## B2ac3i/S3i4ent5e and relatives

For discussion of other cellular automata.

### B2ac3i/S3i4ent5e and relatives

A rule supporting signals and more technology, along with orthogonal line replicators and other fun stuff. Computers, etc. are all probably buildable.
Tech demo:
`#C a tetrational sawtooth and some signal wire & a duplicatorx = 55, y = 26, rule = B2ac3i/S3i4ent5e53bo\$52b3o\$42bo8bobo\$41b3o6b3o\$42bo6bobo\$42bo5b3o\$41b3o3bobo\$40bobo3b3o\$39b3o5bo\$38bobo\$37b3o\$38bo\$o\$obo\$obo\$obo37bo\$5bobo31b3o\$38bobo\$37b3o\$36bobo\$35b3o\$34bobo\$29bobob3o\$32bobo\$31b3o\$32bo!`

Signal turn:
`x = 31, y = 21, rule = B2ac3i/S3i4ent5e13bo\$12b3o3bo\$13bo3b3o\$18bobo\$19b3o\$20bobo\$15bo5b3o2bo\$14b3o5bo2b3o\$13bobo10bo\$12b3o\$11bobo7bo\$10b3o7b3o\$9bobo9bobo\$8b3o11b3o\$7bobo13bobo\$6b3o15b3o\$5bobo17bobo\$obob3o19b3o\$3bobo21bobo\$2b3o23b3o\$3bo25bo!`

P33:
`x = 69, y = 69, rule = B2ac3i/S3i4ent5e31bo\$30b3o3bo\$31bo3b3o\$36bobo\$37b3o\$38bobo\$33bo5b3o2bo\$32b3o5bo2b3o\$31bobo10bo\$30b3o\$29bobo7bo\$28b3o7b3o\$27bobo9bobo\$26b3o11b3o\$25bobo13bobo\$24b3o15b3o\$23bobo17bobo\$18bobob3o19b3o\$21bobo21bobo3bo\$20b3o23b3o\$19bobo25bobobo\$18b3o27b3o\$17bobo29bobo\$7bo8b3o31b3o\$6b3o6bobo33bobo\$7bo6b3o35b3o\$13bobo37bobo\$6bo5b3o39b3o\$5b3o3bobo41bobo\$4bobo3b3o43b3o\$3b3o5bo45bobo7bo\$2bobo53b3o5b3o\$b3o55bobo5bo\$2bo57b3o\$7bo53bo\$6b3o57bo\$bo5bobo55b3o\$3o5b3o53bobo\$bo7bobo45bo5b3o\$10b3o43b3o3bobo\$11bobo41bobo3b3o\$12b3o39b3o5bo\$13bobo37bobo\$14b3o35b3o6bo\$15bobo33bobo6b3o\$16b3o31b3o8bo\$17bobo29bobo\$18b3o27b3o\$17bobobo25bobo\$20b3o23b3o\$17bo3bobo21bobo\$22b3o19b3obobo\$23bobo17bobo\$24b3o15b3o\$25bobo13bobo\$26b3o11b3o\$27bobo9bobo\$28b3o7b3o\$29bo7bobo\$36b3o\$24bo10bobo\$23b3o2bo5b3o\$24bo2b3o5bo\$28bobo\$29b3o\$30bobo\$31b3o3bo\$32bo3b3o\$37bo!`

All periods >= 9 can be constructed:
`x = 31, y = 21, rule = B2ac3i/S3i4ent5e13bo\$12b3o3bo\$13bo3b3o\$18bobo\$19b3o\$20bobo\$15bo5b3o2bo\$14b3o5bo2b3o\$9bobobobo10bo\$12b3o\$11bobo7bo\$10b3o7b3o\$9bobo9bobo\$8b3o11b3o\$7bobo13bobo\$6b3o15b3o\$5bobo17bobo\$obob3o19b3o\$3bobo21bobo\$2b3o23b3o\$3bo25bo!`

Relative for which I'm actually sure of that:
`x = 16, y = 18, rule = B2ac3i/S3i4ent5ace6e3bo2\$bobo\$3o\$b3o\$2bobo\$3b3o\$4bobo\$5b3o\$6bobo\$7b3o\$8bobo\$9b3o\$10bobo\$11b3o\$12bobo\$13b3o\$14bo!`

