danny wrote:I think I discovered that rule...
x = 28, y = 4, rule = B2ek3aijkn4a5r/S1c2cei3ar4ar5i6ac
3bo7bo8b3o2b3o$2bo7bobo7bobo4bo$bo9bo13bobo$o!
danny wrote:I think I discovered that rule...
bprentice wrote:danny wrote:I think I discovered that rule...
Why is this important? It would have been better to write:
"This rule was first discussed here:"
Brian Prentice
69966996966996699669966969966996966996696996699669966996966996699669966969966996699669969669966969966996966996699669966969966996
x = 350, y = 296, rule = B2ce3c4ac6a7e/S12aei3ar4air5i6a78
13bo102bo111bo116bobo$12bobo100bobo109bobo115bobo$222bobo121bo$114bo3b
o103bobobo$11bo3bo99bobo105bo6bo113bo3bo$11bo3bo209bo4bo$16bo97bo106bo
4bo4bo113bobo$15bo98bo106b2o2bobo2bo$15bo208bo5bo113bo3bo$223b2o2$226b
2o$226b2o117bobo$221b2o5bo$227bo2$227b2o$4bo$3bobo339bobo2$3bobo211bo
6b2o$218b2o2bob2o$2bo3bo206b3o6bo$2bo3bo202bob2o3b2o$208bo136bobo$209b
o2bo2bo2bo$4bo206bo2b2o2bo2$4bo$229bo$218b2o8b2o115bobo$218b2o$4bo2$4b
o2$345bobo$221b2o$4bo2$4bo$226b2o$227bo10bobo104bobo$221b2o17bo$4bo2$
4bo228bo$227b2o5bo$228bo5bo110bobo2$4bo$220b2o$4bo215b2o$225b2o$228b2o
34bo80bobo$233b2o27b2ob2o$4bo216b2o2bo7bo35bo$221bo8b2o7bobo3bobo3bobo
3bobo10bo$4bo220bobo2b2o5bo31bo$237bo24b2ob2o$228bo2b2o31bo80bobo$228b
o$4bo217bo3bo$216bobo7bo32bobo$4bo164bo2b2o48bo38bo$167bo2bo$166bo9bob
o3bobo3bobo3bobo3bobo3bobo136bobo$167bo2bo44bo38bo$4bo164bo2b2o41bo39b
o$255bo$4bo$229bo$218b2o8b2o115bobo$218b2o$4bo2$4bo2$345bobo$221b2o$4b
o2$4bo$226b2o$227bo117bobo$221b2o$4bo2$4bo$227b2o$228bo116bobo2$4bo$
220b2o$4bo215b2o$225b2o$228b2o76bo38bobo$233b2o28b2o39b2ob2o$4bo216b2o
2bo7bo36b2o39bo$221bo8b2o7bobo3bobo3bobo3bobo2b2o6b2o3bobo3bobo3bobo3b
obo3bobo10bo$4bo220bobo2b2o5bo25bo47bo$237bo29b2o35b2ob2o$228bo2b2o34b
2o37bo38bobo$228bo$4bo217bo3bo$216bobo7bo$4bo122bo2b2o90bo$125bo2bo$
124bo9bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo
136bobo$125bo2bo86bo$4bo122bo2b2o83bo2$4bo$229bo$218b2o8b2o115bobo$
218b2o$4bo2$4bo2$345bobo$221b2o$4bo2$4bo$226b2o$227bo117bobo$221b2o$4b
o2$4bo$227b2o$228bo116bobo2$4bo338bobobobo$220b2o$4bo215b2o121bobobobo
$225b2o$228b2o115bobo$233b2o28b2o75b2o$4bo216b2o2bo7bo36b2o71bo2bo$
221bo8b2o7bobo3bobo3bobo3bobo2b2o6b2o3bobo3bobo3bobo3bobo3bobo3bobo3bo
bo3bobo3bobo3bobo3bobo8bo$4bo220bobo2b2o5bo25bo79bo2bo$237bo29b2o71b2o
$228bo2b2o34b2o76bobo$228bo$4bo217bo3bo116bobobobo$216bobo7bo$4bo80bo
2b2o132bo120bobobobo$83bo2bo$82bo9bobo3bobo3bobo3bobo3bobo3bobo3bobo3b
