ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Esolangs as Rule Tables

For discussion of other cellular automata.

Esolangs as Rule Tables

Postby M. I. Wright » February 19th, 2018, 12:36 am

Here's a thread for discussion of implementing esoteric languages in Golly, via the ruletable spec.

I am currently aware of two: zM_'s interpretation of Black, which I have added icons to and fixed a small error in...
@RULE Black

1: block
2: IP south
3: IP west
4: IP north
5: IP east
6: block south
7: block west
8: block north
9: block east

cr. 2018:
zM_ (original table)
Wright (icons + four-transition fix)

@TABLE

n_states: 10
neighborhood: Moore
symmetries: none

var ip = {2,3,4,5}
var block = {1,6,7,8,9}
var notblock = {0,2,3,4,5}
var a = {0,2,3,4,5,1,6,7,8,9}
var b = a
var c = a
var d = a
var e = a
var f = a
var g = a
var h = a

###
0,2,block,a,b,c,d,e,0,3
0,2,0,a,b,c,d,e,block,5
0,2,a,b,c,d,e,f,g,2

1,2,a,b,c,notblock,d,e,f,6
0,6,a,b,c,d,e,f,g,1

6,a,b,c,d,e,f,g,h,4
###

###
0,a,block,3,0,b,c,d,e,2
0,a,0,3,block,b,c,d,e,4
0,a,b,3,c,d,e,f,g,3

1,a,b,3,c,d,e,notblock,f,7
0,a,b,7,c,d,e,f,g,1

7,a,b,c,d,e,f,g,h,5
###

###
0,a,b,c,block,4,0,d,e,3
0,a,b,c,0,4,block,d,e,5
0,a,b,c,d,4,e,f,g,4

1,notblock,a,b,c,4,e,f,g,8
0,a,b,c,d,8,e,f,g,1

8,a,b,c,d,e,f,g,h,2
###

###
0,a,b,c,d,e,block,5,0,4
0,a,b,c,d,f,0,5,block,2
0,a,b,c,d,e,f,5,g,5

1,b,c,notblock,d,e,f,5,g,9
0,a,b,c,d,e,f,9,g,1

9,a,b,c,d,e,f,g,h,3
###

ip,a,b,c,d,e,f,g,h,0

@COLORS

0 48 48 48
1 0 127 255
2 224 224 224
3 224 224 224
4 224 224 224
5 224 224 224
6 55 155 255
7 55 155 255
8 55 155 255
9 55 155 255

@ICONS

XPM
/* width height num_colors chars_per_pixel */
"15 135 4 1"
/* colors */
". c #303030"
"B c #007FFF"
"C c #E0E0E0"
"D c #7FBFFF"
/* icon for state 1 */
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
/* icon for state 2 */
".....CCCCC....."
".....CCCCC....."
".....CCCCC....."
".....CCCCC....."
".....CCCCC....."
".....CCCCC....."
".....CCCCC....."
"CCCCCCCCCCCCCCC"
".CCCCCCCCCCCCC."
"..CCCCCCCCCCC.."
"...CCCCCCCCC..."
"....CCCCCCC...."
".....CCCCC....."
"......CCC......"
".......C......."
/* icon for state 3 */
".......C......."
"......CC......."
".....CCC......."
"....CCCC......."
"...CCCCC......."
"..CCCCCCCCCCCCC"
".CCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
".CCCCCCCCCCCCCC"
"..CCCCCCCCCCCCC"
"...CCCCC......."
"....CCCC......."
".....CCC......."
"......CC......."
".......C......."
/* icon for state 4 */
".......C......."
"......CCC......"
".....CCCCC....."
"....CCCCCCC...."
"...CCCCCCCCC..."
"..CCCCCCCCCCC.."
".CCCCCCCCCCCCC."
"CCCCCCCCCCCCCCC"
".....CCCCC....."
".....CCCCC....."
".....CCCCC....."
".....CCCCC....."
".....CCCCC....."
".....CCCCC....."
".....CCCCC....."
/* icon for state 5 */
".......C......."
".......CC......"
".......CCC....."
".......CCCC...."
".......CCCCC..."
"CCCCCCCCCCCCC.."
"CCCCCCCCCCCCCC."
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCC."
"CCCCCCCCCCCCC.."
".......CCCCC..."
".......CCCC...."
".......CCC....."
".......CC......"
".......C......."
/* icon for state 6 */
"BBBBBDDDDDBBBBB"
"BBBBBDDDDDBBBBB"
"BBBBBDDDDDBBBBB"
"BBBBBDDDDDBBBBB"
"BBBBBDDDDDBBBBB"
"BBBBBDDDDDBBBBB"
"BBBBBDDDDDBBBBB"
"DDDDDDDDDDDDDDD"
"BDDDDDDDDDDDDDB"
"BBDDDDDDDDDDDBB"
"BBBDDDDDDDDDBBB"
"BBBBDDDDDDDBBBB"
"BBBBBDDDDDBBBBB"
"BBBBBBDDDBBBBBB"
"BBBBBBBDBBBBBBB"
/* icon for state 7 */
"BBBBBBBDBBBBBBB"
"BBBBBBDDBBBBBBB"
"BBBBBDDDBBBBBBB"
"BBBBDDDDBBBBBBB"
"BBBDDDDDBBBBBBB"
"BBDDDDDDDDDDDDD"
"BDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDD"
"BDDDDDDDDDDDDDD"
"BBDDDDDDDDDDDDD"
"BBBDDDDDBBBBBBB"
"BBBBDDDDBBBBBBB"
"BBBBBDDDBBBBBBB"
"BBBBBBDDBBBBBBB"
"BBBBBBBDBBBBBBB"
/* icon for state 8 */
"BBBBBBBDBBBBBBB"
"BBBBBBDDDBBBBBB"
"BBBBBDDDDDBBBBB"
"BBBBDDDDDDDBBBB"
"BBBDDDDDDDDDBBB"
"BBDDDDDDDDDDDBB"
"BDDDDDDDDDDDDDB"
"DDDDDDDDDDDDDDD"
"BBBBBDDDDDBBBBB"
"BBBBBDDDDDBBBBB"
"BBBBBDDDDDBBBBB"
"BBBBBDDDDDBBBBB"
"BBBBBDDDDDBBBBB"
"BBBBBDDDDDBBBBB"
"BBBBBDDDDDBBBBB"
/* icon for state 9 */
"BBBBBBBDBBBBBBB"
"BBBBBBBDDBBBBBB"
"BBBBBBBDDDBBBBB"
"BBBBBBBDDDDBBBB"
"BBBBBBBDDDDDBBB"
"DDDDDDDDDDDDDBB"
"DDDDDDDDDDDDDDB"
"DDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDB"
"DDDDDDDDDDDDDBB"
"BBBBBBBDDDDDBBB"
"BBBBBBBDDDDBBBB"
"BBBBBBBDDDBBBBB"
"BBBBBBBDDBBBBBB"
"BBBBBBBDBBBBBBB"
...and my started-and-finished-today translation of Bitwise Cyclic Tag:
@RULE bct

