## 2D Replicator Classes

For discussion of other cellular automata.

### Re: 2D Replicator Classes

I am not sure what this is:
`x = 3, y = 5, rule = B2ei3aeij4cqrtz5cjkry/S1c2ace3jnq4acijt5y6-ak7bo\$obo\$3o\$obo\$bo!`
I and wildmyron manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule
- Finish a rule with ships with period >= f_e_0(n) (in progress)
AforAmpere

Posts: 1045
Joined: July 1st, 2016, 3:58 pm

### Re: 2D Replicator Classes

There should be a class E failed replicator, for objects that explode but frequently appear in the resulting explosion.
The most unusual example I know of (a rule that I found)
`x = 4, y = 3, rule = B3-k4k5e7c/S23-a4ityz2bo\$b3o\$2obo!`
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"

Moosey

Posts: 2302
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board.

### Re: 2D Replicator Classes

I think this is a large version of some class-S replicator, but it has the property of making larger versions of itself so I dunno:
`x = 241, y = 245, rule = 1/1/5232.A7.A\$233.3B.3B\$233.BCB.BCB\$233.2B3D2B\$232.A2.D.D2.A\$235.2D2\$235.2D\$224.A10.D.D2.A\$225.3B.3B.2B3D2B\$225.BCB.BCB.BCB.BCB\$225.2B3D2B.3B.3B\$224.A2.D.D10.A\$227.2D2\$227.2D\$216.A7.A2.D.D2.A7.A\$217.3B.3B3.3D3.3B.3B\$217.BCB.BCB9.BCB.BCB\$217.2B3D2B3.3D3.2B3D2B\$216.A2.D.D2.A2.D.D2.A2.D.D2.A\$219.2D7.2D5.2D2\$219.2D7.2D5.2D\$208.A10.D.D5.D.D5.D.D2.A\$209.3B.3B.2B3D2B.2B3D2B.2B3D2B\$209.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB\$209.2B3D2B.3B.3B.3B.3B.3B.3B\$208.A2.D.D26.A\$211.2D2\$211.2D\$200.A7.A2.D.D18.A7.A\$201.3B.3B3.3D19.3B.3B\$201.BCB.BCB25.BCB.BCB\$201.2B3D2B3.3D19.2B3D2B\$200.A2.D.D2.A2.D.D18.A2.D.D2.A\$203.2D7.2D21.2D2\$203.2D7.2D21.2D\$192.A10.D.D2.A2.D.D10.A10.D.D2.A\$193.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B\$193.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB\$193.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B\$192.A2.D.D10.A2.D.D10.A2.D.D10.A\$195.2D15.2D13.2D2\$195.2D15.2D13.2D\$184.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A\$185.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B\$185.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB\$185.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B\$184.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A\$187.2D7.2D5.2D7.2D5.2D7.2D5.2D2\$187.2D7.2D5.2D7.2D5.2D7.2D5.2D\$176.A10.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D2.A\$177.3B.3B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B\$177.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB\$177.2B3D2B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B\$176.A2.D.D58.A\$179.2D2\$179.2D\$168.A7.A2.D.D50.A7.A\$169.3B.3B3.3D51.3B.3B\$169.BCB.BCB57.BCB.BCB\$169.2B3D2B3.3D51.2B3D2B\$168.A2.D.D2.A2.D.D50.A2.D.D2.A\$171.2D7.2D53.2D2\$171.2D7.2D53.2D\$160.A10.D.D2.A2.D.D42.A10.D.D2.A\$161.3B.3B.2B3D2B3.3D43.3B.3B.2B3D2B\$161.BCB.BCB.BCB.BCB49.BCB.BCB.BCB.BCB\$161.2B3D2B.3B.3B3.3D43.2B3D2B.3B.3B\$160.A2.D.D10.A2.D.D42.A2.D.D10.A\$163.2D15.2D45.2D2\$163.2D15.2D45.2D\$152.A7.A2.D.D2.A7.A2.D.D34.A7.A2.D.D2.A7.A\$153.3B.3B3.3D3.3B.3B3.3D35.3B.3B3.3D3.3B.3B\$153.BCB.BCB9.BCB.BCB41.BCB.BCB9.BCB.BCB\$153.2B3D2B3.3D3.2B3D2B3.3D35.2B3D2B3.3D3.2B3D2B\$152.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D34.A2.D.D2.A2.D.D2.A2.D.D2.A\$155.2D7.2D5.2D7.2D37.2D7.2D5.2D2\$155.2D7.2D5.2D7.2D37.2D7.2D5.2D\$144.A10.D.D5.D.D5.D.D2.A2.D.D26.A10.D.D5.D.D5.D.D2.A\$145.3B.3B.2B3D2B.2B3D2B.2B3D2B3.3D27.3B.3B.2B3D2B.2B3D2B.2B3D2B\$145.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB33.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB\$145.2B3D2B.3B.3B.3B.3B.3B.3B3.3D27.2B3D2B.3B.3B.3B.3B.3B.3B\$144.A2.D.D26.A2.D.D26.A2.D.D26.A\$147.2D31.2D29.2D2\$147.2D31.2D29.2D\$136.A7.A2.D.D18.A7.A2.D.D18.A7.A2.D.D18.A7.A\$137.3B.3B3.3D19.3B.3B3.3D19.3B.3B3.3D19.3B.3B\$137.BCB.BCB25.BCB.BCB25.BCB.BCB25.BCB.BCB\$137.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B\$136.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A\$139.2D7.2D21.2D7.2D21.2D7.2D21.2D2\$139.2D7.2D21.2D7.2D21.2D7.2D21.2D\$128.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A\$129.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B\$129.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB\$129.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B\$128.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A\$131.2D15.2D13.2D15.2D13.2D15.2D13.2D2\$131.2D15.2D13.2D15.2D13.2D15.2D13.2D\$120.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A\$121.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B\$121.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB\$121.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B\$120.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A\$123.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D2\$123.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D\$112.A10.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D2.A\$113.3B.3B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B\$113.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB\$113.2B3D2B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B\$112.A2.D.D122.A\$115.2D2\$115.2D\$104.A7.A2.D.D114.A7.A\$105.3B.3B3.3D115.3B.3B\$105.BCB.BCB121.BCB.BCB\$105.2B3D2B3.3D115.2B3D2B\$104.A2.D.D2.A2.D.D114.A2.D.D2.A\$107.2D7.2D117.2D2\$107.2D7.2D117.2D\$96.A10.D.D2.A2.D.D106.A10.D.D2.A\$97.3B.3B.2B3D2B3.3D107.3B.3B.2B3D2B\$97.BCB.BCB.BCB.BCB113.BCB.BCB.BCB.BCB\$97.2B3D2B.3B.3B3.3D107.2B3D2B.3B.3B\$96.A2.D.D10.A2.D.D106.A2.D.D10.A\$99.2D15.2D109.2D2\$99.2D15.2D109.2D\$88.A7.A2.D.D2.A7.A2.D.D98.A7.A2.D.D2.A7.A\$89.3B.3B3.3D3.3B.3B3.3D99.3B.3B3.3D3.3B.3B\$89.BCB.BCB9.BCB.BCB105.BCB.BCB9.BCB.BCB\$89.2B3D2B3.3D3.2B3D2B3.3D99.2B3D2B3.3D3.2B3D2B\$88.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D98.A2.D.D2.A2.D.D2.A2.D.D2.A\$91.2D7.2D5.2D7.2D101.2D7.2D5.2D2\$91.2D7.2D5.2D7.2D101.2D7.2D5.2D\$80.A10.D.D5.D.D5.D.D2.A2.D.D90.A10.D.D5.D.D5.D.D2.A\$81.3B.3B.2B3D2B.2B3D2B.2B3D2B3.3D91.3B.3B.2B3D2B.2B3D2B.2B3D2B\$81.