ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

B2ce3-ir4a5y/S2-c3-y

For discussion of other cellular automata.

B2ce3-ir4a5y/S2-c3-y

Postby drc » October 21st, 2017, 5:11 pm

(Sorry for all the threads lately >.< I just think this rule is cool.)
B2ce3-ir4a5y/S2-c3-y is pretty interesting. It has a failed replicator that turns into two spaceships and a p2 oscillator:
x = 5, y = 3, rule = B2ce3-ir4a5y/S2-c3-y
b3o$o3bo$b3o!

(Make sure to scroll down for one of my new proudest discoveries)
Still Lifes
This rule has very strange still lifes. Every hollow rectangle can be a still life:
x = 25, y = 10, rule = B2ce3-ir4a5y/S2-c3-y
4o2b7o2b10o$o2bo2bo5bo2bo8bo$o2bo2bo5bo2bo8bo$4o2bo5bo2bo8bo$6b7o2bo8b
o$15bo8bo$15bo8bo$15bo8bo$15bo8bo$15b10o!

The three above, for example, would be codenamed '4x4 box', '7x5 box', and '10x10 box'. For the sake of uniformity I would suggest putting the biggest number first, but the numbers are interchangeable.
All of the boxes have an even number of cells, so it's very bizarre looking at how few odd cell counts there are on the APGsearch page.
Here are some that aren't boxes:
x = 40, y = 20, rule = B2ce3-ir4a5y/S2-c3-y
2o2b2o3b2o4b2o4b2o4b7o2b2o$2o2bo4bo2bo2bo5bo2bo2bo5bo2bo2bo$6bo4b2o4bo
3bob2o2bo5bo2bob2o$5b2o5bo3b2o3bo2bo2bob5o2bo$10bo5bo4b2o4bobo6bo$10b
2o6bo8bo2bo5bo$17b2o8b4o5bo$36bo$36bo$36bo$36bo$36bo$36bo$36bo$36bo$
36bo$36bo$36bob2o$36bo2bo$36b2o!

Boxes cannot be penetrated, except from the outside corners:
x = 47, y = 33, rule = B2ce3-ir4a5y/S2-c3-y
7bo$7bobo$7bobo$7bobo$8bo5$43b4o$42bo$43b3o2$20o$o18bo$o5bo2bo9bo$o9b
2obo3bobo$o3bo9b2o3bo$ob2o4bo2bobo3bobo$o4bo6b3ob2obo$o2bobo3bo2bo3bo
2bo$obo2bo5bo2bo4bo$ob3ob5obo2b3obo$obob3ob3ob3o4bo$ob2obo2bob2obo5bo$
obo3b2ob3o2b3o2bo$o3bo3b2o3b4o2bo$obo6b3o3bo3bo$o2bo2bob4o2bo4bo$o2bob
3ob3obo3bobo$ob3obo2bob2o4bobo$o18bo$20o!

Oscillators
Here are the known oscillators:
x = 114, y = 450, rule = B2ce3-ir4a5y/S2-c3-y
16bo2bo2bo4bo4bo3bo5bo4bo11bo5b2o4b2o3b3o4bo5bo6b2o4b5o2b2o$17bo2bo2bo
7bo10bo9bobo9bobo5bo2bo8b2o3bobo4bobo3bo6bobo$27bo8bobo2bobo3b2o5bo4bo
bo4bo2bo7bo3bobo5bo2b2o2bo5bo2bo3bo$22bo46b2o5bo7b2o3bobo4bobo3bobo4bo
bobo$23bo24bo5bo6bo21bo5bo6b2o4bo6bo$109bobo$16bo2bo2bo86b2o$17bo2bo2b
o2$16bo10b7o$17bo8bo$28bo3bo$16bo2bo2bo4bo2bobo$17bo2bo2bo7b2o7$16bo2b
o2bo5b4o4b4o$17bo2bo2bo3bo7bo3bo$30bo8bo$22bo4bo7bo3bo$23bo4b4o4b4o2$
16bo2bo2bo$17bo2bo2bo2$22bo$23bo2$16bo2bo2bo$17bo2bo2bo7$16bo5bo6bo7b
3o16bo$17bo5bo12bo7bo3b2o15bobo9bobo5bobo7bo3bobo7bobo$27bobo9bo3bo5bo
4bobo29bo6b2o7b2o$16bo5bo13b3o4b2o3bo3b2o11bobo7bo3bo6bo2b2o4bo3bobo7b
3o$17bo5bo3bobo24bobo33bo$65bobo7bo3bo6bo3bo18b3o$16bo2bo2bo6bo26bo$
17bo2bo2bo41bobo7bobo31bobo2$22bo$23bo2$22bo5bob4o3bo$23bo2b2o4bo2bo2b
2o$28bob4o3bo6$16bo2bo2bo3b11o4b6o$17bo2bo2bo2bo9bo$26bo9bo3bo6bo$16bo
9bob2obob2obo3bo6bo$17bo8bobobobobobo2bo2bo2bo2bo$26bo3bobo3bo$16bo2bo
2bo3bo9bo$17bo2bo2bo2b11o2$22bo$23bo2$16bo2bo2bo$17bo2bo2bo7$16bo2bo2b
o6bo11bo9b2o9b3o4b3o9b2o5bo8bo$17bo2bo2bo27bo12bo6bo10bo17bo$29bo11bo
10bo9bo6bo11bo6bobo6bo3bo$16bo45bo6bo21bo$17bo11bo11bo10bobobobo3bo6bo
5bobobobo5b5o4b7o$62bo6bo$16bo2bo2bo6bo5bobobobo10bo9bo8bo15bo8bo$17bo
2bo2bo27bo12bo4b3o$51b2o9b3o22bo8bo$16bo5bo$17bo5bo2$16bo2bo2bo$17bo2b
o2bo7$16bo2bo2bo$17bo2bo2bo2bob6obo$26bo8bo$22bo4bo6bo$23bo3bobo2bobo
2$22bo$23bo2$22bo$23bo2$22bo$23bo7$16bo2bo2bo4b2o7bobo$17bo2bo2bo3b2o$
34bo3bo8bobobo14bobobo$16bo5bo5b2o$17bo5bo4b2o4bobobo8bo5bo10bo7bo2$
16bo2bo2bo13bobo8bobobo12bo7bo$17bo2bo2bo$47bo16bo7bo$16bo5bo$17bo5bo
25bobo12bo7bo2$16bo2bo2bo41bo7bo$17bo2bo2bo$64bo7bo2$64bo7bo2$66bobobo
12$11bo4bo2bo2bo7bo10bo$12bo4bo2bo2bo$28bobo8bobo$11bo4bo5bo$12bo4bo5b
o4bobo8bo2$11bo4bo5bo5bobo8bobobo$12bo4bo5bo$39bobobo$11bo4bo5bo$12bo
4bo5bo2$11bo4bo2bo2bo$12bo4bo2bo2bo7$11bo4bo2bo2bo$12bo4bo2bo2bo2$11bo
10bo$12bo10bo2$11bo4bo2bo2bo$12bo4bo2bo2bo3bobobobobobobobo2$11bo4bo
10bobobobobobobobo$12bo4bo2$11bo4bo2bo2bo$12bo4bo2bo2bo7$11bo4bo5bo8bo
14bo$12bo4bo5bo33bobo$31bo14bo11bo$11bo4bo5bo35bo$12bo4bo5bo7bo14bo2$
11bo4bo2bo2bo8bo14bo10bob6obo$12bo4bo2bo2bo33bo8bo$31bo14bo11bo6bo$11b
o10bo35bobo2bobo$12bo10bo7bo14bo2$11bo10bo23bo$12bo10bo$46bo6$11bo4bo
2bo2bo$12bo4bo2bo2bo8bobo$33bo$11bo4bo14bo3bo$12bo4bo$31bo3bo$11bo4bo
2bo2bo$12bo4bo2bo2bo9bo2$11bo4bo5bo10bo$12bo4bo5bo$31bo3bo$11bo4bo2bo
2bo$12bo4bo2bo2bo7bo3bo$33bo$32bobo5$11bo4bo2bo2bo8bo$12bo4bo2bo2bo6b
2o$31bo$11bo4bo5bo7b2o$12bo4bo5bo7bo2$11bo4bo2bo2bo$12bo4bo2bo2bo2$11b
o4bo5bo$12bo4bo5bo2$11bo4bo2bo2bo$12bo4bo2bo2bo7$5bo2bo2bo4bo5bo$6bo2b
o2bo4bo5bo5bo2bo$27bobob2o$11bo4bo5bo6bobo$12bo4bo5bo3bobob2o$29bo2bo$
5bo2bo2bo4bo2bo2bo$6bo2bo2bo4bo2bo2bo2$5bo16bo$6bo16bo2$5bo2bo2bo10bo$
6bo2bo2bo10bo7$5bo2bo2bo4bo2bo2bo14bobo$6bo2bo2bo4bo2bo2bo$37bobo$11bo
4bo5bo$12bo4bo5bo13bobo2$5bo2bo2bo4bo2bo2bo14bobo$6bo2bo2bo4bo2bo2bo$
37bobo$5bo10bo5bo$6bo10bo5bo13bobo2$5bo2bo2bo4bo2bo2bo14bobo$6bo2bo2bo
4bo2bo2bo$37bobo2$37bobo2$37bobo2$37bobo2$37bobo8$5bo2bo2bo4bo2bo2bo9b
3o$6bo2bo2bo4bo2bo2bo7bo$32b3o$11bo4bo5bo$12bo4bo5bo4bo$27bobo$5bo2bo
2bo4bo5bo4bobo$6bo2bo2bo4bo5bo3bobo2$11bo4bo5bo$12bo4bo5bo2$5bo2bo2bo
4bo2bo2bo$6bo2bo2bo4bo2bo2bo5$50bobo$50bobo$50bobo$51bo2$45b3o$48bo$
45b3o5$5bo2bo2bo4bo2bo2bo$6bo2bo2bo4bo2bo2bo2$11bo4bo5bo4bob3o$12bo4bo
5bo2b2ob2o$27b2ob2o$5bo2bo2bo4bo2bo2bo5b2o$6bo2bo2bo4bo2bo2bo5bobo2$
11bo4bo5bo$12bo4bo5bo2$5bo2bo2bo4bo2bo2bo$6bo2bo2bo4bo2bo2bo7$5bo2bo2b
o4bo2bo2bo12bo$6bo2bo2bo4bo2bo2bo$35bo$5bo16bo$6bo16bo11bo2$5bo2bo2bo
4bo2bo2bo12bo$6bo2bo2bo4bo2bo2bo$35bo$5bo5bo4bo$6bo5bo4bo17bo2$5bo2bo
2bo4bo2bo2bo12bo$6bo2bo2bo4bo2bo2bo$35bo2$35bo2$35bo12$5bo2bo2bo4bo2bo
2bo$6bo2bo2bo4bo2bo2bo6b3obo5bo$30b2obo6b2o$11bo10bo6bo3bo2bo3bo$12bo
10bo6b2obo6b2o$30b3obo5bo$11bo4bo2bo2bo$12bo4bo2bo2bo2$11bo4bo$12bo4bo
2$11bo4bo2bo2bo$12bo4bo2bo2bo7$o4bo2bo2bo4bo2bo2bo$bo4bo2bo2bo4bo2bo2b
o$43b3o$o10bo10bo18bo2bo$bo10bo10bo19b3o2$o4bo2bo2bo4bo2bo2bo$bo4bo2bo
2bo4bo2bo2bo2$o10bo4bo$bo10bo4bo2$o4bo2bo2bo4bo2bo2bo$bo4bo2bo2bo4bo2b
o2bo2$29bo2$28bobo$28b3o$28bobo13$73bobo$73b3o$73bobo2$74bo11$58b3o$
59bo2bo$58b3o!

