ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

17 in 17: Efficient 17-bit synthesis project

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Freywa » August 6th, 2019, 7:07 am

68 remain:
#3 xs17_025ic826z6511
#5 xs17_039s0qmz311
#7 xs17_03p6413z39c
#8 xs17_03p6413zbd
#9 xs17_03p6426z39c
#10 xs17_03p6426zbd
#11 xs17_03pa39cz321
#24 xs17_08kiarz4a43
#25 xs17_08u1642sgz32
#34 xs17_0c9jc4goz321
#37 xs17_0ci9egoz6221
#46 xs17_0drz4706413
#47 xs17_0drz4706426
#49 xs17_0g5r8jdz121
#64 xs17_0j9cz122139c
#65 xs17_0j9cz122d93
#69 xs17_0j9qb8oz23
#70 xs17_0j9qj4cz23
#71 xs17_0kq2c871z641
#72 xs17_0mp2c826z641
#73 xs17_0mp2c84cz641
#74 xs17_0mq0cp3z1221
#79 xs17_1784cggzy332ac
#87 xs17_259m453z311
#91 xs17_25a8k8ge2zx23
#112 xs17_31ke0dbz032
#113 xs17_31ke0mqz032
#114 xs17_31ke1daz032
#116 xs17_32araa4z032
#117 xs17_32as0qmz032
#118 xs17_32q453z39c
#119 xs17_32q453zbd
#120 xs17_32q453zxdb
#124 xs17_358m453z311
#128 xs17_358mi8czx65
#135 xs17_39c84k8zxbd
#156 xs17_4a96ki6zx641
#164 xs17_4ai312kozx123
#165 xs17_4ai3gjl8zx11
#166 xs17_4ai3wmqzx123
#168 xs17_4akg8e13zw65
#170 xs17_4al9acz6221
#172 xs17_4alhik8z0641
#181 xs17_64p784czx56
#191 xs17_6ik8a53z065
#196 xs17_8k4b9czwdb
#198 xs17_8kaajkczw23
#202 xs17_8kihla4z641
#204 xs17_8kkb9cz6421
#210 xs17_at16853z32
#214 xs17_bt0gbdz0121
#217 xs17_c88m96zbd
#218 xs17_c88r54cz065
#230 xs17_cilb8oz641
#247 xs17_gbdz12131e8
#252 xs17_ggc2dicz1ac
#259 xs17_j5o642sgz11
#260 xs17_j9a4z12139c
#266 xs17_jhke0dbz1
#267 xs17_jhke0mqz1
#268 xs17_jhke1daz1
#272 xs17_kq2c871z65
#273 xs17_mk2dicz146
#275 xs17_mk2dioz146
#280 xs17_mp2c826z65
#281 xs17_mp2c84cz65
#293 xs17_wo86picz6221
#295 xs17_xkq23zck3z023

x = 603, y = 214, rule = B3/S23
218bo198b3o$217b2o197bo3bo$218bo201bo$218bo200bo$218bo199bo$218bo198bo
$217b3o196b5o4$17b3o17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b3o17b3o
17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b3o17b3o17bo19b3o17b3o19bo16b
5o16b3o16b5o16b3o17b3o$16bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo
15bo3bo15bo3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo15bo3bo15b
o3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo15bo3bo15bo3bo$16bo
3bo16bo22bo19bo16bobo16bo19bo22bo16bo3bo15bo3bo15bo3bo16bo22bo19bo16bo
bo16bo19bo22bo16bo3bo15bo3bo15bo3bo16bo22bo19bo16bobo16bo19bo22bo16bo
3bo15bo3bo$16bobobo16bo21bo18b2o16bo2bo17b3o16b4o19bo17b3o17b4o15bobob
o16bo21bo18b2o16bo2bo17b3o16b4o19bo17b3o17b4o15bobobo16bo21bo18b2o16bo
2bo17b3o16b4o19bo17b3o17b4o$16bo3bo16bo20bo21bo15b5o19bo15bo3bo17bo17b
o3bo19bo15bo3bo16bo20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo15bo3bo16bo
20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo$16bo3bo16bo19bo18bo3bo18bo16bo
3bo15bo3bo17bo17bo3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo
17bo17bo3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo17bo17bo3bo
15bo3bo$17b3o16b3o17b5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b
5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b5o16b3o19bo17b3o17b3o
18bo18b3o17b3o9$36b2o118b2obo95bo3b2o96b2o77b2o2b2o35b2o56b2o39bo$b3o
32bobob2o114bob2o95b3o2bo95bo2bo75bo2bo2bo34bobo56bobo37bobo2b2o$o3bo
33b2obo118b2o96b2o95bobo2bo75bobobo34bobo60bo36bo2bo2bo$o3bo32bo119b2o
2bo95bo98bob3o74b2o2bo35bo2b3o55b2o38bob2o$obobo32bo118bob2o97bo99bo
78bo39b2o2bo54bo39b2o$o3bo30b2o119bo101b2o98bo76bo41bo57bob3o36bo$o3bo
30bo119b2o102bo95b3o77b2o38bo60bobo36bo$b3o32bo221bo96bo119b2o63bo34b
2o$35b2o221b2o279b2o12$36b2ob2o120b2o33bo180b2o21b2o174bo$bo34bob2o
117b2o2bo33bobo4b2o171bo2bo16b2o2bobo173bobo$2o39bo114bo2bobo34bo2bo2b
o172b2obob2o13bobo2bo174bo2bob2o$bo35b2ob2o115bob2o36b2obobo174bobobo
16b2o176bob2obo$bo35bo118b2o41bobo175bo18b2o177b2o$bo33bobo119bo41bo
178bo18bo178bo$bo33b2o118bo42b2o179bo16bo178bo$3o152b2o221b2o16b2o177b
2o13$157bo77b2o3b2o115b2o59b2o99bo40b2o$b3o152bobo2b2o72bo2bo2bo114bo
2bo57bo2bo97bobo35b2o2bo$o3bo151bo2bo2bo74b2obo114bobo2bo55bo2bobo95bo
bobo33bo2bobo$4bo152bob2o77bob2o114bo4bo53bo4bo96bobobo34bob2o$3bo152b
2o79bo119b4o55b4o95b2o3bo34b2o$2bo154bo78bo121bo58bo97bo40bo$bo153bo
80b2o118bo58bo100bo38bo$5o150b2o199b2o57b2o100bo37b2o$516b2o12$17bo
139bo77b2o321bo41bo$b3o12bobo2b2o133bobo76bo2bob2o313bobobo39bobo$o3bo
12bobo2bo133bo2bob2o74b2obo314b2obobo38bo2bo$4bo14b2o136bob2obo75bo2bo
316bobo36b2obobo$2b2o14bo137b2o79bo2b2o313b2o2bo37bo2b2o$4bo11b3o138bo
78bo318bo42bo$o3bo10bo139bo80b2o319bo37b3o$b3o11b2o138b2o399b2o37bo13$
60bo16b2o57b2o22b2o73b2o2b2o14b2o3b2o76b2o78b2o15b2o2b2o$3bo54b3o17bo
57bo19b2o3bo73bo2bo2bo13bo2bo2bo74b3obo77bo16bo3bo$2b2o53bo18bo2b2o57b
o17bo2bo77b2obo15bob3o74bo5bo74b2o2bo15bo3bo$bobo52bo2b2o15b2obo2bo54b
2o18bob2o77bob2o15bo78bo5bo72bo2b3o14b2o2b2o$o2bo53b2obo17bo2b2o53bo
19b2o2bo76bo20bo78bo3b2o73b2o18bobo$5o53bo16bobo57bo2b3o14bo2bo77bo18b
3o80bobo77bo17bobo$3bo52bobo16b2o59b2obo16b2o78b2o17bo83b2o74bobo19bo$
3bo51bobo83bo273b2o$56bo83b2o12$16b2o40bo77b2o137b2o61bob2o216bo42bo$
5o11bo3b2o35bobobo74bo138bo60b3obo214bobobo39b3o$o17bo2bo35bob2obo75bo
138bob2o54bo5bo213b2obo39bo$o16b2obo35b2o4bo74b2o137b3o2bo54bo5bo215bo
bo38bo$b3o14bob2o35bo4b2o72bo143bo56bob3o213b2o2b2o37b2o$4bo10b3o37bo
79bo2b3o137b2o58b2o215bo41bo$o3bo10bo39b2o79b2o2bo137bo278bo39bo$b3o
134bo140bo276b2o37b2o$138b2o138b2o315bo$596bo$597bo$596b2o9$96b2o137bo
2bo78bo20bo59b2o135b2o3b2o$b3o93bo137b6o75bobob2o14b3o2b2o55bo136bo2bo
2bo$o3bo91bo144bo73bo2b2obo13bo5bo54b2o2bo136b2obo$o95b2o139b4o75b2o
18bo5bo52bo2b3o137bob2o$4o93bo140bo80b2o16bo3b2o53bo138b3o$o3bo91bo3b
2o134bo83bo17bobo56b2o136bo$o3bo91bobo2bo134b2o80bo20b2o57bo$b3o91b2ob
2o218b2o77bo$397b2o12$16b2o2b2o56bo17b2o78b2o2b2o53bo203bo56b2o37b2o$
5o11bobo2bo55bobo17bo77bo2bo2bo53b3o2b2o196bobo55bo38bo2bob2o$4bo13b2o
56bo2bo16bo79bob3o57bo2bo193bo2bobo56bo39b2obo$3bo13bo58bob2obo14b2o
79bo59b2obo194b3obo56b2o40bo2bo$3bo13bo59bo2b2o15bo80bo59bob2o196bo56b
o39b3o2b2o$2bo12b2o61bo17bo78b3o58bo198b2o58bob3o35bo$2bo12bo59b3o18bo
bob2o73bo60b2o197bo60bobobo$2bo14bo57bo19b2ob2obo334bo63bo$16b2o417b2o
63b2o12$16b2o2b2o213bo3b2o14b2o84b2o56bo38b2o95b2o2b2o$b3o12bobo2bo
213b3o2bo14bo2b2o76bo3bobo54b3o38bo96bo2bo2bo$o3bo13b2o218b2o16bobo2bo
73bobo2bo55bo3b2o33bo3b3o95b2obo$o3bo12bo219bo19bo2b2o74bo2b2o54bob2o
2bo33b4o2bo96bob2o$b3o13bo219bo20b2o77b2o57bo2b2o37bo96b3o$o3bo10b2o
218b2o22bo78bo59bo38bo97bo$o3bo10bo219bo22bo78bo59b2o37bo$b3o12bo220bo
20b2o77b2o97b2o$15b2o219b2o12$16b2o79b2ob2o34b2obo15b2o78bo3b2o274b2o$
b3o12bobob2o76bobo35bob2o16bo78b3o2bo274bo2bobo$o3bo13b2obo75bo3bo54bo
b2o78b2o276bob2obo$o3bo12bo80b2obo35b5o15bobo77bo279bo3bo$b4o12bo78bob
obo35bobo2bo18b2o75bo277bobo3b2o$4bo10b2o78bobo38bo25bo72b2o278b2o$o3b
o10bo80bo38b2o25b3o70bo$b3o13bo147bo70bo$16b2o146b2o69b2o!