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB97.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB\$81.2B3D2B.3B.3B.3B.3B.3B.3B3.3D91.2B3D2B.3B.3B.3B.3B.3B.3B\$80.A2.D.D26.A2.D.D90.A2.D.D26.A\$83.2D31.2D93.2D2\$83.2D31.2D93.2D\$72.A7.A2.D.D18.A7.A2.D.D82.A7.A2.D.D18.A7.A\$73.3B.3B3.3D19.3B.3B3.3D83.3B.3B3.3D19.3B.3B\$73.BCB.BCB25.BCB.BCB89.BCB.BCB25.BCB.BCB\$73.2B3D2B3.3D19.2B3D2B3.3D83.2B3D2B3.3D19.2B3D2B\$72.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D82.A2.D.D2.A2.D.D18.A2.D.D2.A\$75.2D7.2D21.2D7.2D85.2D7.2D21.2D2\$75.2D7.2D21.2D7.2D85.2D7.2D21.2D\$64.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D74.A10.D.D2.A2.D.D10.A10.D.D2.A\$65.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D75.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B\$65.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB81.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB\$65.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D75.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B\$64.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D74.A2.D.D10.A2.D.D10.A2.D.D10.A\$67.2D15.2D13.2D15.2D77.2D15.2D13.2D2\$67.2D15.2D13.2D15.2D77.2D15.2D13.2D\$56.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D66.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A\$57.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D67.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B\$57.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB73.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB\$57.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D67.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B\$56.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D66.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A\$59.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D69.2D7.2D5.2D7.2D5.2D7.2D5.2D2\$59.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D69.2D7.2D5.2D7.2D5.2D7.2D5.2D\$48.A10.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D2.A2.D.D58.A10.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D2.A\$49.3B.3B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B3.3D59.3B.3B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B\$49.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB65.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB\$49.2B3D2B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B3.3D59.2B3D2B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B\$48.A2.D.D58.A2.D.D58.A2.D.D58.A\$51.2D63.2D61.2D2\$51.2D63.2D61.2D\$40.A7.A2.D.D50.A7.A2.D.D50.A7.A2.D.D50.A7.A\$41.3B.3B3.3D51.3B.3B3.3D51.3B.3B3.3D51.3B.3B\$41.BCB.BCB57.BCB.BCB57.BCB.BCB57.BCB.BCB\$41.2B3D2B3.3D51.2B3D2B3.3D51.2B3D2B3.3D51.2B3D2B\$40.A2.D.D2.A2.D.D50.A2.D.D2.A2.D.D50.A2.D.D2.A2.D.D50.A2.D.D2.A\$43.2D7.2D53.2D7.2D53.2D7.2D53.2D2\$43.2D7.2D53.2D7.2D53.2D7.2D53.2D\$32.A10.D.D2.A2.D.D42.A10.D.D2.A2.D.D42.A10.D.D2.A2.D.D42.A10.D.D2.A\$33.3B.3B.2B3D2B3.3D43.3B.3B.2B3D2B3.3D43.3B.3B.2B3D2B3.3D43.3B.3B.2B3D2B\$33.BCB.BCB.BCB.BCB49.BCB.BCB.BCB.BCB49.BCB.BCB.BCB.BCB49.BCB.BCB.BCB.BCB\$33.2B3D2B.3B.3B3.3D43.2B3D2B.3B.3B3.3D43.2B3D2B.3B.3B3.3D43.2B3D2B.3B.3B\$32.A2.D.D10.A2.D.D42.A2.D.D10.A2.D.D42.A2.D.D10.A2.D.D42.A2.D.D10.A\$35.2D15.2D45.2D15.2D45.2D15.2D45.2D2\$35.2D15.2D45.2D15.2D45.2D15.2D45.2D\$24.A7.A2.D.D2.A7.A2.D.D34.A7.A2.D.D2.A7.A2.D.D34.A7.A2.D.D2.A7.A2.D.D34.A7.A2.D.D2.A7.A\$25.3B.3B3.3D3.3B.3B3.3D35.3B.3B3.3D3.3B.3B3.3D35.3B.3B3.3D3.3B.3B3.3D35.3B.3B3.3D3.3B.3B\$25.BCB.BCB9.BCB.BCB41.BCB.BCB9.BCB.BCB41.BCB.BCB9.BCB.BCB41.BCB.BCB9.BCB.BCB\$25.2B3D2B3.3D3.2B3D2B3.3D35.2B3D2B3.3D3.2B3D2B3.3D35.2B3D2B3.3D3.2B3D2B3.3D35.2B3D2B3.3D3.2B3D2B\$24.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D34.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D34.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D34.A2.D.D2.A2.D.D2.A2.D.D2.A\$27.2D7.2D5.2D7.2D37.2D7.2D5.2D7.2D37.2D7.2D5.2D7.2D37.2D7.2D5.2D2\$27.2D7.2D5.2D7.2D37.2D7.2D5.2D7.2D37.2D7.2D5.2D7.2D37.2D7.2D5.2D\$16.A10.D.D5.D.D5.D.D2.A2.D.D26.A10.D.D5.D.D5.D.D2.A2.D.D26.A10.D.D5.D.D5.D.D2.A2.D.D26.A10.D.D5.D.D5.D.D2.A\$17.3B.3B.2B3D2B.2B3D2B.2B3D2B3.3D27.3B.3B.2B3D2B.2B3D2B.2B3D2B3.3D27.3B.3B.2B3D2B.2B3D2B.2B3D2B3.3D27.3B.3B.2B3D2B.2B3D2B.2B3D2B\$17.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB33.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB33.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB33.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB\$17.2B3D2B.3B.3B.3B.3B.3B.3B3.3D27.2B3D2B.3B.3B.3B.3B.3B.3B3.3D27.2B3D2B.3B.3B.3B.3B.3B.3B3.3D27.2B3D2B.3B.3B.3B.3B.3B.3B\$16.A2.D.D26.A2.D.D26.A2.D.D26.A2.D.D26.A2.D.D26.A2.D.D26.A2.D.D26.A\$19.2D31.2D29.2D31.2D29.2D31.2D29.2D2\$19.2D31.2D29.2D31.2D29.2D31.2D29.2D\$8.A7.A2.D.D18.A7.A2.D.D18.A7.A2.D.D18.A7.A2.D.D18.A7.A2.D.D18.A7.A2.D.D18.A7.A2.D.D18.A7.A\$9.3B.3B3.3D19.3B.3B3.3D19.3B.3B3.3D19.3B.3B3.3D19.3B.3B3.3D19.3B.3B3.3D19.3B.3B3.3D19.3B.3B\$9.BCB.BCB25.BCB.BCB25.BCB.BCB25.BCB.BCB25.BCB.BCB25.BCB.BCB25.BCB.BCB25.BCB.BCB\$9.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B\$8.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A\$11.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D2\$11.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D\$A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A\$.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B\$.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB\$.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B\$A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A\$3.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D2\$3.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D\$A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A\$.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B\$.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB\$.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B\$A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A!`