Not shown are the large amounts of single replicator-hasslers, here is one p60 example:
x = 28, y = 3, rule = B2ce3-ir4a5y/S2-c3-y
o4b3o19bo$b2obo3bo16b2o$o4b3o19bo!

And also the 'repbox' oscillators, like this p1008 example:
x = 261, y = 7, rule = B2ce3-ir4a5y/S2-c3-y
261o$o259bo$o5b2o252bo$o5bo253bo$o5b2o252bo$o259bo$261o!

Unfortunately no pattern is yet known that allows the replicator to succeed, and would lead to arbitrarily high periods
Spaceships
All speeds between c/2 and c/3 are impossible, like B2-a/S12, unless you increase the total period.
Natural
Natural spaceships exist for speeds c/2, 3c/8, c/4, and c/4 diagonal:
x = 160, y = 30, rule = B2ce3-ir4a5y/S2-c3-y
bo5bo6bo6bobo4bob2obo3bo6bo6bo4bobo9bo6bob2obo4bob2obo4bob2obo9bobo11b
o8bo8bo2bo8bob2o$obo2b2ob2o2b2ob2o2b7o2b2o2b2o2bobo4bobo4bobo3b3o7b2ob
2o4b2o2b2o4b2o2b2o4b2o2b2o9b3o10bobo6bobo5bobo3b3o4bo3b2o$obo2bo3bo2bo
3bo2bo5bo2bo4bo2bobo4bobo4bobo3bobo6bo5bo3bo4bo4bo4bo4bo4bo9bobo10bobo
13b2obo5bo5b3obo$obo2bobobo2bobobo2bo2bo2bo2bo4bo2bobo4bobo4bobo5bobob
o2bo5bo3bo4bo4bo4bo4bo4bo9b3o10bobo6bobo5bobo5bo9b2o$2bo2bo3bo2bo3bo2b
obobobo2bo4bo2bo6bo6bo7bob3o2bo5bo3bo4bo4bo4bo4bo4bo9bobo11bo6bo3bo5b
2o6bo6bobo$16bo2bo3bo4bo4bo2bobobo2bobobo2bobobo5bobo2bobobobo3bo4bo4b
o4bo4bo4bo9bobo43bo$36bob3o2bob3o2bob3o4bo5bo5bo3b6o4bob2obo4bob2obo
23bo$36bobobo2bobobo2bobobo6bo3bo5bo13b2o2b2o4b2o2b2o9bobo10bobo31bo$
36bo3bo2bobo4bo3bo10bo5bo13bo4bo4bo4bo22bobo$37bo2bo2bo2bo3bo3bo10bo5b
o13bo4bo4bo4bo9bobo10bobo$43bo21bo2bo2bo13bob2obo4bo4bo23bo$43bo21bobo
bobo13bo4bo4bo4bo$65bobobobo13b6o4bob2obo$65bobobobo23b2o2b2o$65bo5bo
23bo4bo$65bobobobo23bo4bo$95bob2obo$95bo4bo3bobobobobobobobo$95b6o11$
123bobo!

Unnatral
Ntzfind acted up, finding mostly wicks for c/2. It did, however, find a 2c/4 spaceship, a c/4, and a c/6:
x = 40, y = 41, rule = B2ce3-ir4a5y/S2-c3-y
3bo10bo4bo10bo6bo$2bobo7bo2bo2bo2bo6bo3bo2bo3bo$2bobo8bobo2bobo8b3o4b
3o$13b3o2b3o8bobo4bobo$2o3b2o6bo6bo8bobo4bobo$o2bo2bo4bobobo2bobobo$ob
obobo3b2o3bo2bo3b2o$2bobo4bo5bo2bo5bo4bobo4bobo$bo3bo3bobo10bobo5bo6bo
$13bobo2bobo$12b2o2b2o2b2o6bo3bo2bo3bo$30bo6bo$10b2o3bo2bo3b2o5bo2bo2b
o2bo$32bo2bo$14bo4bo9bo2bo2bo2bo$9b2ob2o6b2ob2o4bo3b2o3bo$9b2o2bo6bo2b
2o3bobobo2bobobo$15bo2bo11bobo2bobo$12bob6obo7bo8bo$10b2o2b2o2b2o2b2o
5bobo4bobo$10b5o4b5o4bo2bo4bo2bo$13b2o4b2o7bo2bo4bo2bo$13b2o4b2o$12bo
3b2o3bo7bo8bo$13bo2b2o2bo$9b3obo6bob3o$9bo3bobo2bobo3bo$10bob2o6b2obo$
11b2o8b2o$10bo3b2o2b2o3bo$9b3o3bo2bo3b3o$9bo5bo2bo5bo$15b4o$10bo12bo$
13bo2b2o2bo$9b5o6b5o$9bo3bo6bo3bo$9bo4bo4bo4bo$11b2o8b2o2$11b2o8b2o!