At some point we're going to clear entire rows of stills. The row with the fewest stills remaining is the xx3 row, with five.
Princess of Science, Parcly Taxel
User avatar
Freywa
 
Posts: 580
Joined: June 23rd, 2011, 3:20 am
Location: Singapore

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Extrementhusiast » August 6th, 2019, 5:12 pm

#116 in twelve gliders:
x = 73, y = 30, rule = B3/S23
10bobo$11b2o$11bo$21bobo$21b2o$22bo$12bo54b2o$10bobo54bo$11b2o56bo$32b
o3bo31b4o$30bobob2o23bo12bo$31b2o2b2o23bo5b6o$26b2o30b3o5bo2bo$26bobo
33b2o$26bo34bo2bo$62bobo$63bo5$bo$b2o$obo12bo$8bo6b2o$8b2o4bobo$7bobo
21b2o$24bo6bobo$23b2o6bo$23bobo!


EDIT: #124 in thirteen:
x = 128, y = 76, rule = B3/S23
47bobo$48b2o$48bo23$2bo69bo$obo68bobo$b2o67bo2bo$10bo60b2o$2bo7bobo$bo
8b2o$b3o71b2o$74bo2bo$75b2o6$127bo$125b3o$124bo$78b2o45bo$78bobo33bo7b
3obo$61bo16bo36b2o4bo2bo2bo$61b2o51b2o6b2o2b2o$60bobo2$70bo42bo3b2o$
65b2o2bo43b2ob2o$65bobob3o40bobo3bo$65bo3$67b3o$67bo$68bo17$44b3o$46bo
$45bo!


EDIT 2: #217 in sixteen:
x = 144, y = 31, rule = B3/S23
83bo$84b2o$83b2o5$112bo$112bobo$91b2o19b2o$92b2o6b2o$91bo3b2o3bobo$94b
2o4bo$96bo42bo$62bo75bo$60bobo42bo32b3o$61b2o42bobo$105b2o34b2o$59b2o
74b2o4bobo$28bobo24bo3bobo72bobo4bo$7bobo18b2o24bobo2bo28bo2bo39bo2bo$
7b2o20bo24b2o32b4o39b3obo$8bo125bo$5bo21b2o25b2o32b2o41b2o$4b2o21bo26b
o33bo42bo$4bobo21bo26bo33bo42bo$o26b2o25b2o32b2o41b2o$b2o98b2o$2o2b2o
94b2o$3bobo96bo$5bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 17 in 17: Efficient 17-bit synthesis project

Postby calcyman » August 9th, 2019, 3:29 pm

Down to 64.

@Freywa: please can you accept merge request 38, containing Alex Greason's collisrc+transfer results? There are plenty of new efficient xs17 syntheses in there, so it might get us significantly further through the project: https://gitlab.com/parclytaxel/Shinjuku ... equests/38
What do you do with ill crystallographers? Take them to the mono-clinic!
User avatar
calcyman
 
Posts: 2089
Joined: June 1st, 2009, 4:32 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Extrementhusiast » August 9th, 2019, 5:11 pm

#37 in sixteen gliders, if it isn't already:
x = 160, y = 29, rule = B3/S23
36bo$37b2o$36b2o$157bo$101bo54bo$101bobo47bo4b3o$101b2o49b2o$98b2o51b
2o$98b2o$66bobo77bo6bo$66b2o76bobo5bo$54bo12bo43bo29bo3b2o5b3o$53bo57b
obo27b2o$53b3o55b2o27bobo$bo106b2o47b3o$2bo98b2o5b2o38b2o7bo$3o49b3o
16bo26bobo2bo41bobo2bo7bo$52bo17bobo25b2ob2obo40b2ob2obo$3b3o47bo16bob
o28bo2bo33bo9bo2bo$5bo65bo29bobo34b2o8bobo$4bo97bo34bobo9bo6$40b2o$41b
2o$40bo!


EDIT: The same method will also clear #24 in fourteen:
x = 96, y = 42, rule = B3/S23
30bo$28b2o$29b2o17$6bo$4bobo6bobo6bo$5b2o6b2o7bobo42bobo$3o11bo7b2o44b
2o$2bo65bo15bo$bo17b3o61bobo$21bo62bobo$20bo65bo$13b2o70b2obo$12bobo
69bo2b2o5bo$14bo69b2o7bo$93b3o$76bobo$77b2o$77bo3b2o5b3o$80bobo5bo$82b
o6bo2$87b2o$88b2o$87bo4b3o$92bo$93bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 17 in 17: Efficient 17-bit synthesis project

Postby AGreason » August 9th, 2019, 9:41 pm

please can you accept merge request 38, containing Alex Greason's collisrc+transfer results? There are plenty of new efficient xs17 syntheses in there, so it might get us significantly further through the project


To moderate expectations, if I recall correctly only two expensive xs17 were reduced by that, and I submitted them both separately anyway so they're already in catagolue.

And to clarify what that was, it wasn't from combining collisearch and transfer, that was just running transfer.py. The only difference is that I ran it targeting everything in catagolue rather than "just the xs17" or the suchlike.
AGreason
 
Posts: 5
Joined: January 31st, 2018, 9:02 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Freywa » August 10th, 2019, 4:41 am

We've actually got 62 to go:
#3 xs17_025ic826z6511
#5 xs17_039s0qmz311
#7 xs17_03p6413z39c
#8 xs17_03p6413zbd
#9 xs17_03p6426z39c
#10 xs17_03p6426zbd
#11 xs17_03pa39cz321
#25 xs17_08u1642sgz32
#34 xs17_0c9jc4goz321
#46 xs17_0drz4706413
#47 xs17_0drz4706426
#49 xs17_0g5r8jdz121
#64 xs17_0j9cz122139c
#65 xs17_0j9cz122d93
#69 xs17_0j9qb8oz23
#70 xs17_0j9qj4cz23
#71 xs17_0kq2c871z641
#72 xs17_0mp2c826z641
#73 xs17_0mp2c84cz641
#74 xs17_0mq0cp3z1221
#79 xs17_1784cggzy332ac
#87 xs17_259m453z311
#91 xs17_25a8k8ge2zx23
#112 xs17_31ke0dbz032
#113 xs17_31ke0mqz032
#114 xs17_31ke1daz032
#117 xs17_32as0qmz032
#118 xs17_32q453z39c
#119 xs17_32q453zbd
#120 xs17_32q453zxdb
#128 xs17_358mi8czx65
#135 xs17_39c84k8zxbd
#156 xs17_4a96ki6zx641
#164 xs17_4ai312kozx123
#165 xs17_4ai3gjl8zx11
#166 xs17_4ai3wmqzx123
#168 xs17_4akg8e13zw65
#170 xs17_4al9acz6221
#172 xs17_4alhik8z0641
#181 xs17_64p784czx56
#191 xs17_6ik8a53z065
#196 xs17_8k4b9czwdb
#198 xs17_8kaajkczw23
#202 xs17_8kihla4z641
#204 xs17_8kkb9cz6421
#210 xs17_at16853z32
#214 xs17_bt0gbdz0121
#218 xs17_c88r54cz065
#247 xs17_gbdz12131e8
#252 xs17_ggc2dicz1ac
#259 xs17_j5o642sgz11
#260 xs17_j9a4z12139c
#266 xs17_jhke0dbz1
#267 xs17_jhke0mqz1
#268 xs17_jhke1daz1
#272 xs17_kq2c871z65
#273 xs17_mk2dicz146
#275 xs17_mk2dioz146
#280 xs17_mp2c826z65
#281 xs17_mp2c84cz65
#293 xs17_wo86picz6221
#295 xs17_xkq23zck3z023

