152bo\$153bo3bo\$155bo19\$2b2o2bob2o32b2o2bob2o32b2o2bob2o42b2o2bob2o\$bo2bo2b2o5b4o23bo2bo2b2o32bo2bo2b2o9b4o29bo2bo2b2o\$2bobo9bo3bo23bobo37bobo13bo3bo29bobo\$3bo10bo28bo39bo14bo34bo16b6o\$9bo5bo2bo30bo39bo9bo2bo36bo10bo5bo\$7b3o37b3o37b3o47b3o10bo\$6bo39bo39bo49bo14bo4bo\$7bo39bo39bo49bo15b2o\$8b2o38b2o38b2o48b2o3\$57b4o\$57bo3bo\$57bo\$58bo2bo!`

Or suppose you're interested in a loaf without the loafer surviving (5 choices):
`x = 102, y = 47, rule = B3/S232\$94b6o\$94bo5bo\$94bo\$95bo4bo\$97b2o\$b2o2bob2o32b2o2bob2o32b2o2bob2o\$o2bo2b2o32bo2bo2b2o32bo2bo2b2o\$bobo37bobo37bobo\$2bo10b4o25bo39bo\$8bo4bo3bo30bo39bo\$6b3o4bo32b3o12b4o21b3o\$5bo8bo2bo27bo15bo3bo19bo\$6bo39bo14bo24bo\$7b2o38b2o13bo2bo21b2o19\$94b6o\$94bo5bo\$94bo\$b2o2bob2o72b2o2bob2o6bo4bo\$o2bo2b2o72bo2bo2b2o9b2o\$bobo77bobo\$2bo10b5o64bo\$8bo4bo4bo69bo\$6b3o4bo72b3o\$5bo8bo3bo66bo\$6bo9bo69bo\$7b2o78b2o!`

The cute thing about the one in the middle is that it just destroys the back end of the loafer, leaving the loaf.

You can also get a blinker, a boat, a long boat, a ship, or a tub, before you get into multi-object patterns such as honey farms and traffic lights. You can also place a pi heptomino, forward or backward:
`x = 77, y = 22, rule = B3/S233\$2b2o2bob2o42b2o2bob2o\$bo2bo2b2o42bo2bo2b2o\$2bobo47bobo\$3bo49bo\$9bo49bo\$7b3o47b3o\$6bo49bo\$7bo9b5o35bo\$8b2o7bo4bo35b2o\$17bo\$18bo3bo\$20bo\$70b6o\$70bo5bo\$70bo\$71bo4bo\$73b2o!`
alhensel

Posts: 6
Joined: February 23rd, 2013, 2:03 am

### Re: c/7 orthogonal spaceships

Here are 5 stable loafer eaters. The first 2 have already been seen in this thread, but the other 3 are new:

`x = 73, y = 49, rule = B3/S2364b2o\$25b2o37b2o\$26bo\$26bobo\$27b2o\$5b2o2bob2o22b2o2bob2o11b2o9b2o2bob2o\$4bo2bo2b2o22bo2bo2b2o12bobo7bo2bo2b2o\$5bobo27bobo17bo9bobo\$6bo29bo29bo\$12bo29bo29bo\$10b3o27b3o27b3o\$9bo29bo29bo\$10bo29bo29bo\$2b2o7b2o28b2o28b2o\$bobo\$bo31b2o28b2o\$2o32bo29bo\$31b3o27b3o\$31bo29bo10\$59bo\$33b2o24b3o\$33b2o27bo\$61b2o4\$35b2o2bob2o13b2o7b2o2bob2o\$34bo2bo2b2o14bobo5bo2bo2b2o\$35bobo19bo7bobo\$36bo29bo\$42bo29bo\$40b3o27b3o\$39bo29bo\$40bo29bo\$41b2o28b2o2\$33b2o28b2o\$34bo29bo\$31b3o27b3o\$31bo29bo!`

Why would you look for new eaters when a single fishhook eater will do? Because what I'm really trying to do is coax out a glider or a herschel. In fact, if you take the block off the top of the one in the upper right, you get a herschel, but you also get a destructive pi heptomino, and I'm not sure there's a way to fix that.
alhensel