An implementation of bitwise cyclic tag.

state 0: Vacuum.

state 1: Data-tape 0.
state 2: Data-tape 1.

state 3: Program-tape 0.
state 4: Program-tape 1.

state 5: Shifter. Moves both itself and the data tape one unit down to render program execution cyclic.



state 6: Transitory program-tape 0.
state 7: Transitory program-tape 1.

state 8: Pre-copying program-tape 0. (Used when a prgm-tape bit is the x in a 1x instruction)
state 9: Pre-copying program-tape 1. (Ditto)

state 10: Transitory program-tape 0.
state 11: Transitory program-tape 1.

state 12: Rightward-moving data-tape 0.
state 13: Rightward-moving data-tape 1.

state 14: Transitory reflector.
state 15: Ditto but about to turn into normal reflector.

state 16: To-be-moved-down data-tape 0.
state 17: To-be-moved-down data-tape 1.

@COLORS
1  235 235 235  lighter gray
2   30  30  30  darker gray
12 235 235 235  lighter gray
13  30  30  30  darker gray
16 235 235 235  lighter gray
17  30  30  30  darker gray
3  200 200 200  light gray
4   90  90  90  dark gray
5    0 255 255  cyan
14   0 255 255  cyan
15   0 255 255  cyan

@TABLE
n_states:18
neighborhood:Moore
symmetries:none

var anya={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}
var anyb=anya
var anyc=anya
var anyd=anya
var anye=anya
var anyf=anya
var anyg=anya
var anyh=anya

var dataa={1,2}
var datab=dataa

var vacdataa={0,1,2}
var vacdatab=vacdataa

var rdataa={12,13}
var vacrdataa={0,12,13}

var ddataa={16,17}
var vacddataa={0,16,17}

# If a shifter is encountered, reflect + shift data tape down 2 cell
# go right
vacddataa,1,anya,anyb,anyc,anyd,anye,anyf,5,16
vacddataa,2,anya,anyb,anyc,anyd,anye,anyf,5,17
ddataa,0,anya,anyb,anyc,anyd,anye,anyf,5,0
# pull down
vacrdataa,16,anya,anyb,anyc,anyd,anye,anyf,anyg,12
vacrdataa,17,anya,anyb,anyc,anyd,anye,anyf,anyg,13
# go left
vacdataa,12,5,anya,anyb,anyc,anyd,anye,anyf,1
vacdataa,13,5,anya,anyb,anyc,anyd,anye,anyf,2

# Move rightward-moving data to the right
vacrdataa,anya,anyb,anyc,anyd,anye,anyf,rdataa,anyg,rdataa
rdataa,anya,anyb,anyc,anyd,anye,anyf,0,anyg,0

# shift the shifter down two as well
# right
0,5,anya,anyb,anyc,anyd,anye,0,rdataa,14
# left
0,5,dataa,0,anyb,anyc,anyd,anye,anyd,14
# finally
0,14,anya,anyb,anyc,anyd,anye,anyf,anyg,15
14,anya,anyb,anyc,anyd,anye,anyf,anyg,anyh,0
0,15,anya,anyb,anyc,anyd,anye,anyf,anyg,5
15,anya,anyb,anyc,anyd,anye,anyf,anyg,anyh,0
# delete shifter at end of its input stream
5,0,0,0,ddataa,0,0,0,0,0
5,0,0,0,0,0,dataa,0,0,0

# Shift prgm tape down 1 if rightward data above it
3,rdataa,anya,anyb,anyc,anyd,anye,anyf,anyg,10
4,rdataa,anya,anyb,anyc,anyd,anye,anyf,anyg,11