obo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo136bobo
$83bo2bo128bo$4bo80bo2b2o125bo2$4bo$229bo$218b2o8b2o115bobo$218b2o$4bo
2$4bo2$345bobo$221b2o$4bo2$4bo$226b2o$227bo117bobo$221b2o$4bo2$4bo$
227b2o$228bo116bobo2$4bo338bobobobo$220b2o$4bo215b2o121bobobobo$225b2o
$228b2o115bobo$233b2o28b2o75b2o$4bo216b2o2bo7bo36b2o71bo2bo$221bo8b2o
7bobo3bobo3bobo3bobo2b2o6b2o3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3b
obo3bobo3bobo8bo$4bo220bobo2b2o5bo25bo79bo2bo$237bo29b2o71b2o$228bo2b
2o34b2o76bobo$228bo$4bo217bo3bo116bobobobo$216bobo7bo$4bo38bo2b2o174bo
120bobobobo$41bo2bo$40bo9bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo
3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo
3bobo3bobo3bobo3bobo136bobo$41bo2bo170bo$4bo38bo2b2o167bo2$4bo$229bo$
218b2o8b2o115bobo$218b2o$4bo2$4bo2$345bobo$221b2o$4bo2$4bo$226b2o$227b
o117bobo$221b2o$4bo2$4bo$227b2o$228bo116bobo2$4bo338bobobobo$220b2o$4b
o215b2o121bobobobo$225b2o$228b2o115bobo$233b2o28b2o75b2o$4bo216b2o2bo
7bo36b2o71bo2bo$221bo8b2o7bobo3bobo3bobo3bobo2b2o6b2o3bobo3bobo3bobo3b
obo3bobo3bobo3bobo3bobo3bobo3bobo3bobo8bo$4bo220bobo2b2o5bo25bo79bo2bo
$237bo29b2o71b2o$228bo2b2o34b2o76bobo$4bobo221bo$3bo218bo3bo116bobobob
o$3b2obobo207bobo7bo$2bobobobo213bo120bobobobo$5bobo$2bobo9bobo3bobo3b
obo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3b
obo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3b
obo3bobo3bobo136bobo$5bobo207bo$2bobobobo206bo$3b2obobo$3bo$4bobo222bo
$218b2o8b2o115bobo$218b2o$4bo2$4bo2$345bobo$221b2o$4bo$21b2o$4bo18bo$
226b2o$227bo117bobo$221b2o$4bo2$4bo$227b2o$228bo116bobo2$4bo338bobobob
o$220b2o$4bo215b2o121bobobobo$225b2o$228b2o115bobo$233b2o28b2o75b2o$
221b2o2bo7bo36b2o71bo2bo$b2o38b2o178bo8b2o7bobo3bobo3bobo3bobo2b2o6b2o
3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo8bo$225bobo2b2o
5bo25bo79bo2bo$42bo194bo29b2o71b2o$2o2bo223bo2b2o34b2o76bobo$2o2bo2bo
220bo$6b2o214bo3bo116bobobobo$216bobo7bo$222bo120bobobobo2$14bobo3bobo
3bobo2bo6bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3b
obo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3bobo3b
obo3bobo3bobo136bobo$31bo183bo$215bo$35bo$6b2o27bo$2o2bo2bo221bo$2o2bo
213b2o8b2o115bobo$218b2o2$b2o3$62b2o281bobo$221b2o$4bo58bo2$4bo$226b2o
$227bo117bobo$221b2o!
x = 81, y = 96, rule = LifeHistory
58.2A$58.2A3$59.2A17.2A$59.2A17.2A3$79.2A$79.2A2$57.A$56.A$56.3A4$27.
A$27.A.A$27.2A21$3.2A$3.2A2.2A$7.2A18$7.2A$7.2A2.2A$11.2A11$2A$2A2.2A
$4.2A18$4.2A$4.2A2.2A$8.2A!
