ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Discoveries in Castles (B3678/S135678)

For discussion of other cellular automata.

Discoveries in Castles (B3678/S135678)

Postby melwin22 » August 15th, 2019, 5:32 am

Everything I discovered so far in this rule (Some discoveries were already uploaded on several topics)

Most apgsearch-size soups (about 90%) will grow to big clusters - "castles" - of average population about 250k. There will be a few holes inside - "chambers" - and some oscillators on the outer wall - "defenders". Inner oscillators are rare in general, but appear more often in symmetric soups. Standalone oscillators (not connected to any castle) are also occuring. All of these types of oscillators, grouped by period, are shown below (some of them in form of their predecessor). Bottom ones were found by WLS, top ones by me. I tried to found the smallest stators possible.
x = 639, y = 197, rule = B3678/S135678
2b6o3bo14bo3bobo13bo4b3o10b3o4b5o8b3o5b3o9b3o5b3o9b3o7bo11bo3b3o13bo4b
3o12bo7bo12bo5b3o20bo5b3o22bo5bo22bo3b3o25b3o27b3o27b5o34b3o37b6o39bo
51b3o49b3o$2bo7b2o13b2o2bo15bo4bo3bo8bo3bo6b2o7bo3bo3bo3bo7bo3bo3bo3bo
7bo3bo5bo11b2o2bo3bo11b2o3bo14b2o6bo12b2o4bo3bo18b2o4bo3bo20b2o4b2o21b
2o2bo3bo23bo3bo25bo3bo29b2o33bo40bo43bo51bo3bo47bo3bo$9bobo12bobo2bo
14bobo2bo5bo6bo5bo5bo7bo5bobo5bo5bo5bo2bo3bo6bo5bo3bobo9bobo2bo3bo10bo
bo17bobo5bobo10bobo3bo5bo16bobo3bo5bo18bobo3bobo20bobo2bo3bo23bo3bo25b
o3bo29bo34bo83bobo49bo5bo45bo5bo$2b4o5bo11bo2bo2bo13bo2bo7bo12bo6bo12b
o7bo11bo3bo3bo11bo3bo2bo11bo2bo3bo12bo3bo15bo4bo2bo12bo8bo19bo8bo21bo
5bo25bo3bo23bo3bo25bo3bo29bo75b4o38bo2bo54bo51bo$6bo15b2obo5b2o9b4o7bo
12bo7bo11bo7bo11bo4bo3bo10bo3b4o16b3o17b4o16b4o21bo28bo51bo2bo3bo24b3o
26b2ob2o29bo35b3o41bo36b4o54bo51bo$11bo14bo2bo3bo12bo5bo14bo5bo13bo5bo
13bo17bo8bo11bo19bo3bo3bo11bo7bo12bo8bo19bo6bo23bo5bo83bo3bo28bo35bo3b
o81bo54bo49bo$7bo3bo14bo2bo3bo12bo4bo10bo5bo4bo8bo5bo3bo9bo5bo2bo3bo8b
o9bo11bo6bo12bo7bo11bo7bo12bo3bo5bo18bo5bo24bo5bo22bo2bo3bo27bo25bo3bo
28bo35bo3bo41bo39bo49bo5bo47bo$6bo4bo14bo2bo3bo12bo3bo12bo3bo4bo10bo3b
o3bo11bo3bo3bo3bo7bo10bo11bo6bo12bo3bo3bo11bo7bo12bo4bo3bo19bo4bo25bo
5bo22bo2bo3bo27bo25bo3bo27bo36bo3bo40bo40bo50bo3bo47bo$2b4o5bo14bo3b3o
13bo2bob5o8b3o5bo11b3o3bob5o7b3o5b3o7bob5o5bo11bo3b3o13bo4b3o12bo7bo
12bo5b3o20bo3bob5o20bo5bo22bo3b3o25b3o27b3o28bo37b3o37b4o41bo51b3o47bo
b5o12$169b2o33bo30bo31bobo2bo2bobo20b2o86bobobo30bo19bo49bo5bo61b2o31b
o7bo4bo5bo3bo3bo7bo4bo4bo$22b2o3bob2o174bobo60b4ob4o21b2o27bobobo2bobo
46bo3b3o4bob2o12bobo26bo2bo47bo7bo7bo19bo6b2o15b2o12bo11bobo12b2o7bo3b
o6bo2bo3bo6bobo4b2o4bo$8bo12bob8o57b2ob2o14b2o38bo2bo34b2o4bo16bo25bob
o29bob9obo18b4o27b8o45b10o4b2obo21b3o6bo7bo2b3o25bo21b9o4b2o2bo2bo3bo
2b2o2bo4bo2bo3b3obo11bob4o4b5o2bo7b4o11b6o3bob2o8bo4bo10bo6bo4bo$8b5o
10b5ob3o37bo18bob2obo13b2o36b8o31bob5o15b3o25bobo7bo22b2o2b3o2b2o20b2o
26bob8obo43b6o3bo3b3o13bob3o5b3o5b3o7b4o25b3o21b7o8bo4b3o3b2o2bo4bob2o
4b3o14b5o3b7o4bo3b5o10b6o4b4o7bo3bo3b2o4b2o$7b7obo6bobo2b7o32bob3obo
15b4o14b4o17bo2bo14b8o14b6o13b7o13b2o26b3o6b3o52b2o27b2obo4b2o22b2o19b
4o3bobo5b2o15b4o4b3o3b7o4b3obo26b3o19bobo3bobo21bo5b2o7b2o14b4o6bo2b3o
2bo8bo22b3o15bo$bo2b6ob6o9bobo3b2o12bo20b5o14b4o3bo12b5o17b2o14b4o4b2o
12b8o11bobo2b2o13b3o27bo7bobo24bo3bo23b2o32bo24b3obo19b2o12b2o15b3o6bo
4b7o5b4o4bo22bo64bo2bo15bobo7bo2bo2b5o3bo13b2o9b4o12bo$o3b4o2bo2b4o15b
2o13bo18b3ob3o12b4o5bo11b2ob2o16bo2bo11b4o5b5o8b5o2b5o14b2obo12b3o35bo
53b2o32bo24b3o21b2o10b3obo15bo14bobo6bob2o5bo118bo4b4o28bo23bo8b2o$7o
7b5o13b2o10bobob2o14b4o3b4o9b4o18b5o31b3o8b3o8b5o2b5o12bob3o13b4o33b3o
15bo3bo6bo54b2o6b2o18b2ob2o19bob2o9bob3o42bo5b2obo120bobo31bo21bo8bo2b
o$b6o7b5o12b3o11bo3bo15b2obobob2o11b2o20b4o30b3o10b3o9bo6bo15b2o17b3o
51b3o6b3o52bob8obo17b5o20b2obo10bo44bo4b4o175bob3o6b4o$obobo11bo15b2o
12bobo16b2o5b2o10b3o21b2o32b2o10b2o53b3o47b7o3b7o22b2o28b8o18b6obo17b
3o12bo48b3o17bo10bo18bo11bobo6b2o2bo8bo7bo54b2o4b2o11b2o13b3obo5b4o$
31bob2o11b2o16b3o5b3o9bo23b2o32b2o10b2o13b2o39b3o2b2o42b7o6bo54bobobo
2bobo17bo9bo15b2obo27bo5bo2bo10b2o8b4o17bo12bo16b3o11bo6bob3o9bo7bo15b
o2bo4bo2bo12bo13bob6obo9bobo5b4o6bo7bo2bo$33b3o28bo9bo10bobo53b3o10b3o
