ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Rule request thread

For discussion of other cellular automata.

Re: Rule request thread

Postby Gustone » August 18th, 2019, 2:40 pm

Is this
x = 676, y = 319, rule = LifeHistory
124.A13.3A22.3A13.A$109.A12.5A10.2A2.2A18.2A2.2A10.5A12.A$93.2A.A10.A
.4A9.A4.2A7.A2.3A.2A14.2A.3A2.A7.2A4.A9.4A.A10.A.2A$63.A13.3A.2A8.2A.
4A8.2A5.A6.A3.3A.A6.3A28.3A6.A.3A3.A6.A5.2A8.4A.2A8.2A.3A13.A$47.3A
11.2A.2A10.2A.A11.A4.A.A7.A.2A3.A6.A3.2A.A9.2A4.2A14.2A4.2A9.A.2A3.A
6.A3.2A.A7.A.A4.A11.A.2A10.2A.2A11.3A$46.2A2.2A8.A3.2A.A7.2A6.A7.A.2A
2.2A5.2A2.A3.A6.A3.A10.2A.A28.A.2A10.A3.A6.A3.A2.2A5.2A2.2A.A7.A6.2A
7.A.2A3.A8.2A2.2A$45.A2.3A.2A6.A6.2A7.A5.2A5.A.A12.A.A.2A9.2A.A11.2A
2.3A22.3A2.2A11.A.2A9.2A.A.A12.A.A5.2A5.A7.2A6.A6.2A.3A2.A$44.3A12.A.
A5.2A4.2A.A.2A8.2A.A2.A8.A3.2A10.4A2.A12.2A.A20.A.2A12.A2.4A10.2A3.A
8.A2.A.2A8.2A.A.2A4.2A5.A.A12.3A$46.2A4.2A7.A.A12.2A10.4A2.A9.A2.A13.
A12.2A.3A24.3A.2A12.A13.A2.A9.A2.4A10.2A12.A.A7.2A4.2A$43.2A.A11.2A.A
2.A8.A2.A2.A12.2A17.A7.4A3.2A7.A3.A.2A18.2A.A3.A7.2A3.4A7.A17.2A12.A
2.A2.A8.A2.A.2A11.A.2A$43.2A2.3A9.A4.A9.8A13.3A6.A2.A2.3A6.3A2.A.2A
11.A.2A18.2A.A11.2A.A2.3A6.3A2.A2.A6.3A13.8A9.A4.A9.3A2.2A$47.2A.A8.
4A3.A12.2A.A12.3A6.A4.A3.A9.2A.A.A5.A3.A4.A16.A4.A3.A5.A.A.2A9.A3.A4.
A6.3A12.A.2A12.A3.4A8.A.2A$43.2A.3A10.A2.A12.A3.2A8.3A.A4.2A5.A.A3.A.
2A8.3A2.2A4.A3.A2.3A.2A10.2A.3A2.A3.A4.2A2.3A8.2A.A3.A.A5.2A4.A.3A8.
2A3.A12.A2.A10.3A.2A$44.A3.A.2A8.3A2.2A7.A.3A5.A4.2A2.2A.A.2A4.A3.A.
2A6.3A6.3A4.A34.A4.3A6.3A6.2A.A3.A4.2A.A.2A2.2A4.A5.3A.A7.2A2.3A8.2A.
A3.A$48.A.2A7.4A3.A6.A4.4A3.A3.3A.A2.4A3.A.A3.2A3.A4.2A5.2A7.A.A2.A
22.A2.A.A7.2A5.2A4.A3.2A3.A.A3.4A2.A.3A3.A3.4A4.A6.A3.4A7.2A.A$43.A3.
A4.A5.3A4.2A2.2A2.A2.3A2.A2.A3.A.A3.A2.A5.A.A5.2A26.A5.2A10.2A5.A26.
2A5.A.A5.A2.A3.A.A3.A2.A2.3A2.A2.2A2.2A4.3A5.A4.A3.A$43.A3.A2.3A.2A3.
3A4.A2.2A4.2A2.A4.A10.4A13.A11.3A13.A.2A16.2A.A13.3A11.A13.4A10.A4.A
2.2A4.2A2.A4.3A3.2A.3A2.A3.A$43.A16.2A2.A.2A.A9.2A.2A11.A13.A.4A9.2A.
4A9.CA2.A14.A2.AC9.4A.2A9.4A.A13.A11.2A.2A9.A.2A.A2.2A16.A$44.A.A2.A
14.3A.2A10.A3.A11.4A15.C9.C3AC15.C12.C15.C3AC9.C15.4A11.A3.A10.2A.3A
14.A2.A.A$48.A5.2A8.3A2.A14.A9.C.3A.C8.CA4.A72.A4.AC8.C.3A.C9.A14.A2.
3A8.2A5.A$49.A.2A16.2A7.C6.C9.3A.A11.3A76.3A11.A.3A9.C6.C7.2A16.2A.A$
49.CA2.A9.C5.AC8.A4.A10.3A108.3A10.A4.A8.CA5.C9.A2.AC$54.C9.A15.A16.A
108.A16.A15.A9.C$82.A138.A17$9.2A.A2.3A$7.A.2A.2A4.A$6.2A$5.A.3A2.A5.
A$4.2A2.A.3A2.2A$4.A.A3.5A4.A$4.A.A3.A7.A.AC$5.2A4.A.2A.A4.A$5.A7.2A.
A3.A$6.A.A6.2A3.A$6.A.A12.A$16.A2.A2.C$16.A2.A3$9.A5.A$7.A.4A.3A$5.2A
4.A.5A$4.A2.3A.A.2A.2A$4.A6.4A$3.A4.A12.C$4.2A3.2A6.3A2.A252.3A2.A.2A
$4.2A7.A.A2.2A254.A4.2A.2A.A$11.A.7A265.2A$5.3A9.A256.A5.A2.3A.A$6.2A
10.A257.2A2.3A.A2.2A$15.7A251.A4.5A3.A.A$15.2A3.AC249.CA.A7.A3.A.A$
271.A4.A.2A.A4.2A$272.A3.A.2A7.A$7.A.A4.2A256.A3.2A6.A.A$7.A2.A2.A
257.A12.A.A$5.A4.A.A3.A253.C2.A2.A$4.7A2.A.2A256.A2.A$3.2A3.A.A2.A.A$
3.A3.A2.A2.3A4.C$3.2A2.A.4A.A.2A3.A255.A5.A$10.3A.A2.2A3.A253.3A.4A.A
$3.A6.A3.2A259.5A.A4.2A$3.A2.A4.A5.A5.A251.2A.2A.A.3A2.A$5.2A10.A260.
4A6.A$13.A.2A.2A.A249.C12.A4.A$14.A5.C249.A2.3A6.2A3.2A$273.2A2.A.A7.
2A$273.7A.A$7.2A6.A259.A9.3A$6.3A3.3A259.A10.2A$8.A3.4A255.7A$3.6A3.A
.A256.CA3.2A$3.A5.A$2.A2.A3.A2.3A$2.2A.A.2A4.A.A3.C257.2A4.A.A$3.A6.
2A4.2A2.2A257.A2.A2.A$2.3A5.2A.2A.A.4A254.A3.A.A4.A$3.A.A4.2A2.3A.5A
253.2A.A2.7A$4.2A6.3A.A.2A257.A.A2.A.A3.2A$12.3A3.A.A251.C4.3A2.A2.A
3.A$19.C251.A3.2A.A.4A.A2.2A$270.A3.2A2.A.3A$277.2A3.A6.A$7.A6.2A253.
A5.A5.A4.A2.A$5.2A.A.2A.A261.A10.2A$5.A6.A.2A255.A.2A.2A.A$3.2A.A265.
C5.A$2.2A3.2A.A.A$4.4A5.A$.2A.A.A4.A2.A2.A.C257.A6.2A$2.A7.A2.2A4.A
258.3A3.3A$2.A6.2A.2A.A.A2.A256.4A3.A$2.A2.A4.A4.3A2.A257.A.A3.6A$3.
2A6.2A4.A2.A262.A5.A$12.A.A2.A260.3A2.A3.A2.A$18.CA253.C3.A.A4.2A.A.
2A$271.2A2.2A4.2A6.A$271.4A.A.2A.2A5.3A$13.A256.5A.3A2.2A4.A.A$5.3A.
2A2.2A258.2A.A.3A6.2A$3.2A.2A.2A2.2A257.A.A3.3A$7.4A262.C$.2A3.2A.A$.
A3.A5.2A$2A.2A5.3A3.2A259.2A6.A$.A.2A2.A4.A3.2AC260.A.2A.A.2A$.A.A5.
3A2.A.A.A258.2A.A6.A$2.A.A4.2A2.2A2.2A267.A.2A$2.2A7.3A3.2A261.A.A.2A
3.2A$12.2A3.AC260.A5.4A$17.A255.C.A2.A2.A4.A.A.2A$273.A4.2A2.A7.A$
272.A2.A.A.2A.2A6.A$272.A2.3A4.A4.A2.A$5.2A.A2.3A258.A2.A4.2A6.2A$3.A
.2A.2A4.A260.A2.A.A$2.2A269.AC$.A.3A2.A5.A$2A2.A.3A2.2A$A.A3.5A4.A
263.A$A.A3.A7.A.AC260.2A2.2A.3A$.2A4.A.2A.A4.A260.2A2.2A.2A.2A$.A7.2A
.A3.A265.4A$2.A.A6.2A3.A266.A.2A3.2A$2.A.A12.A262.2A5.A3.A$12.A2.A2.C
256.2A3.3A5.2A.2A$12.A2.A258.C2A3.A4.A2.2A.A$274.A.A.A2.3A5.A.A$274.
2A2.2A2.2A4.A.A$274.2A3.3A7.2A$274.CA3.2A$275.A4$279.3A2.A.2A$278.A4.
2A.2A.A$12.A2.A273.2A$12.A2.A2.C259.A5.A2.3A.A$2.A.A12.A262.2A2.3A.A
2.2A$2.A.A6.2A3.A260.A4.5A3.A.A$.A7.2A.A3.A258.CA.A7.A3.A.A$.2A4.A.2A
.A4.A257.A4.A.2A.A4.2A$A.A3.A7.A.AC258.A3.A.2A7.A$A.A3.5A4.A260.A3.2A
6.A.A258.69F$2A2.A.3A2.2A262.A12.A.A252.6F69.8F$.A.3A2.A5.A259.C2.A2.
A256.6F83.8F$2.2A273.A2.A246.10F97.8F$3.A.2A.2A4.A503.9F115.6F$5.2A.A
2.3A499.5F130.6F$509.4F141.17F$506.3F162.2F$504.2F167.3F$17.A485.F
171.F$12.2A3.AC484.F171.F$2.2A7.3A3.2A484.F171.F$2.A.A4.2A2.2A2.2A
484.F171.F$.A.A5.3A2.A.A.A484.F171.F$.A.2A2.A4.A3.2AC258.A2.A222.F
170.F$2A.2A5.3A3.2A256.C2.A2.A222.F170.F$.A3.A5.2A262.A12.A.A212.F
170.F$.2A3.2A.A266.A3.2A6.A.A212.F170.F$7.4A265.A3.A.2A7.A211.F170.F$
3.2A.2A.2A2.2A260.A4.A.2A.A4.2A211.F170.F$5.3A.2A2.2A260.CA.A7.A3.A.A
210.F169.F$13.A263.A4.5A3.A.A210.F169.F$280.2A2.3A.A2.2A210.F169.F$
278.A5.A2.3A.A211.F169.F$18.CA269.2A212.F169.F$12.A.A2.A260.A4.2A.2A.
A213.F168.F$3.2A6.2A4.A2.A258.3A2.A.2A215.F168.F$2.A2.A4.A4.3A2.A482.
F168.F$2.A6.2A.2A.A.A2.A482.F168.F$2.A7.A2.2A4.A483.F168.F$.2A.A.A4.A
2.A2.A.C255.A227.F168.F$4.4A5.A260.CA3.2A222.F168.F$2.2A3.2A.A.A261.
2A3.3A7.2A212.F167.F$3.2A.A267.2A2.2A2.2A4.A.A211.F168.F$5.A6.A.2A