# If a data bit has a shifter to its right,don't attempt to copy it
dataa,anya,anyb,5,anyc,anyd,anye,anyf,anyg,0

# If a prgm-tape 1 is encountered, shift it downward
# and append the command to its left (by copying+shifting down) onto the right end of the data tape,
# if the leftmost bit is 1 -- otherwise just shift it down
# ----
# check the x in 1x
# leftmost bit 1?
3,anya,2,4,anyb,anyc,anyd,anye,anyf,8 # copy+shift down
4,anya,2,4,anyb,anyc,anyd,anye,anyf,9 # copy+shift down
# ----
# leftmost bit 0?
3,anya,1,4,anyb,anyc,anyd,anye,anyf,6 # just shift down
4,anya,1,4,anyb,anyc,anyd,anye,anyf,7 # just shift down
# ----
# shift the 1 in 1x down
4,dataa,anya,anyb,anyc,anyd,anye,anyf,anyg,7
0,7,anya,anyb,anyc,anyd,anye,anyf,anyg,11
# ----
# state 8 becomes state 1 and below it state 3
8,anya,anyb,anyc,anyd,anye,anyf,anyg,anyh,1
0,8,anya,anyb,anyc,anyd,anye,anyf,anyg,10
# state 9 becomes state 2 and below it state 4
9,anya,anyb,anyc,anyd,anye,anyf,anyg,anyh,2
0,9,anya,anyb,anyc,anyd,anye,anyf,anyg,11
# ----
# states 10 and 11 become 3 and 4 moving down
0,10,anya,anyb,anyc,anyd,anye,anyf,anyg,3
0,11,anya,anyb,anyc,anyd,anye,anyf,anyg,4
10,anya,anyb,anyc,anyd,anye,anyf,anyg,anyh,0
11,anya,anyb,anyc,anyd,anye,anyf,anyg,anyh,0

# If a bit of data has reached the right end of the tape,append it
# and delete the waiting data
dataa,anya,anyb,0,anyc,datab,anyd,anye,anyf,datab
# next line accounts for single-item data tape being appended to
dataa,anya,anyb,0,datab,anyd,anye,anyf,anyg,datab
dataa,datab,0,anya,anyb,anyc,anyd,anye,anyf,0
7,anya,anyb,anyc,anyd,anye,anyf,anyg,anyh,0

# If a prgm-tape 0 is encountered, shift it down and delete the leftmost data-tape bit
3,dataa,anya,anyb,anyc,anyd,anye,anyf,anyg,6
0,6,anya,anyb,anyc,anyd,anye,anyf,anyg,10 #3
6,anya,anyb,anyc,anyd,anye,anyf,anyg,anyh,0

# Delete the leftmost bit if a program-tape 0 is encountered
0,anya,anyb,dataa,3,anyc,anyd,anye,anyf,0

# Keep a data-tape bit in place if it's waiting below the data tape (to prepare for moving to the end)
dataa,datab,anya,anyb,anyc,anyd,anye,anyf,anyg,dataa
0,dataa,anya,datab,anyb,anyc,anyd,anye,anyf,0

# Move data tape to the left otherwise
0,anya,dataa,datab,anyb,anyc,anyd,anye,anyf,0
vacdataa,anya,anyb,vacdatab,anyc,anyd,anye,anyf,anyg,vacdatab
The latter is decidedly more opaque at first glance. See USAGE.md and bct_to_xrle.py in this Gist for details.

The number of esolangs expressible as ruletables is admittedly quite low (relative to the amount published); doing it this way doesn't afford an easy communication between the program tape/grid and a data-storage mechanism, for example. I'm still curious as to what others may be possibly implemented, however!
M. I. Wright
 
Posts: 347
Joined: June 13th, 2015, 12:04 pm

Re: Esolangs as Rule Tables

Postby _zM » February 25th, 2018, 5:21 pm

bump

So, this is almost comically missing the point, but I'm adding it anyway:

Some time ago, on the Programming Puzzles and Code Golf StackExchange site, I participated in a contest to create a one instruction set computer, for which I created a language with very restricted 2D memory. You can probably see where this is going

So, I created an interpreter for the language which used Golly's cell grid to display the memory state as the program progresses; this makes the language one without a direct rule table implementation, but with an implementation using Golly nonetheless.

?
stop drop and goll
User avatar
_zM
 
Posts: 152
Joined: June 26th, 2016, 3:07 pm

Re: Esolangs as Rule Tables

Postby M. I. Wright » May 30th, 2018, 3:09 am

Hot off the presses -- a 2D language by the name of "roie" popped up yesterday, and looking at its relative simplicity I couldn't resist. The below rule's name is "roe" (sans the i) because I left out the input/output instruction, i.

In its original rueltabel implementation:
@RUEL roe
http://esolangs.org/wiki/Roie
(without I)

1: e {_E}

2-5: pointer 0 (n-w)
    2: {P_N0}
    3: {P_E0}
    4: {P_S0}
    5: {P_W0}
6-9: pointer 1 (n-w)
    6: {P_N1}
    7: {P_E1}
    8: {P_S1}
    9: {P_W1}

10: o (solid)  {O}
11-15: o that will send two 1s out (n-w)
    11: north {O_N1}
    12: east  {O_E1}
    13: south {O_S1}
    14: west  {O_W1}
16-19: o that will send two 0s out (n-w)
    16: n {O_N0}
    17: e {O_E0}
    18: s {O_S0}
    19: w {O_W0}
20-23: o releasing 0s, but diagonally... sorted by diagonal direction of 'mouth'
    20: ne {O_NE0}
    21: se {O_SE0}
    22: sw {O_SW0}
    23: nw {O_NW0}
24-27: o releasing 1s, diagonally
    24: ne {O_NE1}
    25: se {O_SE1}
    26: sw {O_SW1}
    27: nw {O_NW1}

28: r (solid) {R}
29-32: r that will send a pointer 0 out (n-w)
    29: n {R_N0}
    30: e {R_E0}
    31: s {R_S0}
    32: w {R_W0}
33-34: r that will send a pointer 1 out (n-w)
    33: n {R_N1}
    34: e {R_E1}
    35: s {R_S1}
    36: w {R_W1}