x = 603, y = 214, rule = B3/S23
218bo198b3o$217b2o197bo3bo$218bo201bo$218bo200bo$218bo199bo$218bo198bo
$217b3o196b5o4$17b3o17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b3o17b3o
17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b3o17b3o17bo19b3o17b3o19bo16b
5o16b3o16b5o16b3o17b3o$16bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo
15bo3bo15bo3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo15bo3bo15b
o3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo15bo3bo15bo3bo$16bo
3bo16bo22bo19bo16bobo16bo19bo22bo16bo3bo15bo3bo15bo3bo16bo22bo19bo16bo
bo16bo19bo22bo16bo3bo15bo3bo15bo3bo16bo22bo19bo16bobo16bo19bo22bo16bo
3bo15bo3bo$16bobobo16bo21bo18b2o16bo2bo17b3o16b4o19bo17b3o17b4o15bobob
o16bo21bo18b2o16bo2bo17b3o16b4o19bo17b3o17b4o15bobobo16bo21bo18b2o16bo
2bo17b3o16b4o19bo17b3o17b4o$16bo3bo16bo20bo21bo15b5o19bo15bo3bo17bo17b
o3bo19bo15bo3bo16bo20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo15bo3bo16bo
20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo$16bo3bo16bo19bo18bo3bo18bo16bo
3bo15bo3bo17bo17bo3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo
17bo17bo3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo17bo17bo3bo
15bo3bo$17b3o16b3o17b5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b
5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b5o16b3o19bo17b3o17b3o
18bo18b3o17b3o9$36b2o118b2obo95bo3b2o96b2o77b2o2b2o93b2o39bo$b3o32bobo
b2o114bob2o95b3o2bo95bo2bo75bo2bo2bo93bobo37bobo2b2o$o3bo33b2obo118b2o
96b2o95bobo2bo75bobobo97bo36bo2bo2bo$o3bo32bo119b2o2bo95bo98bob3o74b2o
2bo96b2o38bob2o$obobo32bo118bob2o97bo99bo78bo98bo39b2o$o3bo30b2o119bo
101b2o98bo76bo99bob3o36bo$o3bo30bo119b2o102bo95b3o77b2o99bobo36bo$b3o
32bo221bo96bo184bo34b2o$35b2o221b2o279b2o12$36b2ob2o120b2o33bo180b2o
21b2o174bo$bo34bob2o117b2o2bo33bobo4b2o171bo2bo16b2o2bobo173bobo$2o39b
o114bo2bobo34bo2bo2bo172b2obob2o13bobo2bo174bo2bob2o$bo35b2ob2o115bob
2o36b2obobo174bobobo16b2o176bob2obo$bo35bo118b2o41bobo175bo18b2o177b2o
$bo33bobo119bo41bo178bo18bo178bo$bo33b2o118bo42b2o179bo16bo178bo$3o
152b2o221b2o16b2o177b2o13$157bo77b2o3b2o115b2o59b2o99bo40b2o$b3o152bob
o2b2o72bo2bo2bo114bo2bo57bo2bo97bobo35b2o2bo$o3bo151bo2bo2bo74b2obo
114bobo2bo55bo2bobo95bobobo33bo2bobo$4bo152bob2o77bob2o114bo4bo53bo4bo
96bobobo34bob2o$3bo152b2o79bo119b4o55b4o95b2o3bo34b2o$2bo154bo78bo121b
o58bo97bo40bo$bo153bo80b2o118bo58bo100bo38bo$5o150b2o199b2o57b2o100bo
37b2o$516b2o12$17bo139bo77b2o321bo41bo$b3o12bobo2b2o133bobo76bo2bob2o
313bobobo39bobo$o3bo12bobo2bo133bo2bob2o74b2obo314b2obobo38bo2bo$4bo
14b2o136bob2obo75bo2bo316bobo36b2obobo$2b2o14bo137b2o79bo2b2o313b2o2bo
37bo2b2o$4bo11b3o138bo78bo318bo42bo$o3bo10bo139bo80b2o319bo37b3o$b3o
11b2o138b2o399b2o37bo13$77b2o57b2o22b2o73b2o2b2o97b2o78b2o15b2o2b2o$3b
o74bo57bo19b2o3bo73bo2bo2bo94b3obo77bo16bo3bo$2b2o72bo2b2o57bo17bo2bo
77b2obo94bo5bo74b2o2bo15bo3bo$bobo72b2obo2bo54b2o18bob2o77bob2o94bo5bo
72bo2b3o14b2o2b2o$o2bo74bo2b2o53bo19b2o2bo76bo99bo3b2o73b2o18bobo$5o
70bobo57bo2b3o14bo2bo77bo101bobo77bo17bobo$3bo71b2o59b2obo16b2o78b2o
101b2o74bobo19bo$3bo137bo273b2o$140b2o12$16b2o40bo77b2o137b2o61bob2o
216bo42bo$5o11bo3b2o35bobobo74bo138bo60b3obo214bobobo39b3o$o17bo2bo35b
ob2obo75bo138bob2o54bo5bo213b2obo39bo$o16b2obo35b2o4bo74b2o137b3o2bo
54bo5bo215bobo38bo$b3o14bob2o35bo4b2o72bo143bo56bob3o213b2o2b2o37b2o$
4bo10b3o37bo79bo2b3o137b2o58b2o215bo41bo$o3bo10bo39b2o79b2o2bo137bo
278bo39bo$b3o134bo140bo276b2o37b2o$138b2o138b2o315bo$596bo$597bo$596b
2o9$96b2o219bo20bo59b2o135b2o3b2o$b3o93bo218bobob2o14b3o2b2o55bo136bo
2bo2bo$o3bo91bo218bo2b2obo13bo5bo54b2o2bo136b2obo$o95b2o218b2o18bo5bo
52bo2b3o137bob2o$4o93bo221b2o16bo3b2o53bo138b3o$o3bo91bo3b2o218bo17bob
o56b2o136bo$o3bo91bobo2bo216bo20b2o57bo$b3o91b2ob2o218b2o77bo$397b2o
12$16b2o2b2o74b2o78b2o2b2o53bo260b2o37b2o$5o11bobo2bo75bo77bo2bo2bo53b
3o2b2o254bo38bo2bob2o$4bo13b2o76bo79bob3o57bo2bo255bo39b2obo$3bo13bo
78b2o79bo59b2obo255b2o40bo2bo$3bo13bo79bo80bo59bob2o253bo39b3o2b2o$2bo
12b2o79bo78b3o58bo258bob3o35bo$2bo12bo80bobob2o73bo60b2o258bobobo$2bo
14bo77b2ob2obo398bo$16b2o482b2o12$16b2o2b2o213bo3b2o14b2o84b2o56bo38b
2o95b2o2b2o$b3o12bobo2bo213b3o2bo14bo2b2o76bo3bobo54b3o38bo96bo2bo2bo$
o3bo13b2o218b2o16bobo2bo73bobo2bo55bo3b2o33bo3b3o95b2obo$o3bo12bo219bo
19bo2b2o74bo2b2o54bob2o2bo33b4o2bo96bob2o$b3o13bo219bo20b2o77b2o57bo2b
2o37bo96b3o$o3bo10b2o218b2o22bo78bo59bo38bo97bo$o3bo10bo219bo22bo78bo
59b2o37bo$b3o12bo220bo20b2o77b2o97b2o$15b2o219b2o12$16b2o79b2ob2o34b2o
bo15b2o78bo3b2o274b2o$b3o12bobob2o76bobo35bob2o16bo78b3o2bo274bo2bobo$
o3bo13b2obo75bo3bo54bob2o78b2o276bob2obo$o3bo12bo80b2obo35b5o15bobo77b
o279bo3bo$b4o12bo78bobobo35bobo2bo18b2o75bo277bobo3b2o$4bo10b2o78bobo
38bo25bo72b2o278b2o$o3bo10bo80bo38b2o25b3o70bo$b3o13bo147bo70bo$16b2o
146b2o69b2o!
Princess of Science, Parcly Taxel
User avatar
Freywa
 
Posts: 580
Joined: June 23rd, 2011, 3:20 am
Location: Singapore

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Kazyan » August 10th, 2019, 3:32 pm

#91 in 16G:

x = 81, y = 36, rule = B3/S23
2bo$obo12bo$b2o10bobo$14b2o13$22bo6bobo$21bo7b2o$21b3o6bo2$24b3o36bo5b
obo2bo$24bo36b3o5b2o3bobo2bo$14bo10bo34bo9bo3b2o2b2o$14bobo44bo16bobo$
8bobo3b2o42b3obo$9b2o47bo2bo$9bo3bo8b3o36bobo$13b2o9bo37b2o9bo$12bobo
8bo48bo$72b3o$18b3o$20bo$19bo42b2o$25b3o35b2o$25bo36bo$26bo!


The three still lifes and the 3G collision to make the junk in the lower left are inconveniently arranged, so I couldn't figure out a solution with constellations, but one probably exists. If anyone cares to try to reduce it, the boat can be replaced with a ship, and that variant likely has a 1G cleanup--you could start from there.
Tanner Jacobi
User avatar
Kazyan
 
Posts: 860
Joined: February 6th, 2014, 11:02 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Extrementhusiast » August 10th, 2019, 4:12 pm

Independently, #91 in fifteen gliders:
x = 101, y = 36, rule = B3/S23
69bobo$70b2o14b2o$2bo67bo11b2o2bobo$obo78bobo2bo$b2o80bo3$66bo$67b2o$
66b2o$10b2o2bo$9bobo2bobo$11bo2b2o22bo42bo$37bobo40bobo$14b2o21bo2bo
39bo2bo$13bobo22b2obo39b2obo$15bo24bo28bo13bo$40bobo26b2o12bobo$41bobo
24bobo13bobo$42b2o41bo$98b3o$37b2o59bo$36bobo60bo$38bo$40b3o$40bo28bo$
41bo27b2o$68bobo2$83b2o$83bobo$83bo2$72b2o$71bobo$73bo!