@RULE Simple_Weird_Ships
@TABLE
n_states:2
neighborhood:Moore
symmetries:none
1,0,0,0,1,1,1,0,0,0
0,0,0,0,1,1,1,1,0,1
0,0,0,1,1,1,1,0,0,1
0,0,0,1,1,1,0,0,0,1
0,0,0,0,0,1,1,1,0,1
1,1,0,1,0,0,0,0,0,0
1,0,0,0,1,1,0,0,0,0
1,0,0,0,0,1,1,0,0,0
1,0,0,0,0,1,1,0,0,0
0,0,0,0,0,0,0,1,1,1
x = 31, y = 65, rule = Simple_Weird_Ships
30bo$30bo6$28bo$27b4o6$29bo$25b6o6$15bobo11bo$13b18o6$18bobo7bobo$18b
13o6$24bobo$16b15o6$24bobobo$20b11o6$8bo5bo3bo7bobobo$7b24o6$22bo$19b
12o6$6bo13bobo5bo$31o!
x = 12, y = 3, rule = Simple_Weird_Ships
2bo3bobobo$12o$bo!
x = 31, y = 3, rule = Simple_Weird_Ships
3bobo5bobo3bo3bo5bo$30o$bo28bo!
AforAmpere wrote:An extremely simple rule that probably has infinite speeds:Code: Select all@RULE Simple_Weird_Ships
x = 33, y = 69, rule = B2c3a5n6ack7e/S1e2-ae3-i4i
27b5o$29bo2bo$28b4o8$25b7o$30bobo$26b6o4$13b19o$16bobo11bobo$14b18o5$
18b14o$19bobo7bob2o$19b13o5$16b16o$25bobo4bo$17b15o7$20b12o$25bobobo2b
o$21b11o5$7b25o$9bo5bo3bo7bobob2o$8b24o7$19b13o$23bo8bo$20b12o9$32o$7b
o13bobo5bo2bo$b31o!
@RULE DragonCurve
1: L cell
2: R cell
3: back signal
4: L info signal
5: R info signal
6: end signal
7: anchor cell
8: growth signal delay
9: growth signal advance
10: tail 1
11: tail 2
@TABLE
n_states: 12
neighborhood: Moore
symmetries: rotate4
var signal_heads = {3, 4, 5, 6}
var forward = {4, 5, 6}
var tail = {10, 11}
var cell = {1, 2}
var not_tail = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
var a = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
var b = a
var c = a
var d = a
var e = a
var f = a
var g = a
var h = a
# new cells are created
11, 8, b, c, d, 4, f, g, h, 1
11, 8, b, c, d, 5, f, g, h, 2
11, 8, b, c, d, 6, f, g, h, 6
0, 11, 4, c, d, e, f, g, 8, 8
0, 11, 6, c, d, e, f, g, 8, 8
0, 11, 8, c, d, e, f, g, 5, 8
# signals advance
0, signal_heads, 0, a, b, c, d, e, 0, signal_heads
11, signal_heads, 0, a, b, c, d, e, 0, signal_heads
0, 9, 0, a, b, c, d, e, 0, 8
8, 10, b, c, d, e, f, g, h, 0
# 3 sends signals back
3, 1, b, c, d, 10, f, g, h, 5
3, 2, b, c, d, 10, f, g, h, 4
3, 7, b, c, d, 10, f, g, h, 6
# heads become tails
9, 6, 8, c, d, e, f, g, h, 6
9, 6, 0, c, d, 0, f, g, 0, 10
9, 1, 8, c, d, e, f, g, h, 10
9, 2, b, c, d, e, f, g, 8, 10
9, 10, b, c, d, e, f, g, h, 10
8, 11, b, c, d, e, f, g, 1, 11
8, 11, 2, c, d, e, f, g, h, 11
8, 6, 10, c, d, e, f, g, 9, 8
8, 1, 3, c, d, e, f, g, 6, 9
8, cell, b, c, d, e, f, g, forward, 8
8, a, b, c, d, e, f, g, h, 9
9, a, b, c, d, e, f, g, h, 11
6, 10, b, 8, d, 9, f, g, h, 1
signal_heads, a, b, c, d, e, f, g, h, 10
# tails die
11, 8, b, 8, d, e, f, g, h, 10