@TABEL
states: 37
neighborhood: Moore
symmetries: none

anyO = (O .. O_NW1)
anyR = (R .. R_W1)
notP = any-(P_N0 .. P_W1)

north = (P_N0, R_N0, O_N0, O_NW0, O_NE0, P_N1, R_N1, O_N1, O_NW1, O_NE1)
east = (P_E0, R_E0, O_E0, O_NE0, O_SE0, P_E1, R_E1, O_E1, O_NE1, O_SE1)
south = (P_S0, R_S0, O_S0, O_SW0, O_SE0, P_S1, R_S1, O_S1, O_SW1, O_SE1)
west = (P_W0, R_W0, O_W0, O_NW0, O_SW0, P_W1, R_W1, O_W1, O_NW1, O_SW1)

northZero = (P_N0, R_N0, O_N0, O_NW0, O_NE0)
eastZero = (P_E0, R_E0, O_E0, O_NE0, O_SE0)
southZero = (P_S0, R_S0, O_S0, O_SW0, O_SE0)
westZero = (P_W0, R_W0, O_W0, O_NW0, O_SW0)


# NOT instruction setup
anyO, N south, NE..NW notP, [N: (O_S1 * 5, O_S0, ...)]
anyO, N..NE notP, E west, SE..NW notP, [E: (O_W1 * 5, O_W0, ...)]
anyO, N..SE notP, S north, SW..NW notP, [S: (O_N1 * 5, O_N0, ...)]
anyO, N..SW notP, W east, NW notP, [W: (O_E1 * 5, O_E0, ...)]

# OR instruction setup
# output-0 cases first to override later ones
anyO, N southZero, NE notP, E 0, SE..SW notP, W eastZero, NW notP, O_SE0
anyO, N southZero, NE notP, E westZero, SE..SW notP, W 0, NW notP, O_SW0
anyO, N..NE notP, E 0, SE notP, S northZero, SW notP, W eastZero, NW notP, O_NE0
anyO, N..NE notP, E P_W0, SE notP, S northZero, SW notP, W 0, NW notP, O_NW0
# the rest (output-1 cases)
anyO, N south, NE..SW notP, W east, NW notP, O_SE1
anyO, N south, NE notP, E west, SE..NW notP, O_SW1
anyO, N..SE notP, S north, SW notP, W east, NW notP, O_NE1
anyO, N..NE notP, E west, SE notP, S north, SW..NW notP, O_NW1

# Output from OR
(O_NE0, O_SE0, O_SW0, O_NW0), N..NW any, O  ->  N[0: (P_N0, _, _, P_N0)]  E[0: (P_E0, P_E0, _, _)]  S[0: (_, P_S0, P_S0, _)]  W[0: (_, _, P_W0, P_W0)]
(O_NE1, O_SE1, O_SW1, O_NW1), N..NW any, O  ->  N[0: (P_N1, _, _, P_N1)]  E[0: (P_E1, P_E1, _, _)]  S[0: (_, P_S1, P_S1, _)]  W[0: (_, _, P_W1, P_W1)]

# Coubled output from NOT
(O_N0, O_E0, O_S0, O_W0), N..NW any, O  ->  N[0: (_, P_E0, _, P_W0)]  E[0: (P_N0, _, P_S0, _)]  S[0: (_, P_E0, _, P_W0)]  W[0: (P_N0, _, P_S0, _)]
(O_N1, O_E1, O_S1, O_W1), N..NW any, O  ->  N[0: (_, P_E1, _, P_W1)]  E[0: (P_N1, _, P_S1, _)]  S[0: (_, P_E1, _, P_W1)]  W[0: (P_N1, _, P_S1, _)]

# Rotation setup
anyR, N south, NE..NW notP, [N: (R_W0 * 5, R_W1, ...)]
anyR, N..NE notP, E west, SE..NW notP, [E: (R_N0 * 5, R_N1, ...)]
anyR, N..SE notP, S north, SW..NW notP, [S: (R_E0 * 5, R_E1, ...)]
anyR, N..SW notP, W east, NW notP, [W: (R_S0 * 5, R_S1, ...)]

# Output from rotation
(R_N0, R_E0, R_S0, R_W0), N..NW any, R  ->  N[0: (P_N0, _, ...)]  E[0: (_, P_E0, _, _)]  S[0: (_, _, P_S0, _)]  W[0: (_, _, _, P_W0)]
(R_N1, R_E1, R_S1, R_W1), N..NW any, R  ->  N[0: (P_N1, _, ...)]  E[0: (_, P_E1, _, _)]  S[0: (_, _, P_S1, _)]  W[0: (_, _, _, P_W1)]

# e instruction should delete, not be deleted (by the below)
_E, N..NW any, _E

# pointer movement
(P_N0, P_E0, P_S0, P_W0), N..NW any, 0  ->  N[0: (P_N0, _, ...)]  E[0: (_, P_E0, _, _)]  S[0: (_, _, P_S0, _)]  W[0: (_, _, _, P_W0)]
(P_N1, P_E1, P_S1, P_W1), N..NW any, 0  ->  N[0: (P_N1, _, ...)]  E[0: (_, P_E1, _, _)]  S[0: (_, _, P_S1, _)]  W[0: (_, _, _, P_W1)]

@COLORS
1: FF0011  # e, reddish
2 3 4 5 6 7 8 9: 00AAFF  # pointer, light blue
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27: A50000  # o, darker red
28 29 30 31 32 33 34 35 36: 008A00  # r, green

@ICONS
?  000 FFF # 29
0: 303030
1: FF0011
2: 00AAFF
3: 1400BB
4: 008A00

#C 1 (e)
x = 9, y = 14, rule = roe
2.5A$2.5A$2A5.2A$2A5.2A$2A5.2A$2A5.2A$9A$9A$2A$2A$2A5.2A$2A5.2A$2.5A$
2.5A!