Linear Growth
There are many forms of linear growth, but we will start off with the simplest type:
Wickstrechers
There are natural single and double line wickstrechers at c/2:
x = 8, y = 40, rule = B2ce3-ir4a5y/S2-c3-y
6o$6bo$bo2b2o$2bo3$7o$7bo$bo2b3o$2bo3$6o$bo4bo$2o2b2o3$2bo$bo2$6o$6bo$
2b4o2$3bo$4bo3$4o$bo2bo$4o3$6o$o5bo$o2bo2bo$o6bo$o2bo2bo$o5bo$6o!

Ntzfind gave me some more wickstrechers, including one for an p1 signal travelling up a line that I can't seem to stabilize. It may lead to omniperiodicity if there is a 90-degree turn (which is unlikely):
x = 129, y = 249, rule = B2ce3-ir4a5y/S2-c3-y
4bo8bo4bo7bo7bo12bo4bo14bo4bo13bo6bo11bo4bo$3bobo5bo2bo2bo2bo4bo9bo9bo
2bo2bo2bo10bo2bo2bo2bo9bo3bo2bo3bo9bo4bo$3bobo6bobo2bobo5bob3ob3obo10b
obo2bobo12bobo2bobo11b3o4b3o8b2obo2bob2o$12b3o2b3o5bobo5bobo10b3o2b3o
12b3o2b3o11bobo4bobo7bo10bo$b2o3b2o6bo2bo7b3o5b3o12bo2bo14bo6bo11bobo
4bobo12b2o$bo2bo2bo36b3obo2bob3o8bobobo2bobobo31b2o$bobobobo5bo4bo8bo
5bo9bo4bo2bo4bo6b2o3bo2bo3b2o24b2o4b2o4b2o$3bobo21b3ob3o9bo2bobo2bobo
2bo5bo5bo2bo5bo7bobo4bobo6bobo8bobo$3bobo8b4o8bo7bo8bob2obo2bob2obo5bo
bo10bobo8bo6bo7bo4bo2bo4bo$3bobob2o5bo2bo8bo7bo5b2obobo2bo2bo2bobob2o
6bobo2bobo27bobo2bo2bo2bobo$3bobo2bo5bo2bo5b2obo7bob2o2bo2bo4bo2bo4bo
2bo5b2o2b2o2b2o9bo3bo2bo3bo5bo2b3o2b3o2bo$2obob2o7b4o5bo2bo7bo2bo4b2o
4bo2bo4b2o28bo6bo7bo12bo$o2bo21b2o7b2o27b2o3bo2bo3b2o8bo2bo2bo2bo6bobo
8bobo$2b2o43bob2obo35bo2bo9b3o8b3o$47bo4bo14bo4bo12bo2bo2bo2bo$47b2o2b
2o9b2ob2o6b2ob2o7bo3b2o3bo9bob4obo$62b2o2bo6bo2b2o6bobobo2bobobo4b5ob
4ob5o$68bo2bo14bobo2bobo6b2o2bo6bo2b2o$65bob6obo10bo8bo9bobo2bobo$63b
2o2b2o2b2o2b2o8bobo4bobo7bo3bo2bo3bo$63b5o4b5o7bo2bo4bo2bo4bo2bo2bo2bo
2bo2bo$66b2o4b2o10bo2bo4bo2bo4bo14bo$66b2o4b2o26bob2obo4bob2obo$65bo3b
2o3bo10bo8bo5bob2obo4bob2obo$66bo2b2o2bo26bob2obo4bob2obo$62b3obo6bob
3o8b2o4b2o6bob2obo4bob2obo$62bo3bobo2bobo3bo8b8o6bo2bobo4bobo2bo$63bob
2o6b2obo8bo3b2o3bo5bob2o8b2obo$64b2o8b2o9b4o2b4o5bobo3bo2bo3bobo$63bo
3b2o2b2o3bo8bobo4bobo5bobob3o2b3obobo$62b3o3bo2bo3b3o7bo8bo5bob5o2b5ob
o$62bo5bo2bo5bo7bobo4bobo5bob2o8b2obo$68b4o10b2obo2b4o2bob2o3b2obo6bob
2o$63bo12bo5bo2bo8bo2bo3b2ob2o4b2ob2o$66bo2b2o2bo10b2o8b2o5b4o6b4o$62b
5o6b5o23bob2o6b2obo$62bo3bo6bo3bo25b2o6b2o$62bo4bo4bo4bo22bo4bo4bo4bo$
64b2o8b2o$101bo4bo2bo4bo$64b2o8b2o25bobo2bo2bo2bobo$101bobob2o2b2obobo
$66bo6bo24b2obobo3b2o3bobob2o$66bobo2bobo24bo2bobo8bobo2bo$66bob4obo
26b2obo2bo2bo2bob2o$66bo6bo29bo8bo$66bobo2bobo29bo8bo$69b2o32bob2o2b2o
bo$64bo3b4o3bo27bo2bo2bo2bo$62b7o2b7o25b2o6b2o$62bobo3bo2bo3bobo$62bo
5bo2bo5bo$62bo4b2o2b2o4bo$62bo4b2o2b2o4bo$62bo3bobo2bobo3bo$62bobob3o
2b3obobo$62bob4o4b4obo$62bo14bo$62bo14bo$65bo8bo$64bo10bo$63b3obo4bob
3o$63bo2b8o2bo$63bobo8bobo$63bobo3b2o3bobo$63bobob2o2b2obobo$63bobo8bo
bo$63bobob2o2b2obobo$60b2obobob2o2b2obobob2o$60bo2bobob2o2b2obobo2bo$
62b2obo8bob2o$63bobo8bobo$61bo3bo8bo3bo$61b2o2b10o2b2o27$7bo10bo12bo8b
o7bo6bo11bo9bo13bo15bo11bo6bo$7bo9bo14bo4b4obo6b2o2b2o10bo3bo5bo3bo9bo
3bo11bo3bo7bo3bo2bo3bo$3b2obobob2o5bob2o8b2obo4bo4bo4bo8bo9b3o7b3o11b
3o13b3o9b3o4b3o$2o2bobobobo2b2o2b2o2b2o4b2o2b2o5bo3bo4b2o6b2o9bobo7bob
o11bobo13bobo9bobo4bobo$o5bobo5bo2bo3b3o2b3o3bo2bo2b2o2bo5b2ob2ob2o10b
obo7bobo11bobo13bobo9bobo4bobo$o5bobo5bo2bo4b6o4bo3bo5bo6bo4bo$6bobo8b
o2bo8bo2bo5bobobo4bob6obo17bobobobo7bobobobo8b2o5b2o$3bo7bo5bob3o6b3ob
o7bobo23bobo5bo5bo7bo5bo9b7o7bobo4bobo$3bo3bo3bo5bob2ob6ob2obo6bo2bo5b
3o2b3o11bo4b4o3b4o3b4o3b4o5b4o3b4o6bo6bo$3b2o5b2o5bob2o8b2obo6bo2bo2b
2obobo2bobob2o13bo2bobobo2bo3bo2bobobo2bo5bo2bo3bo2bo$2bobobobobobo4bo
4b6o4bo7bobo2b2o2b2o2b2o2b2o6bo3bo2bo9bo3bo9bo6b4ob4o5bo3bo2bo3bo$2bob
o5bobo4bo4bo4bo4bo4b2obobo6b2o2b2o12bo4bo2bo3bo2bo3bo3bobo3bo3b4ob5ob
4o4bo6bo$3b2o5b2o5bob2obob2obob2obo7bobo6b2o2b2o11bobo3bo2bo3bo2bo4b3o
3b3o4bo5b3o5bo3bo2bo2bo2bo$17bo2bob2o2b2obo2bo7bobo4bo2bo2bo2bo8bob2o
3bobo5bobo8bo8bo5bobo5bo6bo2bo$3bo7bo5bo2bo2bo2bo2bo2bo6b2obo3b2o2bo2b
o2b2o6b2ob2o3bobob3obobo4bo7bo4bo2bo7bo2bo3bo2bo2bo2bo$4b3ob3o6bob3o6b
3obo5bobobo2bo4bo2bo4bo6bo2bo3bob2o3b2obo3bo3bobo3bo3bobo2b2ob2o2bobo
2bo4b2o4bo$6bobo8bo4b6o4bo7bobo7bo2bo10bo2bo4bobo5bobo3bo3bobo3bo3bobo
4bo4bobo2bobo6bobo$17bo4bo4bo4bo7bobo2b2obobo2bobob2o5bo2bo4bo9bo3bo2b
2ob2o2bo3bobo2bo3bo2bobo2bobo6bobo$5b2ob2o7bo14bo6b2obo5bobo2bobo8bo2b
o4bo9bo4bo2bobo2bo4bobo9bobo2bob2o4b2obo$17bo2bobo4bobo2bo5bobobo5bobo
2bobo8b2obo4bo9bo4bob2ob2obo4bobo9bobo2bobobo2bobobo$3b2o5b2o5bo2bo8bo
2bo7bobo4b2obo2bob2o10bo4b2o7b2o2bob4ob4obo2bob2o7b2obo2bobo6bobo$17bo
2b2o6b2o2bo7bobo3bobobo2bobobo9bo4bobo5bobo2bobo7bobo2bobobo5bobobo2bo
bo6bobo$3bo2bobo2bo5bo2bo8bo2bo6b2obo5bobo2bobo8bob2o4bo9bo2bob2o2bo2b
2obo2bobo9bobo2bobo6bobo$6bobo8bob5o2b5obo5bobobo5bobo2bobo8bobo5bo9bo