EDIT: #181 in sixteen:
x = 108, y = 33, rule = B3/S23
7bobo9b2o$8b2o10b2o41b2o34b2o$8bo10bo43bo2bo32bo2bo$22b2o36b2obob2o29b
2obob2o$22bobo35bobobo31bobobo$22bo5b2o32bobo35bo$28bobo26bo4b2o3bo31b
o$28bo29bo7bo32b2o$56b3o7b3o$2bo88bobo$obo89b2o$b2o52b3o34bo$57bo$56bo
9bo24b2o12b3o$66b2o22bobo12bo$20b2o43bobo24bo3bo9bo$19b2o74b2o$21bo73b
obo2$3b3o$5bo$4bo9$22bo$21b2o$21bobo!


EDIT 2: #172 (and #202) in sixteen:
x = 157, y = 25, rule = B3/S23
146bo$55bo91bo$53bobo89b3o$54b2o$60bo$bo56b2o$2bo56b2o91bo$3o59b2o36bo
44bo5bo$7b2o41b2o2b2o6bobo30b2o2bobo38b2o2bobo4b3o$8b2o40bo2bobo6bo32b
o2bobo39bo2bobo$7bo44b2o43b2o43b2o10b2o$10b2o41bo44bo8bo35bo10bobo$10b
obo40bobo42bobo5bo36bob2o7bo$10bo43b2o43b2o5b3o35bobo2$103b3o$16b3o84b
o$16bo87bo$17bo79bo$97b2o$96bobo45b3o$146bo7b3o$145bo3bo4bo$149b2o4bo$
148bobo!


EDIT 3: #46 in sixteen:
x = 197, y = 46, rule = B3/S23
40bo$39bo$39b3o$8bo$o8bo$b2o4b3o$2o186bo$188bobo$188b2o$16bobo175bobo$
17b2o168bo6b2o$17bo164bo2bobo7bo$180bobo3b2o$143bo37b2o9bo$141bobo47bo
$142b2o47b3o2$87bobo51bo37b3o$88b2o50bobo38bo4b2o$88bo52b2o37bo5b2o$
195bo$89b2o50b2o43b2o6b2o$90bo51bo44bo6bobo$89bo3b2o46bo3b2o39bo3b2o$
89bobo2bo46bobo2bo39bobo2bo$40bo47b2ob2o47b2ob2o40b2ob2o$41bo$39b3o3$
38b3o$40bo$39bo11$bo$b2o$obo!


EDIT 4: #273 in ten and #275 in thirteen:
x = 125, y = 26, rule = B3/S23
53bo$54bo$52b3o$72bo$71bo$71b3o7$120bobo$79bobo38b2o$79b2o40bo$80bo38b
o$28bobo34bo18bobo25bo5b2o$28b2o34bobo17b2o23bobobo4bobo$3o2bo23bo34b
2o19bo23b2obobo$2bobo107bobo8bo$bo2b3o20b2o35b2o16b3o24b2o2bo8b2o$27bo
36bo17bo26bo12bobo$29bo36bo16bo27bo$6b3o2bo16b2o35b2o43b2o$8bobo$7bo2b
3o!


EDIT 5: #191 in sixteen:
x = 153, y = 38, rule = B3/S23
53bobo$53b2o$54bo$36bo$37bo$35b3o5$o60bo50b2o37b2o$b2ob2o43bo11bobo43b
2o2bobo32b2o2bobo$2o2bobo41bobo10b2o44bobo2bo33bobo2bo$4bo44b2o7bo51b
2o37b2o$59b2o47b2o37b2o$58b2o47bobo30bobo3bobo$107b2o32b2o3b2o$141bo$
149bobo$72b2o67b2o6b2o$71b2o30b2o35bo2bo6bo$73bo29bobo35b2o$42b3o58bo
47b2o$44bo55b2o48bobo$43bo7b2o46bobo50bo$51bobo15b2o30bo$51bo16b2o$70b
o8$73b2o$72b2o$74bo!


EDIT 6: #118 and #119 in sixteen:
x = 112, y = 52, rule = B3/S23
84bo$85b2o$84b2o$111bo$109b2o$110b2o$83bo$84b2o$83b2o14$104bo$96b2o7b
2o$95bobo6b2o$95bo$42bo50b2obo7bo$40bobo2bo46bo2b2o6b2o$41b2o2bobo44b
2o9bobo$2bo42b2o10bo$obo4b2o47b2o$b2o3b2o41b3o4bobo$8bo39b3o$3b2o93b2o
$3bobo93b2o$3bo94bo4$101b3o$103bo$102bo$84b2o$85b2o$84bo2$107b2o$107bo
bo$107bo$83b2o$82bobo$84bo!


EDIT 7: #49 in sixteen:
x = 98, y = 34, rule = B3/S23
82bo$80bobo$81b2o5$84bobo$85b2o$bo83bo$2bo84bo$3o47bo36b2o$37bo11bobo
28bo5bobo$3b3o32bo10bobo29bo$5bo30b3o11bo28b3o$4bo$90b2ob2o$40b3o9bobo
36bobo$42bo9b2o36bo3bo$41bo11bo35bob2obo$89bobobo$90bo$37b3o$39bo$38bo
$49bo26b2o$48b2o27b2o$40b2o6bobo25bo$39bobo40b2o$41bo39bobo$43b3o37bo$
43bo51b3o$44bo50bo$96bo!

It's highly likely that there's a two-glider improvement available on the final step.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Goldtiger997 » August 14th, 2019, 2:09 am

Lots of nice syntheses! Here's #259 in a messy 13G:

x = 483, y = 68, rule = B3/S23
480bobo$480b2o$481bo7$379bo$380bo$378b3o22$2bo$obo$b2o$447bobo$447b2o$
152b3o137b3o137b3o13bo$7b2o$8b2o$7bo$147b2o138b2o138b2o$10bo136bobo
137bobo137bobo$9b2o137bobo137bobo137bobo16bo$9bobo137bo139bo139bo15b2o
$441b3o2b2o$441bo$442bo$289b2o138b2o$288bo2bo136bo2bo$289b2o138b2o4$
150bo146bo$149bo134b2o10bo127b2o$149b3o132b2o10b3o125b2o7bo$432bobo$
293b3o136bobo$150b2o141bo139bo$149b2o143bo$151bo3$161b2o$161bobo$161bo
!


#268 in 14G:

x = 224, y = 25, rule = B3/S23
152bo$151bo$50bo12bo87b3o$51b2o10bobo56bo95bo$6bobo41b2o11b2o58bo24bo
68bo$6b2o69b3o41b3o23bobo67b3o$7bo3b2o134b2o73bo$10b2o209b2o$12bo112b
2o94bobo$79bo45b2o15b2o2bo65b2o2bo$78bobo61bo2bobo64bo2bobo$79b2o63b2o
bo66b2obo3b2o$145bob2o66bob2o2bobo$10b2o130b3o67b3o6bo$10bobo129bo69bo
$10bo52bo13b2o$63b2o11b2o$62bobo13bo64bo$72b2o68bobo$bo70b2o68bobo$b2o
140bo$obo$6bo139b2o$5b2o139bobo$5bobo138bo!


Edit: #260 in 15G:

x = 164, y = 39, rule = B3/S23
47bo$45bobo$46b2o42bo$88b2o$89b2o$79bo$77b2o$78b2o7$obo82bo$b2o82bobo$
bo83b2o$161bobo$78b3o80b2o$78bo83bo$79bo$68b2o$68bo81bobo$69b3o65b2o
11b2o$71bo65bo2bo10bo$78bo60b2o$19bobo55bobo60bob2obo7b3o$3b2o14b2o56b
o2bo58bo2bob2o7bo$2bobo10b2o3bo57b2o60b2o12bo$4bo9b2o57bo$16bo56bo74b
2o$73bo73bobo$149bo3$51b3o$53bo2b3o$52bo5bo$57bo!
User avatar
Goldtiger997
 
Posts: 538
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Freywa » August 14th, 2019, 12:15 pm

48 remain:
#3 xs17_025ic826z6511
#5 xs17_039s0qmz311
#7 xs17_03p6413z39c
#8 xs17_03p6413zbd
#9 xs17_03p6426z39c
#10 xs17_03p6426zbd
#11 xs17_03pa39cz321
#25 xs17_08u1642sgz32
#34 xs17_0c9jc4goz321
#47 xs17_0drz4706426
#64 xs17_0j9cz122139c
#65 xs17_0j9cz122d93
#69 xs17_0j9qb8oz23
#70 xs17_0j9qj4cz23
#71 xs17_0kq2c871z641
#72 xs17_0mp2c826z641
#73 xs17_0mp2c84cz641
#74 xs17_0mq0cp3z1221
#79 xs17_1784cggzy332ac
#87 xs17_259m453z311
#112 xs17_31ke0dbz032
#113 xs17_31ke0mqz032
#114 xs17_31ke1daz032
#117 xs17_32as0qmz032
#120 xs17_32q453zxdb
#128 xs17_358mi8czx65
#135 xs17_39c84k8zxbd
#156 xs17_4a96ki6zx641
#164 xs17_4ai312kozx123
#165 xs17_4ai3gjl8zx11
#166 xs17_4ai3wmqzx123
#168 xs17_4akg8e13zw65
#170 xs17_4al9acz6221
#196 xs17_8k4b9czwdb
#198 xs17_8kaajkczw23
#204 xs17_8kkb9cz6421
#210 xs17_at16853z32
#214 xs17_bt0gbdz0121
#218 xs17_c88r54cz065
#247 xs17_gbdz12131e8
#252 xs17_ggc2dicz1ac
#266 xs17_jhke0dbz1
#267 xs17_jhke0mqz1
#272 xs17_kq2c871z65
#280 xs17_mp2c826z65
#281 xs17_mp2c84cz65
#293 xs17_wo86picz6221
#295 xs17_xkq23zck3z023