#C 2 (pointer "0", n..w)
x = 15, y = 15, rule = roe
7.B$6.3B$6.3B$5.2B.2B$5.2B.2B$4.2B3.2B$4.2B3.2B$3.2B5.2B$3.2B5.2B$2.
2B7.2B$2.2B7.2B$.2B9.2B$.2B9.2B$2B11.2B$2B11.2B!

#C 3
x = 15, y = 15, rule = roe
2B$4B$2.4B$4.4B$6.4B$8.4B$10.4B$12.3B$10.4B$8.4B$6.4B$4.4B$2.4B$4B$2B
!

#C 4
x = 15, y = 15, rule = roe
2B11.2B$2B11.2B$.2B9.2B$.2B9.2B$2.2B7.2B$2.2B7.2B$3.2B5.2B$3.2B5.2B$
4.2B3.2B$4.2B3.2B$5.2B.2B$5.2B.2B$6.3B$6.3B$7.B!

#C 5
x = 15, y = 15, rule = roe
13.2B$11.4B$9.4B$7.4B$5.4B$3.4B$.4B$3B$.4B$3.4B$5.4B$7.4B$9.4B$11.4B$
13.2B!

#C 6 (pointer "1", n..w)
x = 15, y = 15, rule = roe
7.C$6.3C$6.3C$5.2C.2C$5.2C.2C$4.2C3.2C$4.2C3.2C$3.2C5.2C$3.2C5.2C$2.
2C7.2C$2.2C7.2C$.2C9.2C$.2C9.2C$CC11.2C$2C11.2C!

#C 7
x = 15, y = 15, rule = roe
CC$4C$2.4C$4.4C$6.4C$8.4C$10.4C$12.3C$10.4C$8.4C$6.4C$4.4C$2.4C$4C$2C
!

#C 8
x = 15, y = 15, rule = roe
2C11.2C$2C11.CC$.2C9.2C$.2C9.2C$2.2C7.2C$2.2C7.2C$3.2C5.2C$3.2C5.2C$
4.2C3.2C$4.2C3.2C$5.2C.2C$5.2C.2C$6.3C$6.3C$7.C!

#C 9
x = 15, y = 15, rule = roe
13.2C$11.4C$9.4C$7.4C$5.4C$3.4C$.4C$3C$.4C$3.4C$5.4C$7.4C$9.4C$11.4C$
13.CC!

#C 28 (r)
x = 9, y = 12, rule = roe
8D$9D$2D5.2D$2D5.2D$2D$2D$2D$2D$2D$2D$2D$2D!

#C 10 (o)
x = 9, y = 14, rule = roe
2.5A$2.5A$2A5.2A$2A5.2A$2A5.2A$2A5.2A$2A5.2A$2A5.2A$2A5.2A$2A5.2A$2A
5.2A$2A5.2A$2.5A$2.5A!

Sent through the transpiler (this one's pastable into Golly):
@RULE roe
*********************************
**** COMPILED FROM RUELTABEL ****
*********************************

http://esolangs.org/wiki/Roie
(without I)

1: e

2-5: pointer 0 (n-w)
2:
3:
4:
5:
6-9: pointer 1 (n-w)
6:
7:
8:
9:

10: o (solid)
11-15: o that will send two 1s out (n-w)
11: north
12: east
13: south
14: west
16-19: o that will send two 0s out (n-w)
16: n
17: e
18: s
19: w
20-23: o releasing 0s, but diagonally... sorted by diagonal direction of 'mouth'
20: ne
21: se
22: sw
23: nw
24-27: o releasing 1s, diagonally
24: ne
25: se
26: sw
27: nw

28: r (solid)
29-32: r that will send a pointer 0 out (n-w)
29: n
30: e
31: s
32: w
33-34: r that will send a pointer 1 out (n-w)
33: n
34: e
35: s
36: w

@TABLE
neighborhood: Moore
symmetries: none
n_states: 37


var any_0 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
var any_1 = any_0
var any_2 = any_0
var any_3 = any_0
var any_4 = any_0
var any_5 = any_0
var any_6 = any_0
var any_7 = any_0
var live_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
var anyO_0 = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}
var anyR_0 = {32, 33, 34, 35, 36, 28, 29, 30, 31}
var notP_0 = {0, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
var notP_1 = notP_0
var notP_2 = notP_0
var notP_3 = notP_0
var notP_4 = notP_0
var notP_5 = notP_0
var notP_6 = notP_0
var north_0 = {33, 2, 6, 11, 16, 20, 23, 24, 27, 29}
var east_0 = {34, 3, 7, 12, 17, 20, 21, 24, 25, 30}
var south_0 = {35, 4, 8, 13, 18, 21, 22, 25, 26, 31}
var west_0 = {32, 36, 5, 9, 14, 19, 22, 23, 26, 27}
var northZero_0 = {2, 16, 20, 23, 29}
var eastZero_0 = {3, 17, 20, 21, 30}
var southZero_0 = {4, 18, 21, 22, 31}
var westZero_0 = {32, 5, 19, 22, 23}
var _172103422226990_0 = {20, 21, 22, 23}
var _221323478530422_0 = {24, 25, 26, 27}
var _548318184482895_0 = {16, 17, 18, 19}
var _283672180532793_0 = {11, 12, 13, 14}
var _817337521887755_0 = {32, 29, 30, 31}
var _475945300262568_0 = {33, 34, 35, 36}
var _186046514515253_0 = {2, 3, 4, 5}
var _75991871926124_0 = {8, 9, 6, 7}
var _186399279518473_0 = {35, 8, 13, 25, 26}
var _198051289772381_0 = {36, 9, 14, 26, 27}
var _412249368573354_0 = {33, 6, 11, 24, 27}
var _256745190793909_0 = {34, 7, 12, 24, 25}