2bob2o5b2obo2bobo9bobo2bob2o4b2obo$3bo7bo5bo4b2o2b2o4bo7bobo4b2obo2bob
2o7bo7bo9bo3b3o5b3o3bobo9bobo2bobobo2bobobo$b2o4bo4b2o3bob4o4b4obo7bob
o3bobobo2bobobo6bo7b2o7b2o5b2o3b2o5bob2o7b2obo2bobo6bobo$bo2bo5bo2bo3b
4o8b4o6b2obo5bobo2bobo8bo7bobo5bobo7bobo7bobobo5bobobo2bobo6bobo$bob2o
2bo2b2obo4b3o8b3o6bobobo5bobo2bobo7bo8bo9bo7b3o7bobo9bobo2bobo6bobo$bo
2b7o2bo5b3o6b3o9bobo4b2obo2bob2o6b2o7bo9bo17bobo9bobo2bob2o4b2obo$bob
3o3b3obo6bobo4bobo10bobo3bobobo2bobobo5b2o7bo9bo5bobobobo5bobo9bobo2bo
bobo2bobobo$bo2bo2bo2bo2bo3bo2bobo4bobo2bo6b2obo5bobo2bobo7b2o7b2o7b2o
5bo5bo5bob2o7b2obo2bobo6bobo$bo4bobo4bo3bo2bobo4bobo2bo5bobobo5bobo2bo
bo10b2o4bobo5bobo5bo2bo2bo5bobobo5bobobo2bobo6bobo$bo5bo5bo3bobo2bo4bo
2bobo7bobo4b2obo2bob2o10bobo2bo9bo4b2o5b2o4bobo9bobo2bobo6bobo$b2o4bo
4b2o3bobo2bo4bo2bobo7bobo3bobobo2bobobo8b3o3bo9bo5b2o3b2o5bobo9bobo2bo
b2o4b2obo$b3o7b3o3bobo2bo4bo2bobo6b2obo5bobo2bobo10b3o3bo9bo3b4o3b4o3b
obo9bobo2bobobo2bobobo$2b3o5b3o4bo2bobo4bobo2bo5bobobo5bobo2bobo12bo3b
2o7b2o2bo2bo5bo2bo2bob2o7b2obo2bobo6bobo$3bo7bo5bobo2bo4bo2bobo7bobo4b
2obo2bob2o9b2o4bobo5bobo2bo11bo2bobobo5bobobo2bobo6bobo$2bo9bo4bo4bo4b
o4bo7bobo3bobobo2bobobo6bob2o4bo9bo2b4o5b4o2bobo9bobo2bobo6bobo$b2o9b
2o3bo4bo4bo4bo6b2obo5bobo2bobo10bo5bo9bo4b3o3b3o4bobo9bobo2bob2o4b2obo
$2bo9bo4bo4bo4bo4bo5bobobo5bobo2bobo7bo8bo9bo4bobo3bobo4bobo9bobo2bobo
bo2bobobo$2bo9bo4bo3b2o4b2o3bo7bobo4b2obo2bob2o8bo6b2o7b2o2b2o9b2o2bob
2o7b2obo2bobo6bobo$b2ob2o3b2ob2o3bo2bobo4bobo2bo7bobo3bobobo2bobobo6bo
7bobo5bobo2bobo7bobo2bobobo5bobobo2bobo6bobo$bo3bo3bo3bo3bo4bo4bo4bo6b
2obo5bobo2bobo8bo7bo9bo2bo11bo2bobo9bobo2bobo6bobo$b3obo3bob3o3bo4bo4b
o4bo5bobobo5bobo2bobo9bobo4bo9bo2bo11bo2bobo9bobo2bob2o4b2obo$b2o2bo3b
o2b2o3bo3b2o4b2o3bo7bobo4b2obo2bob2o15bo9bo2bo11bo2bobo9bobo2bobobo2bo
bobo$3o2bo3bo2b3o2bo2bobo4bobo2bo7bobo3bobobo2bobobo7bob2o3b2o7b2o2bo
11bo2bob2o7b2obo2bobo6bobo$o4bo3bo4bo2bo4bo4bo4bo6b2obo5bobo2bobo9bobo
4bobo5bobo2b2o9b2o2bobobo5bobobo2bobo6bobo$bo3bo3bo3bo3bo4bo4bo4bo5bob
obo5bobo2bobo9bo6bo9bo2bobo7bobo2bobo9bobo2bobo6bobo$b3o7b3o3bo3b2o4b
2o3bo7bobo4b2obo2bob2o8bo6bo9bo2bo11bo2bobo9bobo2bob2o4b2obo$2b3o5b3o
4bo2bobo4bobo2bo7bobo3bobobo2bobobo7bo6bo9bo2bo11bo2bobo9bobo2bobobo2b
obobo$7bo9bo4bo4bo4bo6b2obo5bobo2bobo9b2o5b2o7b2o2bo11bo2bob2o7b2obo2b
obo6bobo$5b2ob2o7bo4bo4bo4bo5bobobo5bobo2bobo9bobo4bobo5bobo2b2o9b2o2b
obobo5bobobo2bobo6bobo$2bo2b5o2bo4bo3b2o4b2o3bo7bobo4b2obo2bob2o8bo6bo
9bo2bobo7bobo2bobo9bobo2bobo6bobo$b3o7b3o3bo2bobo4bobo2bo13bobobo2bobo
bo7bo6bo9bo2bo11bo2bobo9bobo2bob2o4b2obo$2b2o3bo3b2o4bo4bo4bo4bo15bobo
2bobo9bo6bo9bo2bo11bo2bobo9bobo2bobobo2bobobo$2bo9bo4bo4bo4bo4bo15bobo
2bobo9b2o5b2o7b2o2bo11bo2bob2o7b2obo2bobo6bobo$5bo3bo7bo3b2o4b2o3bo14b
2obo2bob2o8bobo4bobo5bobo2b2o9b2o2bobobo5bobobo2bobo6bobo$5bo3bo7bo2bo
bo4bobo2bo13bobobo2bobobo7bo6bo9bo2bobo7bobo2bobo9bobo2bobo6bobo$3bobo
3bobo5bo4bo4bo4bo15bobo2bobo9bo6bo9bo2bo11bo2bobo9bobo2bob2o4b2obo$3b
3o3b3o5bo4bo4bo4bo32bo6bo9bo2bo11bo2bobo9bobo2bobobo2bobobo$4bobobobo
6bo3b2o4b2o3bo32b2o5b2o7b2o2bo11bo2bob2o7b2obo2bobo6bobo$bo2bo5bo2bo3b
o2bobo4bobo2bo32bobo4bobo5bobo2b2o9b2o2bobobo5bobobo2bobo6bobo$2b3o5b
3o4bo4bo4bo4bo32bo6bo9bo2bobo7bobo2bobo9bobo2bobo6bobo$4bo5bo6bo4bo4bo
4bo32bo6bo9bo2bo11bo2bobo9bobo2bob2o4b2obo$3bo7bo5bo3b2o4b2o3bo32bo6bo
9bo2bo11bo2bobo9bobo2bobobo2bobobo$3bo7bo5bo2bobo4bobo2bo32b2o5b2o7b2o
2bo11bo2bob2o7b2obo2bobo6bobo$17bo4bo4bo4bo32bobo4bobo5bobo2b2o9b2o2bo
bobo5bobobo$3bo2bobo2bo5bo4bo4bo4bo32bo6bo9bo2bobo7bobo2bobo9bobo$2b2o
2b3o2b2o4bo3b2o4b2o3bo32bo19bo11bo$4bo5bo6bo2bobo4bobo2bo32bo19bo11bo$
2o11b2o2bo4bo4bo4bo32b2o18bo11bo$3o2bo3bo2b3o2bo4bo4bo4bo32bobo17b2o9b
2o$2b3o5b3o4bo3b2o4b2o3bo32bo19bobo7bobo$2bo3bobo3bo4bo2bobo4bobo2bo
32bo19bo11bo$bo3bo3bo3bo3bo4bo4bo4bo32bo19bo11bo$o13bo2bo4bo4bo4bo32b
2o18bo11bo$5b5o7bo3b2o4b2o3bo32bobo17b2o9b2o$2b2o7b2o4bo2bobo4bobo2bo
32bo19bobo7bobo$2o2bobobobo2b2o50bo19bo11bo$65bo19bo11bo$2b3obobob3o
52b2o18bo11bo$o3bo5bo3bo50bobo17b2o9b2o$obo3bobo3bobo50bo19bobo7bobo$o
2bo2bobo2bo2bo50bo19bo11bo$4bob3obo54bo19bo11bo$bo3bobobo3bo51b2o18bo
11bo$4bobobobo54bobo17b2o9b2o$3b2obobob2o53bo19bobo7bobo$4bo2bo2bo54bo
19bo11bo$3b2o5b2o53bo19bo11bo$2bob2o3b2obo52b2o18bo11bo$7bo57bobo17b2o
9b2o$4bo5bo54bo19bobo7bobo$2bobo2bo2bobo52bo19bo11bo$65bo$65b2o$2bo2bo
3bo2bo52bobo$2bo3bobo3bo52bo$2b2o7b2o$3bo7bo$3bo7bo$2b2obo3bob2o$2bob
3ob3obo$2bo2bo3bo2bo$2b2obo3bob2o$7bo$6bobo$6bobo$3b2obobob2o$6bobo$6b
obo$5b2ob2o$4bobobobo$6bobo$6bobo$5b2ob2o$4bobobobo$6bobo$6bobo$5b2ob
2o$4bobobobo$6bobo$6bobo$5b2ob2o$4bobobobo$6bobo$6bobo$5b2ob2o$4bobobo
bo$6bobo$6bobo$5b2ob2o$4bobobobo$6bobo$6bobo$5b2ob2o$4bobobobo$6bobo$
6bobo$5b2ob2o$4bobobobo$6bobo$6bobo$5b2ob2o$4bobobobo$6bobo$6bobo$5b2o
b2o$4bob3obo!

