## B2ce3-ir4a5y/S2-c3-y

For discussion of other cellular automata.

### B2ce3-ir4a5y/S2-c3-y

(Sorry for all the threads lately >.< I just think this rule is cool.)
B2ce3-ir4a5y/S2-c3-y is pretty interesting. It has a failed replicator that turns into two spaceships and a p2 oscillator:
`x = 5, y = 3, rule = B2ce3-ir4a5y/S2-c3-yb3o\$o3bo\$b3o!`

(Make sure to scroll down for one of my new proudest discoveries)
Still Lifes
This rule has very strange still lifes. Every hollow rectangle can be a still life:
`x = 25, y = 10, rule = B2ce3-ir4a5y/S2-c3-y4o2b7o2b10o\$o2bo2bo5bo2bo8bo\$o2bo2bo5bo2bo8bo\$4o2bo5bo2bo8bo\$6b7o2bo8bo\$15bo8bo\$15bo8bo\$15bo8bo\$15bo8bo\$15b10o!`

The three above, for example, would be codenamed '4x4 box', '7x5 box', and '10x10 box'. For the sake of uniformity I would suggest putting the biggest number first, but the numbers are interchangeable.
All of the boxes have an even number of cells, so it's very bizarre looking at how few odd cell counts there are on the APGsearch page.
Here are some that aren't boxes:
`x = 40, y = 20, rule = B2ce3-ir4a5y/S2-c3-y2o2b2o3b2o4b2o4b2o4b7o2b2o\$2o2bo4bo2bo2bo5bo2bo2bo5bo2bo2bo\$6bo4b2o4bo3bob2o2bo5bo2bob2o\$5b2o5bo3b2o3bo2bo2bob5o2bo\$10bo5bo4b2o4bobo6bo\$10b2o6bo8bo2bo5bo\$17b2o8b4o5bo\$36bo\$36bo\$36bo\$36bo\$36bo\$36bo\$36bo\$36bo\$36bo\$36bo\$36bob2o\$36bo2bo\$36b2o!`

Boxes cannot be penetrated, except from the outside corners:
`x = 47, y = 33, rule = B2ce3-ir4a5y/S2-c3-y7bo\$7bobo\$7bobo\$7bobo\$8bo5\$43b4o\$42bo\$43b3o2\$20o\$o18bo\$o5bo2bo9bo\$o9b2obo3bobo\$o3bo9b2o3bo\$ob2o4bo2bobo3bobo\$o4bo6b3ob2obo\$o2bobo3bo2bo3bo2bo\$obo2bo5bo2bo4bo\$ob3ob5obo2b3obo\$obob3ob3ob3o4bo\$ob2obo2bob2obo5bo\$obo3b2ob3o2b3o2bo\$o3bo3b2o3b4o2bo\$obo6b3o3bo3bo\$o2bo2bob4o2bo4bo\$o2bob3ob3obo3bobo\$ob3obo2bob2o4bobo\$o18bo\$20o!`