Oh and this is definitely a class Q:
`x = 49, y = 49, rule = Ed-repABA2B2ADE17F4E11D4B4A\$2A2B2AB23FE10D2B3AB2A\$4B2AD24F3E7DB4AB2A\$3B3AE24F3E7DB7A\$3B2AB25F7E3DCB6A\$3B2AC3FE17F6E2D2BC3DCB4ABA\$3B2AC3FE19F4D5B2DED2B3A2B\$2B3AD12FE9FD3B4A3BD2EDB4AB\$2B2ABE2F3E7FE5F3EDBA2BA4B3CDED3B2AB\$BC2ABD3FE7F2E5F3DB2D2BC5D2C2DC3B3A\$2BA2BD10FE2D3F2E6DC10D3C3B2A\$2BA2BC7F6DEF3E5DC3D2E7DBCD3BA\$2BA2BC3F2DC3BC3DEFE5DC3DE2FE4D2EDBCD2CBA\$BCA3BEFDB3AB3D5E3D3BC3DB7AB2DCD2C2B\$BCA3BDFD2B2C7D4ED4BDB6A4BC5DCB\$BCB2ABCF3D2E7DE3FD5B3AB2C11D2B\$B2C3ABF8E5D3FE4B2DCDEFE6DE4D2B\$ABCB3A2FDF2E3FE2D2B3FD3BD2E3D2E2DB2D3E2DEDB\$A3B3AEF3E2FDBA3BD3FEC8BC5D4E4DB\$2ABCB2AEF2EFC6ABE3FD2B10D3E7DEC\$CABC2BAEF2E4A2B2CE4FE4D3E2FE4FEDE3D3ED\$DABC2BADFEDAD3FEB2D4FE2DBD3EFEF7E3D4E\$BA2BCBAD2FBD3FD2B2D4F2E5DEF6E6DE2DE\$6BAC2FD2E2DBC2E5F2DED3BD3F4E5D2E2DE\$D3BC2BD2F2E4DE7F3EFC2ABD2F4E5D3EDE\$DA2BC2BD3F5E8FE2DEF2B2A13DEDE\$C3B2DCB11FD5F3DF2DB2AB13DE\$2C2BCEDC10F2D5F3D2F6B11D2E\$C2BCB2E2D9FBD4F3DB2D6B9DC3D\$2B3C2E2C8FDB2FE2FE2DB2DBD4B9DC3D\$B2C2B2EDBE6FDBA2FE2F4DB3A4BC8D2C2D\$3BABC2EDE4F2EDAB5F3DB3A7BD2BC7D\$A3B2AEF3E2FE3DAB8DBA6BC2B2DBDE6D\$3B3AB7E2DBA3DBABD2BA6BDC2B2CBCE3DB2D\$B3AB2C7E2D2BFD2E2DC6BC2DCD4BCDE6D\$CBC2BECBCD5EDBDF2D2E2D3C8DB2AB9D\$ECECBC3ACDF3EDBD6EDC7D3B3AB9D\$CB4C2A3CF2E2DA2D2E2D2F3ED4B5AB2C5DC2D\$2B2CECBCECBEFEDCB5EFE2D2BABDB5ACD3C4DC2D\$2B4CB2CBAEFE2DBDED2FE4BDB6ABC8DCB2D\$10BABFE7D3BC2DB4ABCB3C6D2CB2D\$2B2A8B4E4DB8ACD4BDBC2DC4DBC2D\$B2AC5BCD2EF3E2DBDECBA3BC5D3B8DBC2D\$BABC5BCE2CFEDE2DBD2FEDED3F2DBC2BCD2C5DBC2D\$C2BC3BC2BCAB2ED2E3DE2F2E5D4CB3C3DCDCBC2D\$EBA2B6C2BD5E2D6E2DB2CDC3BC6D3B2C\$B4A4B5C6ED5E8DC9DC2B2C\$2AB2A3B3C9ED3E10DB9DC2B2C\$2B3CE2CE4C2BDF3ED4E19DC2B2C!`