It is also unlikely that anything can eat either of the wicks at a speed slower than c (besides an end-component to a natural 2c/8 shown above).
Guns
The simplest gun is a period 24 hassler that shoots those small 2c/4 gliders. It is shown along with a 2-stage eater:
x = 261, y = 39, rule = B2ce3-ir4a5y/S2-c3-y
30bo$30bo$29bobo4$o8b3o3bo3b3o$b2o5bo4bo3bo4bo$o8b3o3bo3b3o22$30bo$30b
o$29bobo3$259b2o$o8b3o3bo3b3o19b5o19b5o19b5o19b5o19b5o19b5o19b5o19b5o
19b5o21b2o$b2o5bo4bo3bo4bo23bo23bo23bo23bo23bo23bo23bo23bo23bo$o8b3o3b
o3b3o21b3o21b3o21b3o21b3o21b3o21b3o21b3o21b3o21b3o!

It can pair up with itself to create a p384 gun, which is sufficient to shoot that huge failed-red-ship! (In the bottom gun, removing the circled 'y' results in a 2-barreler):
x = 61, y = 187, rule = B2ce3-ir4a5y/S2-c3-y
50bobo$51bo$51bo20$51bo$50bobo$50bobo$50bobo$51bo2$51bo$50bobo3bo$50bo
bo4b2o$50bobo3bo$51bo13$o22b3o3b3o$b2o19bo3bobo3bo$o22b3o3b3o4$29bobo$
30bo$30bo20bo$51bo$50bobo5$50bobo$51bo$51bo10$48bobobobo6$48bobobobo7$
51bo$50bobo$50bobo$50bobo$51bo4bo$57b2o$56bo17$17bo5bo2$5bo11bo5bo7b3o
26bo$6b2o22bo3bo21bob2o$5bo11bo5bo7b3o20bo5bo2$17bo5bo2$34bobo$35bo$
23b3o9bo$21bo5bo2$20bo4bo2bo$20bo2b2o3bo$20bo4bo2bo2$21bo5bo$23b3o2$
30bobo$31bo$31bo2$12bobo3bobo$2bo24b3o19b3o3bo$2o8bo11bo2bo2bo24bo2b2o
$2bo24b3o21bo3bo$12bobo3bobo18$53bo$51b2o$53bo$46bobo$46b3o$46bobo2$
47bo3$47bo2$45bo3bo2$45bo3bo4$45bo3bo2$45bo3bo2$47bo8$46bobo$47bo$47bo
!

There's also a p48 gun (remove the left-most y for a 2-barreler):
x = 26, y = 9, rule = B2ce3-ir4a5y/S2-c3-y
6bo17bo$6bo17bo$5bobo15bobo4$o5b3ob3o$b2o2bo7bo$o5b3ob3o!

And a p240+96n that is three-barreled, again, removing the circled y-shaped p2 results in a 6-barreler:
x = 80, y = 12, rule = B2ce3-ir4a5y/S2-c3-y
12bo65bo$12bo65bo$11bobo63bobo$3b3o$bo5bo2$o2bo4bo15b3ob3o8bo$o3b2o2bo
14bo7bo$o2bo4bo15b3ob3o8bo2$bo5bo$3b3o!

Other
A dirty tethered rake made from the gun and the p24 gun mentioned earlier, and a 3c/8:
x = 38, y = 9, rule = B2ce3-ir4a5y/S2-c3-y
30bobo$31bo$31bo2$16bo16bo$2bo10b2o3b2o14bobo$2o12bo3bo18bo$2bo10b2o3b
2o14bobo$16bo16bo!

The 3c/8 gets dephased slightly, so it moves a bit faster. Here's another example, with the 3c/8 not getting dephased:
x = 38, y = 10, rule = B2ce3-ir4a5y/S2-c3-y
30bobo$31bo$31bo2$16bo$2bo10b2o3b2o13bo$2o12bo3bo15bobo$2bo10b2o3b2o
17bo$16bo17bobo$33bo!