anyO_0, 4, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, notP_6, 13
anyO_0, 31, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, notP_6, 13
anyO_0, 18, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, notP_6, 13
anyO_0, 22, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, notP_6, 13
anyO_0, 21, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, notP_6, 13
anyO_0, _186399279518473_0, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, notP_6, 18
anyO_0, notP_0, notP_1, 5, notP_2, notP_3, notP_4, notP_5, notP_6, 14
anyO_0, notP_0, notP_1, 32, notP_2, notP_3, notP_4, notP_5, notP_6, 14
anyO_0, notP_0, notP_1, 19, notP_2, notP_3, notP_4, notP_5, notP_6, 14
anyO_0, notP_0, notP_1, 23, notP_2, notP_3, notP_4, notP_5, notP_6, 14
anyO_0, notP_0, notP_1, 22, notP_2, notP_3, notP_4, notP_5, notP_6, 14
anyO_0, notP_0, notP_1, _198051289772381_0, notP_2, notP_3, notP_4, notP_5, notP_6, 19
anyO_0, notP_0, notP_1, notP_2, notP_3, 2, notP_4, notP_5, notP_6, 11
anyO_0, notP_0, notP_1, notP_2, notP_3, 29, notP_4, notP_5, notP_6, 11
anyO_0, notP_0, notP_1, notP_2, notP_3, 16, notP_4, notP_5, notP_6, 11
anyO_0, notP_0, notP_1, notP_2, notP_3, 23, notP_4, notP_5, notP_6, 11
anyO_0, notP_0, notP_1, notP_2, notP_3, 20, notP_4, notP_5, notP_6, 11
anyO_0, notP_0, notP_1, notP_2, notP_3, _412249368573354_0, notP_4, notP_5, notP_6, 16
anyO_0, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, 3, notP_6, 12
anyO_0, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, 30, notP_6, 12
anyO_0, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, 17, notP_6, 12
anyO_0, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, 20, notP_6, 12
anyO_0, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, 21, notP_6, 12
anyO_0, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, _256745190793909_0, notP_6, 17
anyO_0, southZero_0, notP_0, 0, notP_1, notP_2, notP_3, eastZero_0, notP_4, 21
anyO_0, southZero_0, notP_0, westZero_0, notP_1, notP_2, notP_3, 0, notP_4, 22
anyO_0, notP_0, notP_1, 0, notP_2, northZero_0, notP_3, eastZero_0, notP_4, 20
anyO_0, notP_0, notP_1, 5, notP_2, northZero_0, notP_3, 0, notP_4, 23
anyO_0, south_0, notP_0, notP_1, notP_2, notP_3, notP_4, east_0, notP_5, 25
anyO_0, south_0, notP_0, west_0, notP_1, notP_2, notP_3, notP_4, notP_5, 26
anyO_0, notP_0, notP_1, notP_2, notP_3, north_0, notP_4, east_0, notP_5, 24
anyO_0, notP_0, notP_1, west_0, notP_2, north_0, notP_3, notP_4, notP_5, 27
_172103422226990_0, any_0, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 10
any_0, any_1, any_2, any_3, any_4, 20, any_5, any_6, any_7, 2
any_0, any_1, any_2, any_3, any_4, 23, any_5, any_6, any_7, 2
any_0, any_1, any_2, any_3, any_4, any_5, any_6, 20, any_7, 3
any_0, any_1, any_2, any_3, any_4, any_5, any_6, 21, any_7, 3
any_0, 21, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 4
any_0, 22, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 4
any_0, any_1, any_2, 22, any_3, any_4, any_5, any_6, any_7, 5
any_0, any_1, any_2, 23, any_3, any_4, any_5, any_6, any_7, 5
_221323478530422_0, any_0, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 10
any_0, any_1, any_2, any_3, any_4, 24, any_5, any_6, any_7, 6
any_0, any_1, any_2, any_3, any_4, 27, any_5, any_6, any_7, 6
any_0, any_1, any_2, any_3, any_4, any_5, any_6, 24, any_7, 7
any_0, any_1, any_2, any_3, any_4, any_5, any_6, 25, any_7, 7
any_0, 25, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 8
any_0, 26, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 8
any_0, any_1, any_2, 26, any_3, any_4, any_5, any_6, any_7, 9
any_0, any_1, any_2, 27, any_3, any_4, any_5, any_6, any_7, 9
_548318184482895_0, any_0, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 10
any_0, any_1, any_2, any_3, any_4, 17, any_5, any_6, any_7, 3
any_0, any_1, any_2, any_3, any_4, 19, any_5, any_6, any_7, 5
any_0, any_1, any_2, any_3, any_4, any_5, any_6, 16, any_7, 2
any_0, any_1, any_2, any_3, any_4, any_5, any_6, 18, any_7, 4
any_0, 17, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 3