Use this for the above pattern:
`@RULE Ed-repRule tree written automatically byScripts/Python/Rule-Generators/FredkinModN-gen.py.Winograd's generalization of Fredkin's parity rule (B1357/S1357) to modulo-n:  c,{s} -> sum(s)%n, where n=2 for original rule.Winograd, T. (1970) A simple algorithm for self-replicationA. I. Memo 197, Project MAC. MIT. http://hdl.handle.net/1721.1/5843@TREEnum_states=7num_neighbors=4num_nodes=291 0 0 0 0 0 0 01 1 1 1 1 1 1 11 2 2 2 2 2 2 21 3 3 3 3 3 3 31 4 4 4 4 4 4 41 5 5 5 5 5 5 51 6 6 6 6 6 6 62 0 1 2 3 4 5 62 1 2 3 4 5 6 02 2 3 4 5 6 0 12 3 4 5 6 0 1 22 4 5 6 0 1 2 32 5 6 0 1 2 3 42 6 0 1 2 3 4 53 7 8 9 10 11 12 133 8 9 10 11 12 13 73 9 10 11 12 13 7 83 10 11 12 13 7 8 93 11 12 13 7 8 9 103 12 13 7 8 9 10 113 13 7 8 9 10 11 124 14 15 16 17 18 19 204 15 16 17 18 19 20 144 16 17 18 19 20 14 154 17 18 19 20 14 15 164 18 19 20 14 15 16 174 19 20 14 15 16 17 184 20 14 15 16 17 18 195 21 22 23 24 25 26 27@COLORS1 56 32 162 104 80 563 120 120 724 168 120 1045 200 168 1206 216 176 168`
Last edited by Βεν Γ. Κυθισ on February 5th, 2019, 4:21 pm, edited 1 time in total.
Sorry, some of my rules before April 20 2019 have Unicode characters that are not compatible with Golly; you will have to remove them when pasting them in your text editor.
If for some reason you needed to know, my PGP key ID is DB271923.