12b2o40b5obo44b3o4b2o3b2o79bo3bob6o12bob2o27bo10bo9b2o11bo17b6o2b6o15b
5o7b7o5b3o7bob3o3b3obo13bo2bo5b2o12bo16b2o2b2o9bob2o15bo9b2o$32b3o30bo
bo3bobo14bo53b3o8b3o11bob4o38b5o45bo3bo95b6o23bo2bo16b12o6bo6bo7bo19b
12o14b4ob4o5b7o5b4o7b5ob5o14bo2bo5b3o11b4o13b2o2b2o17b4o$33b3o32bobo
71b4o5b5o12b6o13bobo23bo3bo13b2o8bobo117b3o24b8o15b10o6bo8bo25bobo2b4o
2bobo13b9o7bobo10bo6b2ob2o3b2ob2o13b4o4bob4o8b3o32bo$32bo2bo108b4o4b2o
11b4o2b2o16bobo26bo21bo3bo78b2o7bo2bo24b3obo23b8o14bobo6bobo5b10o29bo
4bo19bo3bo21bo8b3o5b3o13b6o6b2obo6b3o$34bo110b8o12b4o3b2o12b4o41b2o7b
5o85b8o23b2o23bob2o3b3obo30b8o32b2o55bobobo3bobobo12bo4bo6bo7b4o$145b
8o14b3o2b3o13b4o39b2o8b3o53b4o21bo2bo4b8o23b2o24b2o6b2o30bobo4bobo10bo
103bo2bo8bobo4b3o3bo38bo$147bo2bo16b5ob2o11bobo42b2o7b5o53b2o22b4o6b4o
49bob2o6b2obo11b2o19b2o13bo68b2o2bo46bo5bo2b2o26bo9b5o$168bob5o13bobo
40b2o8bobo21bo32b2o23b2o8b2o46bo3bob2o6b2obo11b2o31bo69bob5o11bobo39b
6o11b2o2bo6b5o7b5o$171b4o56b2o33bo55b4o53bo2bo4b2o6b2o12b3obo8bobo18b
2o47bo20b8o8b7o18bo19b5o10bob3o7b5o9bo$175bo54b4o29b4o5b2ob2o20bo2bo
22b2o7bo2bo16b2obo7b2ob2o12b3o3bob2o3b3obo12b3o10b4o15b4o68b2o2b2o9b7o
17bo19bobo15b3obo7bo4bo8bob2o$176b2o52bo2bo29b3o5bob3o22b2o51bob6ob2ob
4obo10b3o6b8o13bob2o9b4o14b4o46bobobo7bo11b2o2b2o12bo20b4o20b2o12b5o
10b5o8b2o$176bo60b2o3bo3b2o14b2ob2o6b5o20b2o22b4o7b2o18b14o13b2o6b8o
15b2o10b3obo11bob2o23bob2o21b3o8b2o2bo24bobo18b3o11bo26b5o8b5o7b4o$
236bob9obo14b3o6bob2o76bobo2b6o2bobo11bob2o7bo2bo16bob3o2b2o3bob3obob
2o10bo24b2obo18b3ob3o5b4o2bo42b4o4bo8bobo23b5o10bo10b2o$201b2o13b2o20b
4ob4o16b3o8b3o79bobo2bobo17b3o28b6obo4b7obo6bobo24b3o21b5o7b2o2bo11bo
2bo9bobo15bob2o5bo11bo24bo23b2o13bo$169bo21b2obo5bob15obo18bobo2bo2bob
o14b3o8b2o60bobo42bob5o25b6o6b7o7bo28b2o20b7o6bo15bo3bo9bo18bo5b2obo2b
o4b3o59bo4bo$168b3o19bob2o8b15o43b4o7b5o57b4o46b3o28bobobo7bo2bobo35b
2o20bo5bo18b9o6b7o15bo4b4o4bo3b2o59b2obo$168b3o21b3o6bobo3bo3bo3bobo
41bob3o6bob2obo22b2o25bo8b4o45b3o75bobo2b3o21bo3bo18b9o7b7o19b3o8b4o$
165bob5obo18b2o47bo2bo16bo10bo25b2o24bo2bo6b3o15b2obo7b2o15bob4o76b6o
7bo38b2o2bobobo8bobo19b4o7bob4o60bo$166b3ob3o16b4obo44b8o14bo10bo24b4o
23b7o2b3obo13bob6o2b3o17b4o50bob2o22b6o9bo37b2o40bo8b2o25bo6b2o8b2o5bo
2b2o$165b3o3b3o14bob3o46b3ob4o48b4ob2o23b11o17b12o15b5o4b2obo43b2obo
21bo9b6o78bo19b2o13b2o15b3obo5b3obo6bo$165b2o5b2o15b3obo47b4o50b3o2b4o
20bobo2b7o16bobo2b10o14b2o5bob4obo16bob2o9bob2o6b3o24bo7b6o96b4obo11bo
b4o3b5o2bob3o4bob4o9bo$165b2o5b2o13b5o49b3o53b6o25bobo2bo22bobo4b4o14b
2o7b5o18b2obo9b2obo6b2obo29b3o2bobo19bo2b2o71b4o13bob4o3b5o3b2ob2o4b2o
b2o$165b3o3b3o10bo2b2ob2o106b4o60bobo23bo3b3obo15b3o10b3o7bob2o30b2o
23bob4obo27bo2b2o38b2o3bo13b2o4b3o5b5o5b3o$164b3o5b3o9b6o17bo91b2o2bo
24bobo2bo53bo4b4o17b2o11b3o8b3obo27b2o24b5o13bo3bo10bo3b2o16b2o3b2o10b
o3b3o4bo12b2o4bo2bo4bo2bobo3b4o$164bo2bo3bo2bo8b7o16b3o90bo2bo21bobo2b
7o58b3o16b2o9bob2o8bob3o28b3o20bob3o4bo9b9o7bob7o17bo6b2o4bo4bo26bo7bo
7bo$165bo7bo7b4o2bo18b3o22b3o7b3o81b11o46bo12b3o14b3o10b4obo7b4obo23bo
b2o22b3obo4bo8b9o6bob4o2b2o14b7o15bobo40bo$184bo19b6o21b4o6b4o78bob6o
2b4o44bo12bob3o11b4o7bo5b4o7b5o25b2obo18bob4o14b4obob4o4bob4o4b3o14b3o
5b5o10bo26bo15bo$183bo20b7obo16b3ob4o2b3ob4o77b2obo6b2o45b2o13b2o11bob
2o9bo5b3o9b4o3bo43b5o15b2o5b2o7b3o2bo2b3o15bo6b5o28b2o8bobo11bo3bobo$
206bo2b3obo15b8o2b8o14b2o12b2o56b3obo17bob3o19b7o10b3o12bo5b6o6b3o3bo
4b5o3bo40b4o18b2o4b3o7b2o2bo2b2o26b3o28b2o11bo9bob5o$209b5o17bo2bo6bo
2bo15bob4o6b4obo16bobo2bobobo29b3obo16b5o2bo17b6obo11bo12bo4b6o8b3o3bo
6b6o41b2obo17b2o3bob2o5b3o2bo2b3o27b2obo24b6o7b3o2bo5bobo2b4o$211b3o
48b5o4b5o19b8o21b2obo6b2o18b3ob3o21b4o9bobo17b3o2bobo7b7o5bo2b3o42b2o
18b4o3b4o4b3o4b4obo15bo9b2obo24b2o2b2o7b2o3bo7bo3b2o$185bo2bo22b4o45bo
4b8o4bo15bob8obo18bob6o2b4o17b8o19bo2b3o7bo18b4o16b3o8bobobo15bob2o4b
2obo13b3o19b9o7b2o2b4obo15b3o20bobo11b3o2bob3o3b4o2b2obo5b2o3bo$186b3o
bo22b4o22bo5bo13bo4b10o4bo15b2o6b2o21b11o17b2o2bo3bo21bo2bo29bo15bobob
o28b2obo2bob2o14bo21b9o7b7obo14b7o17b3o12b3obo2b3o2bob2o2b4o5b4o2bobo
6bobobo$186b6o21bo17bo14bo19bo4bo27bo24bobo2b7o16b3o5bo24bo29bo47bob2o
6b2obo13bobo20bo3bo11b2o3bo18bo20b3obo12b2o2b2o6bo3b2o8b5obo5b4ob4o$
186b2ob3o22bo15bo5bob9o21b2o28bo29bobo2bo19b3o107bob2o6b2obo16bo35b2o