Oscillators
Here are the known oscillators:
`x = 114, y = 450, rule = B2ce3-ir4a5y/S2-c3-y16bo2bo2bo4bo4bo3bo5bo4bo11bo5b2o4b2o3b3o4bo5bo6b2o4b5o2b2o\$17bo2bo2bo7bo10bo9bobo9bobo5bo2bo8b2o3bobo4bobo3bo6bobo\$27bo8bobo2bobo3b2o5bo4bobo4bo2bo7bo3bobo5bo2b2o2bo5bo2bo3bo\$22bo46b2o5bo7b2o3bobo4bobo3bobo4bobobo\$23bo24bo5bo6bo21bo5bo6b2o4bo6bo\$109bobo\$16bo2bo2bo86b2o\$17bo2bo2bo2\$16bo10b7o\$17bo8bo\$28bo3bo\$16bo2bo2bo4bo2bobo\$17bo2bo2bo7b2o7\$16bo2bo2bo5b4o4b4o\$17bo2bo2bo3bo7bo3bo\$30bo8bo\$22bo4bo7bo3bo\$23bo4b4o4b4o2\$16bo2bo2bo\$17bo2bo2bo2\$22bo\$23bo2\$16bo2bo2bo\$17bo2bo2bo7\$16bo5bo6bo7b3o16bo\$17bo5bo12bo7bo3b2o15bobo9bobo5bobo7bo3bobo7bobo\$27bobo9bo3bo5bo4bobo29bo6b2o7b2o\$16bo5bo13b3o4b2o3bo3b2o11bobo7bo3bo6bo2b2o4bo3bobo7b3o\$17bo5bo3bobo24bobo33bo\$65bobo7bo3bo6bo3bo18b3o\$16bo2bo2bo6bo26bo\$17bo2bo2bo41bobo7bobo31bobo2\$22bo\$23bo2\$22bo5bob4o3bo\$23bo2b2o4bo2bo2b2o\$28bob4o3bo6\$16bo2bo2bo3b11o4b6o\$17bo2bo2bo2bo9bo\$26bo9bo3bo6bo\$16bo9bob2obob2obo3bo6bo\$17bo8bobobobobobo2bo2bo2bo2bo\$26bo3bobo3bo\$16bo2bo2bo3bo9bo\$17bo2bo2bo2b11o2\$22bo\$23bo2\$16bo2bo2bo\$17bo2bo2bo7\$16bo2bo2bo6bo11bo9b2o9b3o4b3o9b2o5bo8bo\$17bo2bo2bo27bo12bo6bo10bo17bo\$29bo11bo10bo9bo6bo11bo6bobo6bo3bo\$16bo45bo6bo21bo\$17bo11bo11bo10bobobobo3bo6bo5bobobobo5b5o4b7o\$62bo6bo\$16bo2bo2bo6bo5bobobobo10bo9bo8bo15bo8bo\$17bo2bo2bo27bo12bo4b3o\$51b2o9b3o22bo8bo\$16bo5bo\$17bo5bo2\$16bo2bo2bo\$17bo2bo2bo7\$16bo2bo2bo\$17bo2bo2bo2bob6obo\$26bo8bo\$22bo4bo6bo\$23bo3bobo2bobo2\$22bo\$23bo2\$22bo\$23bo2\$22bo\$23bo7\$16bo2bo2bo4b2o7bobo\$17bo2bo2bo3b2o\$34bo3bo8bobobo14bobobo\$16bo5bo5b2o\$17bo5bo4b2o4bobobo8bo5bo10bo7bo2\$16bo2bo2bo13bobo8bobobo12bo7bo\$17bo2bo2bo\$47bo16bo7bo\$16bo5bo\$17bo5bo25bobo12bo7bo2\$16bo2bo2bo41bo7bo\$17bo2bo2bo\$64bo7bo2\$64bo7bo2\$66bobobo12\$11bo4bo2bo2bo7bo10bo\$12bo4bo2bo2bo\$28bobo8bobo\$11bo4bo5bo\$12bo4bo5bo4bobo8bo2\$11bo4bo5bo5bobo8bobobo\$12bo4bo5bo\$39bobobo\$11bo4bo5bo\$12bo4bo5bo2\$11bo4bo2bo2bo\$12bo4bo2bo2bo7\$11bo4bo2bo2bo\$12bo4bo2bo2bo2\$11bo10bo\$12bo10bo2\$11bo4bo2bo2bo\$12bo4bo2bo2bo3bobobobobobobobo2\$11bo4bo10bobobobobobobobo\$12bo4bo2\$11bo4bo2bo2bo\$12bo4bo2bo2bo7\$11bo4bo5bo8bo14bo\$12bo4bo5bo33bobo\$31bo14bo11bo\$11bo4bo5bo35bo\$12bo4bo5bo7bo14bo2\$11bo4bo2bo2bo8bo14bo10bob6obo\$12bo4bo2bo2bo33bo8bo\$31bo14bo11bo6bo\$11bo10bo35bobo2bobo\$12bo10bo7bo14bo2\$11bo10bo23bo\$12bo10bo\$46bo6\$11bo4bo2bo2bo\$12bo4bo2bo2bo8bobo\$33bo\$11bo4bo14bo3bo\$12bo4bo\$31bo3bo\$11bo4bo2bo2bo\$12bo4bo2bo2bo9bo2\$11bo4bo5bo10bo\$12bo4bo5bo\$31bo3bo\$11bo4bo2bo2bo\$12bo4bo2bo2bo7bo3bo\$33bo\$32bobo5\$11bo4bo2bo2bo8bo\$12bo4bo2bo2bo6b2o\$31bo\$11bo4bo5bo7b2o\$12bo4bo5bo7bo2\$11bo4bo2bo2bo\$12bo4bo2bo2bo2\$11bo4bo5bo\$12bo4bo5bo2\$11bo4bo2bo2bo\$12bo4bo2bo2bo7\$5bo2bo2bo4bo5bo\$6bo2bo2bo4bo5bo5bo2bo\$27bobob2o\$11bo4bo5bo6bobo\$12bo4bo5bo3bobob2o\$29bo2bo\$5bo2bo2bo4bo2bo2bo\$6bo2bo2bo4bo2bo2bo2\$5bo16bo\$6bo16bo2\$5bo2bo2bo10bo\$6bo2bo2bo10bo7\$5bo2bo2bo4bo2bo2bo14bobo\$6bo2bo2bo4bo2bo2bo\$37bobo\$11bo4bo5bo\$12bo4bo5bo13bobo2\$5bo2bo2bo4bo2bo2bo14bobo\$6bo2bo2bo4bo2bo2bo\$37bobo\$5bo10bo5bo\$6bo10bo5bo13bobo2\$5bo2bo2bo4bo2bo2bo14bobo\$6bo2bo2bo4bo2bo2bo\$37bobo2\$37bobo2\$37bobo2\$37bobo2\$37bobo8\$5bo2bo2bo4bo2bo2bo9b3o\$6bo2bo2bo4bo2bo2bo7bo\$32b3o\$11bo4bo5bo\$12bo4bo5bo4bo\$27bobo\$5bo2bo2bo4bo5bo4bobo\$6bo2bo2bo4bo5bo3bobo2\$11bo4bo5bo\$12bo4bo5bo2\$5bo2bo2bo4bo2bo2bo\$6bo2bo2bo4bo2bo2bo5\$50bobo\$50bobo\$50bobo\$51bo2\$45b3o\$48bo\$45b3o5\$5bo2bo2bo4bo2bo2bo\$6bo2bo2bo4bo2bo2bo2\$11bo4bo5bo4bob3o\$12bo4bo5bo2b2ob2o\$27b2ob2o\$5bo2bo2bo4bo2bo2bo5b2o\$6bo2bo2bo4bo2bo2bo5bobo2\$11bo4bo5bo\$12bo4bo5bo2\$5bo2bo2bo4bo2bo2bo\$6bo2bo2bo4bo2bo2bo7\$5bo2bo2bo4bo2bo2bo12bo\$6bo2bo2bo4bo2bo2bo\$35bo\$5bo16bo\$6bo16bo11bo2\$5bo2bo2bo4bo2bo2bo12bo\$6bo2bo2bo4bo2bo2bo\$35bo\$5bo5bo4bo\$6bo5bo4bo17bo2\$5bo2bo2bo4bo2bo2bo12bo\$6bo2bo2bo4bo2bo2bo\$35bo2\$35bo2\$35bo12\$5bo2bo2bo4bo2bo2bo\$6bo2bo2bo4bo2bo2bo6b3obo5bo\$30b2obo6b2o\$11bo10bo6bo3bo2bo3bo\$12bo10bo6b2obo6b2o\$30b3obo5bo\$11bo4bo2bo2bo\$12bo4bo2bo2bo2\$11bo4bo\$12bo4bo2\$11bo4bo2bo2bo\$12bo4bo2bo2bo7\$o4bo2bo2bo4bo2bo2bo\$bo4bo2bo2bo4bo2bo2bo\$43b3o\$o10bo10bo18bo2bo\$bo10bo10bo19b3o2\$o4bo2bo2bo4bo2bo2bo\$bo4bo2bo2bo4bo2bo2bo2\$o10bo4bo\$bo10bo4bo2\$o4bo2bo2bo4bo2bo2bo\$bo4bo2bo2bo4bo2bo2bo2\$29bo2\$28bobo\$28b3o\$28bobo13\$73bobo\$73b3o\$73bobo2\$74bo11\$58b3o\$59bo2bo\$58b3o!`