Βεν Γ. Κυθισ

Posts: 217
Joined: December 27th, 2018, 5:42 am

### Re: 2D Replicator Classes

Βεν Γ. Κυθισ wrote:I think this is a large version of some class-S replicator, but it has the property of making larger versions of itself so I dunno:
`x = 241, y = 245, rule = 1/1/5232.A7.A\$233.3B.3B\$233.BCB.BCB\$233.2B3D2B\$232.A2.D.D2.A\$235.2D2\$235.2D\$224.A10.D.D2.A\$225.3B.3B.2B3D2B\$225.BCB.BCB.BCB.BCB\$225.2B3D2B.3B.3B\$224.A2.D.D10.A\$227.2D2\$227.2D\$216.A7.A2.D.D2.A7.A\$217.3B.3B3.3D3.3B.3B\$217.BCB.BCB9.BCB.BCB\$217.2B3D2B3.3D3.2B3D2B\$216.A2.D.D2.A2.D.D2.A2.D.D2.A\$219.2D7.2D5.2D2\$219.2D7.2D5.2D\$208.A10.D.D5.D.D5.D.D2.A\$209.3B.3B.2B3D2B.2B3D2B.2B3D2B\$209.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB\$209.2B3D2B.3B.3B.3B.3B.3B.3B\$208.A2.D.D26.A\$211.2D2\$211.2D\$200.A7.A2.D.D18.A7.A\$201.3B.3B3.3D19.3B.3B\$201.BCB.BCB25.BCB.BCB\$201.2B3D2B3.3D19.2B3D2B\$200.A2.D.D2.A2.D.D18.A2.D.D2.A\$203.2D7.2D21.2D2\$203.2D7.2D21.2D\$192.A10.D.D2.A2.D.D10.A10.D.D2.A\$193.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B\$193.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB\$193.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B\$192.A2.D.D10.A2.D.D10.A2.D.D10.A\$195.2D15.2D13.2D2\$195.2D15.2D13.2D\$184.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A\$185.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B\$185.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB\$185.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B\$184.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A\$187.2D7.2D5.2D7.2D5.2D7.2D5.2D2\$187.2D7.2D5.2D7.2D5.2D7.2D5.2D\$176.A10.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D2.A\$177.3B.3B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B\$177.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB\$177.2B3D2B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B\$176.A2.D.D58.A\$179.2D2\$179.2D\$168.A7.A2.D.D50.A7.A\$169.3B.3B3.3D51.3B.3B\$169.BCB.BCB57.BCB.BCB\$169.2B3D2B3.3D51.2B3D2B\$168.A2.D.D2.A2.D.D50.A2.D.D2.A\$171.2D7.2D53.2D2\$171.2D7.2D53.2D\$160.A10.D.D2.A2.D.D42.A10.D.D2.A\$161.3B.3B.2B3D2B3.3D43.3B.3B.2B3D2B\$161.BCB.BCB.BCB.BCB49.BCB.BCB.BCB.BCB\$161.2B3D2B.3B.3B3.3D43.2B3D2B.3B.3B\$160.A2.D.D10.A2.D.D42.A2.D.D10.A\$163.2D15.2D45.2D2\$163.2D15.2D45.2D\$152.A7.A2.D.D2.A7.A2.D.D34.A7.A2.D.D2.A7.A\$153.3B.3B3.3D3.3B.3B3.3D35.3B.3B3.3D3.3B.3B\$153.BCB.BCB9.BCB.BCB41.BCB.BCB9.BCB.BCB\$153.2B3D2B3.3D3.2B3D2B3.3D35.2B3D2B3.3D3.2B3D2B\$152.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D34.A2.D.D2.A2.D.D2.A2.D.D2.A\$155.2D7.2D5.2D7.2D37.2D7.2D5.2D2\$155.2D7.2D5.2D7.2D37.2D7.2D5.2D\$144.A10.D.D5.D.D5.D.D2.A2.D.D26.A10.D.D5.D.D5.D.D2.A\$145.3B.3B.2B3D2B.2B3D2B.2B3D2B3.3D27.3B.3B.2B3D2B.2B3D2B.2B3D2B\$145.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB33.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB\$145.2B3D2B.3B.3B.3B.3B.3B.3B3.3D27.2B3D2B.3B.3B.3B.3B.3B.3B\$144.A2.D.D26.A2.D.D26.A2.D.D26.A\$147.2D31.2D29.2D2\$147.2D31.2D29.2D\$136.A7.A2.D.D18.A7.A2.D.D18.A7.A2.D.D18.A7.A\$137.3B.3B3.3D19.3B.3B3.3D19.3B.3B3.3D19.3B.3B\$137.BCB.BCB25.BCB.BCB25.BCB.BCB25.BCB.BCB\$137.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B\$136.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A\$139.2D7.2D21.2D7.2D21.2D7.2D21.2D2\$139.2D7.2D21.2D7.2D21.2D7.2D21.2D\$128.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A\$129.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B\$129.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB\$129.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B\$128.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A\$131.2D15.2D13.2D15.2D13.2D15.2D13.2D2\$131.2D15.2D13.2D15.2D13.2D15.2D13.2D\$120.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A\$121.