258.A.A.A2.3A5.A.A210.F168.F$5.2A.A.2A.A260.C2A3.A4.A2.2A.A210.F168.F
$7.A6.2A259.2A3.3A5.2A.2A209.F84.2D82.F$280.2A5.A3.A210.F82.2D84.F$
283.A.2A3.2A210.F81.2D85.F$19.C262.4A216.F79.2D87.F$12.3A3.A.A257.2A
2.2A.2A.2A212.F77.3D88.F$4.2A6.3A.A.2A258.2A2.2A.3A214.F76.2D90.F$3.A
.A4.2A2.3A.5A256.A222.F75.23D70.F$2.3A5.2A.2A.A.4A480.F77.D90.F$3.A6.
2A4.2A2.2A480.F77.2D89.F$2.2A.A.2A4.A.A3.C253.AC227.F79.D88.F$2.A2.A
3.A2.3A260.A2.A.A221.F79.2D87.F$3.A5.A262.A2.A4.2A6.2A212.F80.4D84.F$
3.6A3.A.A257.A2.3A4.A4.A2.A211.F83.2D83.F$8.A3.4A256.A2.A.A.2A.2A6.A
211.F168.F$6.3A3.3A258.A4.2A2.A7.A211.F168.F$7.2A6.A257.C.A2.A2.A4.A.
A.2A210.F168.F$279.A5.4A213.F168.F$280.A.A.2A3.2A211.F168.F$14.A5.C
265.A.2A212.F168.F$13.A.2A.2A.A255.2A.A6.A214.F168.F$5.2A10.A261.A.2A
.A.2A214.F63.A104.F$3.A2.A4.A5.A5.A253.2A6.A216.F35.C9.A15.A16.A89.F$
3.A6.A3.2A486.F30.CA2.A9.C5.AC8.A4.A10.3A89.F$10.3A.A2.2A3.A479.F30.A
.2A16.2A7.C6.C9.3A.A11.3A73.F$3.2A2.A.4A.A.2A3.A251.C228.F29.A5.2A8.
3A2.A14.A9.C.3A.C8.CA4.A71.F$3.A3.A2.A2.3A4.C251.A.A3.3A221.F25.A.A2.
A14.3A.2A10.A3.A11.4A15.C9.C3AC15.C41.F$3.2A3.A.A2.A.A257.2A.A.3A6.2A
213.F24.A16.2A2.A.2A.A9.2A.2A11.A13.A.4A9.2A.4A9.CA2.A42.F$4.7A2.A.2A
253.5A.3A2.2A4.A.A212.F24.A3.A2.3A.2A3.3A4.A2.2A4.2A2.A4.A10.4A13.A
11.3A13.A.2A43.F$5.A4.A.A3.A254.4A.A.2A.2A5.3A212.F23.A3.A4.A5.3A4.2A
2.2A2.A2.3A2.A2.A3.A.A3.A2.A5.A.A5.2A26.A5.2A40.F$7.A2.A2.A257.2A2.2A
4.2A6.A213.F28.A.2A7.4A3.A6.A4.4A3.A3.3A.A2.4A3.A.A3.2A3.A4.2A5.2A7.A
.A2.A46.F$7.A.A4.2A257.C3.A.A4.2A.A.2A212.F24.A3.A.2A8.3A2.2A7.A.3A5.
A4.2A2.2A.A.2A4.A3.A.2A6.3A6.3A4.A51.F$278.3A2.A3.A2.A212.F23.2A.3A
10.A2.A12.A3.2A8.3A.A4.2A5.A.A3.A.2A8.3A2.2A4.A3.A2.3A.2A39.F$283.A5.
A214.F26.2A.A8.4A3.A12.2A.A12.3A6.A4.A3.A9.2A.A.A5.A3.A4.A42.F$15.2A
3.AC256.A.A3.6A214.F22.2A2.3A9.A4.A9.8A13.3A6.A2.A2.3A6.3A2.A.2A11.A.
2A43.F$15.7A255.4A3.A219.F22.2A.A11.2A.A2.A8.A2.A2.A12.2A17.A7.4A3.2A
7.A3.A.2A43.F$6.2A10.A259.3A3.3A217.F25.2A4.2A7.A.A12.2A10.4A2.A9.A2.
A13.A12.2A.3A46.F$5.3A9.A259.A6.2A218.F23.3A12.A.A5.2A4.2A.A.2A8.2A.A
2.A8.A3.2A10.4A2.A12.2A.A44.F$11.A.7A484.F24.A2.3A.2A6.A6.2A7.A5.2A5.
A.A12.A.A.2A9.2A.A11.2A2.3A45.F$4.2A7.A.A2.2A484.F25.2A2.2A8.A3.2A.A
7.2A6.A7.A.2A2.2A5.2A2.A3.A6.A3.A10.2A.A48.F$4.2A3.2A6.3A2.A249.C5.A
225.F26.3A11.2A.2A10.2A.A11.A4.A.A7.A.2A3.A6.A3.2A.A9.2A4.2A41.F$3.A
4.A12.C249.A.2A.2A.A224.F42.A13.3A.2A8.2A.4A8.2A5.A6.A3.3A.A6.3A48.F$
4.A6.4A260.A10.2A216.F72.2A.A10.A.4A9.A4.2A7.A2.3A.2A41.F$4.A2.3A.A.
2A.2A251.A5.A5.A4.A2.A214.F88.A12.5A10.2A2.2A43.F$5.2A4.A.5A259.2A3.A
6.A214.F103.A13.3A45.F$7.A.4A.3A253.A3.2A2.A.3A221.F165.F$9.A5.A255.A
3.2A.A.4A.A2.2A214.F165.F$272.C4.3A2.A2.A3.A214.F165.F$277.A.A2.A.A3.
2A214.F165.F$16.A2.A256.2A.A2.7A215.F165.F$16.A2.A2.C253.A3.A.A4.A
216.F164.F$6.A.A12.A257.A2.A2.A218.F164.F$6.A.A6.2A3.A256.2A4.A.A218.
F164.F$5.A7.2A.A3.A483.F164.F$5.2A4.A.2A.A4.A482.F163.F$4.A.A3.A7.A.A
C249.CA3.2A226.F163.F$4.A.A3.5A4.A251.7A226.F163.F$4.2A2.A.3A2.2A257.
A10.2A217.F163.F$5.A.3A2.A5.A256.A9.3A216.F162.F$6.2A265.7A.A222.F
162.F$7.A.2A.2A4.A254.2A2.A.A7.2A214.25F139.F$9.2A.A2.3A252.A2.3A6.2A
3.2A239.4F134.F$271.C12.A4.A242.4F130.F$278.4A6.A247.3F127.F$275.2A.
2A.A.3A2.A250.3F123.F$275.5A.A4.2A254.2F121.F$276.3A.4A.A258.2F119.F$
277.A5.A262.5F113.F$551.2F111.F$553.51F59.F$273.A2.A327.11F48.F$270.C
2.A2.A338.9F36.3F$271.A12.A.A337.11F23.2F$272.A3.2A6.A.A348.23F$272.A
3.A.2A7.A$271.A4.A.2A.A4.2A$271.CA.A7.A3.A.A$273.A4.5A3.A.A$276.2A2.
3A.A2.2A$274.A5.A2.3A.A$285.2A$274.A4.2A.2A.A$275.3A2.A.2A17$71.A138.
A$43.C9.A15.A16.A108.A16.A15.A9.C$38.CA2.A9.C5.AC8.A4.A10.3A108.3A10.
A4.A8.CA5.C9.A2.AC$38.A.2A16.2A7.C6.C9.3A.A11.3A76.3A11.A.3A9.C6.C7.
2A16.2A.A$37.A5.2A8.3A2.A14.A9.C.3A.C8.CA4.A72.A4.AC8.C.3A.C9.A14.A2.
3A8.2A5.A$33.A.A2.A14.3A.2A10.A3.A11.4A15.C9.C3AC15.C12.C15.C3AC9.C
15.4A11.A3.A10.2A.3A14.A2.A.A$32.A16.2A2.A.2A.A9.2A.2A11.A13.A.4A9.2A
.4A9.CA2.A14.A2.AC9.4A.2A9.4A.A13.A11.2A.2A9.A.2A.A2.2A16.A$32.A3.A2.
3A.2A3.3A4.A2.2A4.2A2.A4.A10.4A13.A11.3A13.A.2A16.2A.A13.3A11.A13.4A
10.A4.A2.2A4.2A2.A4.3A3.2A.3A2.A3.A$32.A3.A4.A5.3A4.2A2.2A2.A2.3A2.A
2.A3.A.A3.A2.A5.A.A5.2A26.A5.2A10.2A5.A26.2A5.A.A5.A2.A3.A.A3.A2.A2.
3A2.A2.2A2.2A4.3A5.A4.A3.A$37.A.2A7.4A3.A6.A4.4A3.A3.3A.A2.4A3.A.A3.
2A3.A4.2A5.2A7.A.A2.A22.A2.A.A7.2A5.2A4.A3.2A3.A.A3.4A2.A.3A3.A3.4A4.
A6.A3.4A7.2A.A$33.A3.A.2A8.3A2.2A7.A.3A5.A4.2A2.2A.A.2A4.A3.A.2A6.3A
6.3A4.A34.A4.3A6.3A6.2A.A3.A4.2A.A.2A2.2A4.A5.3A.A7.2A2.3A8.2A.A3.A$
32.2A.3A10.A2.A12.A3.2A8.3A.A4.2A5.A.A3.A.2A8.3A2.2A4.A3.A2.3A.2A10.
2A.3A2.A3.A4.2A2.3A8.2A.A3.A.A5.2A4.A.3A8.2A3.A12.A2.A10.3A.2A$36.2A.
A8.4A3.A12.2A.A12.3A6.A4.A3.A9.2A.A.A5.A3.A4.A16.A4.A3.A5.A.A.2A9.A3.
A4.A6.3A12.A.2A12.A3.4A8.A.2A$32.2A2.3A9.A4.A9.8A13.3A6.A2.A2.3A6.3A
2.A.2A11.A.2A18.2A.A11.2A.A2.3A6.3A2.A2.A6.3A13.8A9.A4.A9.3A2.2A$32.
2A.A11.2A.A2.A8.A2.A2.A12.2A17.A7.4A3.2A7.A3.A.2A18.2A.A3.A7.2A3.4A7.
A17.2A12.A2.A2.A8.A2.A.2A11.A.2A$35.2A4.2A7.A.A12.2A10.4A2.A9.A2.A13.
A12.2A.3A24.3A.2A12.A13.A2.A9.A2.4A10.2A12.A.A7.2A4.2A$33.3A12.A.A5.
2A4.2A.A.2A8.2A.A2.A8.A3.2A10.4A2.A12.2A.A20.A.2A12.A2.4A10.2A3.A8.A
2.A.2A8.2A.A.2A4.2A5.A.A12.3A$34.A2.3A.2A6.A6.2A7.A5.2A5.A.A12.A.A.2A
9.2A.A11.2A2.3A22.3A2.2A11.A.2A9.2A.A.A12.A.A5.2A5.A7.2A6.A6.2A.3A2.A
$35.2A2.2A8.A3.2A.A7.2A6.A7.A.2A2.2A5.2A2.A3.A6.A3.A10.2A.A28.A.2A10.
A3.A6.A3.A2.2A5.2A2.2A.A7.A6.2A7.A.2A3.A8.2A2.2A$36.3A11.2A.2A10.2A.A
11.A4.A.A7.A.2A3.A6.A3.2A.A9.2A4.2A14.2A4.2A9.A.2A3.A6.A3.2A.A7.A.A4.
A11.A.2A10.2A.2A11.3A$52.A13.3A.2A8.2A.4A8.2A5.A6.A3.3A.A6.3A28.3A6.A
.3A3.A6.A5.2A8.4A.2A8.2A.3A13.A$82.2A.A10.A.4A9.A4.2A7.A2.3A.2A14.2A.
3A2.A7.2A4.A9.4A.A10.A.2A$98.A12.5A10.2A2.2A18.2A2.2A10.5A12.A$113.A
13.3A22.3A13.A!