Not shown are the large amounts of single replicator-hasslers, here is one p60 example:
`x = 28, y = 3, rule = B2ce3-ir4a5y/S2-c3-yo4b3o19bo\$b2obo3bo16b2o\$o4b3o19bo!`

And also the 'repbox' oscillators, like this p1008 example:
`x = 261, y = 7, rule = B2ce3-ir4a5y/S2-c3-y261o\$o259bo\$o5b2o252bo\$o5bo253bo\$o5b2o252bo\$o259bo\$261o!`

Unfortunately no pattern is yet known that allows the replicator to succeed, and would lead to arbitrarily high periods
Spaceships
All speeds between c/2 and c/3 are impossible, like B2-a/S12, unless you increase the total period.
Natural
Natural spaceships exist for speeds c/2, 3c/8, c/4, and c/4 diagonal:
`x = 160, y = 30, rule = B2ce3-ir4a5y/S2-c3-ybo5bo6bo6bobo4bob2obo3bo6bo6bo4bobo9bo6bob2obo4bob2obo4bob2obo9bobo11bo8bo8bo2bo8bob2o\$obo2b2ob2o2b2ob2o2b7o2b2o2b2o2bobo4bobo4bobo3b3o7b2ob2o4b2o2b2o4b2o2b2o4b2o2b2o9b3o10bobo6bobo5bobo3b3o4bo3b2o\$obo2bo3bo2bo3bo2bo5bo2bo4bo2bobo4bobo4bobo3bobo6bo5bo3bo4bo4bo4bo4bo4bo9bobo10bobo13b2obo5bo5b3obo\$obo2bobobo2bobobo2bo2bo2bo2bo4bo2bobo4bobo4bobo5bobobo2bo5bo3bo4bo4bo4bo4bo4bo9b3o10bobo6bobo5bobo5bo9b2o\$2bo2bo3bo2bo3bo2bobobobo2bo4bo2bo6bo6bo7bob3o2bo5bo3bo4bo4bo4bo4bo4bo9bobo11bo6bo3bo5b2o6bo6bobo\$16bo2bo3bo4bo4bo2bobobo2bobobo2bobobo5bobo2bobobobo3bo4bo4bo4bo4bo4bo9bobo43bo\$36bob3o2bob3o2bob3o4bo5bo5bo3b6o4bob2obo4bob2obo23bo\$36bobobo2bobobo2bobobo6bo3bo5bo13b2o2b2o4b2o2b2o9bobo10bobo31bo\$36bo3bo2bobo4bo3bo10bo5bo13bo4bo4bo4bo22bobo\$37bo2bo2bo2bo3bo3bo10bo5bo13bo4bo4bo4bo9bobo10bobo\$43bo21bo2bo2bo13bob2obo4bo4bo23bo\$43bo21bobobobo13bo4bo4bo4bo\$65bobobobo13b6o4bob2obo\$65bobobobo23b2o2b2o\$65bo5bo23bo4bo\$65bobobobo23bo4bo\$95bob2obo\$95bo4bo3bobobobobobobobo\$95b6o11\$123bobo!`

Unnatral
Ntzfind acted up, finding mostly wicks for c/2. It did, however, find a 2c/4 spaceship, a c/4, and a c/6:
`x = 40, y = 41, rule = B2ce3-ir4a5y/S2-c3-y3bo10bo4bo10bo6bo\$2bobo7bo2bo2bo2bo6bo3bo2bo3bo\$2bobo8bobo2bobo8b3o4b3o\$13b3o2b3o8bobo4bobo\$2o3b2o6bo6bo8bobo4bobo\$o2bo2bo4bobobo2bobobo\$obobobo3b2o3bo2bo3b2o\$2bobo4bo5bo2bo5bo4bobo4bobo\$bo3bo3bobo10bobo5bo6bo\$13bobo2bobo\$12b2o2b2o2b2o6bo3bo2bo3bo\$30bo6bo\$10b2o3bo2bo3b2o5bo2bo2bo2bo\$32bo2bo\$14bo4bo9bo2bo2bo2bo\$9b2ob2o6b2ob2o4bo3b2o3bo\$9b2o2bo6bo2b2o3bobobo2bobobo\$15bo2bo11bobo2bobo\$12bob6obo7bo8bo\$10b2o2b2o2b2o2b2o5bobo4bobo\$10b5o4b5o4bo2bo4bo2bo\$13b2o4b2o7bo2bo4bo2bo\$13b2o4b2o\$12bo3b2o3bo7bo8bo\$13bo2b2o2bo\$9b3obo6bob3o\$9bo3bobo2bobo3bo\$10bob2o6b2obo\$11b2o8b2o\$10bo3b2o2b2o3bo\$9b3o3bo2bo3b3o\$9bo5bo2bo5bo\$15b4o\$10bo12bo\$13bo2b2o2bo\$9b5o6b5o\$9bo3bo6bo3bo\$9bo4bo4bo4bo\$11b2o8b2o2\$11b2o8b2o!`

Linear Growth
There are many forms of linear growth, but we will start off with the simplest type:
Wickstrechers
There are natural single and double line wickstrechers at c/2:
`x = 8, y = 40, rule = B2ce3-ir4a5y/S2-c3-y6o\$6bo\$bo2b2o\$2bo3\$7o\$7bo\$bo2b3o\$2bo3\$6o\$bo4bo\$2o2b2o3\$2bo\$bo2\$6o\$6bo\$2b4o2\$3bo\$4bo3\$4o\$bo2bo\$4o3\$6o\$o5bo\$o2bo2bo\$o6bo\$o2bo2bo\$o5bo\$6o!`