10, 6, b, c, d, e, f, g, 8, 3
tail, 8, b, c, d, e, f, g, h, tail
tail, a, b, c, d, e, f, g, h, 0
# turns
0, 1, 6, c, d, e, f, g, 3, 0
0, 1, forward, c, d, e, f, g, not_tail, forward
0, 1, 0, c, d, e, f, g, forward, 10
0, 2, not_tail, c, d, e, f, g, forward, forward
0, 2, forward, c, d, e, f, g, 0, 10
#0, 1, 9, c, d, e, f, g, not_tail, 8
#0, 2, not_tail, c, d, e, f, g, 9, 8
0, 9, 11, c, d, e, f, g, 1, 8
0, 9, 2, c, d, e, f, g, 11, 8
0, 1, 11, 11, d, e, f, g, h, 8
0, 11, 11, 2, d, e, f, g, h, 8
0, 2, 9, c, d, e, f, g, 0, 11
0, 2, 11, c, d, e, f, g, 8, 11
0, 1, 0, c, d, e, f, g, 9, 11
0, 1, 8, c, d, e, f, g, 11, 11
0, 1, 11, c, d, e, f, g, 3, 11
0, 2, 3, c, d, e, f, g, not_tail, 3
0, 2, 0, c, d, e, f, g, 3, 10
0, 1, not_tail, c, d, e, f, g, 3, 3
0, 1, 3, c, d, e, f, g, 0, 10
# turnaround
0, 7, 3, c, d, e, f, g, h, 10
@COLORS
1 120 60 0
2 0 90 90
3 60 200 20
4 200 80 0
5 0 160 160
6 220 20 0
7 130 10 0
8 200 200 200
9 230 230 230
10 60 60 60
11 100 100 100
x = 5, y = 1, rule = DragonCurve
GJFKI!
x = 60, y = 210, rule = B34a/S23-a4in5j
3o7b3o$2bo9bo8b4o4b4o$bo8bo2b2o19b4o$14bo$12bobo6b4o4b4o$34b4o5$8bo2bo
$b5o6bo$2bo2bo3bo2bo$5bo3b4o$o3bo23b2o$2bo25bobo$30bo$30bobo$31b2o22$
19bo$19bo$19bo4$13b2o31b3o$3bo9b3o25b4o3bo$4b2o8bo7bo17bob3o2b3o$3b3o
16b2o15b3o2b2o9b5o$o4b2o33bobo11bobo2bo$b5o35b2o11bo2b3o2$b5o35b2o11bo
2b3o$o4b2o33bobo11bobo2bo$3b3o16b2o15b3o2b2o9b5o$4b2o8bo7bo17bob3o2b3o
$3bo9b3o25b4o3bo$13b2o31b3o4$19bo$19bo$19bo16$8bo$7b3o$bo4b2o$obo6bo$
2o7bob2o$9b2obo$10bobo21bo2bo$10b3o20bo3b2o$12bo20bo3bobo$33bo2b2ob2o$
34b6o2$34b6o$33bo2b2ob2o$12bo20bo3bobo$10b3o20bo3b2o$10bobo21bo2bo$9b
2obo$2o7bob2o$obo6bo$bo4b2o$7b3o$8bo18$o4bo$6o$2b2obo2b2o$3b5ob2o$4b6o
2$4b6o$3b5ob2o$2b2obo2b2o$6o$o4bo73$3o2bo2b2o$4obo3bo$2b5ob2o$2o4bo$ob
ob3ob2o$o2b4o2bo$bo2b3ob2o!
_zM wrote:Code: Select allthe dragon curve rule
This rule creates arbitrarily large dragon curves, like this:Code: Select allx = 5, y = 1, rule = DragonCurve
GJFKI!
@RULE Deficient_Seeds_B2a_only
@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate4reflect
var all1={0,1,2}
var all2={0,1,2}
var all3={0,1,2}
var all4={0,1,2}
var all5={0,1,2}
var all6={0,1,2}
var all7={0,1,2}
var all8={0,1,2}
var live1={1,2}
var live2={1,2}
0,live1,1,0,0,0,0,0,0,2
0,1,live1,0,0,0,0,0,0,2
0,live1,0,live2,0,0,0,0,0,1
0,live1,0,0,live2,0,0,0,0,1
0,live1,0,0,0,live2,0,0,0,1
0,0,live1,0,live2,0,0,0,0,1
0,0,live1,0,0,0,live2,0,0,1
live1,all1,all2,all3,all4,all5,all6,all7,all8,0
x = 43, y = 85, rule = Deficient_Seeds_B2a_only
3A3.A.A.A19.3A$A5.A.A.A21.A$A4.A2.3A20.A.A$A3.A5.A22.A$3A.A5.A16$3A.