even possible?
I like making color palettes for rules
User avatar
Gustone
 
Posts: 419
Joined: March 6th, 2019, 2:26 am

Re: Rule request thread

Postby FWKnightship » August 19th, 2019, 12:01 am

Gustone wrote:Is this
x = 676, y = 319, rule = LifeHistory
124.A13.3A22.3A13.A$109.A12.5A10.2A2.2A18.2A2.2A10.5A12.A$93.2A.A10.A
.4A9.A4.2A7.A2.3A.2A14.2A.3A2.A7.2A4.A9.4A.A10.A.2A$63.A13.3A.2A8.2A.
4A8.2A5.A6.A3.3A.A6.3A28.3A6.A.3A3.A6.A5.2A8.4A.2A8.2A.3A13.A$47.3A
11.2A.2A10.2A.A11.A4.A.A7.A.2A3.A6.A3.2A.A9.2A4.2A14.2A4.2A9.A.2A3.A
6.A3.2A.A7.A.A4.A11.A.2A10.2A.2A11.3A$46.2A2.2A8.A3.2A.A7.2A6.A7.A.2A
2.2A5.2A2.A3.A6.A3.A10.2A.A28.A.2A10.A3.A6.A3.A2.2A5.2A2.2A.A7.A6.2A
7.A.2A3.A8.2A2.2A$45.A2.3A.2A6.A6.2A7.A5.2A5.A.A12.A.A.2A9.2A.A11.2A
2.3A22.3A2.2A11.A.2A9.2A.A.A12.A.A5.2A5.A7.2A6.A6.2A.3A2.A$44.3A12.A.
A5.2A4.2A.A.2A8.2A.A2.A8.A3.2A10.4A2.A12.2A.A20.A.2A12.A2.4A10.2A3.A
8.A2.A.2A8.2A.A.2A4.2A5.A.A12.3A$46.2A4.2A7.A.A12.2A10.4A2.A9.A2.A13.
A12.2A.3A24.3A.2A12.A13.A2.A9.A2.4A10.2A12.A.A7.2A4.2A$43.2A.A11.2A.A
2.A8.A2.A2.A12.2A17.A7.4A3.2A7.A3.A.2A18.2A.A3.A7.2A3.4A7.A17.2A12.A
2.A2.A8.A2.A.2A11.A.2A$43.2A2.3A9.A4.A9.8A13.3A6.A2.A2.3A6.3A2.A.2A
11.A.2A18.2A.A11.2A.A2.3A6.3A2.A2.A6.3A13.8A9.A4.A9.3A2.2A$47.2A.A8.
4A3.A12.2A.A12.3A6.A4.A3.A9.2A.A.A5.A3.A4.A16.A4.A3.A5.A.A.2A9.A3.A4.
A6.3A12.A.2A12.A3.4A8.A.2A$43.2A.3A10.A2.A12.A3.2A8.3A.A4.2A5.A.A3.A.
2A8.3A2.2A4.A3.A2.3A.2A10.2A.3A2.A3.A4.2A2.3A8.2A.A3.A.A5.2A4.A.3A8.
2A3.A12.A2.A10.3A.2A$44.A3.A.2A8.3A2.2A7.A.3A5.A4.2A2.2A.A.2A4.A3.A.
2A6.3A6.3A4.A34.A4.3A6.3A6.2A.A3.A4.2A.A.2A2.2A4.A5.3A.A7.2A2.3A8.2A.
A3.A$48.A.2A7.4A3.A6.A4.4A3.A3.3A.A2.4A3.A.A3.2A3.A4.2A5.2A7.A.A2.A
22.A2.A.A7.2A5.2A4.A3.2A3.A.A3.4A2.A.3A3.A3.4A4.A6.A3.4A7.2A.A$43.A3.
A4.A5.3A4.2A2.2A2.A2.3A2.A2.A3.A.A3.A2.A5.A.A5.2A26.A5.2A10.2A5.A26.
2A5.A.A5.A2.A3.A.A3.A2.A2.3A2.A2.2A2.2A4.3A5.A4.A3.A$43.A3.A2.3A.2A3.
3A4.A2.2A4.2A2.A4.A10.4A13.A11.3A13.A.2A16.2A.A13.3A11.A13.4A10.A4.A
2.2A4.2A2.A4.3A3.2A.3A2.A3.A$43.A16.2A2.A.2A.A9.2A.2A11.A13.A.4A9.2A.
4A9.CA2.A14.A2.AC9.4A.2A9.4A.A13.A11.2A.2A9.A.2A.A2.2A16.A$44.A.A2.A
14.3A.2A10.A3.A11.4A15.C9.C3AC15.C12.C15.C3AC9.C15.4A11.A3.A10.2A.3A
14.A2.A.A$48.A5.2A8.3A2.A14.A9.C.3A.C8.CA4.A72.A4.AC8.C.3A.C9.A14.A2.
3A8.2A5.A$49.A.2A16.2A7.C6.C9.3A.A11.3A76.3A11.A.3A9.C6.C7.2A16.2A.A$
49.CA2.A9.C5.AC8.A4.A10.3A108.3A10.A4.A8.CA5.C9.A2.AC$54.C9.A15.A16.A
108.A16.A15.A9.C$82.A138.A17$9.2A.A2.3A$7.A.2A.2A4.A$6.2A$5.A.3A2.A5.
A$4.2A2.A.3A2.2A$4.A.A3.5A4.A$4.A.A3.A7.A.AC$5.2A4.A.2A.A4.A$5.A7.2A.
A3.A$6.A.A6.2A3.A$6.A.A12.A$16.A2.A2.C$16.A2.A3$9.A5.A$7.A.4A.3A$5.2A
4.A.5A$4.A2.3A.A.2A.2A$4.A6.4A$3.A4.A12.C$4.2A3.2A6.3A2.A252.3A2.A.2A
$4.2A7.A.A2.2A254.A4.2A.2A.A$11.A.7A265.2A$5.3A9.A256.A5.A2.3A.A$6.2A
10.A257.2A2.3A.A2.2A$15.7A251.A4.5A3.A.A$15.2A3.AC249.CA.A7.A3.A.A$
271.A4.A.2A.A4.2A$272.A3.A.2A7.A$7.A.A4.2A256.A3.2A6.A.A$7.A2.A2.A
257.A12.A.A$5.A4.A.A3.A253.C2.A2.A$4.7A2.A.2A256.A2.A$3.2A3.A.A2.A.A$
3.A3.A2.A2.3A4.C$3.2A2.A.4A.A.2A3.A255.A5.A$10.3A.A2.2A3.A253.3A.4A.A
$3.A6.A3.2A259.5A.A4.2A$3.A2.A4.A5.A5.A251.2A.2A.A.3A2.A$5.2A10.A260.
4A6.A$13.A.2A.2A.A249.C12.A4.A$14.A5.C249.A2.3A6.2A3.2A$273.2A2.A.A7.
2A$273.7A.A$7.2A6.A259.A9.3A$6.3A3.3A259.A10.2A$8.A3.4A255.7A$3.6A3.A
.A256.CA3.2A$3.A5.A$2.A2.A3.A2.3A$2.2A.A.2A4.A.A3.C257.2A4.A.A$3.A6.
2A4.2A2.2A257.A2.A2.A$2.3A5.2A.2A.A.4A254.A3.A.A4.A$3.A.A4.2A2.3A.5A
253.2A.A2.7A$4.2A6.3A.A.2A257.A.A2.A.A3.2A$12.3A3.A.A251.C4.3A2.A2.A
3.A$19.C251.A3.2A.A.4A.A2.2A$270.A3.2A2.A.3A$277.2A3.A6.A$7.A6.2A253.
A5.A5.A4.A2.A$5.2A.A.2A.A261.A10.2A$5.A6.A.2A255.A.2A.2A.A$3.2A.A265.
C5.A$2.2A3.2A.A.A$4.4A5.A$.2A.A.A4.A2.A2.A.C257.A6.2A$2.A7.A2.2A4.A
258.3A3.3A$2.A6.2A.2A.A.A2.A256.4A3.A$2.A2.A4.A4.3A2.A257.A.A3.6A$3.
2A6.2A4.A2.A262.A5.A$12.A.A2.A260.3A2.A3.A2.A$18.CA253.C3.A.A4.2A.A.