Posts: 6
Joined: February 23rd, 2013, 2:03 am

### Re: c/7 orthogonal spaceships

loafer -> B-hep:
`x = 19, y = 21, rule = B3/S235bo\$5b3o\$8bo\$7b2o4\$2o9b2o2bob2o\$obo7bo2bo2b2o\$bo9bobo\$12bo\$18bo\$16b3o\$15bo\$16bo\$17b2o2\$9b2o\$10bo\$7b3o\$7bo!`
Shannon Omick
skomick

Posts: 72
Joined: February 11th, 2011, 11:41 pm

### Re: c/7 orthogonal spaceships

Nice. Herschel and block at gen 90. Unfortunately, the herschel is travelling back along the path of the incoming loafer, and quickly emits a glider that destroys one of the fishhooks. Can a herschel conduit still be attached? It doesn't look hopeful, but I haven't played with herschel conduits in years.
alhensel

Posts: 6
Joined: February 23rd, 2013, 2:03 am

### Re: c/7 orthogonal spaceships

alhensel wrote:Nice. Herschel and block at gen 90. Unfortunately, the herschel is travelling back along the path of the incoming loafer, and quickly emits a glider that destroys one of the fishhooks. Can a herschel conduit still be attached?

I don't see anything that's really worth pursuing, though substituting an eater2 for the fishhook eater will solve the immediate problem there. The block will take extra circuitry to clean up, though, so it probably makes more sense to keep looking for cleaner conversion reactions.

A slow conversion is technically possible with this reaction with Fx77+Fx119, I think -- it looks like Fx119 alone doesn't really give enough clearance for the output Herschel:

`#C partial loafer-to-Herschel conversions -- Fx77+Fx119, and Fx119 alone.#C   Lots of extra gliders available, but ship and/or block still need cleanupx = 155, y = 51, rule = LifeHistory47.A\$47.3A5.2A\$50.A4.2A\$49.2A2\$66.C\$50.2A14.C.D\$50.2A3.2A9.3C\$55.2A11.C9\$20.A\$20.3A\$23.A\$22.2A11.2A11.C\$35.2A9.3C\$5.A40.C.D66.A\$5.3A38.C68.3A\$8.A109.A\$7.2A108.2A\$7.5B2.2B2.2B97.5B2.2B2.2B\$9.12BD97.12BC\$4.17BDBD18B72.17BCBD18B\$2A.7B2D9B3D12B2A2BAB2A66.2A.7B2D9B3C12B2A2BAB2A\$A.A7B2D11BD11BA2BA2B2AB66.A.A7B2D11BC11BA2BA2B2AB\$.AB.32BABA4B68.AB.32BABA4B\$5.32BA6B71.32BA6B\$7.36BAB72.36BAB\$10.23B2D6B3AB75.31B3AB\$9.24BDBD4BA3B75.31BA3B\$10.24B2D5BA2B76.31BA2B\$10.32B2A76.32B2A\$9.5B105.5B\$7.A.2AB105.A.2AB\$5.3AB2A104.3AB2A6.2A\$4.A4.B104.A4.B8.A\$5.3A.2A104.3A.2A4.3A12.2A11.C\$7.A.A107.A.A5.A9.2A3.2A9.3C\$7.A.A107.A.A15.2A14.C.D\$8.A109.A32.C2\$134.2A\$135.A4.2A\$132.3A5.2A\$132.A!`

I haven't really learned how to apply all of Guam's new discoveries yet, though. Some of those do manage to clean up that leftover B-heptomino block. But I think -- haven't confirmed this, so someone else please go ahead! -- that they all need catalysts behind the Herschel on both sides, and here the incoming loafer track seems too wide and existing catalysts are likely to get in the way anyway.

dvgrn
Moderator

Posts: 4569
Joined: May 17th, 2009, 11:00 pm

### Re: c/7 orthogonal spaceships

This two-block approach might yield something? Couple variants:
`x = 13, y = 23, rule = B3/S237b2o\$7b2o4\$2o3b2o2bob2o\$2o2bo2bo2b2o\$5bobo\$6bo\$12bo\$10b3o\$9bo\$10bo\$11b2o6\$8b2o\$9bo\$6b3o\$6bo!`