Ntzfind gave me some more wickstrechers, including one for an p1 signal travelling up a line that I can't seem to stabilize. It may lead to omniperiodicity if there is a 90-degree turn (which is unlikely):
`x = 129, y = 249, rule = B2ce3-ir4a5y/S2-c3-y4bo8bo4bo7bo7bo12bo4bo14bo4bo13bo6bo11bo4bo\$3bobo5bo2bo2bo2bo4bo9bo9bo2bo2bo2bo10bo2bo2bo2bo9bo3bo2bo3bo9bo4bo\$3bobo6bobo2bobo5bob3ob3obo10bobo2bobo12bobo2bobo11b3o4b3o8b2obo2bob2o\$12b3o2b3o5bobo5bobo10b3o2b3o12b3o2b3o11bobo4bobo7bo10bo\$b2o3b2o6bo2bo7b3o5b3o12bo2bo14bo6bo11bobo4bobo12b2o\$bo2bo2bo36b3obo2bob3o8bobobo2bobobo31b2o\$bobobobo5bo4bo8bo5bo9bo4bo2bo4bo6b2o3bo2bo3b2o24b2o4b2o4b2o\$3bobo21b3ob3o9bo2bobo2bobo2bo5bo5bo2bo5bo7bobo4bobo6bobo8bobo\$3bobo8b4o8bo7bo8bob2obo2bob2obo5bobo10bobo8bo6bo7bo4bo2bo4bo\$3bobob2o5bo2bo8bo7bo5b2obobo2bo2bo2bobob2o6bobo2bobo27bobo2bo2bo2bobo\$3bobo2bo5bo2bo5b2obo7bob2o2bo2bo4bo2bo4bo2bo5b2o2b2o2b2o9bo3bo2bo3bo5bo2b3o2b3o2bo\$2obob2o7b4o5bo2bo7bo2bo4b2o4bo2bo4b2o28bo6bo7bo12bo\$o2bo21b2o7b2o27b2o3bo2bo3b2o8bo2bo2bo2bo6bobo8bobo\$2b2o43bob2obo35bo2bo9b3o8b3o\$47bo4bo14bo4bo12bo2bo2bo2bo\$47b2o2b2o9b2ob2o6b2ob2o7bo3b2o3bo9bob4obo\$62b2o2bo6bo2b2o6bobobo2bobobo4b5ob4ob5o\$68bo2bo14bobo2bobo6b2o2bo6bo2b2o\$65bob6obo10bo8bo9bobo2bobo\$63b2o2b2o2b2o2b2o8bobo4bobo7bo3bo2bo3bo\$63b5o4b5o7bo2bo4bo2bo4bo2bo2bo2bo2bo2bo\$66b2o4b2o10bo2bo4bo2bo4bo14bo\$66b2o4b2o26bob2obo4bob2obo\$65bo3b2o3bo10bo8bo5bob2obo4bob2obo\$66bo2b2o2bo26bob2obo4bob2obo\$62b3obo6bob3o8b2o4b2o6bob2obo4bob2obo\$62bo3bobo2bobo3bo8b8o6bo2bobo4bobo2bo\$63bob2o6b2obo8bo3b2o3bo5bob2o8b2obo\$64b2o8b2o9b4o2b4o5bobo3bo2bo3bobo\$63bo3b2o2b2o3bo8bobo4bobo5bobob3o2b3obobo\$62b3o3bo2bo3b3o7bo8bo5bob5o2b5obo\$62bo5bo2bo5bo7bobo4bobo5bob2o8b2obo\$68b4o10b2obo2b4o2bob2o3b2obo6bob2o\$63bo12bo5bo2bo8bo2bo3b2ob2o4b2ob2o\$66bo2b2o2bo10b2o8b2o5b4o6b4o\$62b5o6b5o23bob2o6b2obo\$62bo3bo6bo3bo25b2o6b2o\$62bo4bo4bo4bo22bo4bo4bo4bo\$64b2o8b2o\$101bo4bo2bo4bo\$64b2o8b2o25bobo2bo2bo2bobo\$101bobob2o2b2obobo\$66bo6bo24b2obobo3b2o3bobob2o\$66bobo2bobo24bo2bobo8bobo2bo\$66bob4obo26b2obo2bo2bo2bob2o\$66bo6bo29bo8bo\$66bobo2bobo29bo8bo\$69b2o32bob2o2b2obo\$64bo3b4o3bo27bo2bo2bo2bo\$62b7o2b7o25b2o6b2o\$62bobo3bo2bo3bobo\$62bo5bo2bo5bo\$62bo4b2o2b2o4bo\$62bo4b2o2b2o4bo\$62bo3bobo2bobo3bo\$62bobob3o2b3obobo\$62bob4o4b4obo\$62bo14bo\$62bo14bo\$65bo8bo\$64bo10bo\$63b3obo4bob3o\$63bo2b8o2bo\$63bobo8bobo\$63bobo3b2o3bobo\$63bobob2o2b2obobo\$63bobo8bobo\$63bobob2o2b2obobo\$60b2obobob2o2b2obobob2o\$60bo2bobob2o2b2obobo2bo\$62b2obo8bob2o\$63bobo8bobo\$61bo3bo8bo3bo\$61b2o2b10o2b2o27\$7bo10bo12bo8bo7bo6bo11bo9bo13bo15bo11bo6bo\$7bo9bo14bo4b4obo6b2o2b2o10bo3bo5bo3bo9bo3bo11bo3bo7bo3bo2bo3bo\$3b2obobob2o5bob2o8b2obo4bo4bo4bo8bo9b3o7b3o11b3o13b3o9b3o4b3o\$2o2bobobobo2b2o2b2o2b2o4b2o2b2o5bo3bo4b2o6b2o9bobo7bobo11bobo13bobo9bobo4bobo\$o5bobo5bo2bo3b3o2b3o3bo2bo2b2o2bo5b2ob2ob2o10bobo7bobo11bobo13bobo9bobo4bobo\$o5bobo5bo2bo4b6o4bo3bo5bo6bo4bo\$6bobo8bo2bo8bo2bo5bobobo4bob6obo17bobobobo7bobobobo8b2o5b2o\$3bo7bo5bob3o6b3obo7bobo23bobo5bo5bo7bo5bo9b7o7bobo4bobo\$3bo3bo3bo5bob2ob6ob2obo6bo2bo5b3o2b3o11bo4b4o3b4o3b4o3b4o5b4o3b4o6bo6bo\$3b2o5b2o5bob2o8b2obo6bo2bo2b2obobo2bobob2o13bo2bobobo2bo3bo2bobobo2bo5bo2bo3bo2bo\$2bobobobobobo4bo4b6o4bo7bobo2b2o2b2o2b2o2b2o6bo3bo2bo9bo3bo9bo6b4ob4o5bo3bo2bo3bo\$2bobo5bobo4bo4bo4bo4bo4b2obobo6b2o2b2o12bo4bo2bo3bo2bo3bo3bobo3bo3b4ob5ob4o4bo6bo\$3b2o5b2o5bob2obob2obob2obo7bobo6b2o2b2o11bobo3bo2bo3bo2bo4b3o3b3o4bo5b3o5bo3bo2bo2bo2bo\$17bo2bob2o2b2obo2bo7bobo4bo2bo2bo2bo8bob2o3bobo5bobo8bo8bo5bobo5bo6bo2bo\$3bo7bo5bo2bo2bo2bo2bo2bo6b2obo3b2o2bo2bo2b2o6b2ob2o3bobob3obobo4bo7bo4bo2bo7bo2bo3bo2bo2bo2bo\$4b3ob3o6bob3o6b3obo5bobobo2bo4bo2bo4bo6bo2bo3bob2o3b2obo3bo3bobo3bo3bobo2b2ob2o2bobo2bo4b2o4bo\$6bobo8bo4b6o4bo7bobo7bo2bo10bo2bo4bobo5bobo3bo3bobo3bo3bobo4bo4bobo2bobo6bobo\$17bo4bo4bo4bo7bobo2b2obobo2bobob2o5bo2bo4bo9bo3bo2b2ob2o2bo3bobo2bo3bo2bobo2bobo6bobo\$5b2ob2o7bo14bo6b2obo5bobo2bobo8bo2bo4bo9bo4bo2bobo2bo4bobo9bobo2bob2o4b2obo\$17bo2bobo4bobo2bo5bobobo5bobo2bobo8b2obo4bo9bo4bob2ob2obo4bobo9bobo2bobobo2bobobo\$3b2o5b2o5bo2bo8bo2bo7bobo4b2obo2bob2o10bo4b2o7b2o2bob4ob4obo2bob2o7b2obo2bobo6bobo\$17bo2b2o6b2o2bo7bobo3bobobo2bobobo9bo4bobo5bobo2bobo7bobo2bobobo5bobobo2bobo6bobo\$3bo2bobo2bo5bo2bo8bo2bo6b2obo5bobo2bobo8bob2o4bo9bo2bob2o2bo2b2obo2bobo9bobo2bobo6bobo\$6bobo8bob5o2b5obo5bobobo5bobo2bobo8bobo5bo9bo2bob2o5b2obo2bobo9bobo2bob2o4b2obo\$3bo7bo5bo4b2o2b2o4bo7bobo4b2obo2bob2o7bo7bo9bo3b3o5b3o3bobo9bobo2bobobo2bobobo\$b2o4bo4b2o3bob4o4b4obo7bobo3bobobo2bobobo6bo7b2o7b2o5b2o3b2o5bob2o7b2obo2bobo6bobo\$bo2bo5bo2bo3b