Puffers and Rakes
p48 block puffer:
x = 52, y = 15, rule = B2ce3-ir4a5y/S2-c3-y
b3o$o2bo$8bo13b2ob2o8bobo8b2ob2o$b2o4bo9b2o2bo5bo17bo5bo$17b2o3b2ob2o
19b2ob2o$bo2$15bobo$15bobo13b4o$11b5obo11bo3bobo6b3o3b3o$11bo2b4o11b3o
bo7bo3bobo3bo$16bo12bobobo2bo5b3o3b3o$29bo5b2o$33bob2o$30bo3bo!

p48 2-cell osc puffer:
x = 63, y = 11, rule = B2ce3-ir4a5y/S2-c3-y
obo21bobo6bo19b3o3b3o$52bo3bobo3bo$28bo4bo19b3o3b3o2$20bo5bo3bo2$18bo
3bo5bo2$b2o2b3o12bo14b3o3b3o$b2obo3bobobo21bo3bobo3bo$5b3o14bobo10b3o
3b3o!

p48 duoplet puffer:
x = 98, y = 18, rule = B2ce3-ir4a5y/S2-c3-y
38bo2$16bo17b3obo$17bo16b2o3bo$37bo2b2o$36bo3bo23bo23bo$34b2o4bo3bo$4o
12bo17bobo2bo12bo3b5o3bo2b3ob2o7b2ob3o2bo2b3ob2o$16bo4bo13b2o2bo4bo10b
o17bo5bo17bo$b3o9bo6b2o13b6o11bo3b5o3bo2b3ob2o7b2ob3o2bo2b3ob2o$b3o12b
o2bobo14bo3bo$o10bo6b2obo13b3o2bo5b2o6bo9bo23bo$2o8bo6b3o15bo3bo4b2obo
$11bo5bo4bo15b2o7bo4bo3bo10b2ob2o$10bobo4bo2bo16bo4bobo2bo18bo5bo$13bo
3bo3b2o23bo5bo3bo3bo6b2ob2o2$54bo5bo!

Most of the puffers are very messy, and not very useful without careful taming.
There's also a puffer that travels at 3c/8, shown here:
x = 74, y = 10, rule = B2ce3-ir4a5y/S2-c3-y
2o$bo$2o3$69bo$70bobo$73bo$70bobo$69bo!

And a related puffer:
x = 27, y = 5, rule = B2ce3-ir4a5y/S2-c3-y
2o20bo$bo21bobo$2o24bo$23bobo$22bo!

There's also a c/2 puffer that travels at c/2 p58, a weird period considering it's still based off the darn replicator:
x = 11, y = 9, rule = B2ce3-ir4a5y/S2-c3-y
b3o3b3o$o3bobo3bo$b3o3b3o4$b3o3b3o$o3bobo3bo$b3o3b3o!

It's begging to be turned into a fully p58 (or any multiple thereof) spaceship, but I have no clue how to, this is as far as I got:
x = 118, y = 41, rule = B2ce3-ir4a5y/S2-c3-y
70bobo$39b2o29b2o$7b3ob3o25b2o27b2obo$6bo7bo52b2o$7b3ob3o6bobo27b2o15b
o3bo8bo25b2o$49b4o15b3ob2o6b2o24b2o$9bobo8bobo6bobo16b2obo18bo3bo7bo
24b2o$47bo2b2obo17bo3bo26b3o2b2o$7b3ob3o6bobo23b3obobo17bobo3bo3bo21bo
4b2o$6bo7bo32bob2obo16b3o4bo2bo2bo19b2o$7b3ob3o35bo2bo17b4o8bo20bo4bo$
48b2o2bo22bo2bo3b2o19b4o$47bobobo28b4o$46bo4bo23bo7bo$46b2o28bo4bobo
23b3o$45bo5bo24bo4bobo23bo2bo$46b2o29b3o27b2obo$6b3ob3o21bo8bo2b2o3bo
57bo$5bo7bo19bo8bo5bo2bo30b2o$6b3ob3o6bobo11b3o13bobo$49b2o$8bobo8bobo
6bobo26bobo26bobo26bobo2$6b3ob3o6bobo50b3o$5bo7bo55b3o3bo19bo7bobo$6b
3ob3o57bo5bo16b2o3b2o$72bo20b2o$68bo2b3o3bo13b2o$60bobo3b2obobo2bo2bo
8bob2obo4bo$31bo10bo23b4obo14bobob2o3bob3o$32bo5bo2b3o3bo14bo3bo3bo5bo
13b2o$b3ob3o22b3o4b2o8bo18bob3obo2bo18bo$o7bo32bob3obo23bo4b2o14bo3b3o
$b3ob3o6bobo21bo4bobobo13b5o4bo5b2o11b6ob3o$36b2ob2o6bo14bo6b3o6bo10bo
2bo$3bobo8bobo6bobo10b4o12bobo6b3o2b4obob2o2bo11bob2o$43bo2bo26bo15b2o
$b3ob3o6bobo26b4o46bo$o7bo33bo2b2o45bo$b3ob3o25b2o9bo17b2o28bobo$33b2o
27b2o!

No clean rakes are known (I may have missed some in the huge heap of yl48 and yl96 and other multiples), besides this side-3c/8 rake:
x = 204, y = 51, rule = B2ce3-ir4a5y/S2-c3-y
108bo10bo3bo$106b2obo13bo$104b2o3bo9b2o13bo$104bo4bo8bobo12bo3b2o$105b
3o26bo3bo18bo$107bo12bo34b3o$134bo2bo17b4o7b2o$156b3o7b2o29bo$136bo19b
ob2o19bobo7b3o4b3o$137bo18bo2bo18bo9bo2bo7bo$149bobo2bo2bo20bo2bo6bo6b
o2b2o$157bobo17bo9bo12bo$149bobo2bo2bo20bo2bo6bo6bo2b2o$137bo18bo2bo
18bo9bo2bo7bo$136bo19bob2o19bobo7b3o4b3o$156b3o7b2o29bo$134bo2bo17b4o
7b2o$120bo34b3o$134bo3bo18bo$92b3o23bobo12bo3b2o$90bo3bo24b2o13bo$88bo
2b2obo8b5o15bo$91b2o11bo4bo9bo3bo$88b3o2bobo10bo$28b4o39bobo14bobo18bo
$28b2o2bo8b2o13b2o13bo21bobo8bo3bo13bo3bo$27bo13b2o13b2o13b3o14bo15bob
o19bo$27b2o2b3o14b5o69b2o13bo$27b2o3b2o13b2o4bo67bobo12bo3b2o$28bo2bob
o14bo3bo84bo3bo18bo$48b2o2bo70bo34b3o$27bo2bobo11bo16b2o10bo63bo2bo17b
4o7b2o$17b3o13bo10b2o2bo12b2o11b2o8bo15b2o57b3o7b2o29bo$17bo11b3obo9bo
22b3o3bobob3obo2b4o8b2o3b3o36bo19bob2o19bobo7b3o4b3o$17bo12b3o2bo9b4o
18bobo2bo7bo7bo6b2o5bo37bo18bo2bo18bo9bo2bo7bo$18bob3o10bobo7bob2o17b
2obobo2bo3bo3bo5b2o6b2o6b2o48bobo2bo2bo20bo2bo6bo6bo2b2o$18bobobo11bo
11bobo4bobo9bo3bo2bo2bobob2ob2o2b2o7b2o4b2o57bobo17bo9bo12bo$20bobo20b
ob2o17b2obobo2bo3bo3bo5b2o6b2o6b2o48bobo2bo2bo20bo2bo6bo6bo2b2o$19bo
25b4o18bobo2bo7bo7bo6b2o5bo37bo18bo2bo18bo9bo2bo7bo$43bo22b3o3bobob3ob
o2b4o8b2o3b3o36bo19bob2o19bobo7b3o4b3o$44b2o2bo12b2o11b2o8bo15b2o57b3o
7b2o29bo$44bo16b2o10bo63bo2bo17b4o7b2o$30bo17b2o2bo57bo12bo34b3o$5o26b
2o15bo3bo55b3o26bo3bo18bo$5bo7b2o14bo3bo13b2o4bo53bo4bo8bobo12bo3b2o$
5bo7b3obo11b3o16b5o54b2o3bo9b2o13bo$o2b3o10b2o14bo76b2obo13bo$18bo92bo
10bo3bo$14bo2bo$14bo2bo$15bo!

Breeders
Here's a 3c/8-puffer based breeder, made by two of the 15c/30 spaceships:
x = 149, y = 36, rule = B2ce3-ir4a5y/S2-c3-y
112b2o$112b2o27bobo$126b2o8b2o3bobo$125bobo7bo8bo$115bo9b2o8bo2bo3bobo
$115bo8bo9bo2bo4bo2bo$115bo9b2o8bo2bo3bobo$125bobo7bo8bo$126b2o8b2o3bo
bo$112b2o27bobo$112b2o15$2o113b2o$2o27bobo83b2o27bobo$14b2o8b2o3bobo
97b2o8b2o3bobo$13bobo7bo8bo95bobo7bo8bo$3bo9b2o8bo2bo3bobo85bo9b2o8bo
2bo3bobo$3bo8bo9bo2bo4bo2bo84bo8bo9bo2bo4bo2bo$3bo9b2o8bo2bo3bobo85bo
9b2o8bo2bo3bobo$13bobo7bo8bo95bobo7bo8bo$14b2o8b2o3bobo97b2o8b2o3bobo$
2o27bobo83b2o27bobo$2o113b2o!