`x = 21, y = 29, rule = B3/S237b2o\$7b2o4\$2o3b2o2bob2o\$2o2bo2bo2b2o\$5bobo\$6bo\$12bo\$10b3o\$9bo\$10bo\$11b2o14\$19b2o\$19b2o!`

Tropylium

Posts: 406
Joined: May 31st, 2011, 7:12 pm
Location: Finland

### Re: c/7 orthogonal spaceships

Tropylium wrote:This two-block approach might yield something?

Sure looks like it! Has anyone tried 'catalyst' or 'ptbsearch' on these? A two- or three-catalyst search is almost guaranteed to produce a clean loafer-to-glider conversion from one of these, and a Herschel output wouldn't be at all surprising.

Just a few minutes of blockheaded bumbling around by hand produced lots of entertaining near-miss loafer-to-glider converters:

`x = 33, y = 122, rule = LifeHistory7.2A\$7.2A4\$2A23.2A2.B.2A\$2A22.A2.2A.3A\$25.A.A\$26.A\$32.A\$30.3A\$29.A\$30.2A\$31.AB3\$23.2A\$23.2A\$6.2A\$6.2A31\$7.2A\$7.2A4\$2A23.2A2.B.2A\$2A22.A2.2A.3A\$25.A.A\$26.A\$32.A\$30.3A\$29.A\$30.2A\$31.AB3\$23.2A\$23.2A33\$7.2A\$7.2A4\$2A23.2A2.B.2A\$2A22.A2.2A.3A\$25.A.A\$26.A\$32.A\$30.3A\$29.A\$30.2A\$31.AB3\$23.2A\$23.2A3\$11.2A\$11.2A!`

If anyone wants help getting 'catalyst' or 'catgl' up and running for this kind of problem, just let me know. It would be easy enough to write this up as a sample search, with a quick explanation of how to format the input file and how to interpret the output file.

dvgrn
Moderator

Posts: 4569
Joined: May 17th, 2009, 11:00 pm

### Re: c/7 orthogonal spaceships

dvgrn wrote:Sure looks like it! Has anyone tried 'catalyst' or 'ptbsearch' on these? A two- or three-catalyst search is almost guaranteed to produce a clean loafer-to-glider conversion from one of these, and a Herschel output wouldn't be at all surprising.

I didn't have any luck immediately on searches starting with two blocks, though I might certainly have missed something. But a four-catalyst search starting with just a loafer eventually turned up a clean loafer-to-glider converter:

`#C stable loafer-to-glider converter -- recovery time 237 ticksx = 65, y = 20, rule = B3/S238bo\$7bobo\$7bobo\$5b3ob2o9bo\$4bo13b3o\$5b3ob2o6bo\$7bob2o6b2o\$2b2o\$3bo\$3bobo\$4b2o\$23b2o2bob2o26b2o4b2o\$22bo2bo2b2o26bo2b2ob3o\$23bobo31bobo\$24bo33bo\$30bo33bo\$bo26b3o31b3o\$obo24bo33bo\$2o26bo33b2o\$29b2o32bo!`

No loafer-to-Herschel yet, unfortunately.

There's a link to the 'catgl' search utility in this forum thread, with a little explanation of how it differs from 'catalyst'. More detail can be found in the ReadMe.txt file in the ZIP archive. If you want the precompiled Windows executable rather than building the code yourself, just rename the "exe_" file to "catgl.exe". Same for the sample batch file.