2A$271.2A2.2A4.2A6.A$271.4A.A.2A.2A5.3A$13.A256.5A.3A2.2A4.A.A$5.3A.
2A2.2A258.2A.A.3A6.2A$3.2A.2A.2A2.2A257.A.A3.3A$7.4A262.C$.2A3.2A.A$.
A3.A5.2A$2A.2A5.3A3.2A259.2A6.A$.A.2A2.A4.A3.2AC260.A.2A.A.2A$.A.A5.
3A2.A.A.A258.2A.A6.A$2.A.A4.2A2.2A2.2A267.A.2A$2.2A7.3A3.2A261.A.A.2A
3.2A$12.2A3.AC260.A5.4A$17.A255.C.A2.A2.A4.A.A.2A$273.A4.2A2.A7.A$
272.A2.A.A.2A.2A6.A$272.A2.3A4.A4.A2.A$5.2A.A2.3A258.A2.A4.2A6.2A$3.A
.2A.2A4.A260.A2.A.A$2.2A269.AC$.A.3A2.A5.A$2A2.A.3A2.2A$A.A3.5A4.A
263.A$A.A3.A7.A.AC260.2A2.2A.3A$.2A4.A.2A.A4.A260.2A2.2A.2A.2A$.A7.2A
.A3.A265.4A$2.A.A6.2A3.A266.A.2A3.2A$2.A.A12.A262.2A5.A3.A$12.A2.A2.C
256.2A3.3A5.2A.2A$12.A2.A258.C2A3.A4.A2.2A.A$274.A.A.A2.3A5.A.A$274.
2A2.2A2.2A4.A.A$274.2A3.3A7.2A$274.CA3.2A$275.A4$279.3A2.A.2A$278.A4.
2A.2A.A$12.A2.A273.2A$12.A2.A2.C259.A5.A2.3A.A$2.A.A12.A262.2A2.3A.A
2.2A$2.A.A6.2A3.A260.A4.5A3.A.A$.A7.2A.A3.A258.CA.A7.A3.A.A$.2A4.A.2A
.A4.A257.A4.A.2A.A4.2A$A.A3.A7.A.AC258.A3.A.2A7.A$A.A3.5A4.A260.A3.2A
6.A.A258.69F$2A2.A.3A2.2A262.A12.A.A252.6F69.8F$.A.3A2.A5.A259.C2.A2.
A256.6F83.8F$2.2A273.A2.A246.10F97.8F$3.A.2A.2A4.A503.9F115.6F$5.2A.A
2.3A499.5F130.6F$509.4F141.17F$506.3F162.2F$504.2F167.3F$17.A485.F
171.F$12.2A3.AC484.F171.F$2.2A7.3A3.2A484.F171.F$2.A.A4.2A2.2A2.2A
484.F171.F$.A.A5.3A2.A.A.A484.F171.F$.A.2A2.A4.A3.2AC258.A2.A222.F
170.F$2A.2A5.3A3.2A256.C2.A2.A222.F170.F$.A3.A5.2A262.A12.A.A212.F
170.F$.2A3.2A.A266.A3.2A6.A.A212.F170.F$7.4A265.A3.A.2A7.A211.F170.F$
3.2A.2A.2A2.2A260.A4.A.2A.A4.2A211.F170.F$5.3A.2A2.2A260.CA.A7.A3.A.A
210.F169.F$13.A263.A4.5A3.A.A210.F169.F$280.2A2.3A.A2.2A210.F169.F$
278.A5.A2.3A.A211.F169.F$18.CA269.2A212.F169.F$12.A.A2.A260.A4.2A.2A.
A213.F168.F$3.2A6.2A4.A2.A258.3A2.A.2A215.F168.F$2.A2.A4.A4.3A2.A482.
F168.F$2.A6.2A.2A.A.A2.A482.F168.F$2.A7.A2.2A4.A483.F168.F$.2A.A.A4.A
2.A2.A.C255.A227.F168.F$4.4A5.A260.CA3.2A222.F168.F$2.2A3.2A.A.A261.
2A3.3A7.2A212.F167.F$3.2A.A267.2A2.2A2.2A4.A.A211.F168.F$5.A6.A.2A
258.A.A.A2.3A5.A.A210.F168.F$5.2A.A.2A.A260.C2A3.A4.A2.2A.A210.F168.F
$7.A6.2A259.2A3.3A5.2A.2A209.F84.2D82.F$280.2A5.A3.A210.F82.2D84.F$
283.A.2A3.2A210.F81.2D85.F$19.C262.4A216.F79.2D87.F$12.3A3.A.A257.2A
2.2A.2A.2A212.F77.3D88.F$4.2A6.3A.A.2A258.2A2.2A.3A214.F76.2D90.F$3.A
.A4.2A2.3A.5A256.A222.F75.23D70.F$2.3A5.2A.2A.A.4A480.F77.D90.F$3.A6.
2A4.2A2.2A480.F77.2D89.F$2.2A.A.2A4.A.A3.C253.AC227.F79.D88.F$2.A2.A
3.A2.3A260.A2.A.A221.F79.2D87.F$3.A5.A262.A2.A4.2A6.2A212.F80.4D84.F$
3.6A3.A.A257.A2.3A4.A4.A2.A211.F83.2D83.F$8.A3.4A256.A2.A.A.2A.2A6.A
211.F168.F$6.3A3.3A258.A4.2A2.A7.A211.F168.F$7.2A6.A257.C.A2.A2.A4.A.
A.2A210.F168.F$279.A5.4A213.F168.F$280.A.A.2A3.2A211.F168.F$14.A5.C
265.A.2A212.F168.F$13.A.2A.2A.A255.2A.A6.A214.F168.F$5.2A10.A261.A.2A
.A.2A214.F63.A104.F$3.A2.A4.A5.A5.A253.2A6.A216.F35.C9.A15.A16.A89.F$
3.A6.A3.2A486.F30.CA2.A9.C5.AC8.A4.A10.3A89.F$10.3A.A2.2A3.A479.F30.A
.2A16.2A7.C6.C9.3A.A11.3A73.F$3.2A2.A.4A.A.2A3.A251.C228.F29.A5.2A8.
3A2.A14.A9.C.3A.C8.CA4.A71.F$3.A3.A2.A2.3A4.C251.A.A3.3A221.F25.A.A2.
A14.3A.2A10.A3.A11.4A15.C9.C3AC15.C41.F$3.2A3.A.A2.A.A257.2A.A.3A6.2A
213.F24.A16.2A2.A.2A.A9.2A.2A11.A13.A.4A9.2A.4A9.CA2.A42.F$4.7A2.A.2A
253.5A.3A2.2A4.A.A212.F24.A3.A2.3A.2A3.3A4.A2.2A4.2A2.A4.A10.4A13.A
11.3A13.A.2A43.F$5.A4.A.A3.A254.4A.A.2A.2A5.3A212.F23.A3.A4.A5.3A4.2A
2.2A2.A2.3A2.A2.A3.A.A3.A2.A5.A.A5.2A26.A5.2A40.F$7.A2.A2.A257.2A2.2A
4.2A6.A213.F28.A.2A7.4A3.A6.A4.4A3.A3.3A.A2.4A3.A.A3.2A3.A4.2A5.2A7.A
.A2.A46.F$7.A.A4.2A257.C3.A.A4.2A.A.2A212.F24.A3.A.2A8.3A2.2A7.A.3A5.
A4.2A2.2A.A.2A4.A3.A.2A6.3A6.3A4.A51.F$278.3A2.A3.A2.A212.F23.2A.3A
10.A2.A12.A3.2A8.3A.A4.2A5.A.A3.A.2A8.3A2.2A4.A3.A2.3A.2A39.F$283.A5.
A214.F26.2A.A8.4A3.A12.2A.A12.3A6.A4.A3.A9.2A.A.A5.A3.A4.A42.F$15.2A
3.AC256.A.A3.6A214.F22.2A2.3A9.A4.A9.8A13.3A6.A2.A2.3A6.3A2.A.2A11.A.
