It's not my rule.

Unrelated:

`x = 39, y = 18, rule = B2aei/S`

38bo$37bo$32bo4bo$21bo9bo6bo$20bo10bo$bo18bo11bobo$o20bo5bo$o21bo$bobo

3bo3bo3bo3bo3bo$4bo3bo3bo3bo3bo3bobobo$5bo3bo3bo3bo$6bo3bo3bo3bo$7bo3b

o3bo$8bo3bo3bobo$9bo3bo$10bo3bo$11bo$12bobo!

In the methuserule:

`x = 222, y = 212, rule = B2a3jry4iy5y/S`

220b2o$220b2o207$2b2o$4bo$o3bo$ob2o!

Reminds of a caber tosser, but backwards (a la the RCT)

Related rule:

`x = 17, y = 3, rule = B2a3ijry4iy5ey/S`

16bo$2o14bo$2o14bo!

Similar object in same rule, probably doesn't stabilize (but if it does it takes a long time)

`x = 18, y = 5, rule = B2a3ijry4iy5ey/S`

b2o14bo$o2bo13bo$o2bo13bo2$2b2o!

Gun:

`x = 14, y = 14, rule = B2a3ijry4iy5ey/S`

obobobobo$o7bo$4bobobo$o$11b3o$o$11bobo$obo$13bo$3o$13bo$5bobobo$5bo7b

o$5bobobobobo!

Related rule:

Gun:

`x = 4, y = 5, rule = B2a3ijry4iy5ey/S3i4ent5e`

obo$obo$2bo$b3o$2bo!

Sorta-loggrow in nice related rule. I like this rule.

`x = 6, y = 4, rule = B2a3ijry4iy5ey/S3i4ent5er6i`

3b3o$bo$3o$bo!

~1B methuselah:

`x = 33, y = 11, rule = B2a3ijry4iy5ey/S3i4ent5er6i`

31b2o$31b2o6$b2obo$o3bo$o$b2o!

Effectively a sqrtgun:

`x = 6, y = 7, rule = B2a3ijry4iy5ey/S3i4ent5er6i`

4b2o$4b2o3$bo$3o$bo!

I believe this is tetrationally slow growth? It features an unusual counter:

`x = 8, y = 14, rule = B2a3ijry4iy5ey/S3i4ent5er6i`

obo$o5bo$o4b3o$o5bo$o5bo$o4b3o$o5bo$o5bo$o4b3o$o5bo$o5bo$o4b3o$o5bo$ob

o!

If this stabilizes, it beats anything I've posted so far:

`x = 22, y = 22, rule = B2a3ijry4iy5ey/S3i4ent5er6i`

obo$o$o5bo$o4b3o$o5bo$o4b3o$o5bo$o5bo$o4b3o$o5bo$o4b3o$o5bo$o$obo5$18b

2obo$17bo3bo$17bo$18b2o!

It works using a similar method to my other tetrationally long-lived possible methuselahs:

It produces an enormous counter which only lengthens after counting beyond its limits--when it lengthens lit becomes orders of magnitude longer.

EDIT: random stuff source:

`x = 10, y = 14, rule = B2a3ijry4iy5ey/S3i4ent5er6i`

4b3o2$4b3o3$o$o3b2o3bo$o3b2o3bo$9bo3$3b3o2$3b3o!

EDIT: lifespan >100 duodecillion:

`x = 106, y = 16, rule = B2a3ijry4iy5ey/S3i4ent5er6i`

71b2o$71b2o4$78bo24bobo$77b3o23bobo$78bo24bobo3$97bo$97bo$97bo$bo$3o

89b3o$bo!

Challenge: make a tetrationally long-lived methuselah that definitely stabilizes.

EDIT: adding B4t adds a nice touch.

`x = 6, y = 21, rule = B2a3ijry4ity5ey/S3i4ent5er6i`

4b2o$4b2o14$3o4$4b2o$4b2o!

Jagged lines thing:

`x = 3, y = 28, rule = B2a3ijry4ity5ey/S3i4ent5er6i`

3o21$3o2$3o2$3o2$3o!

P32 rep:

`x = 3, y = 45, rule = B2a3ijry4ity5ey/S3i4ent5er6i`

3o2$3o2$3o2$3o4$3o2$obo2$3o4$3o2$3o4$3o2$3o4$3o2$obo2$3o4$3o2$3o2$3o2$

3o!

Ships of arbitrarily high period:

`x = 43, y = 21, rule = B2a3ijry4ity5ey/S3i4ent5er6i`

3o7b3o7b3o7b3o7b3o2$bo8b3o7b3o7b3o7b3o2$11bo2$20b3o2$21bo2$30b3o2$31bo

6$40b3o2$41bo!

Also proof that for any n > 1 the smallest ship of 2^nc/2^n is at most 10 cells.

EDIT: here's our tetrationally long-lived methuselah which definitely stabilizes:

`x = 21, y = 53, rule = B2a3ijry4ity5ey/S3i4ent5er6i`

10b2o$10b2o7$7b3o2b3o2$7b3o2b3o2$bo5b3o2b3o4bo$3o15b3o$bo5b3o2b3o4bo4$

7b3o2b3o2$7bobo2bobo2$7b3o2b3o4$7b3o2b3o2$7b3o2b3o4$7b3o2b3o2$7b3o2b3o

4$7b3o2b3o2$7bobo2bobo2$7b3o2b3o4$7b3o2b3o2$7b3o2b3o2$7b3o2b3o2$7b3o2b

3o!

I believe that the below object beats those really long-lived methuselahs toroidalet made.

`x = 21, y = 53, rule = B2a3ijry4ity5ey/S3i4ent5er6i`

10b2o$10b2o7$7b3o2b3o2$7b3o2b3o2$7b3o2b3o$bo17bo$3o4b3o2b3o3b3o$bo17bo

3$7b3o2b3o2$7bobo2bobo2$7b3o2b3o4$7b3o2b3o2$7b3o2b3o4$7b3o2b3o2$7b3o2b

3o4$7b3o2b3o2$7bobo2bobo2$7b3o2b3o4$7b3o2b3o2$7b3o2b3o2$7b3o2b3o2$7b3o

2b3o!

The first object lasts at least several million gens; thus the second lasts roughly 2^(at least a million) gens