The input file for this search looks like the following. I didn't use any of the pattern-matching features I added to 'catgl', actually, so the same search might have worked in the original 'catalyst'. I did rely on the "glider(s) escaped" output to mark the interesting cases where gliders were detected at the edge of the search field.

loafer-converter.txt:
`y.oo..o.oo..o.o.o.o.o.o.o.o.o.o.o.o..o..oo..........................o.o.......o.o.o.o.o.o.o.o.o.o.o...o......................................o..o.o.o.o.o.o.o.o.o.o.o.......ooo.............................o.....o.o.o.o.o.o.o.o.o.o.o.......o.................................oo..o.o.o.o.o.o.o.o.o.o.o.!n1  199994`

Edit: Key to sample input
y = print output to file reactions.txt
[.oo.o.oo ... !] = starting pattern
n = don't customize catalysts, use them all
1 = first generation to place catalysts
199 = last generation to place catalysts
99 = number of ticks each catalyst must survive
4 = maximum number of catalysts to be placed
Then to actually perform the search, I run a batch file to pipe in the input text.

search.bat:
`catgl < loafer-converter.txtpause`

It looks as if I should rebuild the executable with a larger upper time limit. The current limit is 299 ticks. It's often nice to be able to run a pattern a few hundred ticks before starting to add catalysts. In this case, I added extra dots to the right of the loafer to prevent catalysts from being placed on the loafer's input lane. I could have simply started searching at T=175 instead of T=0, but then there might not have been enough time left before T=299 to place and validate all the catalysts.

dvgrn
Moderator

Posts: 4569
Joined: May 17th, 2009, 11:00 pm

### Re: c/7 orthogonal spaceships

I've just had an idea on the possibility of a c/7 wickstretcher. I noted earlier that a known stabilization of a p6 wick worked for a related p12 wick due to the way it "ate" two different but similar pieces. Since this idea couldn't be used to create a stabilization for the other end of the wick, I thought that there wouldn't be much of a chance of a c/7 wickstretcher (the potential c/7 wickstretcher travels in the opposite direction of the potential c/5 wickstretcher relative to the wick). However, instead of stretching the p12 wick, the c/7 stretcher could potentially stretch the p6 wick and "eat" the two different units analogously to the p6 termination for the p12 wick. Here is a partial result to show what I mean:
`x = 103, y = 37, rule = B3/S23b4o4b2o25b2o4b4o11b4o4b2o25b2o4b4o\$2ob2o3b3obo4bo11bo4bob3o3b2ob2o9b2ob2o3b3obo4bo11bo4bob3o3b2ob2o\$7bo7b3o11b3o7bo23bo7b3o11b3o7bo\$2b3ob2obob3o4bo9bo4b3obob2ob3o13b3ob2obob3o4bo9bo4b3obob2ob3o\$o4b2ob2o4b2ob5o3b5ob2o4b2ob2o4bo9bo4b2ob2o4b2ob5o3b5ob2o4b2ob2o4bo\$o11bobo2b3o7b3o2bobo11bo9bo11bobo2b3o7b3o2bobo11bo\$b2o3b2o2bo3b2obo3bo3bo3bob2o3bo2b2o3b2o11b2o3b2o2bo3b2obo3bo3bo3bob2o3bo2b2o3b2o\$14b2o15b2o37b2o15b2o\$21b2ob2o51b2ob2o\$21b2ob2o51b2ob2o\$20bo5bo49bobobobo\$22bobo53bobo\$22bobo52bo3bo2\$21b2ob2o51b2ob2o\$21b2ob2o51b2ob2o\$20bo5bo49bobobobo\$22bobo53bobo\$22bobo52bo3bo2\$21b2ob2o51b2ob2o\$21b2ob2o51b2ob2o\$20bo5bo49bobobobo\$22bobo53bobo\$22bobo52bo3bo2\$21b2ob2o51b2ob2o\$21b2ob2o51b2ob2o\$20bo5bo49bobobobo\$22bobo53bobo\$22bobo52bo3bo2\$21b2ob2o51b2ob2o\$21b2ob2o51b2ob2o\$20bo5bo49bobobobo\$22bobo53bobo\$22bobo52bo3bo!`

Note that the wick on the right is out of phase with the wick on the left, but after 7 generations, the front part that connects to the wick looks the same. Hopefully, this idea will lead to a complete stretcher. Since p6 is generally within the range of current searches, I am confident that a stationary stabilization for the wick can be found.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1249
Joined: July 9th, 2009, 2:44 pm

