ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Day & Night (B3678/S34678)

For discussion of other cellular automata.

Re: Day & Night (B3678/S34678)

Postby AforAmpere » December 12th, 2017, 5:24 pm

C/8:
x = 14, y = 201, rule = B3678/S34678
6b2o2$4bob2obo$5bo2bo$5b4o$5bo2bo$3b2ob2ob2o$3bob4obo$2b10o$3bob4obo$
2bob6obo$6b2o$3b8o$4b6o$3b8o$3b8o$3b3o2b3o$bob8obo$4bo4bo$4b2o2b2o$3bo
b4obo$5b4o$6b2o$5bo2bo$6b2o2$6b2o$3b3o2b3o$4b6o$3b8o$2bo2b4o2bo$2bob6o
bo$2b2o2b2o2b2o$b2o2bo2bo2b2o$bo3bo2bo3bo$5b4o$2b2ob4ob2o$5b4o$2b2obo
2bob2o$4bob2obo3$5bo2bo$2bo2bo2bo2bo$2b4o2b4o$2bobo4bobo$bo10bo$2b2ob
4ob2o$5bo2bo$4b6o$3b8o$2b10o$4b6o$5b4o$3bob4obo$2bob6obo$2b10o$3b8o$2b
ob6obo$3b8o$3b8o$2b10o$3bo6bo$bobobo2bobobo$b4o4b4o$2b2o6b2o$bob2o4b2o
bo$4bo4bo$o5b2o5bo$b4ob2ob4o$4b6o$4b6o$2b10o$2b10o$3b3o2b3o$2b2o2b2o2b
2o$3b2o4b2o$2bo8bo$5bo2bo$3b3o2b3o$3bo6bo$3b3o2b3o$5bo2bo$5b4o$6b2o$4b
o4bo$5b4o$4bo4bo2$4b2o2b2o$4b2o2b2o$4b6o$5b4o$4b6o$4b6o$2b10o$2b10o$2b
o2b4o2bo$5b4o$4bob2obo$5b4o$5b4o$4b6o$5b4o$5b4o$3bob4obo$o2b8o2bo$14o$
2b10o$ob10obo$bob8obo$b12o$2b10o$o2b8o2bo$b2o2b4o2b2o$2b10o$4b6o$4b6o$
b12o$2b10o$3b8o$4b2o2b2o$3bo2b2o2bo$2b2obo2bob2o$2b4o2b4o$2b3o4b3o$3b
8o$5b4o$4bob2obo$4bob2obo$5b4o2$4b2o2b2o$4bo4bo$3bob4obo$4bo4bo$4bo4bo
$6b2o3$6b2o$5b4o$3b2ob2ob2o$2b3o4b3o$2b10o$b5o2b5o$b12o$6b2o$4bob2obo$
4bo4bo2$4b2o2b2o$4b6o$2b3o4b3o$3b8o$3bobo2bobo$4bo4bo$5b4o$6b2o$6b2o$
6b2o$5b4o$5bo2bo$6b2o2$5b4o$4bob2obo$4b6o$5b4o$4b6o$6b2o$5b4o2$5b4o$5b
o2bo$6b2o2$5bo2bo2$6b2o$2b10o$2b10o$bob8obo$2b10o$2b10o$4b2o2b2o$4bob
2obo2$6b2o$3b2o4b2o$3b3o2b3o$4bob2obo$6b2o$2b2ob4ob2o$2b10o$o2bob4obo
2bo$3bo2b2o2bo$3bo2b2o2bo$3bob4obo$6b2o$5bo2bo!


Even symmetric 2c/5:
x = 24, y = 29, rule = B3678/S34678
7bo8bo$5b4ob4ob4o$5b3ob2o2b2ob3o$5b2o10b2o$6bo2bob2obo2bo$4bo3bo6bo3bo
$3bobob2ob4ob2obobo$b2obob2obo4bob2obob2o$b2ob2o3b6o3b2ob2o$b2o2b2o2b
6o2b2o2b2o$5bob10obo$2b3ob12ob3o$bob2o3b8o3b2obo$2bo2bob10obo2bo$4b2ob
ob6obob2o$3bo4b8o4bo$2bob3ob8ob3obo$2bobo2b10o2bobo$4bo4b6o4bo$2b2ob3o
2b4o2b3ob2o$2bobo2b2o2b2o2b2o2bobo$2obob2ob2o4b2ob2obob2o$b5o12b5o$bo
2b3o10b3o2bo$4bobob2o4b2obobo$8b2ob2ob2o$7bo2b4o2bo$5bo2b8o2bo$8bobo2b
obo!
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 862
Joined: July 1st, 2016, 3:58 pm

Re: Day & Night (B3678/S34678)

Postby Apple Bottom » December 13th, 2017, 3:58 am

AforAmpere wrote:C/8:

Even symmetric 2c/5:


Cool! Those are xq8_x2ftmmtf2...y0177771 and xq5_wgxcmhe2...11w21265 respectively.
If you speak, your speech must be better than your silence would have been. — Arabian proverb

Catagolue: Apple Bottom • Life Wiki: Apple Bottom • Twitter: @_AppleBottom_

Proud member of the Pattern Raiders!
User avatar
Apple Bottom
 
Posts: 1016
Joined: July 27th, 2015, 2:06 pm

Re: Day & Night (B3678/S34678)

Postby AforAmpere » December 13th, 2017, 8:56 pm

Odd-symmetric C/7:
x = 13, y = 142, rule = B3678/S34678
6bo$5bobo$5b3o$6bo2$3bo5bo$3b2o3b2o$3b3ob3o$2b2o5b2o$3b2o3b2o$3bo5bo$
2bo7bo$3bo5bo$2b2obobob2o$2b4ob4o$5bobo$3bo5bo$2b3o3b3o$3b2o3b2o$4bobo
bo$3bo5bo$3b7o$b3obobob3o$b11o$3b2o3b2o$3bo5bo$2bobo3bobo$5b3o$3b7o$2b
obobobobo$3b3ob3o$3b2o3b2o$b2o7b2o$3bo5bo$b2o2bobo2b2o$2bob5obo$2bo2b
3o2bo$3bobobobo$3bob3obo$2bobo3bobo$3b3ob3o$3bo2bo2bo$5bobo$bob2obob2o
bo$b2obobobob2o$b11o$2bo2bobo2bo$2b4ob4o$b4obob4o$bob7obo$4b5o$2b9o$5b
3o$6bo$4bobobo$4b2ob2o$5b3o$6bo$3b7o$2bob5obo$4b5o$bob7obo$2b9o$3b7o$
3b7o$3b7o$5b3o$3bob3obo$3bob3obo$bob7obo$2bob5obo$ob9obo$b2o2bobo2b2o$
2bo2bobo2bo2$5bobo$6bo$6bo$2b2obobob2o$b2o3bo3b2o$b4obob4o$3b7o$b2obob
obob2o$3bob3obo2$4b2ob2o$3bob3obo$2b3obob3o$b3obobob3o$b4o3b4o$bobo5bo
bo$4bo3bo$2b4ob4o$3bo2bo2bo$3b2obob2o$5b3o$6bo$4bobobo$4b2ob2o$3b3ob3o
$2b3o3b3o$3bobobobo$2b2obobob2o$3b2o3b2o$b2ob2ob2ob2o$4b2ob2o$b2o2bobo
2b2o$3b3ob3o$5bobo$5b3o$3b7o$3bob3obo$5b3o$4bobobo$5b3o$4bo3bo$3b3ob3o
$3b3ob3o$2b3obob3o$bo4bo4bo$b3o5b3o$4bo3bo$4bobobo$4b2ob2o$5b3o$3b2o3b
2o$2bo3bo3bo$b2ob2ob2ob2o$2b2ob3ob2o$2b9o$3b7o$2b9o$2b9o$2bo2bobo2bo$b
o3bobo3bo$2bo7bo$b3o5b3o$4bo3bo$3bo5bo$2b2o5b2o$3b2o3b2o$4bo3bo!
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 862
Joined: July 1st, 2016, 3:58 pm