x = 603, y = 214, rule = B3/S23
218bo198b3o$217b2o197bo3bo$218bo201bo$218bo200bo$218bo199bo$218bo198bo
$217b3o196b5o4$17b3o17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b3o17b3o
17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b3o17b3o17bo19b3o17b3o19bo16b
5o16b3o16b5o16b3o17b3o$16bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo
15bo3bo15bo3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo15bo3bo15b
o3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo15bo3bo15bo3bo$16bo
3bo16bo22bo19bo16bobo16bo19bo22bo16bo3bo15bo3bo15bo3bo16bo22bo19bo16bo
bo16bo19bo22bo16bo3bo15bo3bo15bo3bo16bo22bo19bo16bobo16bo19bo22bo16bo
3bo15bo3bo$16bobobo16bo21bo18b2o16bo2bo17b3o16b4o19bo17b3o17b4o15bobob
o16bo21bo18b2o16bo2bo17b3o16b4o19bo17b3o17b4o15bobobo16bo21bo18b2o16bo
2bo17b3o16b4o19bo17b3o17b4o$16bo3bo16bo20bo21bo15b5o19bo15bo3bo17bo17b
o3bo19bo15bo3bo16bo20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo15bo3bo16bo
20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo$16bo3bo16bo19bo18bo3bo18bo16bo
3bo15bo3bo17bo17bo3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo
17bo17bo3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo17bo17bo3bo
15bo3bo$17b3o16b3o17b5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b
5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b5o16b3o19bo17b3o17b3o
18bo18b3o17b3o9$36b2o118b2obo95bo3b2o96b2o77b2o2b2o134bo$b3o32bobob2o
114bob2o95b3o2bo95bo2bo75bo2bo2bo133bobo2b2o$o3bo33b2obo118b2o96b2o95b
obo2bo75bobobo134bo2bo2bo$o3bo32bo119b2o2bo95bo98bob3o74b2o2bo136bob2o
$obobo32bo118bob2o97bo99bo78bo138b2o$o3bo30b2o119bo101b2o98bo76bo140bo
$o3bo30bo119b2o102bo95b3o77b2o138bo$b3o32bo221bo96bo219b2o$35b2o221b2o
12$36b2ob2o120b2o413bo$bo34bob2o117b2o2bo413bobo$2o39bo114bo2bobo413bo
2bob2o$bo35b2ob2o115bob2o415bob2obo$bo35bo118b2o417b2o$bo33bobo119bo
418bo$bo33b2o118bo419bo$3o152b2o418b2o13$157bo77b2o3b2o277bo40b2o$b3o
152bobo2b2o72bo2bo2bo276bobo35b2o2bo$o3bo151bo2bo2bo74b2obo276bobobo
33bo2bobo$4bo152bob2o77bob2o275bobobo34bob2o$3bo152b2o79bo277b2o3bo34b
2o$2bo154bo78bo278bo40bo$bo153bo80b2o278bo38bo$5o150b2o360bo37b2o$516b
2o12$17bo139bo77b2o363bo$b3o12bobo2b2o133bobo76bo2bob2o357bobo$o3bo12b
obo2bo133bo2bob2o74b2obo358bo2bo$4bo14b2o136bob2obo75bo2bo355b2obobo$
2b2o14bo137b2o79bo2b2o355bo2b2o$4bo11b3o138bo78bo361bo$o3bo10bo139bo
80b2o357b3o$b3o11b2o138b2o438bo13$77b2o57b2o22b2o73b2o2b2o97b2o78b2o
15b2o2b2o$3bo74bo57bo19b2o3bo73bo2bo2bo94b3obo77bo16bo3bo$2b2o72bo2b2o
57bo17bo2bo77b2obo94bo5bo74b2o2bo15bo3bo$bobo72b2obo2bo54b2o18bob2o77b
ob2o94bo5bo72bo2b3o14b2o2b2o$o2bo74bo2b2o53bo19b2o2bo76bo99bo3b2o73b2o
18bobo$5o70bobo57bo2b3o14bo2bo77bo101bobo77bo17bobo$3bo71b2o59b2obo16b
2o78b2o101b2o74bobo19bo$3bo137bo273b2o$140b2o12$16b2o40bo77b2o137b2o
61bob2o259bo$5o11bo3b2o35bobobo74bo138bo60b3obo258b3o$o17bo2bo35bob2ob
o75bo138bob2o54bo5bo256bo$o16b2obo35b2o4bo74b2o137b3o2bo54bo5bo256bo$b
3o14bob2o35bo4b2o72bo143bo56bob3o256b2o$4bo10b3o37bo79bo2b3o137b2o58b
2o257bo$o3bo10bo39b2o79b2o2bo137bo318bo$b3o134bo140bo315b2o$138b2o138b
2o315bo$596bo$597bo$596b2o9$317bo20bo59b2o135b2o3b2o$b3o312bobob2o14b
3o2b2o55bo136bo2bo2bo$o3bo310bo2b2obo13bo5bo54b2o2bo136b2obo$o315b2o
18bo5bo52bo2b3o137bob2o$4o315b2o16bo3b2o53bo138b3o$o3bo315bo17bobo56b
2o136bo$o3bo313bo20b2o57bo$b3o314b2o77bo$397b2o12$16b2o2b2o74b2o78b2o
2b2o53bo260b2o37b2o$5o11bobo2bo75bo77bo2bo2bo53b3o2b2o254bo38bo2bob2o$
4bo13b2o76bo79bob3o57bo2bo255bo39b2obo$3bo13bo78b2o79bo59b2obo255b2o
40bo2bo$3bo13bo79bo80bo59bob2o253bo39b3o2b2o$2bo12b2o79bo78b3o58bo258b
ob3o35bo$2bo12bo80bobob2o73bo60b2o258bobobo$2bo14bo77b2ob2obo398bo$16b
2o482b2o12$16b2o2b2o233b2o84b2o56bo38b2o$b3o12bobo2bo233bo2b2o76bo3bob
o54b3o38bo$o3bo13b2o236bobo2bo73bobo2bo55bo3b2o33bo3b3o$o3bo12bo239bo
2b2o74bo2b2o54bob2o2bo33b4o2bo$b3o13bo240b2o77b2o57bo2b2o37bo$o3bo10b
2o242bo78bo59bo38bo$o3bo10bo242bo78bo59b2o37bo$b3o12bo241b2o77b2o97b2o
$15b2o12$16b2o118b2obo15b2o$b3o12bobob2o114bob2o16bo$o3bo13b2obo134bob
2o$o3bo12bo119b5o15bobo$b4o12bo118bobo2bo18b2o$4bo10b2o119bo25bo$o3bo
10bo119b2o25b3o$b3o13bo147bo$16b2o146b2o!
Princess of Science, Parcly Taxel
User avatar
Freywa
 
Posts: 580
Joined: June 23rd, 2011, 3:20 am
Location: Singapore

Re: 17 in 17: Efficient 17-bit synthesis project

Postby A for awesome » August 14th, 2019, 4:09 pm

A route that might drastically reduce #s 7-10 if it can be completed:
x = 12, y = 15, rule = B3/S23
2bo$3bo$3bo$3b2o2bo$6bobob2o$5bo2b2obo$4b2obo$3bo2b2o2$b2o$b3o$o5bo$o
4bob2o$4bo2bo$6bo!

The leftmost spark is the most complicated, but also more versatile than the above suggests; all that's needed is a dot spark that persists for a generation with sufficiently dense junk behind it to kill the unwanted part of the reaction. It probably won't solve any of them completely, since xs13_6246pic costs 7G and equivalents of the other two sparks cost likely 3G each, and I doubt the challenging spark can be made in 3G.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1880
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: 17 in 17: Efficient 17-bit synthesis project

Postby 2718281828 » August 14th, 2019, 4:49 pm

#120 xs17_32q453zxdb in 16G using a better clean up:
x = 250, y = 198, rule = B3/S23
3$67bo$65bobo$66b2o21$80bo$81bo$79b3o8$67bo$65bobo$66b2o53$150bo$148bo
bo73bo$149b2o3bobo68b2o$154b2o68b2o$155bo3$227bo$10bo133bo72bo7bobo$
11b2o132bo4b3o65b2o6b2o4bo$10b2o131b3o4bo66b2o11b2o$14bobo134bo79b2o$
14b2o124bo$15bo124b2o$139bobo2$150b3o$225b2o$225bo$227bo$226b2o$225bo$
225bo$226b2o$223b3o2bo$223bo3b2o66$67bo14bo$67b2o13b2o$66bobo12bobo!

old:
#C [[ GRID MAXGRIDSIZE 14 THEME Catagolue ]]
#CSYNTH xs17_32q453zxdb costs 19 gliders (true).
#CLL state-numbering golly
x = 211, y = 104, rule = B3/S23
164bo$162b2o$163b2o5$127bo$128b2o$127b2o10$113bo17bo4b2o$114b2o16b
o2bo2bo$113b2o15b3o3b2o64bo$203b2o$202b2o$49bo80bo$47bobo80bo$48b
2o3bobo74bo7b2o$53b2o83b2o65bo$54bo98bo41bo7bobo$152bobo41b2o6b2o
4bo$152b2o41b2o11b2o$209b2o$2bo40bo96b2o$obo41bo4b3o87bo2bo$b2o3bo
35b3o4bo90b2o$5bo44bo$5b3o31bo$39b2o91bo5b2o63b2o$38bobo90bobo4bo
64bo$122b2o6bo2bo6bo64bo$49b3o70b2o7b2o6b2o63b2o$138bo64bo$138bo
64bo$139b2o63b2o$127b2o7b3o2bo59b3o2bo$126bo2bo6bo3b2o59bo3b2o$
127b2o$131b3o$137b2o5b3o$115b2o20b2o$116b2o$115bo4$130b2o$130b2o5$
120bo$120b2o$119bobo$161b2o$160b2o$162bo35$86b2o$87b2o$86bo!
User avatar
2718281828
 
Posts: 738
Joined: August 8th, 2017, 5:38 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Extrementhusiast » August 14th, 2019, 7:04 pm

#8 and #10 in thirteen gliders, via #7 and #9 in nine:
x = 66, y = 22, rule = B3/S23
16bo33bo$2bo14bo33b2o$obo5bo6b3o32b2o$b2o6bo$7b3o11bo26b2o$3b2o14b2o
26bobo9b2o$2bobo15b2o20b2o5bo7bo2bo3b2o$4bo38b2o12b2o2b2o2bo$12b2o28bo
20b2o$11bobo49bo$13bo50bo$63b2o2$18b2o29b2o$17b2o31b2o$19bo29bo$11b2o$
12b2o$11bo$17b2o$16b2o$18bo!