3A23.A11.A$A.A3.A24.A8.A$3A.3A34.A$A3.A$A3.3A16$3A.A.A26.A7.A$A.A.A.A
24.2A7.A$3A.3A24.2A7.3A$A5.A23.A9.A$A5.A34.A16$3A.3A.A.A19.5A$A.A3.A.
A.A21.A$3A.3A.3A19.2A.2A$A3.A5.A21.A$A3.3A3.A19.5A16$3A.3A.3A19.A$A.A
.A.A.A22.A$3A.3A.3A20.A$A5.A.A.A20.A$A3.3A.3A!
@RULE Deficient_Seeds_B2a_only_more_deficient
@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate4reflect
var all1={0,1,2}
var all2={0,1,2}
var all3={0,1,2}
var all4={0,1,2}
var all5={0,1,2}
var all6={0,1,2}
var all7={0,1,2}
var all8={0,1,2}
var live1={1,2}
var live2={1,2}
0,1,1,0,0,0,0,0,0,2
0,live1,0,live2,0,0,0,0,0,1
0,live1,0,0,live2,0,0,0,0,1
0,live1,0,0,0,live2,0,0,0,1
0,0,live1,0,live2,0,0,0,0,1
0,0,live1,0,0,0,live2,0,0,1
live1,all1,all2,all3,all4,all5,all6,all7,all8,0
x = 43, y = 125, rule = Deficient_Seeds_B2a_only_more_deficient
3A3.A.A.A19.3A$A5.A.A.A21.A$A4.A2.3A20.A.A$A3.A5.A22.A$3A.A5.A16$3A3.
A.3A19.A$A5.A3.A21.A$A4.A2.3A20.A2.A$A3.A3.A21.A$3A.A3.3A20.A.A16$3A.
3A23.A11.A$A.A3.A24.A8.A$3A.3A34.A$A3.A$A3.3A16$3A.A.A26.A7.A$A.A.A.A
24.2A7.A$3A.3A24.2A7.3A$A5.A23.A9.A$A5.A34.A16$3A.3A26.A$A.A.A25.A2.A
2.A$3A.3A26.A$A3.A.A$A3.3A27.A$31.A2.A2.A$34.A14$3A.A.3A25.A$A.A.A3.A
24.A$3A.A.3A$A3.A.A26.A$A3.A.3A21.A2.A2.A$33.A15$3A.3A.A.A19.5A$A.A3.
A.A.A21.A$3A.3A.3A19.2A.2A$A3.A5.A21.A$A3.3A3.A19.5A!
x = 34, y = 4, rule = B2e3aciny4ajyz5-cekn/S1c2cei3-in4-iqw6ae
20bo2bob2o3bobo$2o4b2o4b2o5b2o9bob2o$2o4b2o4b2o5b2o9bob2o$20bo2bob2o3b
obo!
x = 35, y = 4, rule = B2e3aciny4ajyz5-cekn/S1c2cei3-in4-iqw6ae
o$2o8bo22bo$2o9bo22bo$o!
x = 52, y = 7, rule = B2e3aciny4ajyz5-cekn8/S1c2cei3-in4-iqw6ae
47b2o$13bobo33bo$2o13bo30bo3bo$2o11b3o30bob2obo$46b2ob2o$46b2o$46b2o!
danny wrote:Here's a gun and slide gun, naturally. It's one of those PedestrianLife types that I don't really like...:Code: Select allx = 52, y = 7, rule = B2e3aciny4ajyz5-cekn8/S1c2cei3-in4-iqw6ae
47b2o$13bobo33bo$2o13bo30bo3bo$2o11b3o30bob2obo$46b2ob2o$46b2o$46b2o!
Redstoneboi wrote:danny wrote:Here's a gun and slide gun, naturally. It's one of those PedestrianLife types that I don't really like...:Code: Select allx = 52, y = 7, rule = B2e3aciny4ajyz5-cekn8/S1c2cei3-in4-iqw6ae
47b2o$13bobo33bo$2o13bo30bo3bo$2o11b3o30bob2obo$46b2ob2o$46b2o$46b2o!
where are the guns? all i see is a block, a symmetric glider, and a blob that produces 2 orthogonal spaceships.
wildmyron wrote:Redstoneboi wrote:danny wrote:Here's a gun and slide gun, naturally. It's one of those PedestrianLife types that I don't really like...:Code: Select allx = 52, y = 7, rule = B2e3aciny4ajyz5-cekn8/S1c2cei3-in4-iqw6ae
47b2o$13bobo33bo$2o13bo30bo3bo$2o11b3o30bob2obo$46b2ob2o$46b2o$46b2o!
where are the guns? all i see is a block, a symmetric glider, and a blob that produces 2 orthogonal spaceships.