Re: Day & Night (B3678/S34678)

Postby Sokwe » December 14th, 2017, 2:54 am

AforAmpere wrote:C/8:
x = 14, y = 201, rule = B3678/S34678
6b2o2$4bob2obo$5bo2bo$5b4o$5bo2bo$3b2ob2ob2o$3bob4obo$2b10o$3bob4obo$
2bob6obo$6b2o$3b8o$4b6o$3b8o$3b8o$3b3o2b3o$bob8obo$4bo4bo$4b2o2b2o$3bo
b4obo$5b4o$6b2o$5bo2bo$6b2o2$6b2o$3b3o2b3o$4b6o$3b8o$2bo2b4o2bo$2bob6o
bo$2b2o2b2o2b2o$b2o2bo2bo2b2o$bo3bo2bo3bo$5b4o$2b2ob4ob2o$5b4o$2b2obo
2bob2o$4bob2obo3$5bo2bo$2bo2bo2bo2bo$2b4o2b4o$2bobo4bobo$bo10bo$2b2ob
4ob2o$5bo2bo$4b6o$3b8o$2b10o$4b6o$5b4o$3bob4obo$2bob6obo$2b10o$3b8o$2b
ob6obo$3b8o$3b8o$2b10o$3bo6bo$bobobo2bobobo$b4o4b4o$2b2o6b2o$bob2o4b2o
bo$4bo4bo$o5b2o5bo$b4ob2ob4o$4b6o$4b6o$2b10o$2b10o$3b3o2b3o$2b2o2b2o2b
2o$3b2o4b2o$2bo8bo$5bo2bo$3b3o2b3o$3bo6bo$3b3o2b3o$5bo2bo$5b4o$6b2o$4b
o4bo$5b4o$4bo4bo2$4b2o2b2o$4b2o2b2o$4b6o$5b4o$4b6o$4b6o$2b10o$2b10o$2b
o2b4o2bo$5b4o$4bob2obo$5b4o$5b4o$4b6o$5b4o$5b4o$3bob4obo$o2b8o2bo$14o$
2b10o$ob10obo$bob8obo$b12o$2b10o$o2b8o2bo$b2o2b4o2b2o$2b10o$4b6o$4b6o$
b12o$2b10o$3b8o$4b2o2b2o$3bo2b2o2bo$2b2obo2bob2o$2b4o2b4o$2b3o4b3o$3b
8o$5b4o$4bob2obo$4bob2obo$5b4o2$4b2o2b2o$4bo4bo$3bob4obo$4bo4bo$4bo4bo
$6b2o3$6b2o$5b4o$3b2ob2ob2o$2b3o4b3o$2b10o$b5o2b5o$b12o$6b2o$4bob2obo$
4bo4bo2$4b2o2b2o$4b6o$2b3o4b3o$3b8o$3bobo2bobo$4bo4bo$5b4o$6b2o$6b2o$
6b2o$5b4o$5bo2bo$6b2o2$5b4o$4bob2obo$4b6o$5b4o$4b6o$6b2o$5b4o2$5b4o$5b
o2bo$6b2o2$5bo2bo2$6b2o$2b10o$2b10o$bob8obo$2b10o$2b10o$4b2o2b2o$4bob
2obo2$6b2o$3b2o4b2o$3b3o2b3o$4bob2obo$6b2o$2b2ob4ob2o$2b10o$o2bob4obo
2bo$3bo2b2o2bo$3bo2b2o2bo$3bob4obo$6b2o$5bo2bo!

Did you find it with zfind? How long did the search take? I just ran a qfind search with 4 threads and I found this c/8 ship in about a day:
x = 14, y = 36, rule = B3678/S34678
6b2o$6b2o2$3b2ob2ob2o$2b2o2b2o2b2o$3b8o$4b6o$2bob6obo$4b6o$5b4o$5b4o$
5b4o$3b2ob2ob2o$4bob2obo$3bo6bo$6b2o$5b4o$6b2o$5bo2bo$5b4o$6b2o$4b6o$
4bob2obo$b2o2b4o2b2o$o2b8o2bo$14o$b12o$ob10obo$b12o$bo3bo2bo3bo2$4b6o$
3b8o$3bo2b2o2bo$3bo2b2o2bo$5bo2bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1386
Joined: July 9th, 2009, 2:44 pm

Re: Day & Night (B3678/S34678)

Postby AforAmpere » December 14th, 2017, 7:42 am

Yeah, I used zfind, it took about 2 days, with m2000.
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 862
Joined: July 1st, 2016, 3:58 pm

Re: Day & Night (B3678/S34678)

Postby AforAmpere » January 3rd, 2018, 1:37 pm

C/9:
x = 14, y = 40, rule = B3678/S34678
4bo4bo$3bobo2bobo$b5o2b5o$ob10obo$2obo6bob2o$2bobo4bobo$3b3o2b3o$4b2o
2b2o$3b8o$3bob4obo$5bo2bo$4bo4bo$3bo6bo$4bo4bo$2bob2o2b2obo$2b4o2b4o$
2b3o4b3o$ob10obo$b2o3b2o3b2o$bo2bo4bo2bo$2b10o$2bobob2obobo$2bob6obo$
3b8o$2b10o$2bob6obo$b5o2b5o$2bob6obo2$6b2o$5bo2bo$5b4o$5b4o$4b6o$3b2o
4b2o$3b2ob2ob2o$6b2o$6b2o$6b2o$6b2o!
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 862
Joined: July 1st, 2016, 3:58 pm

Re: Day & Night (B3678/S34678)

Postby AforAmpere » January 17th, 2018, 4:50 pm

Is a C/5 wickstretcher known?
x = 24, y = 46, rule = B3678/S34678
3$6bob2o2b2obo$5bo2b6o2bo$4bobo8bobo$5bo2bo4bo2bo$6bo8bo$6b2o6b2o$4b2o
10b2o$5bo10bo$6bobo4bobo$7b3o2b3o$6b2o2b2o2b2o$9b4o$8b6o$9bo2bo$8b2o2b
2o$7bob4obo$7b2ob2ob2o$8b6o2$8b6o$5b5o2b5o$4bob10obo$5b12o$4bob10obo$
5b12o$4bob10obo$5b12o$4bob10obo$5b12o$4bob10obo$5b12o$4bob10obo$5b12o$
4bob10obo$5b12o$4bob10obo$5b12o$5b12o$4b14o$5b12o$5b12o$7bo2b2o2bo!