2bo16b2o3b2o16bob2obo12b6o6bo2b3o7bobo3bo6b9o$186b3o2b3o36b16o48b2o6b
2o48b3o110b2o6b2o97bobo18b2o11bo14bo9bo3bo$184bob8o37b8o2bo2bobo46bob
8obo47bo2bo108bob2o4b2obo23b2o69b2obo2b2o15b2o12bobo$185b2o2bobo38bobo
2bobobo55b8o50bo58bo2bo2bo11bo35b8o37b2o56b4o37bo$294bobobo2bobo77b2o
5bo21b11o8b4o33b8o23b6o7bob4o54b3obo$380bob6o22b11o8b4o8b2o2b2o21bo2bo
24bob4obo8b3o54bo4bo$233b2o147b7obo18b4o5b4o6bob3obo5bob4o51b6o8bob3o
55b2o$233b2o145bo3bo2b3obob2o15b2o5bob2o6bobob3o8b7o48b2o2b2o10b6o76b
2o$232b4obo141bo7b7obo14b2o4bo2b2o4b2obo3b5o4bobo2b3o48b2o2b2o8bo3b3ob
o75b2o$233b4obo151b4o15b3o7b3o2b4o3bob4o9b2o49b2o2b2o7bo4b4o75b4o$232b
ob5o150bobo3bo14b2o2bo4b2o4b4obo3b4o7b3o18bo7bo20bob6obo12b3o72b8o$
234b5o157bo13b2obo5b2o4b5o3bob2o9b3o16bo3bobo3bo20b2o4b2o10bobo2bo72b
2o4b2o$233bobob3obo167b4o5b4o6b3obobo10bo2bo15bob9obo22b2o12bo4bo71b3o
6b3o$238b3o169b11o6bob3obo13bo15bobo2b5o2bobo112b3o2b2o2b3o$238b4o168b
11o8b4o32bo3b3o3bo116b2o4b2o$240b3o2b2o165bo2bo2bo10b4o32b2o7b2o116b8o
$240b6obo183bo6b2o5b2o17b4o5b4o117b4o$243b3o191bob7o19b3o5b3o119b2o$
242bobobo192b10o15b4o5b4o118b2o$438bobo2bo2b3o16b2o7b2o$446b2o17bo3b3o
3bo$426bob4obo11b3o15bobo2b5o2bobo$426b8o12b3o15bob9obo$427b6o12bo2bo
16bo3bobo3bo$421b2o3b3o2b3o3b2o8bo18bo7bo$420bob6o4b6obo$422b4o2bo2bo
2b4o$420bo3bobo6bobo3bo$419bo20bo37$409bobo3bo4b2o68bo6bo6bo3bo5bo2bo
4bobo3b2o2bo17bobobo9bo10b2o14bobo4bob2o7bobobo4bo7bo7bo2b2o$410b2ob4o
2bo2bo38bo3bobo3bo18b2o4b2o5bo5bo5bo2bo2bo2b2o5bo19bobo5bob7obo23bo3bo
5bo5bo3bo5bo2bo2bo4b2o2bobo$409b2o3b2o44b4obobob4o16b10o18bo10b2o2bo
27b2ob3ob2o5bo2bo11bob2o3bob2ob2o4b4ob4o5bo7bo5b2obo$415bo4b2o39b5ob5o
18b8o7bobo6bo6b2o2bo5bo18bobobo8b3o7b6o12bo6bobobobo4bo3bo6b4o$410bo8b
4o38b2obo3bob2o17b3o4b3o4b2o3b2o4bo7bobo3b2o2bo16bo5bo8bo8b6o10b2o5bo
2bobo2bo2bo7bo3bob3obo3bo2bo3bo$410b2o3b2o2bo2bo39b4ob4o18bo2bo2bo2bo
3b9o38bo5bo40bobobobo6bo3bo7b4o5b2o$409b4ob2o44b3ob5ob3o17bo6bo4b9o39b
obobo38bo4b2ob2obo2b4ob4o7bo$410bo3bobo3b2o43bobo35b2o3b2o4bo2b2o3bo
41bo8bob2obo11bobo4bo5bo5bo3bo5bo2bo2bo$460b3ob5ob3o32bobo7bo6bobo26bo
bo9b3o7bob2obo11bo2b2o4b2obo6bobobo4bo7bo5bo$462b4ob4o50b2obo25bobobo
5b2ob3ob2o22bo40bo$461b2obo3bob2o31bo5bo4bobo6bob2o32bob7obo60bob2o$
461b5ob5o32bo3bo5bo2b2o4bobo38bo64bo2bo$460b4obobob4o52bo66b2o2bo2b2o
2bobobo2bo2b2o3b2o10bo$461bo3bobo3bo84bo10bo7bo13b3o5bo5bo3bo2bobo5bob
2o$492bo2bo2bo8bo2bo2bo39bo2bo2bo6bobob3obobo20bobo4bobo4bobo3bo3bo$
490b5ob5o4b11o37bo5bo31b3o5bo3bo3bo4bobo2b2obo$490b11o4b11o35b2ob5ob2o
6bob3obo14b2o5b2o2bo2bobobo2b2o2bo4b2o$459bo6bo6bo15b4o2bo3b3o2b4o5b4o
34b3o2bo2b3o7b5o53bobo$460bo11bo17b2o4bo2b2o4b2o5bob2o33bob3o5b3obo2bo
2b2ob2o2bo50bobo$462bobobobobo19b2o2b2obob2o4b2o6b3o33bob3o5b3obo2bo2b
2ob2o2bo41b2o$461b3obobob3o17b3ob2ob2ob3o2b3o7b3o34b3o2bo2b3o7b5o17bob
o5bo2bo7b4o4bob2o6b4o$462b3o3b3o19b2obob2o2b2o4b3o6b2o35b2ob5ob2o6bob
3obo15bobob2o2b4o7bob2obo3bo2bo5bo$461bob3ob3obo18b2o2bo4b2o4b2obo5b2o
37bo5bo50b4o3b2obo$462bob5obo18b3o3bo2b4o2b4o5b4o36bo2bo2bo6bobob3obob
o14b5o4b2o8bo2bo5b2o8bobo$459bobo3bobo3bobo16b11o4b11o40bo10bo7bo14b2o
2bo3b2ob2o8b2o16bobo$462bob5obo19b5ob5o4b11o$461bob3ob3obo20bo2bo2bo8b
o2bo2bo$462b3o3b3o80bo2bo5bo2bo28bo5bob2o4bo2bo$461b3obobob3o80b3obo4b
3o7bo19b2o4bo2bobo2bob2obo$462bobobobobo81b5o4b2o9bo17bo2b2o2b4o24b2o$
460bo11bo78b3o3bo2b2o12b3o12b2o2bo5b4o2bob2obo12bobo$459bo6bo6bo79bo
12b2o5b5o13b2o4bobo2bo2bo4bo13b4o$552b2o11b2o6b4o14bo6b2obo20b4obo$
554bo9b3o6b4o46b2o$564bo2bo6bo47b2o3bob2o$593bo8b2o9bo2bo5bobo5bobo$
592b2o6bobobobo4bob3obo5bobo3b4o$554bo17bo19bo8bo3bo4bo2bobo8bobob3o$
549bobo5bobo12bo16b2ob4o4bo5b2o3b2o3b3o6bob3obo$550b4ob4o11bob2o16b4ob
2o2bo7bo3bo5bo8b2obo$549b4obob4o11b4o18bo5b2o5bo3b3o3b2o$550b2o5b2o11b
3o2bo16b2o7bo3bo7bobo2bo$550b2o5b2o12b2o2b2o15bo7bobobobo4bob3obo$570b
2ob6o24b2o7bo2bo$571b5o$570bobobobo$589bo7bo2bobo3bobo5bob2obo$590bo2b
2obo4b3ob3o4b4o2b4o$592b2o6b4ob4o3b10o$590bob4o5b3ob3o3b3o6b3o$590b3ob
3o15b2o6b2o$591b4obo4b3ob3o3bobo2b2o2bobo$593b2o5b4ob4o2bobo2b2o2bobo$
590bob2o2bo4b3ob3o4b2o6b2o$589bo7bo2bobo3bobo2b3o6b3o$612b10o$612b4o2b
4o$595bo5bobo10bob2obo$591bo2bo7bobo$590b2obob3o3bo3b2o$597bo4bo4bo$
591bo6bo4bob3o$590bo6b2o4bob4o$589bobo4bo7b4o$591bo3bobo8bobo$591b2obo
b2o$593b2o3bo!