4o8b4o6b2obo5bobo2bobo8bo7bobo5bobo7bobo7bobobo5bobobo2bobo6bobo\$bob2o2bo2b2obo4b3o8b3o6bobobo5bobo2bobo7bo8bo9bo7b3o7bobo9bobo2bobo6bobo\$bo2b7o2bo5b3o6b3o9bobo4b2obo2bob2o6b2o7bo9bo17bobo9bobo2bob2o4b2obo\$bob3o3b3obo6bobo4bobo10bobo3bobobo2bobobo5b2o7bo9bo5bobobobo5bobo9bobo2bobobo2bobobo\$bo2bo2bo2bo2bo3bo2bobo4bobo2bo6b2obo5bobo2bobo7b2o7b2o7b2o5bo5bo5bob2o7b2obo2bobo6bobo\$bo4bobo4bo3bo2bobo4bobo2bo5bobobo5bobo2bobo10b2o4bobo5bobo5bo2bo2bo5bobobo5bobobo2bobo6bobo\$bo5bo5bo3bobo2bo4bo2bobo7bobo4b2obo2bob2o10bobo2bo9bo4b2o5b2o4bobo9bobo2bobo6bobo\$b2o4bo4b2o3bobo2bo4bo2bobo7bobo3bobobo2bobobo8b3o3bo9bo5b2o3b2o5bobo9bobo2bob2o4b2obo\$b3o7b3o3bobo2bo4bo2bobo6b2obo5bobo2bobo10b3o3bo9bo3b4o3b4o3bobo9bobo2bobobo2bobobo\$2b3o5b3o4bo2bobo4bobo2bo5bobobo5bobo2bobo12bo3b2o7b2o2bo2bo5bo2bo2bob2o7b2obo2bobo6bobo\$3bo7bo5bobo2bo4bo2bobo7bobo4b2obo2bob2o9b2o4bobo5bobo2bo11bo2bobobo5bobobo2bobo6bobo\$2bo9bo4bo4bo4bo4bo7bobo3bobobo2bobobo6bob2o4bo9bo2b4o5b4o2bobo9bobo2bobo6bobo\$b2o9b2o3bo4bo4bo4bo6b2obo5bobo2bobo10bo5bo9bo4b3o3b3o4bobo9bobo2bob2o4b2obo\$2bo9bo4bo4bo4bo4bo5bobobo5bobo2bobo7bo8bo9bo4bobo3bobo4bobo9bobo2bobobo2bobobo\$2bo9bo4bo3b2o4b2o3bo7bobo4b2obo2bob2o8bo6b2o7b2o2b2o9b2o2bob2o7b2obo2bobo6bobo\$b2ob2o3b2ob2o3bo2bobo4bobo2bo7bobo3bobobo2bobobo6bo7bobo5bobo2bobo7bobo2bobobo5bobobo2bobo6bobo\$bo3bo3bo3bo3bo4bo4bo4bo6b2obo5bobo2bobo8bo7bo9bo2bo11bo2bobo9bobo2bobo6bobo\$b3obo3bob3o3bo4bo4bo4bo5bobobo5bobo2bobo9bobo4bo9bo2bo11bo2bobo9bobo2bob2o4b2obo\$b2o2bo3bo2b2o3bo3b2o4b2o3bo7bobo4b2obo2bob2o15bo9bo2bo11bo2bobo9bobo2bobobo2bobobo\$3o2bo3bo2b3o2bo2bobo4bobo2bo7bobo3bobobo2bobobo7bob2o3b2o7b2o2bo11bo2bob2o7b2obo2bobo6bobo\$o4bo3bo4bo2bo4bo4bo4bo6b2obo5bobo2bobo9bobo4bobo5bobo2b2o9b2o2bobobo5bobobo2bobo6bobo\$bo3bo3bo3bo3bo4bo4bo4bo5bobobo5bobo2bobo9bo6bo9bo2bobo7bobo2bobo9bobo2bobo6bobo\$b3o7b3o3bo3b2o4b2o3bo7bobo4b2obo2bob2o8bo6bo9bo2bo11bo2bobo9bobo2bob2o4b2obo\$2b3o5b3o4bo2bobo4bobo2bo7bobo3bobobo2bobobo7bo6bo9bo2bo11bo2bobo9bobo2bobobo2bobobo\$7bo9bo4bo4bo4bo6b2obo5bobo2bobo9b2o5b2o7b2o2bo11bo2bob2o7b2obo2bobo6bobo\$5b2ob2o7bo4bo4bo4bo5bobobo5bobo2bobo9bobo4bobo5bobo2b2o9b2o2bobobo5bobobo2bobo6bobo\$2bo2b5o2bo4bo3b2o4b2o3bo7bobo4b2obo2bob2o8bo6bo9bo2bobo7bobo2bobo9bobo2bobo6bobo\$b3o7b3o3bo2bobo4bobo2bo13bobobo2bobobo7bo6bo9bo2bo11bo2bobo9bobo2bob2o4b2obo\$2b2o3bo3b2o4bo4bo4bo4bo15bobo2bobo9bo6bo9bo2bo11bo2bobo9bobo2bobobo2bobobo\$2bo9bo4bo4bo4bo4bo15bobo2bobo9b2o5b2o7b2o2bo11bo2bob2o7b2obo2bobo6bobo\$5bo3bo7bo3b2o4b2o3bo14b2obo2bob2o8bobo4bobo5bobo2b2o9b2o2bobobo5bobobo2bobo6bobo\$5bo3bo7bo2bobo4bobo2bo13bobobo2bobobo7bo6bo9bo2bobo7bobo2bobo9bobo2bobo6bobo\$3bobo3bobo5bo4bo4bo4bo15bobo2bobo9bo6bo9bo2bo11bo2bobo9bobo2bob2o4b2obo\$3b3o3b3o5bo4bo4bo4bo32bo6bo9bo2bo11bo2bobo9bobo2bobobo2bobobo\$4bobobobo6bo3b2o4b2o3bo32b2o5b2o7b2o2bo11bo2bob2o7b2obo2bobo6bobo\$bo2bo5bo2bo3bo2bobo4bobo2bo32bobo4bobo5bobo2b2o9b2o2bobobo5bobobo2bobo6bobo\$2b3o5b3o4bo4bo4bo4bo32bo6bo9bo2bobo7bobo2bobo9bobo2bobo6bobo\$4bo5bo6bo4bo4bo4bo32bo6bo9bo2bo11bo2bobo9bobo2bob2o4b2obo\$3bo7bo5bo3b2o4b2o3bo32bo6bo9bo2bo11bo2bobo9bobo2bobobo2bobobo\$3bo7bo5bo2bobo4bobo2bo32b2o5b2o7b2o2bo11bo2bob2o7b2obo2bobo6bobo\$17bo4bo4bo4bo32bobo4bobo5bobo2b2o9b2o2bobobo5bobobo\$3bo2bobo2bo5bo4bo4bo4bo32bo6bo9bo2bobo7bobo2bobo9bobo\$2b2o2b3o2b2o4bo3b2o4b2o3bo32bo19bo11bo\$4bo5bo6bo2bobo4bobo2bo32bo19bo11bo\$2o11b2o2bo4bo4bo4bo32b2o18bo11bo\$3o2bo3bo2b3o2bo4bo4bo4bo32bobo17b2o9b2o\$2b3o5b3o4bo3b2o4b2o3bo32bo19bobo7bobo\$2bo3bobo3bo4bo2bobo4bobo2bo32bo19bo11bo\$bo3bo3bo3bo3bo4bo4bo4bo32bo19bo11bo\$o13bo2bo4bo4bo4bo32b2o18bo11bo\$5b5o7bo3b2o4b2o3bo32bobo17b2o9b2o\$2b2o7b2o4bo2bobo4bobo2bo32bo19bobo7bobo\$2o2bobobobo2b2o50bo19bo11bo\$65bo19bo11bo\$2b3obobob3o52b2o18bo11bo\$o3bo5bo3bo50bobo17b2o9b2o\$obo3bobo3bobo50bo19bobo7bobo\$o2bo2bobo2bo2bo50bo19bo11bo\$4bob3obo54bo19bo11bo\$bo3bobobo3bo51b2o18bo11bo\$4bobobobo54bobo17b2o9b2o\$3b2obobob2o53bo19bobo7bobo\$4bo2bo2bo54bo19bo11bo\$3b2o5b2o53bo19bo11bo\$2bob2o3b2obo52b2o18bo11bo\$7bo57bobo17b2o9b2o\$4bo5bo54bo19bobo7bobo\$2bobo2bo2bobo52bo19bo11bo\$65bo\$65b2o\$2bo2bo3bo2bo52bobo\$2bo3bobo3bo52bo\$2b2o7b2o\$3bo7bo\$3bo7bo\$2b2obo3bob2o\$2bob3ob3obo\$2bo2bo3bo2bo\$2b2obo3bob2o\$7bo\$6bobo\$6bobo\$3b2obobob2o\$6bobo\$6bobo\$5b2ob2o\$4bobobobo\$6bobo\$6bobo\$5b2ob2o\$4bobobobo\$6bobo\$6bobo\$5b2ob2o\$4bobobobo\$6bobo\$6bobo\$5b2ob2o\$4bobobobo\$6bobo\$6bobo\$5b2ob2o\$4bobobobo\$6bobo\$6bobo\$5b2ob2o\$4bobobobo\$6bobo\$6bobo\$5b2ob2o\$4bobobobo\$6bobo\$6bobo\$5b2ob2o\$4bobobobo\$6bobo\$6bobo\$5b2ob2o\$4bobobobo\$6bobo\$6bobo\$5b2ob2o\$4bob3obo!`