When I saw this post earlier the blob was a gun which interacted with the block to make a slidegun. Perhaps danny edited it because he didn't like the gun in the original rule
x = 52, y = 7, rule = B2e3aciny4ajyz5-cekn/S1c2cei3-in4-iqw6ae
47b2o$13bobo33bo$2o13bo30bo3bo$2o11b3o30bob2obo$46b2ob2o$46b2o$46b2o!
wildmyron wrote:When I saw this post earlier the blob was a gun which interacted with the block to make a slidegun. Perhaps danny edited it because he didn't like the gun in the original rule
x = 19, y = 3, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
bo2bo12bo$6o11b2o$17bo!
x = 20, y = 3, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
bo2bo13bo$6o12b2o$18bo!
x = 28, y = 3, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
bo2bo21bo$6o20b2o$26bo!
x = 6, y = 12, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
2bo$b2o$2bo8$bo2bo$6o!
@RULE PetriDish
********************************
**** COMPILED FROM NUTSHELL ****
**** v0.4.2 ****
********************************
0: Empty
1: 1/2 hp
2: 1/2 food
3: 2/2 hp
4: 2/2 food
5: dormant/newborn life
6: rotten/poisonous food
@TABLE
neighborhood: Moore
symmetries: permute
n_states: 7
var any.0 = {0,1,2,3,4,5,6}
var any.1 = any.0
var any.2 = any.0
var any.3 = any.0
var any.4 = any.0
var any.5 = any.0
var any.6 = any.0
var any.7 = any.0
var food.0 = {2,4}
var life.0 = {1,3}
var nfood.0 = {0,1,3,5}
var nfood.1 = nfood.0
var nfood.2 = nfood.0
var nfood.3 = nfood.0
var nfood.4 = nfood.0
var nfood.5 = nfood.0
var nfood.6 = nfood.0
var nfood.7 = nfood.0
var nlife.0 = {0,2,4,5,6}
var nlife.1 = nlife.0
var nlife.2 = nlife.0
var nlife.3 = nlife.0
var nlife.4 = nlife.0
var nlife.5 = nlife.0
var nlife.6 = nlife.0
var nlife.7 = nlife.0
# No food around, life degrades
1, nfood.0, nfood.1, nfood.2, nfood.3, nfood.4, nfood.5, nfood.6, nfood.7, 4
3, nfood.0, nfood.1, nfood.2, nfood.3, nfood.4, nfood.5, nfood.6, nfood.7, 1
# Food not consumed rots
food.0, nlife.0, nlife.1, nlife.2, nlife.3, nlife.4, nlife.5, nlife.6, nlife.7, 6
# life near rotten food dies and becomes rotten
life.0, 6, any.0, any.1, any.2, any.3, any.4, any.5, any.6, 6
# Rotten food always dies next step
6, any.0, any.1, any.2, any.3, any.4, any.5, any.6, any.7, 0
# Food gets consumed
2, life.0, any.0, any.1, any.2, any.3, any.4, any.5, any.6, 0
4, life.0, any.0, any.1, any.2, any.3, any.4, any.5, any.6, 2
# Dormant life becomes full life
5, any.0, any.1, any.2, any.3, any.4, any.5, any.6, any.7, 3
## Full life near food spawns dormant lives to neighbors
0, 3, any.0, any.1, any.2, any.3, 0, 0, food.0, 5
@COLORS
4 0 255 0
2 0 187 0
3 255 0 0
1 187 0 0
5 170 170 170
x = 7, y = 7, rule = PetriDish
$2.A$2.AE$2.AEBE$2.A3C$.A.A.A!
x = 9, y = 6, rule = PetriDish
$2.ECA$2.BC$2.E3CE$2.5B!