At least 6 oscillators are infintely extensible:
x = 39, y = 29, rule = B3678/S135678
2b2o2b2o2b2o$2o2b2o2b2o2b2o5bo5bo5bo5bo$18bo2b3o3b3o3b3o2bo$18b21o$19b
19o$18bobobobobobobobobobobo$obobobobobobo$bobobobobobobo2$23b2o$21bob
o$22b4o$obobobobobobo7b4obo$obobobobobobo8b2o$20b2o3bobo$b14o5bobo$o
20bobo3bobo$22bobo$2bobobobobobobo8bobo3bobo$2bobobobobobobo9bobo$25bo
bo3bob2o$26bobo5bobo$27bobo3b4o$28bobob3o$bo3bo3bo3bo15bob3obo$bo3bo3b
o3bo16b2obo$bobobo3bobobo$bo3bo3bo3bo$bo3bo3bo3bo!

12 smallest strict still lifes (with 8 cells or less) and some other, bigger ones:
x = 54, y = 69, rule = B3678/S135678
18bo2bo3b2o3b2obo$18bo3bo2b2o2bob2o4$2bo6bo6bo6b2o3b2o7b2o5bo7bo$2bo5b
o6bo2bo25bo6bo$2ob2o2bob3o2bob2o3b3obo2b4o3b4o$2bo6bo6bo6b2o5bobo4bobo
2b5o2b5o$2bo6bo6bo27bo6bo18$18bo$6b2ob2o6bo8bo6bobobo6b2o$17b4o3b5o5b
3o7b2o$6b5o4b4o5b5o4b5o4bob2obo$8bo9bo7bo7b3o5bob2obo$17bo15bobobo2$8b
obo$8bobo$18b2obo8b2o$6b4o8b2obo19b2o$8bobo10b3o6b4obo$18b3o9b4obo3b6o
$20bob2o4bob4o5b6o$20bob2o4bob4o7b2o$9b2o30b2o$7bo24b2o$8b3o$6bobo$6bo
bo8bo2bo9b2o10b2o$16bo4bo8b2o8bo4bo$15bob4obo6b4o8b4o$17bo2bo6b8o4bobo
2bobo$6bo3bo6bo2bo6b8o4bobo2bobo$7bobo5bob4obo6b4o8b4o$6b2ob2o5bo4bo8b
2o8bo4bo$6bo2bo7bo2bo9b2o10b2o$7bo2bo3$6b2o2bo16bo$9bo7bo9bo8bobo6bo2b
o$6b2ob2o4b5o5bob3o5bo3bo4bo4bo$6b2obo5b5o6b4o5b2ob2o4b2o2b2o$10bo3b7o
2b9o2b7o2b8o$15b5o5b4o6b5o4b6o$15b5o5b3obo5bo3bo4bo4bo$6b2o2bo6bo9bo8b
obo6bo2bo$9bo17bo$6b2ob2o$9bo$6b2o2bo!