What I believe to be the smallest C/2, C/3, C/4, and C/5:
x = 74, y = 8, rule = B3678/S34678
3b4o14bo5bo10bo4bobo4bo9bo2bo5bo2bo$2b4obo10b5o3b5o7b2o3b3o3b2o9b2ob2o
3b2ob2o$b6obo9b4ob3ob4o8b2o2b3o2b2o9b2o4bobo4b2o$2b7o9bob2o5b2obo10b2o
3b2o11b3o2b5o2b3o$5o14b2o7b2o12b2ob2o13bobob5obobo$4bo2bo10bobo7bobo
11b5o$bo2bo12b2o11b2o29bo9bo$4b2o38bo!
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 862
Joined: July 1st, 2016, 3:58 pm

Re: Day & Night (B3678/S34678)

Postby A for awesome » January 17th, 2018, 10:13 pm

Weird p4 wick:
x = 6, y = 95, rule = B3678/S34678
3bo$3bo$2b3o$2bobo$2bobo2$3bo$3bo$2b3o$2bobo$2bobo2$3bo$3bo$2b3o$2bobo
$2bobo2$3bo$3bo$2b3o$2bobo$2bobo2$4bo$4bo$3b3o$3bobo$3bobo2$3bo$3bo$2b
3o$2bobo$2bobo2$4bo$4bo$3b3o$3bobo$3bobo2$3bo$3bo$2b3o$2bobo$2bobo2$2b
o$2bo$b3o$bobo$bobo2$bo$bo$3o$obo$obo2$2bo$2bo$b3o$bobo$bobo2$3bo$3bo$
2b3o$2bobo$2bobo2$3bo$3bo$2b3o$2bobo$2bobo2$3bo$3bo$2b3o$2bobo$2bobo2$
3bo$3bo$2b3o$2bobo$2bobo2$3bo$3bo$2b3o$2bobo$2bobo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1695
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Day & Night (B3678/S34678)

Postby waffledoctor87 » March 27th, 2018, 10:05 pm

Not that this isn't already known, but I do love that the r-pentomino is a p16 oscillator here.
waffledoctor87
 
Posts: 1
Joined: March 27th, 2018, 10:04 pm

Re: Day & Night (B3678/S34678)

Postby velcrorex » March 29th, 2018, 5:35 pm

When is someone going to find a knightship for this rule? Period 5 is the least possible period, and I've seen partials in several different periods. I think it's attainable.
-Josh Ball.
User avatar
velcrorex
 
Posts: 339
Joined: November 1st, 2009, 1:33 pm

Re: Day & Night (B3678/S34678)

Postby AforAmpere » March 31st, 2018, 11:47 am

velcrorex wrote:When is someone going to find a knightship for this rule? Period 5 is the least possible period, and I've seen partials in several different periods. I think it's attainable.

These are the best partials I got with afind for various oblique speeds:
x = 943, y = 22, rule = B3678/S34678
4b2o64bo31b2o29b4o22bo64bo30b3o30b2o47bo127b2o30b3o42bo96bo30b2o30b3o
40bo32bo31bo62b3o29b3o29b3o$3bo2bo28bob3o28b4o29b4o28b4o21bob2o28b5o
27b4o29b4o26b3ob2o45bobo29bobo28b2ob2o28b4o29b3o29b3o42b3o29b3o28b4o
29b3o29b3o29bob2o39b3o29b3o29b3o28b5o29b3o28b2obo28b2obo$2bob4o26bobob
obo27bo2b2o27bo4bo27b2o2bo20b3obo26bo2b2obo25b4ob2o25b7o25b7o44b2obo
27b5o27bo2b3o25bo3b2o25bo2b4o26bo3bobo41b3o28bobobo29b2o29bob2o28b4o
27b3o2bo38b4o31b2o27b4o27bob3o28b2ob2o26b2o2b2o26b4obo$2b2ob4o26bo2b3o
25b3o2b3o30b2o26bo2b4o19b2o2b2o25b7o26b3ob2o26b2o3b2o25b2ob2obo39bo3b
4o27b2o2b2o25b2ob2obo24b2obob3o24b2o3b2o24b2o5b2o39b3o30bob3o27b2obo
29bob3o27b4o27bo2bo40b4o27bo3b2o26bo3b2o27b3obo30bobo25b2o2b2o26bo2b3o
$6bobo25bo2b4o26b3ob3o25bobob2obo25bob4o18b2o4b2o28bo2bo25bobob3o28bo
2bo24bo2bo2bobo39bo3bo2bo26bo2b3o27b2ob3o25b2obo27b3obo2bo24b4ob2o40bo
2bo30b3obo25bo2b2o28bo2bo31b2o28bob2o41b2o27bo2b3o26b3o2bo26bobob2o27b
2ob2o27b2o30b2obo$2bob4o27bo2bobo25bobob4o26bo2b3o25b2o2b3o19bobo2bo
26b2o3bo24bobo2bob2o27b5o24bo4bobo41b6o59bo3bo30bobo26b2o29b3obobo41bo
b2o28bobobo26bo2b2o29bob3o24b2ob2o29b2ob2o38b3o2bo28b3o29b2o28bobo29bo
b4o26b2obo28b3ob2o$2bo2b3o25bo2bobobo29b2o27bob2o30b2obo18b2obob2o26bo
2bobobo26b4o25b5obo24b6ob2o41b4ob3o26b6o27b2o2bo27bo2bo30b3o27b5o41bob
2o29b2obo26b2o2b2o27bob2o28b2obo30bo38b5obo27b2o31b2o27b5o2bo25b5o27bo
bo2bo25b4o$2bo3b2o25b2obob2o26bo4bo27bo2bo51bo3b3o26b5ob2o23b2o2b3o26b
4o2bo25bo3b2o45bob4o26bob4o26b6o26bo3bo29bob2o29bobo40bobobo28bob2o29b
o31b3o28bob2o29bobo37b3obobo26b2o29b4ob2o25b6o28bobobo25bob3obo25b4obo
$2b3o30bo29bob2o31bo30bobo20b3obobobo25bo5b2o22bobob3o2bo24b2o3b4o22b
2o2b2o2b2o44b2o28bobo31b2o27bob3o29bobo30b2o43bo30bobo31bo31bo30bo72b
2ob2o25b5ob3o24b7o27bobo28b3ob2o24b8o27b5o$33bobo30b3o28bo2bo31b2o21b
2o2b2ob2o23b3o5b2o20b4ob7o22b3o3bob2o20bob2ob2ob4o43bobo31b2o59b3o31b
2o28bob2o41bo35bo29bo31b2o29b3o29b3o38bo4b2o25b2ob3o26bo2b5o27b4o27b2o
b2o28bob3o25bo4b2o$ob3o28b3o29bobo31b2o29b4o19b5o2b2ob2o22b3o2b2o2bo
21b3o2bo3bo22b2obo2b2o2bo21b6obobo46bo60b2o2bo26b2o30b2obo27b3ob2o42b
2o29bo2bo27bob2o30b2o29b3o31b2o39b2o3bo25bo2bo2b2o30b2o25b3ob3o25b2o2b
2o27bo3b2o27b2o2bo$2b2o30bo62bo2bo30b2o21bob5obo23bo5b2obo22b2o7bo26bo
b2o26bo2b2o3bo41b4o28b5o28b2o28bo2bo28b2obo28bob2o42b3obo27bob2o29bob
2o59b5o28b4o38b2ob4o32bo25bob2o28bobo2bo27bo4bo27b2obo26b5o$bo2bo29b2o
29b4o32b2o27b2o2b2o18bo2bob2o25bobob2o2bo22b2o3bob2obo21bobob3o76b4obo
26bo2bo31b2o28b3obo28b2o30bo2bo42bob2o28b4o28bobo28b2o2b2o29b2o28bo2bo
41b3o28b5o26b5o26b2ob4o26b4o28bo2b3o26b3ob2o$o4bo27bobob2o30b3o25bob5o
27b2obobo195b2o30b2obob2o27bo2b3o27bo2bo26b3ob2o26bobo2bo40bo32bo2b2o
28bo30b4o31bo27b2o41bo2bo28b2obo28b2o2b2obo26b2obo27bob2o27b5o27bo3b4o
$2bob3o25bo4b3o25bo4b2o26b2o2b3o25bobo2b2o198bob2o29b4o27b5o26b2obobo
26bo2bobo26bo2b3o42b2o29b2o29b4o29b2obo28b4o30b2o38bo2bo27bo2bob2o25b
4ob2obo24bob5o27bobo26bob3obo25b5ob3o$2o4b2o26b3ob2o24bob4obo27b2o2b2o
24bob3ob2o195b3o2b3o24b3o2b3o25bobo2bobo25b3ob2o26bobob2o26bo4b2o38bob
3o30bo2bo29b2o27bo2b2o27bo2b3o27bob2o$3bo3bo24b3ob2o27b3o3bo24b2obobo
29b2o2b2o195b2o3bobo24bo2bo2b2o27b3ob2o27bobo26b2obob2o26b6o43bo27b2o
3b2o$bo2b2o30b2o2bo24bo3bo29b2o3bo24bo2bo3b2o195bob4o27b2o3bo26b3obo
25bobo2bo29b3o29b2o2bo$o4b4o27b5o27bo3b2o24b8o24bo6b2o193b4ob2o25bob2o
29b3o2bo26b2o2b2o25bob4obo25b3obob2o$7b2o23b2o3bob2o25b2obob3o24bo2b3o
b2o28bobo195b2o3b2o27bob2o$2o2bo29b2o5bo24b3obo2bo26bo29b2ob2ob3o$bob
2o2b2obo!
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 862
Joined: July 1st, 2016, 3:58 pm

