ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

B2ac3i/S3i4ent5e and relatives

For discussion of other cellular automata.

B2ac3i/S3i4ent5e and relatives

Postby Moosey » August 18th, 2019, 9:02 am

A rule supporting signals and more technology, along with orthogonal line replicators and other fun stuff. Computers, etc. are all probably buildable.
Tech demo:
#C a tetrational sawtooth and some signal wire & a duplicator
x = 55, y = 26, rule = B2ac3i/S3i4ent5e
53bo$52b3o$42bo8bobo$41b3o6b3o$42bo6bobo$42bo5b3o$41b3o3bobo$40bobo3b
3o$39b3o5bo$38bobo$37b3o$38bo$o$obo$obo$obo37bo$5bobo31b3o$38bobo$37b
3o$36bobo$35b3o$34bobo$29bobob3o$32bobo$31b3o$32bo!

Signal turn:
x = 31, y = 21, rule = B2ac3i/S3i4ent5e
13bo$12b3o3bo$13bo3b3o$18bobo$19b3o$20bobo$15bo5b3o2bo$14b3o5bo2b3o$
13bobo10bo$12b3o$11bobo7bo$10b3o7b3o$9bobo9bobo$8b3o11b3o$7bobo13bobo$
6b3o15b3o$5bobo17bobo$obob3o19b3o$3bobo21bobo$2b3o23b3o$3bo25bo!

P33:
x = 69, y = 69, rule = B2ac3i/S3i4ent5e
31bo$30b3o3bo$31bo3b3o$36bobo$37b3o$38bobo$33bo5b3o2bo$32b3o5bo2b3o$
31bobo10bo$30b3o$29bobo7bo$28b3o7b3o$27bobo9bobo$26b3o11b3o$25bobo13bo
bo$24b3o15b3o$23bobo17bobo$18bobob3o19b3o$21bobo21bobo3bo$20b3o23b3o$
19bobo25bobobo$18b3o27b3o$17bobo29bobo$7bo8b3o31b3o$6b3o6bobo33bobo$7b
o6b3o35b3o$13bobo37bobo$6bo5b3o39b3o$5b3o3bobo41bobo$4bobo3b3o43b3o$3b
3o5bo45bobo7bo$2bobo53b3o5b3o$b3o55bobo5bo$2bo57b3o$7bo53bo$6b3o57bo$b
o5bobo55b3o$3o5b3o53bobo$bo7bobo45bo5b3o$10b3o43b3o3bobo$11bobo41bobo
3b3o$12b3o39b3o5bo$13bobo37bobo$14b3o35b3o6bo$15bobo33bobo6b3o$16b3o
31b3o8bo$17bobo29bobo$18b3o27b3o$17bobobo25bobo$20b3o23b3o$17bo3bobo
21bobo$22b3o19b3obobo$23bobo17bobo$24b3o15b3o$25bobo13bobo$26b3o11b3o$
27bobo9bobo$28b3o7b3o$29bo7bobo$36b3o$24bo10bobo$23b3o2bo5b3o$24bo2b3o
5bo$28bobo$29b3o$30bobo$31b3o3bo$32bo3b3o$37bo!

All periods >= 9 can be constructed:
x = 31, y = 21, rule = B2ac3i/S3i4ent5e
13bo$12b3o3bo$13bo3b3o$18bobo$19b3o$20bobo$15bo5b3o2bo$14b3o5bo2b3o$9b
obobobo10bo$12b3o$11bobo7bo$10b3o7b3o$9bobo9bobo$8b3o11b3o$7bobo13bobo
$6b3o15b3o$5bobo17bobo$obob3o19b3o$3bobo21bobo$2b3o23b3o$3bo25bo!