It is also unlikely that anything can eat either of the wicks at a speed slower than c (besides an end-component to a natural 2c/8 shown above).
Guns
The simplest gun is a period 24 hassler that shoots those small 2c/4 gliders. It is shown along with a 2-stage eater:
`x = 261, y = 39, rule = B2ce3-ir4a5y/S2-c3-y30bo\$30bo\$29bobo4\$o8b3o3bo3b3o\$b2o5bo4bo3bo4bo\$o8b3o3bo3b3o22\$30bo\$30bo\$29bobo3\$259b2o\$o8b3o3bo3b3o19b5o19b5o19b5o19b5o19b5o19b5o19b5o19b5o19b5o21b2o\$b2o5bo4bo3bo4bo23bo23bo23bo23bo23bo23bo23bo23bo23bo\$o8b3o3bo3b3o21b3o21b3o21b3o21b3o21b3o21b3o21b3o21b3o21b3o!`

It can pair up with itself to create a p384 gun, which is sufficient to shoot that huge failed-red-ship! (In the bottom gun, removing the circled 'y' results in a 2-barreler):
`x = 61, y = 187, rule = B2ce3-ir4a5y/S2-c3-y50bobo\$51bo\$51bo20\$51bo\$50bobo\$50bobo\$50bobo\$51bo2\$51bo\$50bobo3bo\$50bobo4b2o\$50bobo3bo\$51bo13\$o22b3o3b3o\$b2o19bo3bobo3bo\$o22b3o3b3o4\$29bobo\$30bo\$30bo20bo\$51bo\$50bobo5\$50bobo\$51bo\$51bo10\$48bobobobo6\$48bobobobo7\$51bo\$50bobo\$50bobo\$50bobo\$51bo4bo\$57b2o\$56bo17\$17bo5bo2\$5bo11bo5bo7b3o26bo\$6b2o22bo3bo21bob2o\$5bo11bo5bo7b3o20bo5bo2\$17bo5bo2\$34bobo\$35bo\$23b3o9bo\$21bo5bo2\$20bo4bo2bo\$20bo2b2o3bo\$20bo4bo2bo2\$21bo5bo\$23b3o2\$30bobo\$31bo\$31bo2\$12bobo3bobo\$2bo24b3o19b3o3bo\$2o8bo11bo2bo2bo24bo2b2o\$2bo24b3o21bo3bo\$12bobo3bobo18\$53bo\$51b2o\$53bo\$46bobo\$46b3o\$46bobo2\$47bo3\$47bo2\$45bo3bo2\$45bo3bo4\$45bo3bo2\$45bo3bo2\$47bo8\$46bobo\$47bo\$47bo!`