any_0, 19, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 5
any_0, any_1, any_2, 16, any_3, any_4, any_5, any_6, any_7, 2
any_0, any_1, any_2, 18, any_3, any_4, any_5, any_6, any_7, 4
_283672180532793_0, any_0, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 10
any_0, any_1, any_2, any_3, any_4, 12, any_5, any_6, any_7, 7
any_0, any_1, any_2, any_3, any_4, 14, any_5, any_6, any_7, 9
any_0, any_1, any_2, any_3, any_4, any_5, any_6, 11, any_7, 6
any_0, any_1, any_2, any_3, any_4, any_5, any_6, 13, any_7, 8
any_0, 12, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 7
any_0, 14, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 9
any_0, any_1, any_2, 11, any_3, any_4, any_5, any_6, any_7, 6
any_0, any_1, any_2, 13, any_3, any_4, any_5, any_6, any_7, 8
anyR_0, 4, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, notP_6, 32
anyR_0, 31, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, notP_6, 32
anyR_0, 18, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, notP_6, 32
anyR_0, 22, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, notP_6, 32
anyR_0, 21, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, notP_6, 32
anyR_0, _186399279518473_0, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, notP_6, 36
anyR_0, notP_0, notP_1, 5, notP_2, notP_3, notP_4, notP_5, notP_6, 29
anyR_0, notP_0, notP_1, 32, notP_2, notP_3, notP_4, notP_5, notP_6, 29
anyR_0, notP_0, notP_1, 19, notP_2, notP_3, notP_4, notP_5, notP_6, 29
anyR_0, notP_0, notP_1, 23, notP_2, notP_3, notP_4, notP_5, notP_6, 29
anyR_0, notP_0, notP_1, 22, notP_2, notP_3, notP_4, notP_5, notP_6, 29
anyR_0, notP_0, notP_1, _198051289772381_0, notP_2, notP_3, notP_4, notP_5, notP_6, 33
anyR_0, notP_0, notP_1, notP_2, notP_3, 2, notP_4, notP_5, notP_6, 30
anyR_0, notP_0, notP_1, notP_2, notP_3, 29, notP_4, notP_5, notP_6, 30
anyR_0, notP_0, notP_1, notP_2, notP_3, 16, notP_4, notP_5, notP_6, 30
anyR_0, notP_0, notP_1, notP_2, notP_3, 23, notP_4, notP_5, notP_6, 30
anyR_0, notP_0, notP_1, notP_2, notP_3, 20, notP_4, notP_5, notP_6, 30
anyR_0, notP_0, notP_1, notP_2, notP_3, _412249368573354_0, notP_4, notP_5, notP_6, 34
anyR_0, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, 3, notP_6, 31
anyR_0, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, 30, notP_6, 31
anyR_0, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, 17, notP_6, 31
anyR_0, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, 20, notP_6, 31
anyR_0, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, 21, notP_6, 31
anyR_0, notP_0, notP_1, notP_2, notP_3, notP_4, notP_5, _256745190793909_0, notP_6, 35
_817337521887755_0, any_0, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 28
any_0, any_1, any_2, any_3, any_4, 29, any_5, any_6, any_7, 2
any_0, any_1, any_2, any_3, any_4, any_5, any_6, 30, any_7, 3
any_0, 31, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 4
any_0, any_1, any_2, 32, any_3, any_4, any_5, any_6, any_7, 5
_475945300262568_0, any_0, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 28
any_0, any_1, any_2, any_3, any_4, 33, any_5, any_6, any_7, 6
any_0, any_1, any_2, any_3, any_4, any_5, any_6, 34, any_7, 7
any_0, 35, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 8
any_0, any_1, any_2, 36, any_3, any_4, any_5, any_6, any_7, 9
1, any_0, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 1
_186046514515253_0, any_0, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 0
any_0, any_1, any_2, any_3, any_4, 2, any_5, any_6, any_7, 2
any_0, any_1, any_2, any_3, any_4, any_5, any_6, 3, any_7, 3
any_0, 4, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 4
any_0, any_1, any_2, 5, any_3, any_4, any_5, any_6, any_7, 5
_75991871926124_0, any_0, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 0
any_0, any_1, any_2, any_3, any_4, 6, any_5, any_6, any_7, 6
any_0, any_1, any_2, any_3, any_4, any_5, any_6, 7, any_7, 7
any_0, 8, any_1, any_2, any_3, any_4, any_5, any_6, any_7, 8
any_0, any_1, any_2, 9, any_3, any_4, any_5, any_6, any_7, 9