Re: Day & Night (B3678/S34678)

Postby velcrorex » March 31st, 2018, 4:49 pm

P5 knight ship has partials like this one:
x = 95, y = 53, rule = B3678/S34678
7bo$4b3o4b2o$2b2ob2ob5o$2b3o5bob2ob3o$bob4o4bobo2b3obo$3o2b2o3b2obo3b
2o$4o8b2o2bo2b3o$o6bo2b2ob3o5bobo$2b10o2b2o4b3obo$4bobo2b3o2b2o4b2obob
2ob2o$4b2ob2o2bobo2b6obo2b4o$6bo2bob2o3b4o7bob2o$9b2ob2ob4obo7b2o2b2o$
9bo2bobo2b2obo6b7o2b2o$11b5ob3o6b3obobobob2o$11bo3b5obo3bo2bob2o4b4o$
20bo3bobo3bo3bob4ob2o$19bob3ob6obobob2ob2o3bo$22bobobobobo2bo2b2obobob
4o$21b2o3b2obobo2bobo6b2obo$22bo5b2ob2o4bob2obo3b2o$33b2o3bo2b5ob2o$
32b2ob3ob2o9bo$35b5o3b2o3bob3o5bo$36bob2o7b4obo2b3o2bo$36b2o9bobo5b2ob
4o$48b3ob2o3b4o2b2o$50b3ob3obo2b2obo$49b2o3bo2b6o$50b3o8bobob2o$49bob
3ob3o4b4o$49b2ob3obobobo2b2obo$49b2obobo3b3o2b3obo$51bo3b2ob2o4b3obo$
52bobobo2b2obo2b4o8bo$56bo3b2ob2obob2o4b4ob2o$60b3obo3b2o2b2obo4bo3bo$
60b3o2bo2b6o4b3obobo$67bo2b2ob2o2b5ob2o$64bobo3b4ob5obo$66bo5b2ob4o12b
o$71bobob6o2bo6b3obo$70b3ob6o2b5o2b4o$76bo4bobob3obobobo$78b3ob2ob3obo
2b2o$78b7o6b2o$79bo2bo3b3o2bo$84b2o4bo$84bo4b2o$85b3ob2o$85b4o$85b4o$
88bo!
-Josh Ball.
User avatar
velcrorex
 
Posts: 339
Joined: November 1st, 2009, 1:33 pm

Re: Day & Night (B3678/S34678)

Postby AforAmpere » March 31st, 2018, 4:59 pm

velcrorex wrote:P5 knight ship has partials like this one:
RLE

How did you get this partial? What program?
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 862
Joined: July 1st, 2016, 3:58 pm

Re: Day & Night (B3678/S34678)

Postby velcrorex » March 31st, 2018, 5:15 pm

WinLifeSearch. I searched for stuff like this a while ago, so I don't remember the exact details.
-Josh Ball.
User avatar
velcrorex
 
Posts: 339
Joined: November 1st, 2009, 1:33 pm

Re: Day & Night (B3678/S34678)

Postby AforAmpere » March 31st, 2018, 8:36 pm

p6 knightship partial found with WLS, I will try to do some more searches:
x = 25, y = 15, rule = B3678/S34678
3bo$b2ob2o$ob2o2bo8bo$9o4b2ob2o$o2bobo2b2o3b2o2bo$b2obob2ob2o2bob3ob2o
$9b2obob3obo$9b3obob2obob2o$10b3obob2o2b2o2bo$18b5obo$19b2o$17b2obobo$
17b5o$18b3o$19bo!
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 862
Joined: July 1st, 2016, 3:58 pm

Re: Day & Night (B3678/S34678)

Postby AforAmpere » April 1st, 2018, 8:01 pm

Short, extremely wide C/4 orthogonal, at height 8:
x = 165, y = 8, rule = B3678/S34678
2o10bo138bo10b2o$5o5b4ob2o14bo12b2o13b2o2b3o32b3o2b2o13b2o12bo14b2ob4o
5b5o$b2ob2o4bo5b2ob3o2bobo2b3ob2o9b2ob2obo5b2ob5obobo5b2o5bo2bo5b2o5bo
bob5ob2o5bob2ob2o9b2ob3o2bobo2b3ob2o5bo4b2ob2o$2bob3obobo2bo2bo2b4o2bo
b3ob6obo4bo2bob4obob2obo3bo2b5o2b3ob4ob2ob4ob3o2b5o2bo3bob2obob4obo2bo
4bob6ob3obo2b4o2bo2bo2bobob3obo$2b3ob2o3bobobobobobobob3ob3o2b6o2bobob
obobobob2o2bo7b2obo3bo5bob2obo5bo3bob2o7bo2b2obobobobobobo2b6o2b3ob3ob
obobobobobobo3b2ob3o$4b2obobo3bob2o6bobob2o2bobob3o2bob3o2b2obo3b2o12b
o3b2o7b2o7b2o3bo12b2o3bob2o2b3obo2b3obobo2b2obobo6b2obo3bobob2o$10bobo
13bo5bobobobo5bobo7bo12bo2bo3bo14bo3bo2bo12bo7bobo5bobobobo5bo13bobo$
11b2o9b2o12bo33bo22bo33bo12b2o9b2o!
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 862
Joined: July 1st, 2016, 3:58 pm