### Re: c/7 orthogonal spaceships

Stable loafer to B-heptomino converter, feeding into a standard conduit:

`x = 26, y = 17, rule = B3/S233b2o\$3bo\$2obo\$ob2ob2o\$5bo12b2o2bob2o\$5bo11bo2bo2b2o\$2b2ob2o11bobo\$3bo15bo\$3bob2o18bo\$2b2ob2o16b3o\$22bo\$23bo\$bob2o19b2o\$b2obo2\$10b2o\$10b2o!`
MikeP

Posts: 79
Joined: February 7th, 2010, 9:51 am
Location: Cambridge, UK

### Re: c/7 orthogonal spaceships

MikeP wrote:Stable loafer to B-heptomino converter, feeding into a standard conduit:

Beautiful! Much better than my awkward slow L-to-G, since you can get as many gliders as you want from a clean Herschel output.

The repeat time for this converter is wonderfully short -- only 93 ticks. I don't think we even know how to construct loafers that close together; the current limit seems to be somewhere around 150 ticks.

dvgrn
Moderator

Posts: 4569
Joined: May 17th, 2009, 11:00 pm

### Re: c/7 orthogonal spaceships

The minimum distance between loafers in a single lane is 73 ticks:
`x = 21, y = 10, rule = B3/S2312b2obo\$b2o2bob2o3b5o\$o2bo2b2o3bo5b2o\$bobo8b7o\$2bo10b3o\$8bo9b3o\$6b3o10b2o\$5bo10b2obo\$6bo9bo2bo\$7b2o8b2o!`

This doesn't rule out closer packings of multi-lane streams.
137ben

Posts: 343
Joined: June 18th, 2010, 8:18 pm

### Re: c/7 orthogonal spaceships

MikeP's loafer-to-herschel converter is amazing. That still life looks so dense and vulnerable, but it just repairs itself. How did he find that?

Has anyone applied the same search technique to look for *WSS-to-herschel conversions? Can we dare to hope for direct *WSS reflectors?

The repeat time of the 8-glider synthesis is 154 ticks, only about 50 of which are from the first glider collision to a fully-baked loafer, and the other 100 or so are just waiting for the loafer to slowly get out of the way. So dvgrn is correct: this converter is more than fast enough for any period loafer stream we can construct with today's loafer technology.

Here's an example of loafer-to-glider with MikeP's converter:
`x = 26, y = 55, rule = B3/S233b2o\$3bo\$2obo\$ob2ob2o\$5bo12b2o2bob2o\$5bo11bo2bo2b2o\$2b2ob2o11bobo\$3bo15bo\$3bob2o18bo\$2b2ob2o16b3o\$22bo\$23bo\$bob2o19b2o\$b2obo2\$10b2o\$10b2o7\$20b2o\$20bo\$18bobo\$18b2o4\$o\$3o\$3bo\$2b2o10\$22b2o\$22b2o9\$7b2o\$7b2o!`

I like that one. It's pretty simple, and it maintains the minimum 93-tick repeat time, but you can make dozens of others from the old HtoG26Oct2006 collection.