There are two natural breeders, too:
x = 16, y = 16, rule = B2ce3-ir4a5y/S2-c3-y
booooboboboobboo$
ooooobbbbbobobob$
obboboobbobboobo$
bbbboobobobbboob$
booobbbobobbboob$
boboooooobooooob$
ooboboobbobooobo$
bbooobbobbboboob$
oboboobooboooobo$
bobbboboboooobbb$
obboboobboobbbbb$
boboboboobbobbob$
obbbboboobbbbbbo$
bbobboboboboboob$
bobbboobobbboboo$
boobboobobboobob!

x = 16, y = 16, rule = B2ce3-ir4a5y/S2-c3-y
ooobboooboobobbo$
boobbobbbbobbbbo$
bbobooobbobobboo$
oobbbobobooboobb$
obbbbbobbbbbobbo$
oboboobbooobbboo$
ooooooboobbbbobo$
oboboooobbbooobo$
oooboooboboobobb$
ooobbobbbboobooo$
bbbboboboobobbob$
boobboobbobobooo$
obbbbobbooobobbo$
oobbboobboobobbb$
obooobobbobobobo$
bbbbbooobobboobb!

They aren't very clean, and I'd love to see a breeder that's completely clean.
The Sawtooth
Here it is, the current extent of the engineering in this rule. Sawtooth 186 edited from 184 because BlinkerSpawn pointed out on the discord that the repeating cycle has an extra two cells:
x = 132, y = 128, rule = B2ce3-ir4a5y/S2-c3-y
84bobo$50bobo32bo$51bo33bo$51bo9$82bobobobo$48bobobobo5$82bobobobo$48b
obobobo6$85bo$51bo32bobo$50bobo31bobo$50bobo31bobo$50bobo27bo4bo$51bo
4bo21b2o$57b2o21bo$56bo16$113bo5bo$17bo5bo$76bo26b3o7bo5bo11bo$5bo11bo
5bo7b3o26bo16b2obo21bo3bo22b2o$6b2o22bo3bo21bob2o16bo5bo20b3o7bo5bo11b
o$5bo11bo5bo7b3o20bo5bo$113bo5bo$17bo5bo$100bobo$34bobo64bo$35bo65bo$
35bo3$25bo$23b2o64bobo3bo$25bo70bobo$99bo$96bobo$90bo4bo$90bo$30bobo
56bobo$31bo$31bo2$12bobo3bobo$2bo24b3o19b3o3bo$2o8bo11bo2bo2bo24bo2b2o
$2bo24b3o21bo3bo$12bobo3bobo18$53bo$51b2o$53bo$46bobo$46b3o$46bobo2$
47bo3$47bo2$45bo3bo2$45bo3bo4$45bo3bo2$45bo3bo2$47bo8$46bobo$47bo$47bo
!

Here's a variant that is only barely different, yet also has a weirder growth rate. I don't know if it counts as a sawtooth:
x = 132, y = 128, rule = B2ce3-ir4a5y/S2-c3-y
84bobo$50bobo32bo$51bo33bo$51bo9$82bobobobo$48bobobobo5$82bobobobo$48b
obobobo6$85bo$51bo32bobo$50bobo31bobo$50bobo31bobo$50bobo27bo4bo$51bo
4bo21b2o$57b2o21bo$56bo16$113bo5bo$17bo5bo$76bo26b3o7bo5bo11bo$5bo11bo
5bo7b3o26bo16b2obo21bo3bo22b2o$6b2o22bo3bo21bob2o16bo5bo20b3o7bo5bo11b
o$5bo11bo5bo7b3o20bo5bo$113bo5bo$17bo5bo$100bobo$34bobo64bo$35bo65bo$
35bo3$25bo$23b2o64bobo2bo$25bo69bobo$98bo$95bobo$90bo3bo$90bo$30bobo
56bobo$31bo$31bo2$12bobo3bobo$2bo24b3o19b3o3bo$2o8bo11bo2bo2bo24bo2b2o
$2bo24b3o21bo3bo$12bobo3bobo18$53bo$51b2o$53bo$46bobo$46b3o$46bobo2$
47bo3$47bo2$45bo3bo2$45bo3bo4$45bo3bo2$45bo3bo2$47bo8$46bobo$47bo$47bo
!


-

(Can someone put together all 2G collisions?)
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y
User avatar
drc
 
Posts: 1665
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: B2ce3-ir4a5y/S2-c3-y

Postby drc » October 22nd, 2017, 10:40 pm

1-cell reduction to the sawtooth using the 2-stage eater's 3-cell phase, instead of the 4-cell normal eater:
x = 132, y = 128, rule = B2ce3-ir4a5y/S2-c3-y
84bobo$50bobo32bo$51bo33bo$51bo9$82bobobobo$48bobobobo5$82bobobobo$48b
obobobo6$85bo$51bo32bobo$50bobo31bobo$50bobo31bobo$50bobo27bo4bo$51bo
4bo21b2o$57b2o21bo$56bo16$113bo5bo$17bo5bo$76bo26b3o7bo5bo11bo$5bo11bo
5bo7b3o26bo16b2obo21bo3bo22b2o$6b2o22bo3bo21bob2o16bo5bo20b3o7bo5bo11b
o$5bo11bo5bo7b3o20bo5bo$113bo5bo$17bo5bo$100bobo$34bobo64bo$35bo65bo$
35bo3$25bo$23b2o64bobo3bo$25bo70bobo$99bo$96bobo$95bo2$30bobo$31bo58bo
bo$31bo$90bo$12bobo3bobo$2bo24b3o19b3o3bo$2o8bo11bo2bo2bo24bo2b2o$2bo
24b3o21bo3bo$12bobo3bobo18$53bo$51b2o$53bo$46bobo$46b3o$46bobo2$47bo3$
47bo2$45bo3bo2$45bo3bo4$45bo3bo2$45bo3bo2$47bo8$46bobo$47bo$47bo!

BlinkerSpawn pointed out on the discord that this would be actually sawtooth 185, and the other sawtooth 186. Above is the canonical representation
I can't figure out how to make it any smaller by replacing the y's catalyzing the three extra gliders in the p384 gun with a 2-stage eater,
There also might be a smaller sawtooth by this mechanism:
x = 116, y = 79, rule = B2ce3-ir4a5y/S2-c3-y
68bobo$69bo$69bo10$66bobobobo6$66bobobobo5$50bobo$51bo$51bo17bo$68bobo
$68bobo$68bobo$64bo4bo$62b2o$64bo4$48bobobobo6$48bobobobo7$51bo45bo5bo
$50bobo$50bobo7bo26b3o7bo5bo11bo$50bobo8b2obo21bo3bo22b2o$51bo4bo3bo5b
o20b3o7bo5bo11bo$57b2o$56bo40bo5bo2$84bobo$85bo$85bo6$98bo2$12bo5bo79b
o2$o11bo5bo7b3o$b2o22bo3bo$o11bo5bo7b3o45bo$74bo$12bo5bo33bo20bobo2$
29bobo19bo$30bo$30bo20bo$51bo$50bobo!

Growing spaceship:
x = 84, y = 19, rule = B2ce3-ir4a5y/S2-c3-y
56b3o$59bo$54b5o3$78bo2bo$31b11o18bo2bo6bo2bo7bo$b2o28bo9bo17bo9bo3bo
4bo3bo$o3bo26bo2bo6bo17bo5bo3bo2bo4bo4bo$o2bo27bo9bo16bo9bo2bo11bo$o3b
o26bo2bo6bo17bo5bo3bo2bo4bo4bo$b2o28bo9bo17bo9bo3bo4bo3bo$31b11o18bo2b
o6bo2bo7bo$78bo2bo3$54b5o$59bo$56b3o!