Re: Day & Night (B3678/S34678)

Postby AforAmpere » April 2nd, 2018, 9:08 pm

All C/2's I could find under 40 cells:
x = 89, y = 240, rule = B3678/S34678
22bobo$21b3o$20b4o$3o4b2o11b4o$3bo2bo2bo13b2o$3bo2bo2bo10bob2o$b2o4b2o
11bobo$o8bo10b3obo$o8bo10bobobo$b3o2b3o12b2o10$23b2o$22bobobo$22b3o$
22bob2o$3o4b2o14b4o$3bo2bo2bo$3bo2bo2bo11b4o$3o3bo2bo10bob2o$3bo2bo2bo
10b3o$3bo2bo2bo10bobobo$3o4b2o12b2o12$25bo$23b4o$3b3o3bo13b2o$6bo2bo
13bob2o$6bo2bo10b2obo$3b3o3bo10b5o$6bo2bo10bob3o$6bo2bo11b7o$3b3o3bo
13bo3bo10$24bo$22bobobo$21b4obo$20b4o$3o3b3o11bobobo$3bo5bo11bo2bo$3bo
5bo10bob2o$3o4b2o11bobo$3bo2bo13b3obo$3bo2bo13bobobo$3o4b3o11b2o10$27b
o$25bobobo12b2o$24b4obo11b2o$23b4o13b5o$3o3b3o15b4o13b2ob3o$3bo5bo34bo
$3bo5bo12b3o18bo$3o3b3o12b3obo14b2ob3o2bo$3bo5bo10b4o16b3o2bo$3bo5bo
11b3o16bobobo2b2o$3o3b3o13bobo16b2o7$62b2o$61bobobo$61b3obo$61bobo$22b
2o18b2o17bo$21bobobo15b2o3bo16bo$20bob2o16b5o15b3o21b3o$3o3bo2bo10b4o
3bo13b2ob3o13b2obo18bob2o$3bo2bo2bo10b8o16bo17bo18b6obo$3bo2bo2bo10b5o
18bo17b3o16b8o$3o4b2o12b4o15b2ob3o2bo12b2o18b6obo$3bo5bo12bobobo13b3o
2bo15b3obo16bob2o$3bo5bo14bo15bobobo2b2o12bobobo18b3o$3o6bo31b2o19b2o
6$43bobo$42b3o$41b4o$22b2o17bobobo$21bobobo16bobo$21b3obo15bo$21b2o18b
o$24bo16b4o$3o4b3o14b3obo12bo$3bo2bo16bo2b2o$3bo2bo15bo3bobo11b3o$3o4b
2o12b3obo14b2o$3bo5bo10b5o15b3obo$3bo5bo11b2o17bobobo$3o3b3o13b2o17b2o
12$45bo19bo$24bo18bobobo15bobobo$3o4b3o12bobobo15b4o2b2o12b4o$3bo2bo
14b4o16b5o15b5o$3bo2bo13b5o2b2o11b8o12b9o$3o4b2o11bob5o13b5o15b5o3bo$
3bo2bo2bo11b3o3b2o12b4o16b4o$3bo2bo2bo11bob5o14bobobo15bobobo$3o4b2o
13b2obobo16bo19bo14$3o3b3o34b2o$3bo5bo11b2o19bobobo$3bo5bo10bobobo17b
3obo$3o6bo10b3obo17bobo$3bo5bo10bobo19bo$3bo5bo10bo23bo$3o6bo11b3o17b
3o$21bo19b2obo$21bo21bo$23bo17bo$21b2o18bo$21b3o17b3o$24bo15bo$20b3obo
15bobo$20b4o16b3obo$21b3o16bobobo$22bobo16b2o4$3o4b2o34b2o$3bo2bo2bo
11b2o19bobobo14b2o$3bo2bo2bo10bobobo17b3obo13bobobo$3o4b2o11b3obo17bob
o15b3obo21bobo$3bo2bo2bo10bobo2bo16bo17bobo21b4o$3bo2bo2bo10bo23bo15bo
22bob3o$3o4b2o12b3o17b3o17b3o19b4obo$21bo19b2obo16bo21b3o$21bo21bo17bo
22bo$23bo17bo21bo20b2o$21b2o18bo19b2o20b2o$21b3o17b3o17b3o19bo2bo$24bo
15bo23bo18bobo$20b3obo15bobo2bo14b3obo15b2o4bo$20b4o16b3obo15b4o2bo13b
3o2bo$21b3o16bobobo16b3o16bobo$22bobo16b2o19bobo16b2o4$3o4b2o$3bo2bo2b
o12b2o$3bo2bo2bo11bobobo$3o4b2o12b3obo$3bo5bo11bobo2bo$3bo5bo11bo$3o3b
3o13b3o$22bo$22bo$23bo$21b2o$21b3o$24bo$20b3obo$20b4o2bo$21b3o$22bobo
4$o2bo3b2o$o2bo2bo2bo$o2bo2bo2bo$b2o3bo2bo$3bo2bo2bo$3bo2bo2bo12b2o$3b
o3b2o12bobobo$21b3obo$21b2o$24bo$24b3obo2bo$23bo2b2o2b2obo$22bo3bobo2b
o$21b3obo$20b5o$21b2o$22b2o!


The smallest I could find was 29 cells. The smallest C/3's I could find were these 41 and 42 cell ones:
x = 7, y = 35, rule = B3678/S34678
6bo$b3ob2o$b2obo$b5o$4o$bo$2bo$2bo$2bo$bo$4o$b5o$b2obo$b3ob2o$6bo5$6bo
$b3ob2o$b2obo$b5o$4o$bo$2bo$2bo$2bo$2bo$bo$4o$b5o$b2obo$b3ob2o$6bo!


I am also running a w8 v search for a 2c/9, with some promising partials so far.
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 862
Joined: July 1st, 2016, 3:58 pm

Re: Day & Night (B3678/S34678)

Postby kiho park » June 13th, 2018, 3:01 am

The D&N rule allows to do this thing.