x = 6, y = 5, rule = PetriDish
5.C$.2C.C$2.C.2C$.2CDC$4.2C!
x = 7, y = 12, rule = PetriDish
2$.C$.C$.C.D.D$.C.D3C$.C.DC.C$.C.DC$.C.D$.C$.C!
x = 14, y = 16, rule = PetriDish
$4.9B$4.E7CE2$6.5A$7.C2E$6.ACB$7.CE$.6AC4B$2.4E5CE$3.3BC$3.E3C3A$6.C
2E$5.ACB$6.2E!
x = 21, y = 12, rule = PetriDish
$3.C$3.C$3.C.D.D.D.D.D.D.D$3.15C$3.C.C.C.C.C.C.C.C$9.4C$9.C.D$9.4C$8.
C.C.C!
x = 11, y = 9, rule = PetriDish
7.2E$5.A.CBE$3.A.4CAD$2.EA.CBEA$EBE5C2D$3CBEA.AD$A.CBEA$2.CBE2A$2.EBE
!
x = 39, y = 11, rule = PetriDish
4.A3.BE3.A3.BE3.A3.BE3.A$4.AE2.BC3.AE2.BC3.AE2.BC3.AE2.BE$2.A.AEBEBC.
A.AEBEBC.A.AEBEBC.A.AEBEBC$CA35C.A$EBEBC.A.AEBEBC.A.AEBEBC.A.AEBEBC.A
.A3C$3.BC3.AE2.BC3.AE2.BC3.AE2.BC3.AEBE$EBEBC.A.AEBEBC.A.AEBEBC.A.AEB
EBC.A.A3C$CA35C.A$2.A.AEBEBC.A.AEBEBC.A.AEBEBC.A.AEBEBC$4.AE2.BC3.AE
2.BC3.AE2.BC3.AE2.BE$4.A3.BE3.A3.BE3.A3.BE3.A!
x = 21, y = 17, rule = PetriDish
$10.9C2$12.5D$13.3C$12.DC$13.2C$2.C$2.C$2.C.D.D$2.C.D3C$2.C.DC.C$2.C.
DC$2.C.D$2.C$2.C!
x = 15, y = 13, rule = PetriDish
$5.C$.2C.C$2.C.2C$.2CDC$4.2C2$9.C.C.C$9.4C$10.D$10.3C$10.C.C!
x = 21, y = 20, rule = PetriDish
2$7.5B$7.E3CE$7.BC$7.ECA6$3.BEBE$3.B3C$3.BC.A6.EBEB$3.BC8.3CB$3.BE8.A
.CB$15.CB$15.EB!
x = 16, y = 8, rule = PetriDish
$.BEBE$.B3C6.EBEB$.BC.A6.3CB$.BC8.A.CB$.BE10.CB$13.EB!
x = 8, y = 7, rule = PetriDish
2$2.AC.C$.5C$2.C.D$.2CA!
x = 21, y = 20, rule = PetriDish
16.A$14.A.AE$15.ACEBE$15.C.B2C$12.3AC2B2.A$13.C3EB3C$10.3ACB2.BEBE$
11.C3E$8.3ACB$9.C3E$6.3ACB$7.C3E$4.3ACB$5.C3E$2.3ACB$3.C3E$3ACB$.C3E$
ACB$.2E!
AforAmpere wrote:Wickstretcher in above rule:Code: Select allx = 21, y = 20, rule = PetriDish
16.A$14.A.AE$15.ACEBE$15.C.B2C$12.3AC2B2.A$13.C3EB3C$10.3ACB2.BEBE$
11.C3E$8.3ACB$9.C3E$6.3ACB$7.C3E$4.3ACB$5.C3E$2.3ACB$3.C3E$3ACB$.C3E$
ACB$.2E!
danny wrote:rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
x = 31, y = 4, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
AAA.....A.A.A.A............AAA$
A.A.....A.A.A.A............A.A$
..A.A.A.........A.A........A..$
..AAAAAAAAAAAAAAAAAAAAAAAAAA..$!
x = 25, y = 8, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
AAA...................AAA$
A.A...................A.A$
A.......................A$
A.......................A$
A.......................A$
A.......................A$
A...........A.A.A.A.....A$
AAAAAAAAAAAAAAAAAAAAAAAAA$!