There's also a p48 gun (remove the left-most y for a 2-barreler):
`x = 26, y = 9, rule = B2ce3-ir4a5y/S2-c3-y6bo17bo\$6bo17bo\$5bobo15bobo4\$o5b3ob3o\$b2o2bo7bo\$o5b3ob3o!`

And a p240+96n that is three-barreled, again, removing the circled y-shaped p2 results in a 6-barreler:
`x = 80, y = 12, rule = B2ce3-ir4a5y/S2-c3-y12bo65bo\$12bo65bo\$11bobo63bobo\$3b3o\$bo5bo2\$o2bo4bo15b3ob3o8bo\$o3b2o2bo14bo7bo\$o2bo4bo15b3ob3o8bo2\$bo5bo\$3b3o!`

Other
A dirty tethered rake made from the gun and the p24 gun mentioned earlier, and a 3c/8:
`x = 38, y = 9, rule = B2ce3-ir4a5y/S2-c3-y30bobo\$31bo\$31bo2\$16bo16bo\$2bo10b2o3b2o14bobo\$2o12bo3bo18bo\$2bo10b2o3b2o14bobo\$16bo16bo!`

The 3c/8 gets dephased slightly, so it moves a bit faster. Here's another example, with the 3c/8 not getting dephased:
`x = 38, y = 10, rule = B2ce3-ir4a5y/S2-c3-y30bobo\$31bo\$31bo2\$16bo\$2bo10b2o3b2o13bo\$2o12bo3bo15bobo\$2bo10b2o3b2o17bo\$16bo17bobo\$33bo!`

Puffers and Rakes
p48 block puffer:
`x = 52, y = 15, rule = B2ce3-ir4a5y/S2-c3-yb3o\$o2bo\$8bo13b2ob2o8bobo8b2ob2o\$b2o4bo9b2o2bo5bo17bo5bo\$17b2o3b2ob2o19b2ob2o\$bo2\$15bobo\$15bobo13b4o\$11b5obo11bo3bobo6b3o3b3o\$11bo2b4o11b3obo7bo3bobo3bo\$16bo12bobobo2bo5b3o3b3o\$29bo5b2o\$33bob2o\$30bo3bo!`

p48 2-cell osc puffer:
`x = 63, y = 11, rule = B2ce3-ir4a5y/S2-c3-yobo21bobo6bo19b3o3b3o\$52bo3bobo3bo\$28bo4bo19b3o3b3o2\$20bo5bo3bo2\$18bo3bo5bo2\$b2o2b3o12bo14b3o3b3o\$b2obo3bobobo21bo3bobo3bo\$5b3o14bobo10b3o3b3o!`