Also:
`x = 153, y = 100, rule = B3/S23130b2o\$130bo\$127b2obo\$127bob2ob2o\$132bo12b2o2bob2o\$132bo11bo2bo2b2o\$129b2ob2o11bobo\$130bo15bo\$130bob2o18bo\$129b2ob2o16b3o\$149bo\$150bo\$128bob2o19b2o\$128b2obo2\$137b2o\$137b2o5\$106b2o\$106b2o3\$108b2o\$108b2o39bo\$121b2o24b3o\$121bo24bo\$119bobo23bobo\$46bo9bo15bo46b2o25bo\$16b2o28b3o5b3o13b3o50b2o2b2o\$16bo17b2o13bo3bo15bo53b2o3bo\$14bobo17bo13b2o3b2o14b2o57bobo13b2o\$14b2o19bo93b2o13b2o\$34b2o3\$2o\$2o108b2o\$79b2o29b2o\$31b2o46b2o\$31b2o2\$91bo\$90bobo\$91b2o37b2o15b2o\$82b2o46b2o15bobo\$62b2o19bo65bo\$21b2o19bo6b2o11bobo17bo66b2o\$21bo18b3o6b2o13bo17b2o\$22b3o14bo24b2o51b2o\$24bo14b2o76b2o21bo\$138b3o\$137bo\$137b2o9\$66bo\$66b3o37bo\$42bo26bo36b3o35b2o\$40b3o25b2o39bo34b2o\$39bo68b2o\$39b2o\$15b2o\$15b2o42bo79b2o\$57b3o79b2o\$56bo86b2o\$43b2o11b2o85b2o\$43b2o\$99b2o\$99b2o36b2o\$122b2o13b2o\$11b2o109bobo\$11b2o111bo\$112b2o10b2o\$112bo\$68b2o32b2o9b3o\$32b2o34b2o11b2o20bo11bo\$32bobo46bo20bo\$34bo47b3o17b2o\$34b2o48bo2\$64b2o\$64bo\$14b2o27b2o20b3o\$14b2o28bo22bo\$41b3o\$41bo2\$22bo\$21bobo\$21bobo\$22bo!`
alhensel

Posts: 6
Joined: February 23rd, 2013, 2:03 am

### Re: c/7 orthogonal spaceships

alhensel wrote:Has anyone applied the same search technique to look for *WSS-to-herschel conversions? Can we dare to hope for direct *WSS reflectors?

Well, there's always hope, of course! My sense is that direct reflectors of any sort -- *WSSes, swimmers, 2c/3 signals, or you name it -- are just a matter of looking carefully at a large enough volume of search space. Given the size of the task, for most of these a completely automated search utility will be needed, which is actually looking for such things and is capable of recognizing them when it sees them.

As soon as a traveling signal has been converted into a miscellaneous active reaction, the sky is the limit -- anything is possible... but there's no *particular* reason why you should get the same kind of signal back, as opposed to some other kind. What you'll mostly get is the most common types of output signals.

So for most kinds of signals you have to look pretty hard -- you'll find a dozen clean glider outputs before you see your first Herschel output, and maybe a hundred Herschel outputs for every *WSS output -- based on experience so far with Herschel conduits, anyway. (Actually I'm really surprised that a direct Herschel-to-*WSS hasn't been found yet; spaceships aren't really that uncommon as output from an active reaction -- I keep seeing *WSSes show up when I'm looking for something else!)

Anyway, maybe for every ten clean *WSS outputs, you'd find a 2c/3 signal output or a swimmer, and for every hundred of those you might even get a direct loafer output ... but meanwhile you'd have passed by hundreds or thousands of new Herschel conduits. It can be kind of hard not to get distracted.

There are several good possibilities for search engines that could be completely automated and left to search for interesting direct converters. Guam has a search utility that is clearly capable of finding new things; Paul Chapman is working on another approach at the moment, more along the lines of Gabriel Nivasch's 'catalyst' but perhaps with more ability to handle transparent catalysts, along the lines of Paul Callahan's 'ptbsearch'.

I'm still holding out hope for one of these options to be adaptable into a large-scale distributed search, perhaps run through Golly along the lines of Nathaniel Johnston's Soup Search from a few years ago. There's an awful lot of processing power going to waste out there these days...!

Direct *WSS-to-Herschel conversions are an interesting case. As with gliders, *WSSes are small and fragile enough that they don't tend to hit a catalyst, bounce off without damaging it, and spawn a big new catalyzable active reaction. They hit and convert quickly into a still life, or disappear completely -- or they destroy the object they hit, and then the problem of restoring that sacrificial object and getting a clean Herschel out requires examining a very large search space.

Loafers are just big enough to be on the other side of that mysterious dividing line: you can catalyze the leading edge of the loafer, and the rest of it collapses into an active reaction that's big enough, and far enough away from the initial catalyst, that you have a good chance of modifying it with more catalysts and getting something useful out.

dvgrn
Moderator

Posts: 4569
Joined: May 17th, 2009, 11:00 pm

### Re: c/7 orthogonal spaceships

alhensel wrote:MikeP's loafer-to-herschel converter is amazing. That still life looks so dense and vulnerable, but it just repairs itself. How did he find that?