Some ways to stabilize the outer wall of a castle, and some simplest chambers:
x = 25, y = 27, rule = B3678/S135678
3b2o2b2o2b2o2b2o2b2o$3b2o2b2o2b2o2b2o2b2o$b22o$b22o$3o2b3ob4ob4o2b3obo
$b2o2b2o3b2o3b2o4b2obo$b7ob3o3b2o4b2o$13ob4o2b3obo$b22obo$b2o2b3ob14o$
3o2b2o3b2o2b4o2b3obo$b2ob4ob3o3b2o4b2obo$b2o2b2o3b3o2b2o2bob2o$3o2b3ob
9o2b3obo$b22obo$b11o3b8o$4o2b4o2bo2b3o2b3obo$b2o3b4o2b5o4b2obo$b2o5b
10o2b3o$5o3b9o4b2obo$b4o2b3o2b6o2b3obo$b9o3b10o$10obo2b9obo$b10o3b9obo
$23o$b22o$obobobobobobobobobobo!

Other infinitely exstensible stable patterns:
x = 60, y = 20, rule = B3678/S135678
17b2o$17b2o9bo$obobobobobobobob4o9bo$b18o7b4o15bobobobobobobobo$4obobo
bobobobobobo6b3o17b13o$b2o21bob2obo15b4obobobob4o$b2o22b2obobo15b2o9b
2o$29bobo14b2ob7ob2o$7bo22bobo16b7o$6bo24bobo12b2ob7ob2o$5bob3o4bo2bo
2bo11bobob2o8b2ob7ob2o$4bob4o4bo2bo2bo12bob2obo10b7o$3bob3o4b2ob2ob2ob
2o11b3o9b2ob7ob2o$2bob4o6bo2bo2bo12b4o9b2ob7ob2o$bob3o8bo2bo2bo12bo15b
7o$ob4o6b2ob2ob2ob2o11bo11b2ob7ob2o$2b2o10bo2bo2bo25b2o9b2o$2b2o10bo2b
o2bo24b4obobobob4o$46b13o$45bobobobobobobobo!

Now, to more interesting stuff.
Other 10% apgsearch-size soup will grow to infinity because of wickstretchers. I found nine of them: four diagonals - 2c/48, 2c/18, 2c/18, 2c/14, and five orthogonals - 4c/74, 2c/22, 2c/8, 2c/4, 2c/4 (again - some of them in form of their predecessor). Asymmetric diagonal 2c/18 is the most common one.
x = 182, y = 15, rule = B3678/S135678
b2o46b2obo12bo56bobobobobobobobo4bobobobo27bo4bo$b2o31bo14b2obo13bo56b
13o6b5o29b4o$4o28bob2o12b3o20bo50b15o4b7o8bo8bobobo5b2o2b2o$b2o46b2o
18bob2o50b13o6b5o8b3o7b5o5b6o$3o31bo14b4o69b15o4b7o6b5o5b3ob3o3b3o2b3o
$b4o42b6o18bo51b13o6b5o8b3o7bo3bo5bo4bo$b4o25bo17b7o67bob11obo5b5o9bo$
2b3obo22bo18b7o68bob9obo7b3o8bo3bo$2b4o41bo4bo20bo51b9o10bo10bobo$4b5o
65bo50b9o$4b5o2bobo112b7o$6b10o$7b9o112bobo$6b2o2bo2bo115bo$10bo!

Five simplest gliders (from "Gliders in 2D cellular automata" file - the only thing that is not my discovery): diagonals 2c/12 anc c/6, orthogonals c/2, c/2 and c/4; two fuses - burning at 2c/13 and 2c/15; a pattern with the smallest bounding box that grows to infinity (3x5); and the simplest predecessor to a growing ship:
x = 50, y = 78, rule = B3678/S135678
30bo2bo$30b3o4b2ob2o$33bobo2b4o$30b3ob3o2b3o$31b2ob4o$35b7o$34bob2ob3o
$38bob2o3$b3o11bob4o17bob2o$3o13b6o13bo2b4o$b4o14b2o13bob6o$5o14bo16b
3o$34bob3o$34bob6o$35bo2b4o$38bob2o4$38b2o$36bo3b2o$38bob2o$38bob2o$
39bo$37bo$39bo$38bob2o$38bob2o$36bo3b2o$38b2o6$12bo$11b3o$11bobo$11b3o
$12bo16$16bo3bo5bobobobobobo11b2o$15bo2bo2bo5b9o11b3o$15b7o4b11o9b4o$
16b5o6b9o9bobo$15b7o4b11o9b4o$16b5o6b9o11b3o$15b7o4b11o11b2o$16b5o6b9o
$15b7o4b11o$16b5o6b9o$15b7o4b11o$16b5o6b9o$15b7o4b11o$16b5o6b9o$15b7o
4b11o$16b5o6b9o$15b7o4b11o$16b5o5bob7obo$15b7o8b3o$16b5o10bo$15bo2bo2b
o!