Relative for which I'm actually sure of that:
x = 16, y = 18, rule = B2ac3i/S3i4ent5ace6e
3bo2$bobo$3o$b3o$2bobo$3b3o$4bobo$5b3o$6bobo$7b3o$8bobo$9b3o$10bobo$
11b3o$12bobo$13b3o$14bo!

x = 31, y = 21, rule = B2ac3i/S3i4ent5ace6e
13bo$12b3o3bo$13bo3b3o$18bobo$19b3o$20bobo$15bo5b3o2bo$14b3o5bo2b3o$9b
obobobo10bo$12b3o$11bobo7bo$10b3o7b3o$9bobo9bobo$8b3o11b3o$7bobo13bobo
$6b3o15b3o$5bobo17bobo$obob3o19b3o$3bobo21bobo$2b3o23b3o$3bo25bo!


The reflector is also a splitter:
x = 32, y = 66, rule = B2ac3i/S3i4ent5ace6e
9bo$8b3o$9b3o$10bobo$11b3o$12bobo$10bo2b3o3bo$9b3o2bo3b3o$10bo8bobo$
20b3o$21bobo$16bo5b3o2bo$15b3o5bo2b3o$10bobobobo10bo$13b3o$12bobo7bo$
11b3o7b3o$10bobo9bobo$9b3o11b3o$8bobo13bobo$7b3o15b3o$6bobo17bobo$bobo
b3o19b3o$4bobo21bobo$3b3o23b3o$4bo25bo19$13bo$12b3o3bo$13bo3b3o$18bobo
$19b3o$20bobo$15bo5b3o2bo$14b3o5bo2b3o$9bobobobo10bo$12b3o$11bobo7bo$
10b3o7b3o$9bobo9bobo$8b3o11b3o$7bobo13bobo$6b3o15b3o$5bobo17bobo$obob
3o19b3o$3bobo21bobo$2b3o23b3o$b3o25bo$2bo!


More oscs:
x = 16, y = 16, rule = B2ac3i/S3i4ent5ace6e
10bo2bo$9b6o$10bo2bo3$14bo$13b3o$8bo3bobo$11b3o$bo6bobobo$3o6b3o$bo6bo
bo$bo5b3o$3o3bobo$bo3b3o$6bo!

Any odd period oscs with period <9?


Can anyone find a signal->G?
Tetrationally slow signals
x = 23, y = 23, rule = B2ac3i/S3i4ent5ace6e
7bo$6b3o$7bobo$8b3o$6bo2bobo$5b3o2b3o3bo$6bo4bo3b3o$16bobo$o16b3o$obo
15bobo$obo16b3o$obo12bo4b3o$14b3o4bo$15bo$19bo$18b3o$17bobo$16b3o$15bo
bo$9bo4b3o$8b3o2bobo$9bo2b3o$13bo!


EDIT:
p3:
x = 7, y = 3, rule = B2ac3i/S3i4ent5ace6e
bo3bo$3ob3o$bo3bo!


Signal+G -> G:
x = 11, y = 32, rule = B2ac3i/S3i4ent5ace6e
bo$3o$bo$bo$3o5bo$bo6bo$10bo2$3bo$2b3o$3bobobobo$4b3o$5bobo$6b3o$7bo3$
bo$3o$bo$bo$3o5bo$bo6bo$10bo2$3bo$2b3o$3bobo$4b3o$5bobo$6b3o$7bo!


Relative, may have potential:
x = 37, y = 28, rule = B2ac3i5a/S3inq4ejntwy5-inqr6c7e
13bo$12b3o$13bo3bo$16b3o8bo$14bo2bo8b3o$9bo3b3o3bo2bo2bobo$8b3o3bobob
9o$9bo5b3obo2bo2bo$16bobo$17b3o$18bo$13bo$12b3o$11bobo5bo$10b3o5b3o$9b
obo7bobo$8b3obo7b3o$7bobo8bo2bobo$6b3o3bo4b3o2b3o$5bobo10bo4b3o$4b3o
17bobo8bo$3bobo19b3o6b3o$2b3o21bobo6bo$bobo23b3o$3o25b3o$bo27bobo$30b
3o$31bo!
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"
User avatar
Moosey
 
Posts: 2313
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board.

Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 5 guests