2A43.F$15.7A255.4A3.A219.F22.2A.A11.2A.A2.A8.A2.A2.A12.2A17.A7.4A3.2A
7.A3.A.2A43.F$6.2A10.A259.3A3.3A217.F25.2A4.2A7.A.A12.2A10.4A2.A9.A2.
A13.A12.2A.3A46.F$5.3A9.A259.A6.2A218.F23.3A12.A.A5.2A4.2A.A.2A8.2A.A
2.A8.A3.2A10.4A2.A12.2A.A44.F$11.A.7A484.F24.A2.3A.2A6.A6.2A7.A5.2A5.
A.A12.A.A.2A9.2A.A11.2A2.3A45.F$4.2A7.A.A2.2A484.F25.2A2.2A8.A3.2A.A
7.2A6.A7.A.2A2.2A5.2A2.A3.A6.A3.A10.2A.A48.F$4.2A3.2A6.3A2.A249.C5.A
225.F26.3A11.2A.2A10.2A.A11.A4.A.A7.A.2A3.A6.A3.2A.A9.2A4.2A41.F$3.A
4.A12.C249.A.2A.2A.A224.F42.A13.3A.2A8.2A.4A8.2A5.A6.A3.3A.A6.3A48.F$
4.A6.4A260.A10.2A216.F72.2A.A10.A.4A9.A4.2A7.A2.3A.2A41.F$4.A2.3A.A.
2A.2A251.A5.A5.A4.A2.A214.F88.A12.5A10.2A2.2A43.F$5.2A4.A.5A259.2A3.A
6.A214.F103.A13.3A45.F$7.A.4A.3A253.A3.2A2.A.3A221.F165.F$9.A5.A255.A
3.2A.A.4A.A2.2A214.F165.F$272.C4.3A2.A2.A3.A214.F165.F$277.A.A2.A.A3.
2A214.F165.F$16.A2.A256.2A.A2.7A215.F165.F$16.A2.A2.C253.A3.A.A4.A
216.F164.F$6.A.A12.A257.A2.A2.A218.F164.F$6.A.A6.2A3.A256.2A4.A.A218.
F164.F$5.A7.2A.A3.A483.F164.F$5.2A4.A.2A.A4.A482.F163.F$4.A.A3.A7.A.A
C249.CA3.2A226.F163.F$4.A.A3.5A4.A251.7A226.F163.F$4.2A2.A.3A2.2A257.
A10.2A217.F163.F$5.A.3A2.A5.A256.A9.3A216.F162.F$6.2A265.7A.A222.F
162.F$7.A.2A.2A4.A254.2A2.A.A7.2A214.25F139.F$9.2A.A2.3A252.A2.3A6.2A
3.2A239.4F134.F$271.C12.A4.A242.4F130.F$278.4A6.A247.3F127.F$275.2A.
2A.A.3A2.A250.3F123.F$275.5A.A4.2A254.2F121.F$276.3A.4A.A258.2F119.F$
277.A5.A262.5F113.F$551.2F111.F$553.51F59.F$273.A2.A327.11F48.F$270.C
2.A2.A338.9F36.3F$271.A12.A.A337.11F23.2F$272.A3.2A6.A.A348.23F$272.A
3.A.2A7.A$271.A4.A.2A.A4.2A$271.CA.A7.A3.A.A$273.A4.5A3.A.A$276.2A2.
3A.A2.2A$274.A5.A2.3A.A$285.2A$274.A4.2A.2A.A$275.3A2.A.2A17$71.A138.
A$43.C9.A15.A16.A108.A16.A15.A9.C$38.CA2.A9.C5.AC8.A4.A10.3A108.3A10.
A4.A8.CA5.C9.A2.AC$38.A.2A16.2A7.C6.C9.3A.A11.3A76.3A11.A.3A9.C6.C7.
2A16.2A.A$37.A5.2A8.3A2.A14.A9.C.3A.C8.CA4.A72.A4.AC8.C.3A.C9.A14.A2.
3A8.2A5.A$33.A.A2.A14.3A.2A10.A3.A11.4A15.C9.C3AC15.C12.C15.C3AC9.C
15.4A11.A3.A10.2A.3A14.A2.A.A$32.A16.2A2.A.2A.A9.2A.2A11.A13.A.4A9.2A
.4A9.CA2.A14.A2.AC9.4A.2A9.4A.A13.A11.2A.2A9.A.2A.A2.2A16.A$32.A3.A2.
3A.2A3.3A4.A2.2A4.2A2.A4.A10.4A13.A11.3A13.A.2A16.2A.A13.3A11.A13.4A
10.A4.A2.2A4.2A2.A4.3A3.2A.3A2.A3.A$32.A3.A4.A5.3A4.2A2.2A2.A2.3A2.A
2.A3.A.A3.A2.A5.A.A5.2A26.A5.2A10.2A5.A26.2A5.A.A5.A2.A3.A.A3.A2.A2.
3A2.A2.2A2.2A4.3A5.A4.A3.A$37.A.2A7.4A3.A6.A4.4A3.A3.3A.A2.4A3.A.A3.
2A3.A4.2A5.2A7.A.A2.A22.A2.A.A7.2A5.2A4.A3.2A3.A.A3.4A2.A.3A3.A3.4A4.
A6.A3.4A7.2A.A$33.A3.A.2A8.3A2.2A7.A.3A5.A4.2A2.2A.A.2A4.A3.A.2A6.3A
6.3A4.A34.A4.3A6.3A6.2A.A3.A4.2A.A.2A2.2A4.A5.3A.A7.2A2.3A8.2A.A3.A$
32.2A.3A10.A2.A12.A3.2A8.3A.A4.2A5.A.A3.A.2A8.3A2.2A4.A3.A2.3A.2A10.
2A.3A2.A3.A4.2A2.3A8.2A.A3.A.A5.2A4.A.3A8.2A3.A12.A2.A10.3A.2A$36.2A.
A8.4A3.A12.2A.A12.3A6.A4.A3.A9.2A.A.A5.A3.A4.A16.A4.A3.A5.A.A.2A9.A3.
A4.A6.3A12.A.2A12.A3.4A8.A.2A$32.2A2.3A9.A4.A9.8A13.3A6.A2.A2.3A6.3A
2.A.2A11.A.2A18.2A.A11.2A.A2.3A6.3A2.A2.A6.3A13.8A9.A4.A9.3A2.2A$32.
2A.A11.2A.A2.A8.A2.A2.A12.2A17.A7.4A3.2A7.A3.A.2A18.2A.A3.A7.2A3.4A7.
A17.2A12.A2.A2.A8.A2.A.2A11.A.2A$35.2A4.2A7.A.A12.2A10.4A2.A9.A2.A13.
A12.2A.3A24.3A.2A12.A13.A2.A9.A2.4A10.2A12.A.A7.2A4.2A$33.3A12.A.A5.
2A4.2A.A.2A8.2A.A2.A8.A3.2A10.4A2.A12.2A.A20.A.2A12.A2.4A10.2A3.A8.A
2.A.2A8.2A.A.2A4.2A5.A.A12.3A$34.A2.3A.2A6.A6.2A7.A5.2A5.A.A12.A.A.2A
9.2A.A11.2A2.3A22.3A2.2A11.A.2A9.2A.A.A12.A.A5.2A5.A7.2A6.A6.2A.3A2.A
$35.2A2.2A8.A3.2A.A7.2A6.A7.A.2A2.2A5.2A2.A3.A6.A3.A10.2A.A28.A.2A10.
A3.A6.A3.A2.2A5.2A2.2A.A7.A6.2A7.A.2A3.A8.2A2.2A$36.3A11.2A.2A10.2A.A
11.A4.A.A7.A.2A3.A6.A3.2A.A9.2A4.2A14.2A4.2A9.A.2A3.A6.A3.2A.A7.A.A4.
A11.A.2A10.2A.2A11.3A$52.A13.3A.2A8.2A.4A8.2A5.A6.A3.3A.A6.3A28.3A6.A
.3A3.A6.A5.2A8.4A.2A8.2A.3A13.A$82.2A.A10.A.4A9.A4.2A7.A2.3A.2A14.2A.
3A2.A7.2A4.A9.4A.A10.A.2A$98.A12.5A10.2A2.2A18.2A2.2A10.5A12.A$113.A
13.3A22.3A13.A!