There also exists a linear spacefiller. Smallest predecessors in terms of bounding box (6x6) and population (12) are shown.
x = 6, y = 6, rule = B3678/S135678
bob3o$6o$bob3o$3obo$6o$3obo!

x = 8, y = 8, rule = B3678/S135678
bo$2obo2$bo2bo$3bo2bo2$4bob2o$6bo!

This five-cell pattern
x = 4, y = 4, rule = B3678/S135678
bo$2obo2$bo!

already seen several times, appears to be the "core" pattern of Castles, nearly as useful as the glider in Life. By itself, it is a methuselah (so I call it "pentaselah"), lasting for 6221 generations and growing almost 10k times, but combined with dominos, duoplets, blocks and other copies of itself, can produce large amounts of different things. Some of the reactions:
x = 48, y = 149, rule = B3678/S135678
24bo19b2o$4bo18b2obo15bo$5bo35b2obo$7bo16bo$6b2obo32bo2bo$44bo$7bo22bo
$29bo7$4b2o18bo18bo$4b2o17b2obo15b2obo$7bo$6b2obo14bo18bo$31bo$7bo22bo
12b2o2$28bo$27bo6$26bo3bo11bo$25b2obo2bo9b2obo$46bo$26bo15bo2bo2$25bo$
26bo5$39b2o$27bo$26b2obo12bo3bo$41b2obobo$27bo$42bo$26b2o10$26bo12bo$
25b2obo9b2obo2$26bo12bo4$26b2o$26b2o18bo$47bo79$bo$o$3bo$2b2obo2$3bo!

Two dominoes will cause a 180 degree rotation and will push pentaselah back by 23 generations
x = 8, y = 8, rule = B3678/S135678
3b2o3$o$o4bo$4b2obo2$5bo!

Methuselahs are common in general, but I found some really big ones. From 14 cells to 167k in 12747 gens:
x = 3, y = 5, rule = B3678/S135678
3o$obo$3o$3o$3o!

From 21 cells to 1283k in 64117 gens:
x = 5, y = 5, rule = B3678/S135678
2b2o$5o$2ob2o$5o$5o!

Pentaselah reactions are better, though. Biggest F/L ratio (over 38):
x = 37, y = 9, rule = B3678/S135678
2bo2$ob2o$2bo2$34bo$33b2obo2$34bo!

Biggest L/I (over 12100), L/MCPS (over 5300) and F/I (over 368k) ratios:
x = 11, y = 14, rule = B3678/S135678
10bo$10bo9$2bo$ob2o2$2bo!

Diehards are harder to find, as most patterns above certain population (seems to be about a 100) will turn into a castle (for the same reason it is not really apgsearch-able, though D8_4 kinda works). The best diehard (L=596, maximum population = 110) is this one:
x = 6, y = 6, rule = B3678/S135678
3b2o$2b2o$6o$2o2b2o$6o$6o!

Circuitry is also possible! (At least I think so...) I found 4 different wires, that can support 6 different signals (5 of them are lightspeed). For two wires, an alternating recevier (that can be interpreted as 0-1 state) is shown. Also, some kind of a simple counter was constructed.
x = 192, y = 73, rule = B3678/S135678
58bo$57b2ob3ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o
b2ob2ob2ob2ob2ob2ob2ob2ob2ob2o$57b2ob3ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o$58bo5$58bo2bo
2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo
2bo2bo2bo2bo2bo2bo$56b95o$56b95o$58bo2bo6bobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobo2bobo2bo$63bo2b2o$63bo2b
2o$58bo2bo6bobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobo2bobo2bo$56b95o$56b95o$58bobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo3$58bobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobo$56b95o$56b95o$58bo4bo3bobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobo2bo$65bo$58bo4bo3bo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobo2bo$56b95o$56b95o$58bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo
2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo11$obobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobo$b93o$95o$b93o25bobobobobobobobobobobobobobobobobobobobo2b2o$
95o4bobobobobobobobobob45obobobobobobobobobobobobobob2o$b93o6b90obo$ob
obo4bobobobobobobobobobobobobobobobobobo4bobobobobobobobobobobobobobob
obobobobo4b6o4b92o$7bo38bo43b4o6b90obo$obobo4bobobobobobobobobobobobob
obobobobobo4bobobobobobobobobobobobobobobobobobobo4b6o4bobobobobobobob
obob45obobobobobobobobobobobobobob2o$b93o25bobobobobobobobobobobobobob
obobobobobobo2b2o$95o$b93o$95o$b93o$obobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo5$obobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobo$b93o$95o$b93o$95o$b85o4b4o$obo2bobo4bobobo4bobobo4b
obobo4bobobo4bobobo4bobobo4bobobo4bobobo4bobo2bob4o$10bo8bo8bo8bo8bo8b
o8bo8bo8bo8b3o$obo2bobo4bobobo4bobobo4bobobo4bobobo4bobobo4bobobo4bobo
bo4bobobo4bobo2bob4o$b85o4b4o$95o$b93o$95o$b93o$obobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obo!

For this wires, I found signal-turners, that can be used to construct an extensible-period oscillator
x = 150, y = 52, rule = B3678/S135678
16bo2bobobo35bobobobobobobobobobobobobobobobobobobobobobo$5bo3bobobo2b
9o35b41o$3b21o35b43o$4b21o35b41o$3b21o35b6o2b28o2b5o$2b3o2bobobobobo2b
7o35b4o3b4o4b13o4b2o4b3o$4o14b6o35b5o4bobo4b2obo4bo2b2o5bo4b4o$3bo16b
4o36b5o17bo14b4o$2bo17b5o34b5o4bobo4b2obo4bo2b2o5bo4b4o$19b4o37b4o3b4o
4b13o4b2o4b3o$20b3o36b6o2b28o2b5o$20b4o36b41o$19b4o36b43o$20b4o36b41o$
20b3o36bobobobobobobobobobobobobobobobobobobobobobo$19b5o$20b3o$19b4o
36bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobo$20b3o37b69o$20b4o35b71o$19b4o37b69o$17b4obo36b6o2b56o2b5o$16bob2o
40b4o3b4o4b41o4b2o4b3o$18bo40b5o4bobo5bobobobobobobobobobobobobobobobo
4bo2b2o5bo4b4o$18bo41b5o45bo14b4o$59b5o4bobo5bobobobobobobobobobobobob
obobobo4bo2b2o5bo4b4o$60b4o3b4o4b41o4b2o4b3o$59b6o2b56o2b5o$60b69o$59b
71o$60b69o$59bobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobo3$59bobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobo$60b89o$59b91o$60b89o$59b6o2b
76o2b5o$60b4o3b4o4b61o4b2o4b3o$13b2o44b5o4bobo4b2obobobobobobobobobobo
bobobobobobobobobobobobobobobo4bo2b2o5bo4b4o$60b5o65bo14b4o$16bo42b5o
4bobo4b2obobobobobobobobobobobobobobobobobobobobobobobobobo4bo2b2o5bo
4b4o$16bo43b4o3b4o4b61o4b2o4b3o$59b6o2b76o2b5o$60b89o$59b91o$60b89o$7b
o51bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobo$5bob2o2$7bo!