It's a backtracking search which starts with an evolving Life pattern and a set of cells whose state is unknown (but assumed to contain a stable catalyst). It evolves the pattern forwards until the value of one of the unknown cells is needed to calculate the next generation; at that point it splits the search into two subproblems, one where the cell is live and one where it's dead, and recurses.

The real magic is in pruning the search tree to avoid enumerating every possible state of the universe. Obviously the assumed catalyst has to be stable, and this is where most branches of the tree get pruned, but I also abort the search if too many cells in the catalyst differ from their stable state, or if the pattern takes too long to repair itself after the interaction has finished. I'm sure there are much cleverer things I could be doing too.

alhensel wrote:Has anyone applied the same search technique to look for *WSS-to-herschel conversions? Can we dare to hope for direct *WSS reflectors?

I've spent a bit of time searching for things that react with *WSSes, without finding anything other than the odd exotic eater.

Most of the time I feed it gliders, or collisions between gliders and small objects. The "holy grail" I'd like to find is a small stable 90 degree reflector.
MikeP

Posts: 79
Joined: February 7th, 2010, 9:51 am
Location: Cambridge, UK

### Re: c/7 orthogonal spaceships

MikeP wrote:I've spent a bit of time searching for things that react with *WSSes, without finding anything other than the odd exotic eater.

Most of the time I feed it gliders, or collisions between gliders and small objects. The "holy grail" I'd like to find is a small stable 90 degree reflector.

Have you tried looking for stable glider-to-LWSS converters BTW? Plenty of smallish still lifes can quickly catalyze this, some can even partially survive, finding one that regenerates probably wouldn't be impossible.
`x = 7, y = 12, rule = B3/S232bo\$obo\$b2o3\$2b2o\$3bo\$bo\$ob4o\$o5bo\$b5o\$3bo!`

`x = 34, y = 22, rule = B3/S2322bo\$21bobo\$21bobo\$18b2obobob2o\$13b2o3bo2bobo2bo\$14b2o4bo3bo\$13bo7b3o8b2o\$31b2o\$23b3o7bo\$23bo2bo\$25b2o5\$9bo2b2o\$8bobo2bo2bo\$8bob2obobobo\$5b2obobo2bo2bo\$2o3bo2bo3b2o\$b2o4bobo\$o7bo!`

Tropylium

Posts: 406
Joined: May 31st, 2011, 7:12 pm
Location: Finland

### Re: c/7 orthogonal spaceships

It doesn't filter on particular output objects. Most of the searches I've been running would have reported a glider-to-LWSS converter as a solution if they'd found one, but I haven't seen one yet.

I've tried searching for small objects that turn into LWSSes when hit by gliders, like the ones you've shown. They're a lot easier to find.
MikeP

Posts: 79
Joined: February 7th, 2010, 9:51 am
Location: Cambridge, UK

### Re: c/7 orthogonal spaceships

can someone provide a c/2 rake that creates a sideways loafer streams?

Hartmut
HartmutHolzwart

Posts: 386
Joined: June 27th, 2009, 10:58 am
Location: Germany

### Re: c/7 orthogonal spaceships

MikeP wrote:The "holy grail" I'd like to find is a small stable 90 degree reflector.

Same here. I can't believe how bulky and ugly the smallest/fastest stable 90 degree reflector are. *tongue-in-cheek*

466-tick reflector
487-tick reflector

DivusIulius

Posts: 89
Joined: April 1st, 2009, 11:23 am

### Re: c/7 orthogonal spaceships

I just finished searching at width 9 for a c/7 asymmetric ship with no results. That makes the loafer, at width 10, the narrowest c/7 ship possible.
-Josh Ball.

velcrorex

Posts: 339
Joined: November 1st, 2009, 1:33 pm

### Re: c/7 orthogonal spaceships

Did you also try to find small tagalongs for the loafer? Any interesting partial results?
HartmutHolzwart

Posts: 386
Joined: June 27th, 2009, 10:58 am
Location: Germany

PreviousNext