There's probably a 6G-8G synthesis of the statorless hexapole in here:
x = 11, y = 7, rule = B2ce3-ir4a5y/S2-c3-y
5o$bobo4$7bobo$6b5o!

Apple Bottom found a c/25 diagonal spaceship!:
x = 9, y = 9, rule = B2ce3-ir4a5y/S2-c3-y
8bo$b2o$b2o5bo2$7bo$6bo$5bo$4bo$obo!

And some new clean puffers came out of soup:
x = 15, y = 26, rule = B2ce3-ir4a5y/S2-c3-y
b7o$o7bo$2bo3bobo$bo4bo2bo$6bobo$8bo$5b3o14$3b12o$2b2o3bo5bo$o3bo3bo5b
o$obo5bo5bo$bobo3bo5bo$5b10o!

Some new c/2 spaceships appeared, too:
x = 27, y = 54, rule = B2ce3-ir4a5y/S2-c3-y
5b3o$obo5bo$4b4o$obo$obo$4b4o$obo5bo$5b3o4$10bo2bo$b2o2bo7bo$bo3bo4bo
3bo$o3bo4bo4bo$15bo$o3bo4bo4bo$bo3bo4bo3bo$b2o2bo7bo$10bo2bo5$2bo2bo$b
o3bo$o$5bo11b3o3b3o$bo14bo3bobo3bo$2bo8b2o4b3o3b3o$5bo5b2o$3b2o$3b2o$
5bo5b2o$2bo8b2o4b3o3b3o$bo14bo3bobo3bo$5bo11b3o3b3o$o$bo3bo$2bo2bo5$b
3o9b2o4b3o$o13bobobo3bo$b2o3bo4bo2bo4b3o$3bobo3$9b2o$9b2o8b2o3b3o$5bo
2bobo2bobob2o3bo2bo$19b2o3b3o!

-CATALYST WORK-
p32 'injector' using some y's:
x = 18, y = 15, rule = B2ce3-ir4a5y/S2-c3-y
11bobo$12bo$12bo4$o7b3o3b3o$b2o4bo3bobo3bo$o7b3o3b3o4$12bo$12bo$11bobo
!

I tried making a 'flipper' gun, but failed:
x = 37, y = 85, rule = B2ce3-ir4a5y/S2-c3-y
28bo$28bo$27bobo4$27bobo$27b3o$27bobo2$28bo2$22bo5bo5bo$20b2o13b2o$22b
o5bo5bo2$28bo2$27bobo$27b3o$27bobo15$11bobo$12bo$12bo4$o11b3o7b2o2b3o$
b2o8bo4bo8bo3bo$o11b3o7b2o2b3o4$12bo$12bo14bobo$11bobo13b3o$27bobo$27b
3o$27bobo12$27bobo$27b3o$27bobo2$28bo2$22bo5bo5bo$20b2o13b2o$22bo5bo5b
o2$28bo2$27bobo$27b3o$27bobo4$27bobo$28bo$28bo!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y
User avatar
drc
 
Posts: 1665
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: B2ce3-ir4a5y/S2-c3-y

Postby BlinkerSpawn » October 23rd, 2017, 12:32 pm

p160 gun from the p32 injector:
x = 35, y = 17, rule = B2ce3-ir4a5y/S2-c3-y
13bo19bo$13bo19bo$12bobo17bobo4$31bo$2bo5b11o14b2o$2o7bobo3bobo10bo4bo
$2bo5b11o14b2o$31bo4$12bobo17bobo$13bo19bo$13bo19bo!

EDIT: Sawtooth 47 using the gun; hits minimum population at time T(n) = 105.6(11^n - 1):
x = 75, y = 15, rule = B2ce3-ir4a5y/S2-c3-y
11bobo17bobo$12bo19bo$12bo19bo3$8bo7b2o$o17b3ob2o$b2o3bobo7bo7bo45bo$o
17b3ob2o47bobo$8bo7b2o56bo$71bobo$70bo$12bo19bo$12bo19bo$11bobo17bobo!

T(1) = 1056
T(2) = 12672
T(3) = 140448
T(4) = 1545984
etc.
EDIT 2: Sawtooth 45; T(n) = 25.6(11^n - 1):
x = 45, y = 17, rule = B2ce3-ir4a5y/S2-c3-y
13bo19bo$13bo19bo$12bobo17bobo5$2bo3b3o9b3o$2o5bo2bobobobo2bo20bo$2bo
3b3o9b3o20bobo$44bo$41bobo$40bo2$12bobo17bobo$13bo19bo$13bo19bo!
Last edited by BlinkerSpawn on October 23rd, 2017, 7:32 pm, edited 1 time in total.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1473
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: B2ce3-ir4a5y/S2-c3-y

Postby Gamedziner » October 23rd, 2017, 6:21 pm

BlinkerSpawn wrote:T(0) = 1056

Shouldn't that be "T(1) = 1056"?
Gamedziner
 
Posts: 371
Joined: May 30th, 2016, 8:47 pm

Re: B2ce3-ir4a5y/S2-c3-y

Postby BlinkerSpawn » October 23rd, 2017, 7:31 pm

Gamedziner wrote:
BlinkerSpawn wrote:T(0) = 1056

Shouldn't that be "T(1) = 1056"?

Ah yes, my mistake: starting my indices at 0 comes naturally when I refer to series but that doesn't fit the formula. :?
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1473
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: B2ce3-ir4a5y/S2-c3-y

Postby drc » October 23rd, 2017, 8:28 pm

Woah, that sawtooth is amazing! Here's a bounding box reduction:
x = 42, y = 17, rule = B2ce3-ir4a5y/S2-c3-y
13bo19bo$13bo19bo$12bobo17bobo5$2bo3b3o9b3o$2o5bo2bobobobo2bo$2bo3b3o
9b3o3$37bo$38bobo$12bobo17bobo6bo$13bo19bo4bobo$13bo19bo3bo!

Here's the 'weird'/2x variant, it hits 45 cells at 0,512,11264,237056,..., leading to the T(n) = (128/105)(-21+21^n):
x = 43, y = 17, rule = B2ce3-ir4a5y/S2-c3-y
13bo19bo$13bo19bo$12bobo17bobo5$2bo3b3o9b3o$2o5bo2bobobobo2bo18bo$2bo
3b3o9b3o18bobo$42bo$39bobo$38bo2$12bobo17bobo$13bo19bo$13bo19bo!

And the p160 gun is quite radical too. Here's a p96 2c/4 firing relative using a simple R(ep)->R+G conduit a la the p48 gun:
x = 51, y = 17, rule = B2ce3-ir4a5y/S2-c3-y
13bo19bo$13bo19bo$12bobo17bobo13bobo$49bo$49bo3$2bo3b3o9b3o$2o5bo2bobo
bobo2bo$2bo3b3o9b3o5$12bobo17bobo$13bo19bo$13bo19bo!

p6 oscillator puffer and related 12c/24 ship:
x = 18, y = 33, rule = B2ce3-ir4a5y/S2-c3-y
10b2o$9bo2bo$10bobo$9bo3bo$10b4o$15b2o$17bo$15b2o$10b4o$9bo3bo$10bobo$
9bo2bo$10b2o8$10b2o$4bo4bo2bo$10bobo$o3bo4bo3bo$10b4o$o14b2o$17bo$o14b
2o$10b4o$o3bo4bo3bo$10bobo$4bo4bo2bo$10b2o!

Also a 24c/48 rep-based ship showed up under ov_p0:
x = 94, y = 18, rule = B2ce3-ir4a5y/S2-c3-y
60bo5bo2$39bo9b2ob2o4bo3bobo3bo4b2ob2o$48bo5bo17bo5bo$39bo9b2ob2o4bo3b
obo3bo4b2ob2o2$60bo5bo2$26bo17bo39bo$41bo4bo$26bo14bo12bo5bo15b2ob3o2b
o2b3ob2o$2o51bo21bo17bo$3bo37bo18bo15b2ob3o2bo2b3ob2o$22b3o17bo6bo$20b
o2bo20b2ob2o35bo$25bo20bo$21b2o3bo$21bo3bo!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y
User avatar
drc
 
Posts: 1665
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA


Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 2 guests