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B\$121.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB\$121.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B\$120.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A\$123.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D2\$123.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D5.2D\$112.A10.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D2.A\$113.3B.3B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B\$113.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB\$113.2B3D2B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B\$112.A2.D.D122.A\$115.2D2\$115.2D\$104.A7.A2.D.D114.A7.A\$105.3B.3B3.3D115.3B.3B\$105.BCB.BCB121.BCB.BCB\$105.2B3D2B3.3D115.2B3D2B\$104.A2.D.D2.A2.D.D114.A2.D.D2.A\$107.2D7.2D117.2D2\$107.2D7.2D117.2D\$96.A10.D.D2.A2.D.D106.A10.D.D2.A\$97.3B.3B.2B3D2B3.3D107.3B.3B.2B3D2B\$97.BCB.BCB.BCB.BCB113.BCB.BCB.BCB.BCB\$97.2B3D2B.3B.3B3.3D107.2B3D2B.3B.3B\$96.A2.D.D10.A2.D.D106.A2.D.D10.A\$99.2D15.2D109.2D2\$99.2D15.2D109.2D\$88.A7.A2.D.D2.A7.A2.D.D98.A7.A2.D.D2.A7.A\$89.3B.3B3.3D3.3B.3B3.3D99.3B.3B3.3D3.3B.3B\$89.BCB.BCB9.BCB.BCB105.BCB.BCB9.BCB.BCB\$89.2B3D2B3.3D3.2B3D2B3.3D99.2B3D2B3.3D3.2B3D2B\$88.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D98.A2.D.D2.A2.D.D2.A2.D.D2.A\$91.2D7.2D5.2D7.2D101.2D7.2D5.2D2\$91.2D7.2D5.2D7.2D101.2D7.2D5.2D\$80.A10.D.D5.D.D5.D.D2.A2.D.D90.A10.D.D5.D.D5.D.D2.A\$81.3B.3B.2B3D2B.2B3D2B.2B3D2B3.3D91.3B.3B.2B3D2B.2B3D2B.2B3D2B\$81.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB97.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB\$81.2B3D2B.3B.3B.3B.3B.3B.3B3.3D91.2B3D2B.3B.3B.3B.3B.3B.3B\$80.A2.D.D26.A2.D.D90.A2.D.D26.A\$83.2D31.2D93.2D2\$83.2D31.2D93.2D\$72.A7.A2.D.D18.A7.A2.D.D82.A7.A2.D.D18.A7.A\$73.3B.3B3.3D19.3B.3B3.3D83.3B.3B3.3D19.3B.3B\$73.BCB.BCB25.BCB.BCB89.BCB.BCB25.BCB.BCB\$73.2B3D2B3.3D19.2B3D2B3.3D83.2B3D2B3.3D19.2B3D2B\$72.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D82.A2.D.D2.A2.D.D18.A2.D.D2.A\$75.2D7.2D21.2D7.2D85.2D7.2D21.2D2\$75.2D7.2D21.2D7.2D85.2D7.2D21.2D\$64.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D74.A10.D.D2.A2.D.D10.A10.D.D2.A\$65.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D75.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B\$65.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB81.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB\$65.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D75.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B\$64.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D74.A2.D.D10.A2.D.D10.A2.D.D10.A\$67.2D15.2D13.2D15.2D77.2D15.2D13.2D2\$67.2D15.2D13.2D15.2D77.2D15.2D13.2D\$56.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D66.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A\$57.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D67.3B.3B3.3D3.3B.3B3.3D3.3B.3B3.3D3.3B.3B\$57.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB73.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB\$57.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D67.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B3.3D3.2B3D2B\$56.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D66.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D2.A\$59.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D69.2D7.2D5.2D7.2D5.2D7.2D5.2D2\$59.2D7.2D5.2D7.2D5.2D7.2D5.2D7.2D69.2D7.2D5.2D7.2D5.2D7.2D5.2D\$48.A10.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D2.A2.D.D58.A10.D.D5.D.D5.D.D5.D.D5.D.D5.D.D5.D.D2.A\$49.3B.3B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B3.3D59.3B.3B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B.2B3D2B\$49.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB65.