x = 16, y = 128, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
13A$A3.A.A5.A$2A10.A$A11.A$2A9.2A$A11.A$A10.2A$A5.A.A3.A$13A8$
12A$A3.A2.A3.A$A10.A$A10.A$A3.A2.A3.A$12A8$
12A$A5.A4.A$A8.A.A$A4.A.A3.A$12A8$
12A$A2.A7.A$A7.A2.A$12A8$
12A$A.A8.A$A10.A$12A8$
.10A$.A8.A$.A.2A2.2A.A$.A.A4.A.A$.A8.A$.A8.A$.A.A4.A.A$.A.2A2.2A.A$.A8.A$.10A8$
.10A$.A8.A$.A.2A.A.A.A$.A6.A.A$.A.A6.A$.A6.A.A$.A.A6.A$.A.A.A.2A.A$.A8.A$.10A8$
.9A$.A2.A.A2.A$.A.A.A.A.A$.2A.A.A.2A$.A.A.A.A.A$.2A.A.A.2A$.A.A.A.A.A$.A2.A.A2.A$.9A$!
x = 26, y = 29, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
b25o$bo11bobobobo5bo$bo23bo$bo23bo$bo23bo$bo23bo$bo21bobo$bo21b3o$bo$b
obo$b3o11$3o19b3o$obo19bobo$o23bo$o23bo$o23bo$o23bo$o11bobobobo5bo$25o
!
x = 7, y = 24, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
7o$o2bo2bo$bo3bo2$2bobo15$2bobo2$bo3bo$o2bo2bo$7o!
x = 6, y = 17, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
6o$o4bo$bo2bo12$bo2bo$o4bo$6o!
x = 12, y = 28, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
12o$obobo2bobobo25$obobo2bobobo$12o!
x = 6, y = 16, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
6o$bo2bo13$bo2bo$6o!
x = 12, y = 26, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
12o$obobo2bobobo23$obobo2bobobo$12o!
x = 18, y = 18, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
10bo$8b3o$8b2o$7b2o5$obo11bobo$o2bo5b2o3bo2bo$9bobo$2b2o5bo6b2o3$10bo$
8b3o$8b2o$7b2o!
x = 44, y = 33, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
2bo12bo10bo14bo$2bo12bo10bo14bo$bob2o9bob2o7bob2o11bob2o$2bo12bo10bo
14bo$2bo12bo10bo3b3o8bo$30bobo$2bobo10b2o9b2o2bo10b2o$2bobo21b2o2bo10b
2o$2obob2o6bo2bo9b2o2bo11bo$2bobo8bobo10bo3bo7b2o2bo$2bobo21bo3bo7b5o$
26b5o9$26bo$26bo$25bob2o$26bo$26bo2$21b2o3b2o$21b2o3b2o$21bo5bo$21bo5b
o$21bo2bo2bo$21bo5bo$22b5o!
x = 42, y = 53, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
6bobobo$8bo$6bobobo2$22bo$22bo$13bo6b2ob2o$12b2o8bo$7b3o3bo6b2ob2o$16b
o5bo$7bobo5bobo4bo$15b3o3$7b3o29bo$16bo5bo5bo10bo$7bobo5bobo4bo5bo8b2o
b2o$15b3o2b2obo2b2obo9bo$22bo5bo3bobo2b2ob2o$22bo5bo3b3o4bo$7b3o29bo2$
7bobo4bobobo$16bo$14bobobo13bobo$32b3o$2bo4b3o$2bo$2ob2o2bobo2b2o$2bo
9bo10bobo$2ob2o7b2o9bobo6bobo$2bo13bo4b2obob2o4b3o$2bo11b2ob2o4bobo$
16bo6bobo$16bo$10bo$9b3o5b2o4bo8bobo$7bobobobo3bobo3bobo6b3o$9b3o5b2o
4b2o$10bo3$32bobo$17bobo3b3o6b3o$24bo3bobo$17b3o8bo$28bobo$17bobo3$31b
obobo$33bo$31bobobo!
x = 9, y = 17, rule = B2cei3aery4aejy5jnry6k7e8/S1c2-cn3ery4eirw5i6c7e
9o$bo5bo$2o5b2o12$2o5b2o$bo5bo$9o!
Return to Other Cellular Automata
Users browsing this forum: No registered users and 4 guests