even possible?

@RULE FWKS-KnightshipTest
@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate4reflect

var Aa={1,2}
var Ab=Aa
var Ac=Aa
var Ad=Aa
var Ae=Aa
var Af=Aa
var Ag=Aa
var Ah=Aa

var all={0,Aa}
var bll=all
var cll=all
var dll=all
var ell=all
var fll=all
var gll=all
var hll=all
var ill=all

#Knightship
1,1,0,1,0,0,1,0,0,2
0,1,2,1,0,0,0,0,0,2
1,2,1,0,0,0,0,0,0,2
0,2,2,0,0,0,0,0,0,1
1,0,1,1,1,1,1,0,1,2
0,2,0,1,0,1,0,1,0,2
0,2,0,1,1,0,0,0,0,0
1,0,2,0,1,0,0,0,0,0
2,0,1,0,1,0,0,0,0,0
1,2,1,1,0,0,0,0,0,0
2,1,0,1,1,0,0,0,0,2

#Life
0,0,1,0,1,0,Aa,0,0,1
0,0,1,0,Aa,0,1,0,0,1
0,0,Aa,0,1,0,1,0,0,1
0,1,0,1,0,Aa,0,0,0,1
0,1,0,Aa,0,1,0,0,0,1
0,Aa,0,1,0,1,0,0,0,1
0,1,0,1,0,0,Aa,0,0,1
0,1,0,Aa,0,0,1,0,0,1
0,Aa,0,1,0,0,1,0,0,1
0,1,1,Aa,0,0,0,0,0,1
0,1,Aa,1,0,0,0,0,0,1
0,Aa,1,1,0,0,0,0,0,1
0,1,1,0,0,0,0,0,Aa,1
0,1,Aa,0,0,0,0,0,1,1
0,Aa,1,0,0,0,0,0,1,1
0,1,1,0,Aa,0,0,0,0,1
0,1,Aa,0,1,0,0,0,0,1
0,Aa,1,0,1,0,0,0,0,1
0,1,0,0,1,0,Aa,0,0,1
0,1,0,0,Aa,0,1,0,0,1
0,Aa,0,0,1,0,1,0,0,1
0,1,1,0,0,0,Aa,0,0,1
0,1,Aa,0,0,0,1,0,0,1
0,Aa,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,Aa,0,1
0,1,Aa,0,0,0,0,1,0,1
0,Aa,1,0,0,0,0,1,0,1
0,1,1,0,0,Aa,0,0,0,1
0,1,Aa,0,0,1,0,0,0,1
0,Aa,1,0,0,1,0,0,0,1
1,0,Aa,0,Ab,0,0,0,0,1
1,Aa,0,Ab,0,0,0,0,0,1
1,Aa,0,0,Ab,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,0,1
1,Aa,0,0,0,Ab,0,0,0,1
1,0,Aa,0,0,0,Ab,0,0,1
1,0,Aa,0,Ab,0,Ac,0,0,1
1,Aa,0,Ab,0,Ac,0,0,0,1
1,Aa,0,Ab,0,0,Ac,0,0,1
1,Aa,Ab,Ac,0,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,Ac,1
1,Aa,Ab,0,Ac,0,0,0,0,1
1,Aa,0,0,Ab,0,Ac,0,0,1
1,Aa,Ab,0,0,0,Ac,0,0,1
1,Aa,Ab,0,0,0,0,Ac,0,1
1,Aa,Ab,0,0,Ac,0,0,0,1
0,0,2,0,2,0,Aa,0,0,1
0,0,2,0,Aa,0,2,0,0,1
0,0,Aa,0,2,0,2,0,0,1
0,2,0,2,0,Aa,0,0,0,1
0,2,0,Aa,0,2,0,0,0,1
0,Aa,0,2,0,2,0,0,0,1
0,2,0,2,0,0,Aa,0,0,1
0,2,0,Aa,0,0,2,0,0,1
0,Aa,0,2,0,0,2,0,0,1
0,2,2,Aa,0,0,0,0,0,1
0,2,Aa,2,0,0,0,0,0,1
0,Aa,2,2,0,0,0,0,0,1
0,2,2,0,0,0,0,0,Aa,1
0,2,Aa,0,0,0,0,0,2,1
0,Aa,2,0,0,0,0,0,2,1
0,2,2,0,Aa,0,0,0,0,1
0,2,Aa,0,2,0,0,0,0,1
0,Aa,2,0,2,0,0,0,0,1
0,2,0,0,2,0,Aa,0,0,1
0,2,0,0,Aa,0,2,0,0,1
0,Aa,0,0,2,0,2,0,0,1
0,2,2,0,0,0,Aa,0,0,1
0,2,Aa,0,0,0,2,0,0,1
0,Aa,2,0,0,0,2,0,0,1
0,2,2,0,0,0,0,Aa,0,1
0,2,Aa,0,0,0,0,2,0,1
0,Aa,2,0,0,0,0,2,0,1
0,2,2,0,0,Aa,0,0,0,1
0,2,Aa,0,0,2,0,0,0,1
0,Aa,2,0,0,2,0,0,0,1
2,0,Aa,0,Ab,0,0,0,0,1
2,Aa,0,Ab,0,0,0,0,0,1
2,Aa,0,0,Ab,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,0,1
2,Aa,0,0,0,Ab,0,0,0,1
2,0,Aa,0,0,0,Ab,0,0,1
2,0,Aa,0,Ab,0,Ac,0,0,1
2,Aa,0,Ab,0,Ac,0,0,0,1
2,Aa,0,Ab,0,0,Ac,0,0,1
2,Aa,Ab,Ac,0,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,Ac,1
2,Aa,Ab,0,Ac,0,0,0,0,1
2,Aa,0,0,Ab,0,Ac,0,0,1
2,Aa,Ab,0,0,0,Ac,0,0,1
2,Aa,Ab,0,0,0,0,Ac,0,1
2,Aa,Ab,0,0,Ac,0,0,0,1