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB\$49.2B3D2B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B3.3D59.2B3D2B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B.3B\$48.A2.D.D58.A2.D.D58.A2.D.D58.A\$51.2D63.2D61.2D2\$51.2D63.2D61.2D\$40.A7.A2.D.D50.A7.A2.D.D50.A7.A2.D.D50.A7.A\$41.3B.3B3.3D51.3B.3B3.3D51.3B.3B3.3D51.3B.3B\$41.BCB.BCB57.BCB.BCB57.BCB.BCB57.BCB.BCB\$41.2B3D2B3.3D51.2B3D2B3.3D51.2B3D2B3.3D51.2B3D2B\$40.A2.D.D2.A2.D.D50.A2.D.D2.A2.D.D50.A2.D.D2.A2.D.D50.A2.D.D2.A\$43.2D7.2D53.2D7.2D53.2D7.2D53.2D2\$43.2D7.2D53.2D7.2D53.2D7.2D53.2D\$32.A10.D.D2.A2.D.D42.A10.D.D2.A2.D.D42.A10.D.D2.A2.D.D42.A10.D.D2.A\$33.3B.3B.2B3D2B3.3D43.3B.3B.2B3D2B3.3D43.3B.3B.2B3D2B3.3D43.3B.3B.2B3D2B\$33.BCB.BCB.BCB.BCB49.BCB.BCB.BCB.BCB49.BCB.BCB.BCB.BCB49.BCB.BCB.BCB.BCB\$33.2B3D2B.3B.3B3.3D43.2B3D2B.3B.3B3.3D43.2B3D2B.3B.3B3.3D43.2B3D2B.3B.3B\$32.A2.D.D10.A2.D.D42.A2.D.D10.A2.D.D42.A2.D.D10.A2.D.D42.A2.D.D10.A\$35.2D15.2D45.2D15.2D45.2D15.2D45.2D2\$35.2D15.2D45.2D15.2D45.2D15.2D45.2D\$24.A7.A2.D.D2.A7.A2.D.D34.A7.A2.D.D2.A7.A2.D.D34.A7.A2.D.D2.A7.A2.D.D34.A7.A2.D.D2.A7.A\$25.3B.3B3.3D3.3B.3B3.3D35.3B.3B3.3D3.3B.3B3.3D35.3B.3B3.3D3.3B.3B3.3D35.3B.3B3.3D3.3B.3B\$25.BCB.BCB9.BCB.BCB41.BCB.BCB9.BCB.BCB41.BCB.BCB9.BCB.BCB41.BCB.BCB9.BCB.BCB\$25.2B3D2B3.3D3.2B3D2B3.3D35.2B3D2B3.3D3.2B3D2B3.3D35.2B3D2B3.3D3.2B3D2B3.3D35.2B3D2B3.3D3.2B3D2B\$24.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D34.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D34.A2.D.D2.A2.D.D2.A2.D.D2.A2.D.D34.A2.D.D2.A2.D.D2.A2.D.D2.A\$27.2D7.2D5.2D7.2D37.2D7.2D5.2D7.2D37.2D7.2D5.2D7.2D37.2D7.2D5.2D2\$27.2D7.2D5.2D7.2D37.2D7.2D5.2D7.2D37.2D7.2D5.2D7.2D37.2D7.2D5.2D\$16.A10.D.D5.D.D5.D.D2.A2.D.D26.A10.D.D5.D.D5.D.D2.A2.D.D26.A10.D.D5.D.D5.D.D2.A2.D.D26.A10.D.D5.D.D5.D.D2.A\$17.3B.3B.2B3D2B.2B3D2B.2B3D2B3.3D27.3B.3B.2B3D2B.2B3D2B.2B3D2B3.3D27.3B.3B.2B3D2B.2B3D2B.2B3D2B3.3D27.3B.3B.2B3D2B.2B3D2B.2B3D2B\$17.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB33.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB33.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB33.BCB.BCB.BCB.BCB.BCB.BCB.BCB.BCB\$17.2B3D2B.3B.3B.3B.3B.3B.3B3.3D27.2B3D2B.3B.3B.3B.3B.3B.3B3.3D27.2B3D2B.3B.3B.3B.3B.3B.3B3.3D27.2B3D2B.3B.3B.3B.3B.3B.3B\$16.A2.D.D26.A2.D.D26.A2.D.D26.A2.D.D26.A2.D.D26.A2.D.D26.A2.D.D26.A\$19.2D31.2D29.2D31.2D29.2D31.2D29.2D2\$19.2D31.2D29.2D31.2D29.2D31.2D29.2D\$8.A7.A2.D.D18.A7.A2.D.D18.A7.A2.D.D18.A7.A2.D.D18.A7.A2.D.D18.A7.A2.D.D18.A7.A2.D.D18.A7.A\$9.3B.3B3.3D19.3B.3B3.3D19.3B.3B3.3D19.3B.3B3.3D19.3B.3B3.3D19.3B.3B3.3D19.3B.3B3.3D19.3B.3B\$9.BCB.BCB25.BCB.BCB25.BCB.BCB25.BCB.BCB25.BCB.BCB25.BCB.BCB25.BCB.BCB25.BCB.BCB\$9.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B3.3D19.2B3D2B\$8.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A2.D.D18.A2.D.D2.A\$11.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D2\$11.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D7.2D21.2D\$A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A2.D.D10.A10.D.D2.A\$.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B3.3D11.3B.3B.2B3D2B\$.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB17.BCB.BCB.BCB.BCB\$.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B3.3D11.2B3D2B.3B.3B\$A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A2.D.D10.A\$3.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D2\$3.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D15.2D13.2D\$A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A7.A2.D.D2.A\$.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B9.2B3D2B\$.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB9.BCB.BCB\$.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B9.3B.3B\$A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A7.A!`