x = 72, y = 88, rule = B3678/S34678:T72,88
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
o$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobo$obobobobob2ob2ob2obobob2o2b2obobobobobobob2ob2obobobobobobobobobo
bobobo$bobobobobobo3b2obobobobobo3b2obobob2ob2obo3bobobobobobobobobobo
bobobo$obobobobobo3bobo2bob2obobo5bobobobo3bo3bobobobobobobobobobobobo
bo$bobobobobobobobo4b2o9bobobobo3bobobobobobobobobobobobobobobobo$obob
obobob2ob2obob2obobo5b3o2b2o2bobobob2ob2obobobobobobobobobobobo$bobobo
bobobo3b2obobobobo3b2ob7ob2ob2obo3bobobobobobobobobobobobo$obobobobobo
3bobo2bobobo2bobob7obobo3bo3bobobobobobobobobobobobo$bobobobobobobobo
4bob2ob9obobobo3bobobobobobobobobobobobobobobo$obobobobobob2o2bob2obob
ob2obob2o2bobobobobobob3obobobobobobobobobobobo$bobobobobobob4obobobob
7o6bobob3obob3obobobobobobobobobobobo$obobobobobobob2obobobo2bobob3o7b
obob3o2bo2bobobobobobobobobobobo$bobobobobobo2bobobobobobobob3ob2o2b2o
bo2bo2bobobobobobobobobobobobobobo$obobobobobobo2bobobobobo2b2o2bobobo
bobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobo
bob2ob2obobobobobob2ob2obobobobobobobobobobobobobobobobobobobobo$obobo
bobobobo3bobobobobobobo3bobobobobobobobobobobobobobobobobobobobo$bobob
obobobo3bobobobobobobo3bobobobobobobobobobobobobobobobobobobobobo$obob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bo
bobobobob2ob2obobobobobobob3obobobobobobobobobobobobobobobobobobobobo$
obobobobobobo3bobobobobobobob3obobobobobobobobobobobobobobobobobobobo$
bobobobobobo3bobobobobobobo2bo2bobobobobobobobobobobobobobobobobobobob
o$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obo$bobobobobobob3obobobobobobobobobobobobobobobobobobobobobobobobobob
obobo$obobobobobobob3obobobobobobobobobobobobobobobobobobobobobobobobo
bobobo$bobobobobobo2bo2bobobobobobobobobobobobobobobobobobobobobobobob
obobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobo$bobobobobobob2obobobobobobob
obobo2bo2b2obobob2ob2obobobobobobobobobobobo$obobobobobob2obobobobobob
obobobob2o5b2ob2obo3b2ob2obobobobobobobobo$bobobobobobobo2bobobob2o2bo
b2obo7bobo3bo3bobo3bobobobobobobobobo$obobobobobobo4b2ob2ob2o2bo2bo7bo
bo3bobobobo3bobobobobobobobobo$bobobobobobobob2obo3bobo2b3obo4b2obobob
ob2ob2obobobobobobobobobobobo$obobobobobob2obobo3bobo2b5o4b4ob2ob2obo
3b2ob2obobobobobobobobo$bobobobobobobo2bobobobobobob4obob5obo3bo3bobo
3bobobobobobobobobo$obobobobobobo4bob3obob2ob2o6b2o2bo3bobobobo3bobobo
bobobobobobo$bobobobobobobob2obob3ob2o3bob2o5b2obobobob3obobobobobobob
obobobobo$obobobobobob2obobo2bo2bobobo2bo2bo6bob3obob3ob3obobobobobobo
bobo$bobobobobobobo2bobobobobobobobobo6bobob3o2bo2bob3obobobobobobobob
o$obobobobobobo4bobobobobobobobobo2bobobo2bo2bobobo2bo2bobobobobobobob
o$bobobobobobo2b2obobobobobobobobobobobobobobobobobobobobobobobobobobo
bobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobo$obobobobobob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2obobobobobobobobobo$bobobobobobobo3bobo3bobo3bobo3bobo3bo
bo3bobo3bobobobobobobobobobo$obobobobobobo3bobo3bobo3bobo3bobo3bobo3bo
bo3bobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobo$obobobobobobob3obob3obob3obob3obob3obob3obo
b3obobobobobobobobobo$bobobobobobobob3obob3obob3obob3obob3obob3obob3ob
obobobobobobobobo$obobobobobobo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo
2bobobobobobobobobo$bobobobobobobob3obob3obob3obob3obob3obob3obob3obob
obobobobobobobo$obobobobobobob3obob3obob3obob3obob3obob3obob3obobobobo
bobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobo$obobobobobobo3bobo3bobo3bobo3bobo3bobo3bobo3bobobobobobo
bobobobo$bobobobobobobo3bobo3bobo3bobo3bobo3bobo3bobo3bobobobobobobobo
bobo$obobobobobob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2obobobobobobo
bobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobo!





Partial result of diagonal c/3 checker-board crawler
x = 48, y = 48, rule = B3678/S34678
obobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobo
bobobobobobobobobobobobobo$obo13bobobobobobobobobobobobobobobobo$bo15b
obobobobobobobobobobobobobobobo$o17bobobobobobobobobobobobobobobo$bo
17bobobobobobobobobobobobobobobo$o19bobobobobobobobobobobobobobo$bo18b
2obobobobobobobobobobobobobo$o21bobobobobobobobobobobobobo$bo18bo2bobo
bobobobobobobobobobobo$o15bo7bobobobobobobobobobobobo$bo14b3o5b2obobob
obobobobobobobobo$o15b4o6bobobobobobobobobobobo$bo11bo5bo7bobobobobobo
bobobobobo$o15bo11bobobobobobobobobobo$bo15bobobo6b2obobobobobobobobob
o$obo7b3obo2bo2b2o8bobobobobobobobobo$bobo7b2o2b3o3bo8b2obobobobobobob
obo$obobo6b2o10bobo6bobobobobobobobo$bobobo6b2obo9bo6b2obobobobobobobo
$obobob2obo6bo10bo6bobobobobobobo$bobobobo7b3o7b2o8bobobobobobobo$obob
obobo16b3o2bo5bobobobobobo$bobobobobo8bo6b2o2bobo5bobobobobobo$obobobo
bob2o12bobo2b3o6bobobobobo$bobobobobobo6b2ob3obobob4o5b2obobobobo$obob
obobobobo8b4obob4o8bobobobo$bobobobobobobo6bobo2bobo3b2o8bobobobo$obob
obobobobob2o10bob2o12bobobo$bobobobobobobobo7b4obo3bo8bobobobo$obobobo
bobobobob2o4bob3o4bo2bob2o5b2obo$bobobobobobobobobo5b5o2bobo2b7o3bobo$
obobobobobobobobob2o5bobobob2o2b4o2bob2obo$bobobobobobobobobobo13b4ob
3ob2obobo$obobobobobobobobobobo9bo2bobob6obobo$bobobobobobobobobobobo
9b4obo2b5obobo$obobobobobobobobobobobo7b4obo2bob5obo$bobobobobobobobob
obobobo6b3obo2bob2obo2bobo$obobobobobobobobobobobob2o5b4obo2bob2obobo$
bobobobobobobobobobobobobo5bob3ob2ob2obobobo$obobobobobobobobobobobobo
bo4bob5ob2o3bobo$bobobobobobobobobobobobobobobob2ob3ob2obo3bobo$obobob
obobobobobobobobobobobo4b6o3b3obo$bobobobobobobobobobobobobobob2ob2ob
2o2bo2bo2bobo$obobobobobobobobobobobobobobobobobobobobobobobo$bobobobo
bobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobo
bobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobo!
kiho park
 
Posts: 48
Joined: September 24th, 2010, 12:16 am

Re: Day & Night (B3678/S34678)

Postby wildmyron » June 13th, 2018, 11:01 pm

kiho park wrote:Partial result of diagonal c/3 checker-board crawler
<snip>c/3 diagonal partial