EDIT: #198 in fifteen:
x = 71, y = 33, rule = B3/S23
4bobo54bo$5b2o52b2o$5bo54b2o2$57bo9bo$58bo6b2o$9bo46b3o7b2o$7bobo$8b2o
2$68bo$11bo56bobo$9bobo56b2o$10b2o40bo7b2o$53bo5bo2bo$51b3o4bob2obo4b
2o$59bo2bo5bobo$60b2o6bo$o3bo$b2obobo$2o2b2o43bobo$50b2o2b2o6b2o$50bo
2bobo7b2o$55bo6bo7$29b3o$29bo$30bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Kazyan » August 15th, 2019, 6:19 pm

#165 in 16G, based on a stealth improvement that someone made earlier:

x = 146, y = 34, rule = B3/S23
47bo$45bobo$46b2o5$58bo$13bo43bo86bo$12bo44b3o82b2o$12b3o128b2o$61b3o$
61bo$62bo32bo6bo32bo$56bo37bobo4bo32bobo$obo53bo36bo2bo4b3o29bo2bo3bo$
b2o3bo49bo35bo3b2o34bo3b2obobo$bo3bo47bo38b2o3bo34b2o3bob2o$5b3o45bo
39bo2bo36bo2bo$53bo39bobo37bobo$47bo46bo3bo35bo8bobo$48bo49b2o43b2o$
46b3o48bobo44bo$137b3o$50b3o47b3o36bo$52bo47bo37bo$51bo49bo2$137b2o$
138b2o$137bo$62b2o$62bobo$62bo!


Semi-related: AGreason's collisrc and transfer.py runs improved a bunch of 15-bit still lifes. Since then, I've been chipping away at the remainder that cost 13 gliders. Today, Goldtiger improved the difficult final four over on the Discord, so all 15-bit still lifes now cost 12 gliders or less.
Tanner Jacobi
User avatar
Kazyan
 
Posts: 860
Joined: February 6th, 2014, 11:02 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Extrementhusiast » August 15th, 2019, 6:55 pm

#47 in sixteen gliders:
x = 175, y = 28, rule = B3/S23
9bo156bo$8bo157bobo$8b3o155b2o$172bobo$o164bo6b2o$b2o157bo2bobo7bo$2o
4bo151bobo3b2o$4b2o115bo37b2o9bo$5b2o112bobo47bo$120b2o47b3o$4bo$5bo
59bobo51bo37b3o$3b3o60b2o50bobo38bo4b2o$66bo52b2o37bo5b2o$173bo$67b2o
50b2o43b2o6b2o$68bo51bo44bo6bobo$7bobo57bo51bo44bo$7b2o58bobob2o46bobo
b2o39bobob2o$8bo57b2ob2obo45b2ob2obo38b2ob2obo2$6b2o$7b2o$6bo2$9b2o$9b
obo$9bo!

An improvement by one seems possible in the first step.

EDIT: #170 in fourteen:
x = 109, y = 25, rule = B3/S23
101bo$100bo$2bobo95b3o$3b2o4bo33bo$3bo4bo35bo53bo$8b3o31b3o54bo$3bo57b
o30bobo2b3o8bo$2bo56b3o31b2o11b3o$2b3o53bo34bo11bo$57bobo44bobo$58bobo
35bobo6bobo$bo4bo52bobo35b2o7bobo$2bob2o54bo36bo9bo$3o2b2o97b3o$104bo
3$96b2o$94bobobo$92bobobo$93b2o$59bo$56bo2bobo$54bobo2b2o$55b2o!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Goldtiger997 » August 17th, 2019, 3:38 am

#74 in 11G:

x = 41, y = 39, rule = B3/S23
4bo$2bobo$3b2o30bo$18bo16bobo$18bobo14b2o$18b2o$30bobo$10bo19b2o$11b2o
18bo$10b2o14$30b2o$30bobo$30bo$4b3o29b3o$6bo18b2o9bo$5bo18b2o11bo$26bo
$3o$2bo$bo4$38b2o$38bobo$38bo!


#218 in 16G:

x = 266, y = 53, rule = B3/S23
99bo$97b2o$98b2o10$246bo$247b2o$246b2o$180bo$178bobo$30bo148b2o$21bo7b
o$19bobo7b3o150b2o$20b2o160b2o$174bo69bo$83bo23b3o63bobo69b2o$83bo89b
2o69b2o$83bo98b2o78b2o$bo8b2o170bo79bo$b2o6b2o159bo8b2obo63b2o11b2obo$
obo8bo156bobo8bob2ob2o59bobo11bob2ob2o$169b2o12bobo61bo15bobo$88bo94bo
79bo$87b2o93b2o78b2o$87bobo81b2o$171b2o2$163bo$161bobo$162b2o$247b2o$
165b2o79bobo$95b2o68b2o81bo$95bobo$95bo2$91b2o$90bobo$92bo5$116b3o$
116bo$117bo!
User avatar
Goldtiger997
 
Posts: 538
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Kazyan » August 17th, 2019, 12:13 pm

Insert the following sparks (or similar) with 3G each at generation 9 to solve #164:

x = 16, y = 16, rule = LifeHistory
12.2D$9.3D2.A$4.2A.A5.A$2.3A.2A5.3A$.A$2.A$3.A$2.2A7.2A$11.A.A$.D5.2A
2.A$.D6.2A$.D5.A$D$D.2A$.A.A$3.A!


EDIT: #114 in 16G via improving an intermediate:

x = 268, y = 32, rule = B3/S23
12bobo$12b2o$13bo5$63bo49bo49bo$62bobo47bobo47bobo$63bo49bo49bo6bo89bo
3bo$168b2o88b2o3bo$59bo49bo49bo9b2o88b2o2b3o$58bobo47bobo47bobo$2bo55b
obo47bobo47bobo96bo$obo56bo49bo49bo46bo7bo40bobo6bo$b2o2bo200bo5b3o41b
2o4b3o$5bobo198bo4bo49bo$5b2o205b3o47b3o$204b2o7bobobo45bobobo$172bo
30bobo5bo4b2o43bo4b2o$157bo12b2o33bo5b2o48b2o$156bo14b2o$156b3o$167bob
o$167b2o$156b2o10bo45b2o$73bo81b2o57b2o$73bobo46b2o33bo7bo6b2o37b2o$
73b2o47b2o40b2o6b2o36bobo$76b2o86bobo45bo$76bobo$76bo!
Tanner Jacobi
User avatar
Kazyan
 
Posts: 860
Joined: February 6th, 2014, 11:02 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Freywa » August 18th, 2019, 2:32 pm