#death
all,bll,cll,dll,ell,fll,gll,hll,ill,0

x = 13, y = 19, rule = FWKS-KnightshipTest
4.3A$3.2A2.2A$2.A2.3A.2A$.3A$3.2A4.2A$2A.A$2A2.3A$4.2A.A$2A.3A$.A3.A.
2A$5.A.2A$A3.A4.A$A3.A2.3A.2A$A$.A.A2.A$5.A5.2A$6.A.2A$6.2A2.A$11.A!
x = 5, y = 5, rule = B3-y/S234w
2b3o$bo$o3bo$o2bo$obo!
User avatar
FWKnightship
 
Posts: 62
Joined: June 23rd, 2019, 3:10 am
Location: Behind you

Re: Rule request thread

Postby Moosey » August 19th, 2019, 7:34 pm

A CA which calculates A^{B}C (A^^^^^^^^^^C with B arrows) where A, B, and C are represented like this:
aaaaaaaaaaaaaaaaa bb cccccccccc
(A copies of the a cells, B of the b cells, and C of the c cells)
Last edited by Moosey on August 21st, 2019, 3:11 pm, edited 1 time in total.
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"
User avatar
Moosey
 
Posts: 2317
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board.

Re: Rule request thread

Postby Hdjensofjfnen » August 20th, 2019, 9:44 pm

Moosey wrote:A CA which calculates A^{B}C (A^^^^^^^^^^C with B arrows) where A, B, and C are represented like this:
aaaaaaaaaaaaaaaaa bb cccccccccc
(A copies of the a cells, B of the B cells, and C of the c cells)

I don't think I get what you mean, but this completely random idea marginally related to yours popped into my head.
1050000000 - 8 0s, 1 1, 1 5
8100010000 - 7 0s, 2 1s, 1 8
7200000010 - 7 0s, 1 1, 1 2, 1 7
7110000100 - 6 0s, 3 1s, 1 7
6300000100 - 7 0s, 1 1, 1 3, 1 6
etc.

With an arbitrarily large number of digits, we can simulate 1xn tori of this cellular automaton, where the 1st digit corresponds to 0s in the last generation, the 2nd digit corresponds to 1s in the last generation, ... the 10th digit corresponds to 9s in the last generation, the 11th digit corresponds to As in the last generation, etc.
That that is, is. That that is not, is not. Is that it? It is.
A predecessor to my favorite oscillator of all time:
x = 7, y = 5, rule = B3/S2-i3-y4i
4b3o$6bo$o3b3o$2o$bo!
User avatar
Hdjensofjfnen
 
Posts: 1295
Joined: March 15th, 2016, 6:41 pm
Location: r cis θ

Re: Rule request thread

Postby Gustone » August 21st, 2019, 12:00 pm

Looking into the knightship's rules I wonder if there can be a rule for any (sufficently promising) partial
I like making color palettes for rules
User avatar
Gustone
 
Posts: 419
Joined: March 6th, 2019, 2:26 am

Re: Rule request thread

Postby Moosey » August 21st, 2019, 3:13 pm

Hdjensofjfnen wrote:
Moosey wrote:A CA which calculates A^{B}C (A^^^^^^^^^^C with B arrows) where A, B, and C are represented like this:
aaaaaaaaaaaaaaaaa bb cccccccccc
(A copies of the a cells, B of the B cells, and C of the c cells)

I don't think I get what you mean,

For instance, this would mean 10^^^3
x = 18, y = 1, rule = Moosey'sKnuthRule
10ob3ob3o!

And this, 5^^^^^5:
x = 17, y = 1, rule = Moosey'sKnuthRule
5ob5ob5o!
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"
User avatar
Moosey
 
Posts: 2317
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board.

Re: Rule request thread

Postby LaundryPizza03 » August 21st, 2019, 9:18 pm

Moosey wrote:
Hdjensofjfnen wrote:
Moosey wrote:A CA which calculates A^{B}C (A^^^^^^^^^^C with B arrows) where A, B, and C are represented like this:
aaaaaaaaaaaaaaaaa bb cccccccccc
(A copies of the a cells, B of the B cells, and C of the c cells)

I don't think I get what you mean,

For instance, this would mean 10^^^3
x = 18, y = 1, rule = Moosey'sKnuthRule
10ob3ob3o!

And this, 5^^^^^5:
x = 17, y = 1, rule = Moosey'sKnuthRule
5ob5ob5o!

But how do you want to represent it?
x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!

LaundryPizza03 at Wikipedia
User avatar
LaundryPizza03
 
Posts: 457
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Rule request thread

Postby Moosey » August 22nd, 2019, 6:42 am

LaundryPizza03 wrote:
Moosey wrote:<snip>
For instance, this would mean 10^^^3
x = 18, y = 1, rule = Moosey'sKnuthRule
10ob3ob3o!

And this, 5^^^^^5:
x = 17, y = 1, rule = Moosey'sKnuthRule
5ob5ob5o!

But how do you want to represent it?

The output? I Don't care
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"
User avatar
Moosey
 
Posts: 2317
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board.

Re: Rule request thread

Postby muzik » August 23rd, 2019, 6:27 am

What is the wolfram rule integer for these 3-state, range 1 one-dimensional conditions?

x = 39, y = 23, rule = Fredkin_mod3_Moore
2.A7.B$.2A6.B.B$2.A8.B$2.A7.B$2.A6.B$.3A5.3B5$2.A4.A4.A7.B4.B4.B5.3B$
.A5.A5.A5.B5.B5.B3$.2A3.A.A3.2A5.2B3.B.B3.2B4.3A$.B5.B5.B5.A5.A5.A3$
2BA3.BAB3.A2B3.2AB3.ABA3.B2A$.B5.B5.B5.A5.A5.A3$AB4.BA5.AB4.BA3.B.A3.
A.B!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik
 
Posts: 3464
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Rule request thread

Postby Moosey » September 1st, 2019, 7:10 pm

Can I have a rule like shanghai which has some extra states to accommodate diodes? The diodes would just look something like this:
x = 19, y = 1, rule = Shanghai2
2A2D2B2AEI9A!

Where state 9 is the diode input. Obviously the diode input should be enough-- state five should function as a diode output in the presence of state 9.
Signals are deleted when they go into a diode the wrong way.
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"
User avatar
Moosey
 
Posts: 2317
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board.

Re: Rule request thread

Postby EvinZL » September 6th, 2019, 8:54 pm

83bismuth38 wrote:IS it possible for a single rule to have a baby toad:
x = 2, y = 3, rule = B3/S2e3
bo$2o$o!

A regular toad:
x = 2, y = 4, rule = B3/S23
bo$2o$2o$o!

And a big toad:
x = 2, y = 5, rule = B34-air/S34-ai
bo$2o$2o$2o$o!

and maybe even further? all I really want though is a non-explosive rule with these three toads.
edit: 99% sure impossible for baby toad and regular toad to meet, besides, the baby toad is technically not a toad. :lol:

Toad can't go with the other two, but for those, B3kaij4q/S3qj4r works
x = 2, y = 10, rule = B3kaij4q/S3qj4r
bo$2o$o$
2$
bo$2o$2o$2o$o!
That rule doesn't have much, but the toads work in any rule with B3kaij4q/S3qj4r and without any of B012ka/S2a5i.
I Like Random Explosive Rules
  • B2ae3inqr/S0
  • B23/S234inty
  • B34w/S23
  • B012-i34/S2-a3-i4-w6
EvinZL
 
Posts: 50
Joined: November 8th, 2018, 4:15 pm
Location: B2-ac3i/S023(possibly -r)

Re: Rule request thread

Postby muzik » September 13th, 2019, 7:19 pm

What is Life's checkerboard dual, as a MAP string?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik
 
Posts: 3464
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Rule request thread

Postby dvgrn » September 13th, 2019, 9:08 pm

muzik wrote:What is Life's checkerboard dual, as a MAP string?

Has that really not been figured out yet? Why as a MAP string and not as a regular Hensel isotropic rule string?