however, I can't find any generator. On the other hand, a very simple generator exists here
x = 175, y = 16, rule = B3678/S135678
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobo$b173o$175o$b173o$175o$b173o$obobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobo7bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobo$82bo2bo$82bo2bo$obobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobo7bobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
o$b173o$175o$b173o$175o$b173o$obobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo!

but there are no stable receivers, not to mention signal turners.
Finally, I tried some non-totallistic modifications to Castles. Most of them will cause patterns to explode, but I found this p144 oscillator:
x = 13, y = 13, rule = B35k678/S135-k678
4bobobob2o$4b7obo$b10o$b6o2bobo$b6o$b4o$5o$b2o$3o$b3o$3o$o2bo$bo!

Sorry for any language mistakes, English is not my first language. I enjoyed researching this rule, but now I got bored. Maybe someone will be interested in it, maybe not (I guess that second option is more likely, but I don't really care). I need some kind of vacation anyway...

PS. I'm surprised that all of this did not exceed characters limit in a single post. How much is it set to?
melwin22
 
Posts: 27
Joined: September 9th, 2017, 5:40 am

Re: Discoveries in Castles (B3678/S135678)

Postby CoolCreeper39 » August 15th, 2019, 4:15 pm

Longest-lasting possible methuselahs in Castles with an n-cell bounding box (Non record-breakers are not shown):


1-cell bounding box: 1G
x = 1, y = 1, rule = B3678/S135678
o!


3-cell bounding box: 2G
x = 1, y = 3, rule = B3678/S135678
o$o$o!


5-cell bounding box: 3G
x = 1, y = 5, rule = B3678/S135678
o$o$o$o$o!


7-cell bounding box: 5G
x = 1, y = 7, rule = B3678/S135678
o$o$o$o$o$o$o!


8-cell bounding box: 10G
x = 2, y = 4, rule = B3678/S135678
bo$bo2$2o!


9-cell bounding box: 6,222G
x = 3, y = 3, rule = B3678/S135678
b2o$obo$3o!


10 and 11-cell bounding boxes fail to produce any new record-breakers.
CoolCreeper39
 
Posts: 58
Joined: June 19th, 2019, 12:18 pm

Re: Discoveries in Castles (B3678/S135678)

Postby Layz Boi » August 16th, 2019, 3:00 pm

P49
x = 31, y = 27, rule = B3678/S135678
4$6bo2bo2bo2bo2bo2bo2bo$4b23o$4b23o$3b25o$4b23o$3b25o$4b23o$4b23o$6b19o
$6b19o$8b15o$8b15o$10b11o$10b11o$12b7o$13b5o$14b3o$14b3o$15bo$14b3o!
User avatar
Layz Boi
 
Posts: 41
Joined: October 25th, 2018, 3:57 pm

Re: Discoveries in Castles (B3678/S135678)

Postby AforAmpere » August 16th, 2019, 3:35 pm

I posted this a bit ago.
There are some ships there.
I and wildmyron manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule
- Finish a rule with ships with period >= f_e_0(n) (in progress)
AforAmpere
 
Posts: 1047
Joined: July 1st, 2016, 3:58 pm

Re: Discoveries in Castles (B3678/S135678)