Here's a completed c/3 signal - and it's a bubble. Both searches from the front and the back seem to get lost in the search space after finding one of these, so I manually joined them together.
x = 80, y = 80, rule = B3678/S34678:T80,80
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obo$obobobobobob2o2b2o2bobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobo$bobobobobob2o2bob3obobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobo$obobobobobo2bob3ob2obobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobo$bobobobobo4b4ob3obobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobo$obobobobo2b6obob3obobobobobobob
obobobobobobobobobobobobobobobobobobobobobo$bobobob2o2bo3b3o2bo2bobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobo$obobob2obobob4o3b
2ob2obobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobo4b2o
b4o4b3obobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobob
ob9o3b2ob3o2bobobobobobobobobobobobobobobobobobobobobobobobobobo$bobob
obob10o3b6obobobobobobobobobobobobobobobobobobobobobobobobobobo$obobob
5obo3b3obob2ob4obobobobobobobobobobobobobobobobobobobobobobobobobo$bob
obo2bo2bo4b8obob3obobobobobobobobobobobobobobobobobobobobobobobobobo$o
bobobob3o7b5obob4o2bobobobobobobobobobobobobobobobobobobobobobobobo$bo
bobobob5obob7obob5obobobobobobobobobobobobobobobobobobobobobobobobo$ob
obobobob2ob3o2b5o2bob5o2bobobobobobobobobobobobobobobobobobobobobobobo
$bobobobobobo2bob8ob2o3b4obobobobobobobobobobobobobobobobobobobobobobo
bo$obobobobobob7obob2o3bobo3b2obobobobobobobobobobobobobobobobobobobob
obobo$bobobobobobobob2o2bo5bo3b2o2b3obobobobobobobobobobobobobobobobob
obobobobobo$obobobobobobob5ob3ob2o4b2o2b2o2bobobobobobobobobobobobobob
obobobobobobobo$bobobobobobobo2b2obo2bo3b2obo2b3obo2bobobobobobobobobo
bobobobobobobobobobobobo$obobobobobobobob6obo2bo2b6o5bobobobobobobobob
obobobobobobobobobobobo$bobobobobobobobob5o7bob4o6bobobobobobobobobobo
bobobobobobobobobobo$obobobobobobobobob4ob2ob10o6bobobobobobobobobobob
obobobobobobobobo$bobobobobobobobobo2b3ob2obobob3o2b2o4b2obobobobobobo
bobobobobobobobobobobobo$obobobobobobobobobob3o2bob4o4b2o7bobobobobobo
bobobobobobobobobobobobo$bobobobobobobobobobo2bo3b5ob2ob2o8bobobobobob
obobobobobobobobobobobobo$obobobobobobobobobobob3ob5ob3obo9bobobobobob
obobobobobobobobobobobo$bobobobobobobobobobobob7o3b2o4bo6b2obobobobobo
bobobobobobobobobobobo$obobobobobobobobobobobob2o3bob2o2b4obo7bobobobo
bobobobobobobobobobobobo$bobobobobobobobobobobobo2bo3b4obob5o6b2obobob
obobobobobobobobobobobobo$obobobobobobobobobobobobo5bo4b5o10bobobobobo
bobobobobobobobobobo$bobobobobobobobobobobobobo9b4o11b2obobobobobobobo
bobobobobobobo$obobobobobobobobobobobobobo7bob2obo12bobobobobobobobobo
bobobobobo$bobobobobobobobobobobobobobo7b2o14bobobobobobobobobobobobob
obobo$obobobobobobobobobobobobobobo7bo17bobobobobobobobobobobobobo$bob
obobobobobobobobobobobobob2o21b2obobobobobobobobobobobobobo$obobobobob
obobobobobobobobobobo21b3obobobobobobobobobobobobo$bobobobobobobobobob
obobobobobobo17b5obobobobobobobobobobobobobo$obobobobobobobobobobobobo
bobobobo15bob4ob2obobobobobobobobobobobo$bobobobobobobobobobobobobobob
obob2o13b2o4bo3b2obobobobobobobobobobo$obobobobobobobobobobobobobobobo
bobo13b2o10bobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2o
8b3obo9bobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobo7bo
b3o2bo7b2obobobobobobobobobo$bobobobobobobobobobobobobobobobobobob2o5b
2o6bo8bobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobo3b
2o3bob2ob3o5bobobobobobobobobo$bobobobobobobobobobobobobobobobobobobob
o2b4o4b3o3bo6bobobobobobobobobo$obobobobobobobobobobobobobobobobobobob
obob4o9b2o7bobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobo
bo2bo4bo3bob3o5bobobobobobobobo$obobobobobobobobobobobobobobobobobobob
obobob2o5bob2o10b2obobobobobobo$bobobobobobobobobobobobobobobobobobobo
bobobobo5b3o4bo8bobobobobobobo$obobobobobobobobobobobobobobobobobobobo
bobobo9bo3bobo7bobobobobobo$bobobobobobobobobobobobobobobobobobobobobo
bob2o7bob3obo8bobobobobobo$obobobobobobobobobobobobobobobobobobobobobo
bobob2o4bo4bo9b2obobobobo$bobobobobobobobobobobobobobobobobobobobobobo
bobobo7b2ob3o8bobobobobo$obobobobobobobobobobobobobobobobobobobobobobo
bobobo9bob4obo2bobobobobo$bobobobobobobobobobobobobobobobobobobobobobo
bobobobo8b4ob3obobobobobobo$obobobobobobobobobobobobobobobobobobobobob
obobobobobo8b3o3bo4bobobobo$bobobobobobobobobobobobobobobobobobobobobo
bobobobobobo7bo2bo2b2o4bobobobo$obobobobobobobobobobobobobobobobobobob
obobobobobobobob2o5b2o2bo2b3o3bobobo$bobobobobobobobobobobobobobobobob
obobobobobobobobobobobo6bo3b4ob2ob2obobo$obobobobobobobobobobobobobobo
bobobobobobobobobobobobobobo4b4ob2obobo2b3obo$bobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobo6b3o4bo5bobo$obobobobobobobobobobobo
bobobobobobobobobobobobobobobobobob2o2bo2b3o3b2o2b2obo$bobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobo3bo7bobobobo$obobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobo3b4o2bobobobo$bob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bo2bobob
obobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obo5bobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobob3o3bobobobobo$obobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobob2ob2obobobobo$bobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobo!

There's possibly shorter signals (I didn't search wider) but there's nothing narrower.