Thirty-six:
#CLL state-numbering golly
x = 603, y = 214, rule = B3/S23
218bo198b3o$217b2o197bo3bo$218bo201bo$218bo200bo$218bo199bo$218bo
198bo$217b3o196b5o4$17b3o17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b
3o17b3o17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b3o17b3o17bo19b3o
17b3o19bo16b5o16b3o16b5o16b3o17b3o$16bo3bo15b2o18bo3bo15bo3bo17b2o
16bo19bo3bo19bo15bo3bo15bo3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo
19bo3bo19bo15bo3bo15bo3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3b
o19bo15bo3bo15bo3bo$16bo3bo16bo22bo19bo16bobo16bo19bo22bo16bo3bo
15bo3bo15bo3bo16bo22bo19bo16bobo16bo19bo22bo16bo3bo15bo3bo15bo3bo
16bo22bo19bo16bobo16bo19bo22bo16bo3bo15bo3bo$16bobobo16bo21bo18b2o
16bo2bo17b3o16b4o19bo17b3o17b4o15bobobo16bo21bo18b2o16bo2bo17b3o
16b4o19bo17b3o17b4o15bobobo16bo21bo18b2o16bo2bo17b3o16b4o19bo17b3o
17b4o$16bo3bo16bo20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo15bo3bo16b
o20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo15bo3bo16bo20bo21bo15b5o
19bo15bo3bo17bo17bo3bo19bo$16bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3b
o17bo17bo3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo17bo17b
o3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo17bo17bo3bo15bo
3bo$17b3o16b3o17b5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b
5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b5o16b3o19bo17b3o
17b3o18bo18b3o17b3o9$156b2obo276b2o2b2o134bo$b3o152bob2o275bo2bo2b
o133bobo2b2o$o3bo155b2o274bobobo134bo2bo2bo$o3bo152b2o2bo273b2o2bo
136bob2o$obobo151bob2o276bo138b2o$o3bo151bo278bo140bo$o3bo150b2o
278b2o138bo$b3o571b2o13$36b2ob2o120b2o413bo$bo34bob2o117b2o2bo413b
obo$2o39bo114bo2bobo413bo2bob2o$bo35b2ob2o115bob2o415bob2obo$bo35b
o118b2o417b2o$bo33bobo119bo418bo$bo33b2o118bo419bo$3o152b2o418b2o
13$157bo77b2o3b2o277bo40b2o$b3o152bobo2b2o72bo2bo2bo276bobo35b2o2b
o$o3bo151bo2bo2bo74b2obo276bobobo33bo2bobo$4bo152bob2o77bob2o275bo
bobo34bob2o$3bo152b2o79bo277b2o3bo34b2o$2bo154bo78bo278bo40bo$bo
153bo80b2o278bo38bo$5o150b2o360bo37b2o$516b2o12$17bo139bo77b2o363b
o$b3o12bobo2b2o133bobo76bo2bob2o357bobo$o3bo12bobo2bo133bo2bob2o
74b2obo358bo2bo$4bo14b2o136bob2obo75bo2bo355b2obobo$2b2o14bo137b2o
79bo2b2o355bo2b2o$4bo11b3o138bo78bo361bo$o3bo10bo139bo80b2o357b3o$
b3o11b2o138b2o438bo13$77b2o57b2o200b2o78b2o15b2o2b2o$3bo74bo57bo
199b3obo77bo16bo3bo$2b2o72bo2b2o57bo196bo5bo74b2o2bo15bo3bo$bobo
72b2obo2bo54b2o197bo5bo72bo2b3o14b2o2b2o$o2bo74bo2b2o53bo200bo3b2o
73b2o18bobo$5o70bobo57bo2b3o197bobo77bo17bobo$3bo71b2o59b2obo199b
2o74bobo19bo$3bo137bo273b2o$140b2o12$16b2o40bo77b2o137b2o324bo$5o
11bo3b2o35bobobo74bo138bo323b3o$o17bo2bo35bob2obo75bo138bob2o317bo
$o16b2obo35b2o4bo74b2o137b3o2bo317bo$b3o14bob2o35bo4b2o72bo143bo
317b2o$4bo10b3o37bo79bo2b3o137b2o317bo$o3bo10bo39b2o79b2o2bo137bo
318bo$b3o134bo140bo315b2o$138b2o138b2o315bo$596bo$597bo$596b2o9$
317bo20bo59b2o135b2o3b2o$b3o312bobob2o14b3o2b2o55bo136bo2bo2bo$o3b
o310bo2b2obo13bo5bo54b2o2bo136b2obo$o315b2o18bo5bo52bo2b3o137bob2o
$4o315b2o16bo3b2o53bo138b3o$o3bo315bo17bobo56b2o136bo$o3bo313bo20b
2o57bo$b3o314b2o77bo$397b2o12$176b2o2b2o53bo260b2o37b2o$5o170bo2bo
2bo53b3o2b2o254bo38bo2bob2o$4bo171bob3o57bo2bo255bo39b2obo$3bo173b
o59b2obo255b2o40bo2bo$3bo174bo59bob2o253bo39b3o2b2o$2bo172b3o58bo
258bob3o35bo$2bo172bo60b2o258bobobo$2bo497bo$500b2o12$255b2o84b2o$
b3o251bo2b2o76bo3bobo$o3bo251bobo2bo73bobo2bo$o3bo252bo2b2o74bo2b
2o$b3o254b2o77b2o$o3bo254bo78bo$o3bo253bo78bo$b3o254b2o77b2o13$
136b2obo15b2o$b3o132bob2o16bo$o3bo151bob2o$o3bo132b5o15bobo$b4o
131bobo2bo18b2o$4bo131bo25bo$o3bo130b2o25b3o$b3o161bo$164b2o!
Princess of Science, Parcly Taxel
User avatar
Freywa
 
Posts: 580
Joined: June 23rd, 2011, 3:20 am
Location: Singapore

Re: 17 in 17: Efficient 17-bit synthesis project

Postby dvgrn » August 18th, 2019, 7:02 pm

Freywa wrote:Thirty-six...

Ouch, these remaining cases are getting difficult. A number of the remaining syntheses take multiple stages to do conversions that look like they "ought" to be done in a single stage -- like the three-stage 9G preblock to tail in #5, xs17_039s0qmz311, for example.

#C 18 gliders makes xs17_039s0qmz311
x = 192, y = 22, rule = B3/S23
2bo40bo$obo39bobo10bo$b2o39bo2bo7b2o$5b3o35b2o9b2o40b2o39b2o42b2o$5bo
86b2o3bo35b2o3bo38b2o3bo$6bo52bobo30bo2bo37bo2bo40bo2bo$53b2o4b2o32bo
b2o37bob2o40bob2o$53bobo4bo31b2obo37b2obo40b2obo$53bo43bo39bo43bo6bo$
96b2o40bo43bo3b2o$100bobo36bo41b2o4b2o$47b2o51b2o36b2o$46b2o53bo$39b2o
7bo140b2o$38bobo11bo80b2o41b2o11bobo$40bo10b2o46b2o33b2o6b3o30bobo5bo
5bo$51bobo44b2o33bo8bo34bo5b2o$100bo36b2o4bo38bobo$137bobo$54b2o81bo$
54bobo$54bo!

Unfortunately I don't have enough brain cells to solve any of those cases, so I'll just build something based on xs17_039s0qmz311's sudden appearance out of nowhere in its single recorded soup:

#C 7 gliders plus cleanup makes xs17_039s0qmz311
x = 59, y = 55, rule = B3/S23
o37bo$b2o36bo$2o35b3o3$38b3o$40bo$39bo9$14b2o$15b2o$14bo$40bo$39bobo$
39bobo$40bo30$57bo$56b2o$56bobo!

This comes out to a 10-glider synthesis -- possibly doable in 9 gliders, but impressive amounts of luck will be needed:

x = 359, y = 163, rule = Life
288bo$287bo$287b3o55$266bo$266bobo$266b2o49$137bo37bo$138b2o36bo$137b
2o35b3o3$175b3o$177bo$176bo9$4bo146b2o$5bo146b2o$3b3o145bo$177bo$176bo
bo$176bobo$177bo2$3o$2bo$bo2$352b2o$347b2o3bo$347bo2bobo$349b3o2$348bo
b2o2b2o$348b2obo2b2o2$357b2o$356b2o$358bo14$194bo$193b2o$193bobo!

35 and counting.
User avatar
dvgrn
Moderator
 
Posts: 5830
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Kazyan » August 18th, 2019, 7:26 pm

That one will have to be manually committed through Shinjuku rather than Catagolue's submission box, I think, due to the separation between gliders. And these last few are indeed tough, which is partly why I moseyed on over to the xs15s for a while.

Inserting the following sparks at generation 29 would solve #168, and if done cheaply, possibly #3 by converter. There are plenty of ways to make the upper left spark, but they all leave the cell in yellow has to remain off until the insertion is complete, so, probably a variant on an edgy toad synthesis is called for.

x = 28, y = 24, rule = LifeHistory
24.A$23.A$23.3A4$8.D10.A.A$5.D13.2A$.A4.DE2.D9.A$2.A$3A$4.A$4.2A$3.A.
A3$24.A$23.2A$23.A.A2$5.2A$4.2A19.2A$6.A18.A.A$25.A!


EDIT: #168 in 14G by inflecting the synthesis of a related still life. This will have to be manually committed.

x = 257, y = 65, rule = B3/S23
102bobo$103b2o5bo$103bo7bo$109b3o17$169bo$159bo9bobo55b2o22bo$160bo8b
2o56bo24bo$158b3o67bo21b3o$227b2o26bo$226bo2b2o23bobo$225bobo2bo23bobo
$226bo3bobo18bo3bo$2bo40bo21bobo85bo77b2o17bobo$obo40bo22b2o85bo23b2o
63b3o5bo2bo$b2o10bo29bo22bo86bo23b2o72b2o$11b2o$12b2o37bo109bo84bo$50b
obo12b3o92bobo82bobo$b3o46b2o15bo92b2o84b2o$3bo6b2o54bo$2bo6bobo$11bo$
171bo$170bobo$170bobo$166b2o3bo$57b2o106bobo$56bobo108bo$58bo18$111bo$
111b2o$110bobo!
Last edited by Kazyan on August 19th, 2019, 1:13 am, edited 1 time in total.
Tanner Jacobi
User avatar
Kazyan
 
Posts: 860
Joined: February 6th, 2014, 11:02 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Postby dvgrn » August 18th, 2019, 8:32 pm

Kazyan wrote:That one will have to be manually committed through Shinjuku rather than Catagolue's submission box, I think, due to the separation between gliders.

This seems like it must be a solvable problem. How about an optional second textbox on Catagolue's submission page, defaulting to a minimum separation of 20 cells? In cases like this where larger spacing is needed, we could submit something like

x = 359, y = 163, rule = Life
288bo$287bo$287b3o55$266bo$266bobo$266b2o49$137bo37bo$138b2o36bo$137b
2o35b3o3$175b3o$177bo$176bo9$4bo146b2o$5bo146b2o$3b3o145bo$177bo$176bo
bo$176bobo$177bo2$3o$2bo$bo2$352b2o$347b2o3bo$347bo2bobo$349b3o2$348bo
b2o2b2o$348b2obo2b2o2$357b2o$356b2o$358bo14$194bo$193b2o$193bobo!

and type in "80" for the minimum number of blank columns between stages. The recipe has a maximum of 70 blank columns between objects within a stage, but 100 blank columns between stages, so presumably with an extra "80" hint the recipe could be parsed correctly.