@COLORS
1 255 0 17
2 0 170 255
3 0 170 255
4 0 170 255
5 0 170 255
6 0 170 255
7 0 170 255
8 0 170 255
9 0 170 255
10 165 0 0
11 165 0 0
12 165 0 0
13 165 0 0
14 165 0 0
15 165 0 0
16 165 0 0
17 165 0 0
18 165 0 0
19 165 0 0
20 165 0 0
21 165 0 0
22 165 0 0
23 165 0 0
24 165 0 0
25 165 0 0
26 165 0 0
27 165 0 0
28 0 138 0
29 0 138 0
30 0 138 0
31 0 138 0
32 0 138 0
33 0 138 0
34 0 138 0
35 0 138 0
36 0 138 0


@ICONS
XPM
"15 435 6 2"
".. c #303030"
"AA c #FF0011"
"BB c #00AAFF"
"CC c #1400BB"
"DD c #008A00"
"_g c #A50000"
"..........AAAAAAAAAA.........."
"..........AAAAAAAAAA.........."
"......AAAA..........AAAA......"
"......AAAA..........AAAA......"
"......AAAA..........AAAA......"
"......AAAA..........AAAA......"
"......AAAAAAAAAAAAAAAAAA......"
"......AAAAAAAAAAAAAAAAAA......"
"......AAAA...................."
"......AAAA...................."
"......AAAA..........AAAA......"
"......AAAA..........AAAA......"
"..........AAAAAAAAAA.........."
"..........AAAAAAAAAA.........."
".............................."
"..............BB.............."
"............BBBBBB............"
"............BBBBBB............"
"..........BBBB..BBBB.........."
"..........BBBB..BBBB.........."
"........BBBB......BBBB........"
"........BBBB......BBBB........"
"......BBBB..........BBBB......"
"......BBBB..........BBBB......"
"....BBBB..............BBBB...."
"....BBBB..............BBBB...."
"..BBBB..................BBBB.."
"..BBBB..................BBBB.."
"BBBB......................BBBB"
"BBBB......................BBBB"
"BBBB.........................."
"BBBBBBBB......................"
"....BBBBBBBB.................."
"........BBBBBBBB.............."
"............BBBBBBBB.........."
"................BBBBBBBB......"
"....................BBBBBBBB.."
"........................BBBBBB"
"....................BBBBBBBB.."
"................BBBBBBBB......"
"............BBBBBBBB.........."
"........BBBBBBBB.............."
"....BBBBBBBB.................."
"BBBBBBBB......................"
"BBBB.........................."
"BBBB......................BBBB"
"BBBB......................BBBB"
"..BBBB..................BBBB.."
"..BBBB..................BBBB.."
"....BBBB..............BBBB...."
"....BBBB..............BBBB...."
"......BBBB..........BBBB......"
"......BBBB..........BBBB......"
"........BBBB......BBBB........"
"........BBBB......BBBB........"
"..........BBBB..BBBB.........."
"..........BBBB..BBBB.........."
"............BBBBBB............"
"............BBBBBB............"
"..............BB.............."
"..........................BBBB"
"......................BBBBBBBB"
"..................BBBBBBBB...."
"..............BBBBBBBB........"
"..........BBBBBBBB............"
"......BBBBBBBB................"
"..BBBBBBBB...................."
"BBBBBB........................"
"..BBBBBBBB...................."
"......BBBBBBBB................"
"..........BBBBBBBB............"
"..............BBBBBBBB........"
"..................BBBBBBBB...."
"......................BBBBBBBB"
"..........................BBBB"
"..............CC.............."
"............CCCCCC............"
"............CCCCCC............"
"..........CCCC..CCCC.........."
"..........CCCC..CCCC.........."
"........CCCC......CCCC........"
"........CCCC......CCCC........"
"......CCCC..........CCCC......"
"......CCCC..........CCCC......"
"....CCCC..............CCCC...."
"....CCCC..............CCCC...."
"..CCCC..................CCCC.."
"..CCCC..................CCCC.."
"CCCC......................CCCC"
"CCCC......................CCCC"
"CCCC.........................."
"CCCCCCCC......................"
"....CCCCCCCC.................."
"........CCCCCCCC.............."
"............CCCCCCCC.........."
"................CCCCCCCC......"
"....................CCCCCCCC.."
"........................CCCCCC"
"....................CCCCCCCC.."
"................CCCCCCCC......"
"............CCCCCCCC.........."
"........CCCCCCCC.............."
"....CCCCCCCC.................."
"CCCCCCCC......................"
"CCCC.........................."
"CCCC......................CCCC"
"CCCC......................CCCC"
"..CCCC..................CCCC.."
"..CCCC..................CCCC.."
"....CCCC..............CCCC...."
"....CCCC..............CCCC...."
"......CCCC..........CCCC......"
"......CCCC..........CCCC......"
"........CCCC......CCCC........"
"........CCCC......CCCC........"
"..........CCCC..CCCC.........."
"..........CCCC..CCCC.........."
"............CCCCCC............"
"............CCCCCC............"
"..............CC.............."
"..........................CCCC"
"......................CCCCCCCC"
"..................CCCCCCCC...."
"..............CCCCCCCC........"
"..........CCCCCCCC............"
"......CCCCCCCC................"
"..CCCCCCCC...................."
"CCCCCC........................"
"..CCCCCCCC...................."
"......CCCCCCCC................"
"..........CCCCCCCC............"
"..............CCCCCCCC........"
"..................CCCCCCCC...."
"......................CCCCCCCC"
"..........................CCCC"
"..........AAAAAAAAAA.........."
"..........AAAAAAAAAA.........."
"......AAAA..........AAAA......"
"......AAAA..........AAAA......"
"......AAAA..........AAAA......"
"......AAAA..........AAAA......"
"......AAAA..........AAAA......"
"......AAAA..........AAAA......"
"......AAAA..........AAAA......"
"......AAAA..........AAAA......"
"......AAAA..........AAAA......"
"......AAAA..........AAAA......"
"..........AAAAAAAAAA.........."
"..........AAAAAAAAAA.........."
".............................."
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
"_g_g_g_g_g_g_g_g_g_g_g_g_g_g_g"
".............................."
"......DDDDDDDDDDDDDDDD........"
"......DDDDDDDDDDDDDDDDDD......"
"......DDDD..........DDDD......"
"......DDDD..........DDDD......"
"......DDDD...................."
"......DDDD...................."
"......DDDD...................."
"......DDDD...................."
"......DDDD...................."
"......DDDD...................."
"......DDDD...................."
"......DDDD...................."
".............................."
".............................."
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
M. I. Wright
 
Posts: 347
Joined: June 13th, 2015, 12:04 pm


Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 6 guests