`x = 31, y = 21, rule = B2ac3i/S3i4ent5ace6e13bo\$12b3o3bo\$13bo3b3o\$18bobo\$19b3o\$20bobo\$15bo5b3o2bo\$14b3o5bo2b3o\$9bobobobo10bo\$12b3o\$11bobo7bo\$10b3o7b3o\$9bobo9bobo\$8b3o11b3o\$7bobo13bobo\$6b3o15b3o\$5bobo17bobo\$obob3o19b3o\$3bobo21bobo\$2b3o23b3o\$3bo25bo!`

The reflector is also a splitter:
`x = 32, y = 66, rule = B2ac3i/S3i4ent5ace6e9bo\$8b3o\$9b3o\$10bobo\$11b3o\$12bobo\$10bo2b3o3bo\$9b3o2bo3b3o\$10bo8bobo\$20b3o\$21bobo\$16bo5b3o2bo\$15b3o5bo2b3o\$10bobobobo10bo\$13b3o\$12bobo7bo\$11b3o7b3o\$10bobo9bobo\$9b3o11b3o\$8bobo13bobo\$7b3o15b3o\$6bobo17bobo\$bobob3o19b3o\$4bobo21bobo\$3b3o23b3o\$4bo25bo19\$13bo\$12b3o3bo\$13bo3b3o\$18bobo\$19b3o\$20bobo\$15bo5b3o2bo\$14b3o5bo2b3o\$9bobobobo10bo\$12b3o\$11bobo7bo\$10b3o7b3o\$9bobo9bobo\$8b3o11b3o\$7bobo13bobo\$6b3o15b3o\$5bobo17bobo\$obob3o19b3o\$3bobo21bobo\$2b3o23b3o\$b3o25bo\$2bo!`

More oscs:
`x = 16, y = 16, rule = B2ac3i/S3i4ent5ace6e10bo2bo\$9b6o\$10bo2bo3\$14bo\$13b3o\$8bo3bobo\$11b3o\$bo6bobobo\$3o6b3o\$bo6bobo\$bo5b3o\$3o3bobo\$bo3b3o\$6bo!`

Any odd period oscs with period <9?

Can anyone find a signal->G?
Tetrationally slow signals
`x = 23, y = 23, rule = B2ac3i/S3i4ent5ace6e7bo\$6b3o\$7bobo\$8b3o\$6bo2bobo\$5b3o2b3o3bo\$6bo4bo3b3o\$16bobo\$o16b3o\$obo15bobo\$obo16b3o\$obo12bo4b3o\$14b3o4bo\$15bo\$19bo\$18b3o\$17bobo\$16b3o\$15bobo\$9bo4b3o\$8b3o2bobo\$9bo2b3o\$13bo!`

EDIT:
p3:
`x = 7, y = 3, rule = B2ac3i/S3i4ent5ace6ebo3bo\$3ob3o\$bo3bo!`

Signal+G -> G:
`x = 11, y = 32, rule = B2ac3i/S3i4ent5ace6ebo\$3o\$bo\$bo\$3o5bo\$bo6bo\$10bo2\$3bo\$2b3o\$3bobobobo\$4b3o\$5bobo\$6b3o\$7bo3\$bo\$3o\$bo\$bo\$3o5bo\$bo6bo\$10bo2\$3bo\$2b3o\$3bobo\$4b3o\$5bobo\$6b3o\$7bo!`

Relative, may have potential:
`x = 37, y = 28, rule = B2ac3i5a/S3inq4ejntwy5-inqr6c7e13bo\$12b3o\$13bo3bo\$16b3o8bo\$14bo2bo8b3o\$9bo3b3o3bo2bo2bobo\$8b3o3bobob9o\$9bo5b3obo2bo2bo\$16bobo\$17b3o\$18bo\$13bo\$12b3o\$11bobo5bo\$10b3o5b3o\$9bobo7bobo\$8b3obo7b3o\$7bobo8bo2bobo\$6b3o3bo4b3o2b3o\$5bobo10bo4b3o\$4b3o17bobo8bo\$3bobo19b3o6b3o\$2b3o21bobo6bo\$bobo23b3o\$3o25b3o\$bo27bobo\$30b3o\$31bo!`
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"

Moosey

Posts: 2313
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board.