Edit: Slightly wider but shorter front-end:
x = 80, y = 80, rule = B3678/S34678:T80,80
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobo$bobobobo2bobobob2obobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobob2o2b2ob2o
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobob
3o3bo2b3o2bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
$obobob3o2b10obobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bo$bobob3ob2ob3ob6obobobobobobobobobobobobobobobobobobobobobobobobobob
obobobo$obo2b2ob2ob5o4bobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobo$bob2o3bob4ob2o3b3o2bobobobobobobobobobobobobobobobobobobo
bobobobobobobobobo$obo4bob3o3b2ob2ob4obobobobobobobobobobobobobobobobo
bobobobobobobobobobobo$bob3ob4o2b2o3b7o2bobobobobobobobobobobobobobobo
bobobobobobobobobobobobo$obo2b6ob3ob3obob5obobobobobobobobobobobobobob
obobobobobobobobobobobobo$bob2o2b3o2b5o3b7o2bobobobobobobobobobobobobo
bobobobobobobobobobobobobo$obo2bobob3o2b2ob4o3b5obobobobobobobobobobob
obobobobobobobobobobobobobobo$bob6ob2ob2obob3ob2o2b4obobobobobobobobob
obobobobobobobobobobobobobobobobo$obobob3o4bobobo3bo4b5obobobobobobobo
bobobobobobobobobobobobobobobobobo$bobob4o2b3ob2o3bo2b9obobobobobobobo
bobobobobobobobobobobobobobobobobo$obobo2b2o2b2o2b2o5b2obob6obobobobob
obobobobobobobobobobobobobobobobobobo$bobobob4ob5obo7bo2b3obobobobobob
obobobobobobobobobobobobobobobobobobo$obobobobob3obo2bo11b4obobobobobo
bobobobobobobobobobobobobobobobobobo$bobobobob6obo2bo10b2o2b2obobobobo
bobobobobobobobobobobobobobobobobobo$obobobobo2b4obob2o10bobo3bobobobo
bobobobobobobobobobobobobobobobobobo$bobobobobob5o2bo17b2obobobobobobo
bobobobobobobobobobobobobobobo$obobobobobo2b3o2b2o18bobobobobobobobobo
bobobobobobobobobobobobo$bobobobobobob6obo18bobobobobobobobobobobobobo
bobobobobobobobo$obobobobobobo2b5o20bobobobobobobobobobobobobobobobobo
bobobo$bobobobobobobob5o21bobobobobobobobobobobobobobobobobobobobo$obo
bobobobobobob6o20bobobobobobobobobobobobobobobobobobobo$bobobobobobobo
bob7o18b2obobobobobobobobobobobobobobobobobobo$obobobobobobobobob5o21b
obobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobo21bobobobo
bobobobobobobobobobobobobobo$obobobobobobobobobobo25bobobobobobobobobo
bobobobobobobobo$bobobobobobobobobobob2o23b2obobobobobobobobobobobobob
obobobo$obobobobobobobobobobobo25bobobobobobobobobobobobobobobobo$bobo
bobobobobobobobobob2o23b2obobobobobobobobobobobobobobobo$obobobobobobo
bobobobobobo25bobobobobobobobobobobobobobobo$bobobobobobobobobobobobob
o24b2obobobobobobobobobobobobobobo$obobobobobobobobobobobobobo25bobobo
bobobobobobobobobobobo$bobobobobobobobobobobobobobo23bobobobobobobobob
obobobobobobo$obobobobobobobobobobobobobobo25bobobobobobobobobobobobob
o$bobobobobobobobobobobobobobob2o21b2obobobobobobobobobobobobobo$obobo
bobobobobobobobobobobobobo21b3obobobobobobobobobobobobo$bobobobobobobo
bobobobobobobobobo17b5obobobobobobobobobobobobobo$obobobobobobobobobob
obobobobobobo15bob4ob2obobobobobobobobobobobo$bobobobobobobobobobobobo
bobobobob2o13b2o4bo3b2obobobobobobobobobobo$obobobobobobobobobobobobob
obobobobo13b2o10bobobobobobobobobobo$bobobobobobobobobobobobobobobobob
ob2o8b3obo9bobobobobobobobobobobo$obobobobobobobobobobobobobobobobobob
o7bob3o2bo7b2obobobobobobobobobo$bobobobobobobobobobobobobobobobobobob
2o5b2o6bo8bobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobo
bo3b2o3bob2ob3o5bobobobobobobobobo$bobobobobobobobobobobobobobobobobob
obobo2b4o4b3o3bo6bobobobobobobobobo$obobobobobobobobobobobobobobobobob
obobobob4o9b2o7bobobobobobobobo$bobobobobobobobobobobobobobobobobobobo
bobobo2bo4bo3bob3o5bobobobobobobobo$obobobobobobobobobobobobobobobobob
obobobobob2o5bob2o10b2obobobobobobo$bobobobobobobobobobobobobobobobobo
bobobobobobo5b3o4bo8bobobobobobobo$obobobobobobobobobobobobobobobobobo
bobobobobo9bo3bobo7bobobobobobo$bobobobobobobobobobobobobobobobobobobo
bobobob2o7bob3obo8bobobobobobo$obobobobobobobobobobobobobobobobobobobo
bobobobob2o4bo4bo9b2obobobobo$bobobobobobobobobobobobobobobobobobobobo
bobobobobo7b2ob3o8bobobobobo$obobobobobobobobobobobobobobobobobobobobo
bobobobobo9bob4obo2bobobobobo$bobobobobobobobobobobobobobobobobobobobo
bobobobobobo8b4ob3obobobobobobo$obobobobobobobobobobobobobobobobobobob
obobobobobobobo8b3o3bo4bobobobo$bobobobobobobobobobobobobobobobobobobo
bobobobobobobobo7bo2bo2b2o4bobobobo$obobobobobobobobobobobobobobobobob
obobobobobobobobobob2o5b2o2bo2b3o3bobobo$bobobobobobobobobobobobobobob
obobobobobobobobobobobobobo6bo3b4ob2ob2obobo$obobobobobobobobobobobobo
bobobobobobobobobobobobobobobobo4b4ob2obobo2b3obo$bobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobo6b3o4bo5bobo$obobobobobobobobobo
bobobobobobobobobobobobobobobobobobobob2o2bo2b3o3b2o2b2obo$bobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobo3bo7bobobobo$obobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobo3b4o2bobobobo
$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bo2b
obobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobo5bobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobob3o3bobobobobo$obobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobob2ob2obobobobo$bobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobo!
wildmyron
 
Posts: 937
Joined: August 9th, 2013, 12:45 am

Re: Day & Night (B3678/S34678)

Postby kiho park » June 14th, 2018, 8:46 pm

wildmyron wrote:Here's a completed c/3 signal - and it's a bubble. Both searches from the front and the back seem to get lost in the search space after finding one of these, so I manually joined them together.

Wow, Thanks for that :P
kiho park
 
Posts: 48
Joined: September 24th, 2010, 12:16 am

Re: Day & Night (B3678/S34678)

Postby cvojan » December 8th, 2018, 8:11 pm

I'm just going to post this skinny (2,1)c/6 partial I found:
x = 12, y = 49, rule = B3678/S34678
$b2ob3ob2o$5b2obo$3bo2b2o$3b2o$2b2o2b2o$3b2o2bo$3bob2o$2bob3o$2bob2o2b
2o$bob7o$2bobob2o$3b5o$6bobo$4b5o$4b7o$2bo3bobo$b3obo2bo$b2ob2o$b2o2b
2o$4b2obo$4b2o2$7bo$6bo$3b3o$3b2obo$5b2o$5bo$3b2obo$4bo2bo$4b3o$6bobo$
6b2o$4b2ob2o$4b3o$3b2obob2o$3b3o2bo$6b2o2$3bobob2o$2b3o2bo$2b3ob2o$2b
4o$2b5o$2bob3o$3b3o!
'sup.
User avatar
cvojan
 
Posts: 128
Joined: October 7th, 2018, 7:07 pm

Re: Day & Night (B3678/S34678)

Postby muzik » January 2nd, 2019, 4:24 pm

Almost certaintly known infinite extensibility:
x = 63, y = 12, rule = B3678/S34678
2bobo$b3o$4o$b2obo$3bo$3b4o3bobo2bo3bobo2bo3bobo2bo3bobo2bo3bobo2bo3bo
bo2bo$4bobob4o2b2ob4o2b2ob4o2b2ob4o2b2ob4o2b2ob4o2b2obo$b2ob3o3bobo2bo
3bobo2bo3bobo2bo3bobo2bo3bobo2bo3bobo2bo$obo$3obo$ob3o$b2o!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik
 
Posts: 3217
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Previous

Return to Other Cellular Automata

Who is online

Users browsing this forum: Moosey and 4 guests