(There's a script to convert a Hensel-format rule to a MAP string, so just getting the Hensel rulestring should be close enough.)

From what I understand, the checkerboard dual is just a matter of finding the obo$bo$obo! XOR of each isotropic neighborhood in this list:

B3c
B3e
B3k
B3a
B3i
B3n
B3y
B3q
B3j
B3r

S2c
S2e
S2k
S2a
S2i
S2n

S3c
S3e
S3k
S3a
S3i
S3n
S3y
S3q
S3j
S3r

Only 26 isotropic bits to convert -- easy enough to do by hand for this one case, though maybe somebody should just write a script to convert any rule. (EDIT: Oops, no, I misread the article. Seems like you'd have to adjust things first so that a checkerboard was stable -- set the S4 bit, right? -- then modify the isotropic bits for Life. Does someone else understand this better?)

This would be easier for MAP rules, in some ways -- none of these arbitrary letters to deal with. Then again, a lookup table for 102 isotropic bits isn't really all that hard either.

... Wait, hang on, is there a strobing checkerboard dual as well as a non-strobing checkerboard dual? I guess there must be, since there's a standard way to produce a strobing dual from any isotropic rule.

EDIT: Well, this should be a glider in a CheckerboardLife universe, but the rule isn't right yet:

x = 100, y = 100, rule = B1c2cn3inqy4ny5ajkr6ei7e/S1c3inqy4c5ajkr7e:T100,100
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$ob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$b
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobob
obobobobobobobobobobobobobobobobobobobobobob3obobobobobobobobobobobobo
bobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobob
obob3obobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobo
bobobobobobobobobobobobobobobobo2bo2bobobobobobobobobobobobobobobobobo
bobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$o
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
o$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobo!

I came up with the following isotropic bit conversions, but they aren't producing the right effect yet, there seems to be something missing. Do these kinds of dual rules _only_ apply to self-complementary rules, or what's the deal here? ... I'll probably figure it out by tomorrow.

B3c = S1c
B3e = S7e
B3k = S5a
B3a = S5k
B3i = S3y
B3n = S3n
B3y = S3i
B3q = S3q
B3j = S5j
B3r = S5r

S2c = B2c
S2e = B6e
S2k = B4n
S2a = B4y
S2i = B6i
S2n = B2n

S3c = B1c
S3e = B7e
S3k = B5a
S3a = B5k
S3i = B3y
S3n = B3n
S3y = B3i
S3q = B3q
S3j = B5j
S3r = B5r
User avatar
dvgrn
Moderator
 
Posts: 5824
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Rule request thread

Postby dvgrn » September 14th, 2019, 7:21 am

dvgrn wrote: Do these kinds of dual rules _only_ apply to self-complementary rules, or what's the deal here? ... I'll probably figure it out by tomorrow.

Yes, that's the problem: you can't do CheckerboardLife with either a Hensel isotropic rule string or with a MAP rule, because Life isn't a self-complementary rule. On one checkerboard square color, for example, this neighborhood means "B3", so it needs to turn the blue center cell ON:

x = 11, y = 11, rule = LifeHistory
.C.C.C.C.C$C.C.C.C.C.C$.C.C.C.C.C$C.C.C.C.C.C$.C.CACAC.C$C.C.CBC.C.C$
.C.CAC.C.C$C.C.C.C.C.C$.C.C.C.C.C$C.C.C.C.C.C$.C.C.C.C.C!

But if the cell is the other color, that same neighborhood would mean "S5", so according to Life rules the center cell has to stay OFF:

x = 11, y = 11, rule = LifeHistory
.C.C.C.C.C$C.C.C.C.C.C$.C.C.C.C.C$C.C.CAC.C.C$.C.CABAC.C$C.C.CAD.C.C$
.C.C.C.C.C$C.C.C.C.C.C$.C.C.C.C.C$C.C.C.C.C.C$.C.C.C.C.C!

That doesn't mean that CheckerboardLife is impossible, though, it just needs a four-state rule (or maybe three states, see below):

local g = golly()
rulename = g.getdir("rules").."CheckerboardLife.rule"
f = io.open(rulename, "w")
if f then
    f:write(
[[
@RULE CheckerboardLife
@TABLE
n_states:4
neighborhood:Moore
symmetries:permute

var all1 = {0,1,2,3}
var all2 = all1
var all3 = all1
var all4 = all1
var all5 = all1
var all6 = all1
var all7 = all1
var all8 = all1

var a = {0,1}
var b = {2,3}

# life on the dark squares of the checkerboard
# dark-square birth / 3-neighbor survival
a,0,1,1,1,3,3,3,3,1
a,0,0,1,1,2,3,3,3,1
a,0,0,0,1,2,2,3,3,1
a,0,0,0,0,2,2,2,3,1

# dark-square 2-neighbor survival
1,0,0,1,1,3,3,3,3,1
1,0,0,0,1,2,3,3,3,1
1,0,0,0,0,2,2,3,3,1

# death for dark squares
1,all1,all2,all3,all4,all5,all6,all7,all8,0

# life on the light squares of the checkerboard
# light-square birth / 3-neighbor survival
b,3,2,2,2,0,0,0,0,2
b,3,3,2,2,1,0,0,0,2
b,3,3,3,2,1,1,0,0,2
b,3,3,3,3,1,1,1,0,2

# light-square 2-neighbor survival
2,3,3,2,2,0,0,0,0,2
2,3,3,3,2,1,0,0,0,2
2,3,3,3,3,1,1,0,0,2
# death for light squares
2,all1,all2,all3,all4,all5,all6,all7,all8,3

@COLORS

1    0  255    0
2    0  192    0
3  100  100  100

@ICONS
circles
]]
    )
    f:close()
end

pattname = g.getdir("temp").."Sir-Robin-on-a-checkerboard.rle"
f = io.open(pattname, "w")
if f then
    f:write(
[[
x = 186, y = 100, rule = CheckerboardLife:T186,100
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.BAC.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.CAB.CAB.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.CAC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CABAB.C.C.B.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.B.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.CACAC.C.BAB.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CAB.C.BAC.
CAC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CAB.C.B.B.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.B.C.C.C.B.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CA
C.B.CAC.C.C.B.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CABACAB.CABAC.CAC.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.B.C.C.C.C.C.C.C.BAC.CAC.BACAC.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.CAB.BACAB.C.BABAC.B.C.B.C.B.C.BAC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CABAB.B
.BABAC.CAC.CAC.CAB.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CABAC.C.B.B.C.C.B.C.C.C.CAB.B.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.CACACAB.C.B.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.CAB.C.B.B.B.C.C.BAB.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.BAC.B.BACAC.C.CAC.
BAC.CAB.C.C.C.C.C.C.C.CAB.C.B.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CACAC.C.BAB.C.C.BAC.B.C.C.C.CABAB.C.C
.C.BAC.B.CAC.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.CAB.C.BAC.C.B.B.C.C.CAC.B.C.CAC.B.CACACAC.C.C.C.C.C.C
.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
ABAC.CAC.BABAC.CACACACAC.B.B.B.C.B.B.CAC.C.B.C.C.C.C.C.C.C$.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CAC.B.B.B.B
AB.CACAC.C.B.BACAB.C.CABAC.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.BAB.C.C.BAC.CACABAC.BAC.B.BAC.C.B.C.C.
B.CABAB.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.B.C.CABAC.C.C.C.C.BAB.B.CAB.C.CAB.CAC.CAB.C.C.C.C$C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.BA
C.C.CABAC.C.C.C.CABAB.B.BAB.C.C.CAB.BAC.CAB.C$.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CAC.BAB.C.C.C.C.CAC.
CAC.BAC.CAC.B.C.B.C.B.B.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.B.CABAC.CAC.C.C.C.C.CABAB.CABAB.BACABAC
ACAC$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.CABABABAC.C.C.C.C.C.C.C.C.C.C.C.C.CABAC.C.C$C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CACAC.C
.C.C.C.C.C.C.CABABABAC.B.BAB.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CAC.C.C.C.C.C.C.C.B.CAC.C
.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.B.C.C.C.C.C.C.C.C.C.C.C.CAC.C.C.C.C$.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C!
]]
    )
    f:close()
end
g.open(pattname)
g.show("Rule file was created: "..rulename)

It should be possible to add more rule lines to allow CheckerboardLife to escape from even-width toruses -- e.g., expand the checkerboard automatically around the edges of a pattern, or allow Life patterns to make the transition from CheckerboardLand to a regular empty universe.

Or it might be possible to get away with just two ON states, no fourth artificial checkerboard-marking state, by modifying the ideas in the previous post and making each color simulate its part of Life on its own checkerboard (but with supporting interactions between the two checkerboard colors, unlike independent-checkerboards rules.)

I'm not sure any of this is really what was wanted, though, so I'll leave those experiments to be tried by anyone who is interested.
User avatar
dvgrn
Moderator
 
Posts: 5824
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Previous

Return to Other Cellular Automata

Who is online

Users browsing this forum: testitemqlstudop and 4 guests