(?)
User avatar
dvgrn
Moderator
 
Posts: 5830
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Freywa » August 18th, 2019, 8:37 pm

dvgrn wrote:This seems like it must be a solvable problem.

The problem is that I've already committed it myself.
Princess of Science, Parcly Taxel
User avatar
Freywa
 
Posts: 580
Joined: June 23rd, 2011, 3:20 am
Location: Singapore

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Extrementhusiast » August 18th, 2019, 9:08 pm

#214 in sixteen gliders, after much cleanup headbanging:
x = 238, y = 39, rule = B3/S23
112bo$113bo$111b3o4$222bo$214bo7bobo$212bobo7b2o9bobo$213b2o14b2o2b2o$
229bobo2bo$229bo$56bo89bo$55bo89bobo66bo5b2o2b2o9b2o$52b2ob3o86bo2bo
67bo4bo2bobo9bobo$51bobo91b2o66b3o5b2o12bo$53bo$221b4obo$220bo2bob2o$
220b2o3$211bo$211b2o$obo207bobo$b2o$bo3$72b3o66bobo21b3o$142b2o$70bo5b
o65bo20bo5bo$5bo57bo6bo5bo72bo6bo6bo5bo$3b2o57bobo5bo5bo63b2o6b2o5bobo
5bo5bo$4b2o56bobo74bobo6bobo4bobo$63bo8b3o66bo14bo8b3o$6bo$6b2o$5bobo!


EDIT: It's not a single step, but it's good enough to solve #117:
x = 189, y = 22, rule = B3/S23
bo40bo$2bo38bobo$3ob2o35bo2bo7bobo$4bobo35b2o8b2o41b2o40b2o39b2o$4bo
48bo37b2o3bo36b2o3bo35b2o3bo$59bo31bo2bo38bo2bo6bo30bo2bo$51b3o3b2o33b
ob2o38bob2o4bo32bob2o$51bo6b2o31b2obo38b2obo5b3o29b2obo$52bo43bo40bo
40b3o$95b2o41bobo39bo$46bo55b2o35b2o42b2o$45b2o51bo2b2o80b2o$45bobo50b
2o3bo39b2o41b2o$38b3o56bobo43bobo40bobo$40bo9b2o82b2o2b2o3bo42bo$39bo
9b2o84b2obobo$51bo82bo3bo3$52b3o$52bo$53bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 17 in 17: Efficient 17-bit synthesis project

Postby A for awesome » August 19th, 2019, 1:27 am

#204 reduced to 20:
x = 20, y = 31, rule = B3/S23
2bo$3b2o$2b2o3$4b2o$5b2o4b2o$4bo5bobo$10bo2b2o$2o9b2o2bo$b2o10b2o$o12b
o$14bo$13b2o3$17bo$10bo6bobo$10b2o5b2o$9bobo2$12b3o$12bo$13bo5$5bo$5b
2o$4bobo!

The precursor, xs16_69bkk8zx56, has 31 soups on Catagolue, and a reduction to 9G or less would solve #204.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1880
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: 17 in 17: Efficient 17-bit synthesis project

Postby Kazyan » August 19th, 2019, 1:31 am

#3 in an unfortunate 17G, through #168 above, but maybe someone can save another glider on creating the starting constellation. Manual commit required.

x = 280, y = 37, rule = B3/S23
260bo$261bo5bo3bobo$259b3o6bo3b2o3bo$73bo44bobo145b3o3bo4bobo$71bobo
44b2o157b2o$72b2o45bo4$14bo110bo$15bo108bobo60b2o22bo55b2o$13b3o108bob
o60bo24bo45b2o7bo$125bo62bo21b3o44bobo8bo$187b2o26bo43bo7b2o$15b3o102b
2o7b2o55bo2b2o23bobo49bo2b2o$17bo101bo2bo5bo2bo53bobo2bo23bobo48bobo2b
o$16bo103b2o7b2o55bo3bobo18bo3bo50bo3bobo$113bo77b2o17bobo58b2o$5bo21b
obo83bo11bo11b2o63b3o5bo2bo$5bo22b2o83bo10bobo10b2o72b2o$5bo22bo95bobo
$121bo3bo80bo$120bobo82bobo$27b3o90b2o84b2o$29bo$28bo2$131bo$130bobo$
130bobo$126b2o3bo$125bobo$19b2o106bo$18bobo$2o18bo$b2o$o!


EDIT:
A for awesome wrote:#204 reduced to 20:
x = 20, y = 31, rule = B3/S23
2bo$3b2o$2b2o3$4b2o$5b2o4b2o$4bo5bobo$10bo2b2o$2o9b2o2bo$b2o10b2o$o12b
o$14bo$13b2o3$17bo$10bo6bobo$10b2o5b2o$9bobo2$12b3o$12bo$13bo5$5bo$5b
2o$4bobo!

The precursor, xs16_69bkk8zx56, has 31 soups on Catagolue, and a reduction to 9G or less would solve #204.


Here's that 9G, so cross #204 off:

x = 37, y = 41, rule = B3/S23
o$b2o$2o16$16bo$17bo$15b3o3$19bo$20bo15bo$18b3o15bo$14b3o19bo$16bo$15b
o16bo$30bobo$31b2o3$32b3o$32bo$33bo3$30b2o$29b2o$31bo!


EDIT 2: #25 in 15G. The intermediate looked like it should be cheap instead of expensive, and sure enough, there was a simple three-part reaction in one of its soups.

x = 87, y = 40, rule = B3/S23
80bo$14bo64bo$7b2o5bobo62b3o$8b2o4b2o$7bo$15bo$14b2o$14bobo4$o$b2o$2o
59bo$61bobo$61b2o$75b2o$76bo$74bo$74b2o$71b2obo$70bobobo$15b3o44b2o6bo
2bo$62bobo6b2o$62bo2$65b2o$30b3o32bobo$30bo34bo$31bo29b2o$60bobo$62bo
3$2b2o$bobo75bo$3bo74b2o$78bobo3b3o$84bo$85bo!


EDIT 3: Idea for the two still lifes with this motif. There's also a 3G collision that can provide most of the structure, but it takes up real estate right where the snakes should go.

x = 33, y = 39, rule = LifeHistory
4.A$5.2A$4.2A26.A$11.A.A16.2A$12.2A17.2A$12.A5$.A$2.A$3A4$15.D$15.3C$
18.D$17.2D$18.D$16.D$16.2D10$16.A.A$17.2A$17.A$25.A$17.2A4.2A$16.A.A
5.2A$18.A!


#C Associated 3G collision
x = 9, y = 7, rule = B3/S23
obo4bo$2o4bo$bo4b3o2$2b3o$2bo$3bo!


EDIT 4: #69 in 15G, through the same new carrier-to-eater method as in #117:

x = 246, y = 23, rule = B3/S23
43bo$44bo66bo$42b3o65bo$110b3o2$64bo42b2o$64bo42b2o$64bo$101bob2o40bob
2o41bob2o42bob2o$60b3o3b3o32b2obo40b2obo41b2obo5bobo34b2obo$199b2o$51b
obo10bo34b5o39b5o40b5o7bo33b5o$3bobo4b2o39b2o11bo34bo2bo2bo37bo2bo2bo
38bo2bobo40bo2bobo$3b2o4b2o35b2o4bo11bo39b2o42b2o44bo4b3o37bo$4bo6bo
33bobo105bo41bo3bo39b2o$47bo103b2o41b2o4bo$2bo149b2o$obo56b2o130b2o48b
2o$b2o56b2o90bo38bobo4b3o41b2o$150b2o40bo4bo$55b2o93bobo45bo44b3o$55bo
bo185bo$55bo188bo!


EDIT 5: #156 in 15G, partly based on an improvement to a base still life by removing two gliders that didn't actually perturb the Herschel--they actually hit where a spark would form such that it wasn't obvious that the Herschel was unaffected.

x = 180, y = 22, rule = B3/S23
144bo$145b2o$144b2o$159bobo$160b2o17bo$160bo16b2o$178b2o$29bobo$bo27b
2o45bo$2bo3bo23bo44bobo66bo$3o2bo69bobo3b2o62bo$5b3o68bo3bo2bo59b3o$
25bo55b2o$24bo125bobo$24b3o124b2o$3b2o146bo3bobo$3bobo149b2o8b2o$3bo
19bo65b2o3b2o60bo7bo2bo$22b2o55bo9b2o3b2o64b2o3b2o$22bobo48b2o4b2o3b2o
74bo2bobo$72bobo3bobo3bobo75b2o2bo$74bo9bo80b2o!


EDIT 6: #71 in 12G from soup; onerous cleanup likely improvable. #210 probably follows via converter, but I don't see it in my few files. Someone run transfer.py on this, please.

x = 108, y = 37, rule = B3/S23
106bo$91bo13bo$91bobo11b3o$91b2o$103b2o$91bo11b2o$90bobo3b2o$31bo57bo
2bo4bo$30bo53bo5b2o4bo$30b3o52bo10b2o$83b3o7b2obo$92bobo2bo$86b2o4bo2b
2o$86b2o3b2o$4bo$2bobo74bo$3b2o75bo$78b3o$5bobo74b2o$5b2o4bo69bobo$6bo
4bobo68bo$11b2o4$o9bo$b2o5b2o$2o7b2o3$14b2o$13b2o$15bo2$6bo$6b2o$5bobo
!
Tanner Jacobi
User avatar
Kazyan
 
Posts: 860
Joined: February 6th, 2014, 11:02 pm

PreviousNext

Return to Patterns

Who is online

Users browsing this forum: No registered users and 3 guests