1/1/5 has been mentioned multiple times.
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"

Moosey

Posts: 2302
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board.

### Re: 2D Replicator Classes

yes I know
Sorry, some of my rules before April 20 2019 have Unicode characters that are not compatible with Golly; you will have to remove them when pasting them in your text editor.
If for some reason you needed to know, my PGP key ID is DB271923.

Βεν Γ. Κυθισ

Posts: 217
Joined: December 27th, 2018, 5:42 am

### Re: 2D Replicator Classes

A triangle replicator in a hexagonal rule:

`x = 4, y = 4, rule = B2o3op4m5/S13m4p6H2bo\$bobo\$o2bo\$b2o!`
AlephAlpha

Posts: 32
Joined: October 6th, 2017, 1:50 am

### Re: 2D Replicator Classes

A class U dot replicator. It starts off looking fairly regular but it quickly becomes apparent that this is unlike any of the sawtooth replicators. The central site is alive in generations 1, 4 and 16 - I don't believe it will ever become alive again after that.

`x = 1, y = 1, rule = B14c/So!`

Edit: With B2c instead of B4c I think this also qualifies as class U, but less interesting (IMO).

`x = 1, y = 1, rule = B12c/So!`

Edit 2: And I'm not quite sure what to think of this one:

`x = 1, y = 1, rule = B12c4c/So!`
The latest version of the 5S Project contains over 221,000 spaceships. Tabulated pages up to period 160 are available on the LifeWiki.
wildmyron

Posts: 1226
Joined: August 9th, 2013, 12:45 am

### Re: 2D Replicator Classes

wildmyron wrote:A class U dot replicator. It starts off looking fairly regular but it quickly becomes apparent that this is unlike any of the sawtooth replicators. The central site is alive in generations 1, 4 and 16 - I don't believe it will ever become alive again after that.

`x = 1, y = 1, rule = B14c/So!`

The rule B1c2a/S3a8 behaves in the same way (and grows twice as fast) if you use a block instead, and both rules are simulating some margolus neighborhood rule.
`x = 2, y = 2, rule = B1c2a/S3a82o\$2o!`
Sorry, some of my rules before April 20 2019 have Unicode characters that are not compatible with Golly; you will have to remove them when pasting them in your text editor.
If for some reason you needed to know, my PGP key ID is DB271923.

Βεν Γ. Κυθισ

Posts: 217
Joined: December 27th, 2018, 5:42 am

### Re: 2D Replicator Classes

Βεν Γ. Κυθισ wrote:
wildmyron wrote:A class U dot replicator. It starts off looking fairly regular but it quickly becomes apparent that this is unlike any of the sawtooth replicators. The central site is alive in generations 1, 4 and 16 - I don't believe it will ever become alive again after that.

`x = 1, y = 1, rule = B14c/So!`

The rule B1c2a/S3a8 behaves in the same way (and grows twice as fast) if you use a block instead, and both rules are simulating some margolus neighborhood rule.
`x = 2, y = 2, rule = B1c2a/S3a82o\$2o!`

It starts off similar, but it quickly diverges. I'm not sure why you say it grows twice as fast, to me it seems to take twice as long to reach the corresponding configurations (e.g. compare gen 6 of the dot rep with gen 12 of the block rep). It's also (very) dirty, so therefore not class U. It's so chaotic I'm not even sure how it should be classified (class D?).
The latest version of the 5S Project contains over 221,000 spaceships. Tabulated pages up to period 160 are available on the LifeWiki.
wildmyron

Posts: 1226
Joined: August 9th, 2013, 12:45 am

### Re: 2D Replicator Classes

Bump
GUYTU6J, in 2017, wrote:
`x = 4, y = 4, rule = B2ik3aeikr4ceijqry78/S23-a4city78b3o\$o2bo\$o\$2o!`

`x = 4, y = 4, rule = B3-j4ew8/S2-cn3bo\$2o\$b3o\$2bo!`

`x = 3, y = 4, rule = B34ity8/S2-n3-ac4cit6cbo\$obo\$3o\$bo!`

What class do these three fit into? Is the first class-U? Is it identical to what muzik provided?
muzik wrote:Do these two class-U replicators follow an identical replication sequence? I'm finding it difficult to figure out.
`x = 5, y = 6, rule = B35a6ae78/S232bo\$b3o\$o3bo\$obobo\$bobo\$2bo!`

`x = 7, y = 7, rule = B2-ek/Sobo2\$obo2\$4bobo2\$4bobo!`

EDIT: Some browsing lead me to the second reply from bottom by toroidalet on the first page of this thread, which contains this
`x = 3, y = 2, rule = B34ek5-ey7e8/S234j3o\$bo!`

That's similar to my second pattern above.
Last edited by GUYTU6J on August 28th, 2019, 10:10 am, edited 2 times in total.
Current status: outside the continent of cellular automata. Specifically, not on the plain of life.

GUYTU6J

Posts: 667
Joined: August 5th, 2016, 10:27 am
Location: outside Plain of Life

### Re: 2D Replicator Classes

For my 2017 pattern, the first few numbers of copies for every 79 gen are
`1,2,4,4,4,8,8,8,16,16,8,8,16,16,16,32,32`

Muzik's first pattern starts from a r-pentomino actually:
`x = 3, y = 3, rule = B35a6ae78/S23b2o\$2o\$bo!#C [[ STEP 53 ]]`

`1,2,4,8,8,8,8,8,16,32,16,8,16,32,32,32,32`

Muzik's second pattern starts from a blinker actually:
`x = 1, y = 3, rule = B2-ek/So\$o\$o!#C [[ STEP 4 ]]`

`1,4,4,4,16,4,16,16,16,36,16,36,64,4,16,16,16`
Current status: outside the continent of cellular automata. Specifically, not on the plain of life.

GUYTU6J

Posts: 667
Joined: August 5th, 2016, 10:27 am
Location: outside Plain of Life

### Re: 2D Replicator Classes

???
`x = 4, y = 3, rule = B35k6in7c/S2-i3-a4iy2bo\$b3o\$2obo!`

EDIT: Wait, it's not two-dimensional.
That that is, is. That that is not, is not. Is that it? It is.
A predecessor to my favorite oscillator of all time:
`x = 7, y = 5, rule = B3/S2-i3-y4i4b3o\$6bo\$o3b3o\$2o\$bo!`

Hdjensofjfnen

Posts: 1288
Joined: March 15th, 2016, 6:41 pm
Location: r cis θ

Previous