Postby 2718281828 » August 16th, 2019, 5:58 pm

updated ship list, with c/3 diagonal:
x = 374, y = 78, rule = B3678/S135678
3$4bo3bo3bo3bo6b3o2b3o10bo8bo14bo5bo13b2o14bo5bo11bo15bo16bo23bo33b2o
25bo18bo9b2o$3b3ob3ob3ob3o5b3o2b3o9bo10bo12b2obobob2o11b4o12bobo3bobo
8b5o13bo14b5o21b2o31bob2o25b4o13b3o8b2obo21bo$4b13o7b2o2b2o9bobobo4bob
obo13bobobo11bob4obo26bob3obo26bob3obo19bobobo27b4o26b5o12b4o8b4o15bob
o3b2o$3bo2b3o3b3o2bo5b8o11bo6bo16b5o10b2o2b2o2b2o8bobobobobobo7b5o26b
9o19bo2bo29bo25b7o14b2o8b4o17bob5o$4bo11bo8b4o10bob2ob4ob2obo14b3o10bo
bob4obobo7bob7obo5bob5obo24b9o24bo20bo3b4o24b8o14b2o8bobo14bo2b6o23b2o
3b3o44bo$8bo3bo12b4o10bo3bo4bo3bo15bo12bo8bo11bo3bo11b3o11b7o10b7o22bo
2bo18b3obobobo26b6obo13bo24bob2ob6o20b3obob5o44bo$24bo4bo9b2ob3o2b3ob
2o14b3o14b4o12b2o5b2o9b3o10bob5obo9b7o22bob2o24bo27b6o17bo22bo5b5o21bo
3b7o43b4o$25bob2o10b3obob2obob3o14b3o11b2o6b2o28bo13b5o12b5o22b3o19b4o
2b2o27b6o40b2o2bob7o21bo2b5o41bob5o$40bo4b2o4bo14b5o13b4o27bo2b3o2bo9b
5o12b5o21bo2bo18b3o4bobo25b4obo38b2ob3o3b5o25b6o40bob8o$42bobo2bobo17b
3o13bo4bo25b3o5b3o7bob3obo36bob3o21bob2o2bo26bo41bob4obobo6bo18bob2ob
5o42b7o$42bo6bo14b2o5b2o7b2o2b4o2b2o24bo5bo12bo15bobo20bob3o18bo3bobob
obo67bo2b3o6bobo16bo3bobo3b3ob3o37bob7o$39b3o8b3o26bob2o2b2o2b2obo40b
2ob2o13b3o22b3o19bo4b2o69bob6obobo3b2o13bobobob5o7bo36bob7o$39b2o4b2o
4b2o11bo7bo11b4o43bob2ob2obo36b3o20b2obo3bo68bob3o2bo3bo18b6o4bobobobo
36bob7obo$39bobob2o2b2obobo27bo4b2o4bo40b2o3b2o11bobobo22bo18b2o2bo3bo
75bo2bob3obo13bob3o3bobobobo3bo37b7obo$38b2o12b2o31b2o63b5o19b4o18bo6b
2o75b2ob6o13bob3o5bo2b2o3b2o37b6o$38b2o2b3o2b3o2b2o29b6o60b7o19bo20b6o
70bob4o4b4o15bob5o2bo2bobobo42b4obo$39bo2b2ob2ob2o2bo30b6o61b5o19bo2b
3o18bo72bobob2obo3b5o15b3obo3b2o2b3o42bob2obo$43bo4bo36b2o64b3o20bob2o
2b2o86bob2o3b3obo2b2o2bo13bob2obo8bo41b3o4bo$40b3o6b3o29b3ob2ob3o56bob
o5bobo17b5o94b6o3bobo28b2o39bo2bo$39bo2bo6bo2bo27b4ob2ob4o55b5ob5o17b
6o87b2o3b7o2bobo26bob2o39b3obo$40bo10bo30bob4obo58b2obobob2o17b8o86bo
2b6o2bo3bo26b7o37b4o$42bobo2bobo33bob2obo63bo23b7o89b4o2bo30bob4o35bob
5o$40b3o6b3o33b2o91b4o83b4o2b4o4bo30b3o2bo35b4o$39b4o6b4o123bo2bobo89b
2obo2b2o30b3obo36b5o$39bo12bo30bo4bo86b2obo98bo31b2obo35b6o$40bo10bo
30bo2b2o2bo87bo3bo93bo35bo35b6obo$39b5o4b5o27bobo6bobo83b2o4bo90bob2ob
o31bo36bo3b2o$42b2o4b2o32b3o2b3o89b2o91bo73bo3b2o$39bo2b3o2b3o2bo31bo
2bo92bo91bo70b2o5bo$40bo10bo30b2o4b2o87b2o93bo70bobo2b2o$40bobo6bobo
126bob2o161b4o$42b2o4b2o126bob5o160b3obo$40b2o8b2o124bob4o159b7o$42b3o
2b3o125bo2b3obo158b3o$40bo2b2o2b2o2bo124b4obo157b5o$39bob2o6b2obo123b
4o157bob3o$39bobo8bobo122b3o158b6o$39b2o10b2o121b3o126bo32b4o$39bo12bo
121b4o121bo2b3o29b7o$175b2o119b2obob3o27b2ob6o$39bo12bo121bobo121bo2b
2o29b6o$38b2obo8bob2o122b2o116bobo3b2o29b7o$40b2o8b2o125bo113b2ob3obob
4o26b6o$37bob3o8b3obo122bo114b3ob2ob3obo26b7o$37bobo12bobo122bo112bob
2obob4o2bo25bob4obo$39b3o8b3o125bobo107bo2b3o3b2o4bo25bo2b2o$37bo2bo
10bo2bo123bo2bo106b2o2b2ob2o3bo29b2o$37b2o2bo8bo2b2o123b2ob2o104b3obob
o5b3o$38bo14bo233b3o5b4o$37b5o8b5o231bo3bobo2b4o$38b5o2b2o2b5o233b2obo
b5obo$37b7ob2ob7o234b2o2b2obo$38b7o2b7o230b2o7bo$37b7o4b7o228b3ob2o2bo
$38b6o4b6o227bo6bobo$37b6o6b6o226b2o4b2obo$38b4o3b2o3b4o225bo2bo5bo$
37b5o8b5o226bo4bobo$38b5o2b2o2b5o225bo$38b3o4b2o4b3o225bobo4bo$37bo3bo
bob2obobo3bo222b5o$39bo2bob4obo2bo226b3o$39b2obob4obob2o$39b2obob4obob
2o$41b2ob4ob2o$38bo5b4o5bo$38b2o3bo4bo3b2o$39bo2bobo2bobo2bo$40b4o4b4o
$40bobo6bobo$41bo8bo!

Edit1:
added c/7 diagonal.
Edit2:
There is no knight ship (2,1)/6 with width 11, but gfind reached a depth of 378.
User avatar
2718281828
 
Posts: 738
Joined: August 8th, 2017, 5:38 pm

Re: Discoveries in Castles (B3678/S135678)

Postby AforAmpere » August 17th, 2019, 8:07 am

C/8:
x = 9, y = 38, rule = B3678/S135678
bobobobo$o2bobo2bo$3o3b3o$4ob4o$o7bo2$b3ob3o$4ob4o$2o2bo2b2o$bo2bo2bo$
2b2ob2o$bob3obo$o2b3o2bo$2b5o$2b5o$2b5o$2b5o$b7o$3b3o$2b5o$4bo$4bo$3bo
bo2$2bobobo$2b5o$3b3o$b7o$b7o$9o$b7o$2b5o$b7o$b7o$bob3obo$4bo2$4bo!


EDIT, C/9:
x = 12, y = 25, rule = B3678/S135678
5b2o$4bo2bo2$2bobo2bobo$2bo6bo$4b4o$2b8o$4b4o$4b4o$3bob2obo2$3b6o$3bo
4bo$5b2o$3bo4bo$5b2o$3bob2obo$5b2o$5b2o$2bo2b2o2bo$b2ob4ob2o$2ob6ob2o$
o2bo4bo2bo$3bo4bo$2bo6bo!
I and wildmyron manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule
- Finish a rule with ships with period >= f_e_0(n) (in progress)
AforAmpere
 
Posts: 1047
Joined: July 1st, 2016, 3:58 pm

Re: Discoveries in Castles (B3678/S135678)

Postby melwin22 » August 19th, 2019, 5:57 am

Nice p49 there, Layz Boi! How did you find it?

Also, I'm wondering if Castles have any guns. Not only I could not construct any, but I didn't see any of these ships - even the simplest ones - to occur naturally.
melwin22
 
Posts: 27
Joined: September 9th, 2017, 5:40 am


Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 4 guests