p48 duoplet puffer:
`x = 98, y = 18, rule = B2ce3-ir4a5y/S2-c3-y38bo2\$16bo17b3obo\$17bo16b2o3bo\$37bo2b2o\$36bo3bo23bo23bo\$34b2o4bo3bo\$4o12bo17bobo2bo12bo3b5o3bo2b3ob2o7b2ob3o2bo2b3ob2o\$16bo4bo13b2o2bo4bo10bo17bo5bo17bo\$b3o9bo6b2o13b6o11bo3b5o3bo2b3ob2o7b2ob3o2bo2b3ob2o\$b3o12bo2bobo14bo3bo\$o10bo6b2obo13b3o2bo5b2o6bo9bo23bo\$2o8bo6b3o15bo3bo4b2obo\$11bo5bo4bo15b2o7bo4bo3bo10b2ob2o\$10bobo4bo2bo16bo4bobo2bo18bo5bo\$13bo3bo3b2o23bo5bo3bo3bo6b2ob2o2\$54bo5bo!`

Most of the puffers are very messy, and not very useful without careful taming.
There's also a puffer that travels at 3c/8, shown here:
`x = 74, y = 10, rule = B2ce3-ir4a5y/S2-c3-y2o\$bo\$2o3\$69bo\$70bobo\$73bo\$70bobo\$69bo!`

And a related puffer:
`x = 27, y = 5, rule = B2ce3-ir4a5y/S2-c3-y2o20bo\$bo21bobo\$2o24bo\$23bobo\$22bo!`

There's also a c/2 puffer that travels at c/2 p58, a weird period considering it's still based off the darn replicator:
`x = 11, y = 9, rule = B2ce3-ir4a5y/S2-c3-yb3o3b3o\$o3bobo3bo\$b3o3b3o4\$b3o3b3o\$o3bobo3bo\$b3o3b3o!`

It's begging to be turned into a fully p58 (or any multiple thereof) spaceship, but I have no clue how to, this is as far as I got:
`x = 118, y = 41, rule = B2ce3-ir4a5y/S2-c3-y70bobo\$39b2o29b2o\$7b3ob3o25b2o27b2obo\$6bo7bo52b2o\$7b3ob3o6bobo27b2o15bo3bo8bo25b2o\$49b4o15b3ob2o6b2o24b2o\$9bobo8bobo6bobo16b2obo18bo3bo7bo24b2o\$47bo2b2obo17bo3bo26b3o2b2o\$7b3ob3o6bobo23b3obobo17bobo3bo3bo21bo4b2o\$6bo7bo32bob2obo16b3o4bo2bo2bo19b2o\$7b3ob3o35bo2bo17b4o8bo20bo4bo\$48b2o2bo22bo2bo3b2o19b4o\$47bobobo28b4o\$46bo4bo23bo7bo\$46b2o28bo4bobo23b3o\$45bo5bo24bo4bobo23bo2bo\$46b2o29b3o27b2obo\$6b3ob3o21bo8bo2b2o3bo57bo\$5bo7bo19bo8bo5bo2bo30b2o\$6b3ob3o6bobo11b3o13bobo\$49b2o\$8bobo8bobo6bobo26bobo26bobo26bobo2\$6b3ob3o6bobo50b3o\$5bo7bo55b3o3bo19bo7bobo\$6b3ob3o57bo5bo16b2o3b2o\$72bo20b2o\$68bo2b3o3bo13b2o\$60bobo3b2obobo2bo2bo8bob2obo4bo\$31bo10bo23b4obo14bobob2o3bob3o\$32bo5bo2b3o3bo14bo3bo3bo5bo13b2o\$b3ob3o22b3o4b2o8bo18bob3obo2bo18bo\$o7bo32bob3obo23bo4b2o14bo3b3o\$b3ob3o6bobo21bo4bobobo13b5o4bo5b2o11b6ob3o\$36b2ob2o6bo14bo6b3o6bo10bo2bo\$3bobo8bobo6bobo10b4o12bobo6b3o2b4obob2o2bo11bob2o\$43bo2bo26bo15b2o\$b3ob3o6bobo26b4o46bo\$o7bo33bo2b2o45bo\$b3ob3o25b2o9bo17b2o28bobo\$33b2o27b2o!`

No clean rakes are known (I may have missed some in the huge heap of yl48 and yl96 and other multiples), besides this side-3c/8 rake:
`x = 204, y = 51, rule = B2ce3-ir4a5y/S2-c3-y108bo10bo3bo\$106b2obo13bo\$104b2o3bo9b2o13bo\$104bo4bo8bobo12bo3b2o\$105b3o26bo3bo18bo\$107bo12bo34b3o\$134bo2bo17b4o7b2o\$156b3o7b2o29bo\$136bo19bob2o19bobo7b3o4b3o\$137bo18bo2bo18bo9bo2bo7bo\$149bobo2bo2bo20bo2bo6bo6bo2b2o\$157bobo17bo9bo12bo\$149bobo2bo2bo20bo2bo6bo6bo2b2o\$137bo18bo2bo18bo9bo2bo7bo\$136bo19bob2o19bobo7b3o4b3o\$156b3o7b2o29bo\$134bo2bo17b4o7b2o\$120bo34b3o\$134bo3bo18bo\$92b3o23bobo12bo3b2o\$90bo3bo24b2o13bo\$88bo2b2obo8b5o15bo\$91b2o11bo4bo9bo3bo\$88b3o2bobo10bo\$28b4o39bobo14bobo18bo\$28b2o2bo8b2o13b2o13bo21bobo8bo3bo13bo3bo\$27bo13b2o13b2o13b3o14bo15bobo19bo\$27b2o2b3o14b5o69b2o13bo\$27b2o3b2o13b2o4bo67bobo12bo3b2o\$28bo2bobo14bo3bo84bo3bo18bo\$48b2o2bo70bo34b3o\$27bo2bobo11bo16b2o10bo63bo2bo17b4o7b2o\$17b3o13bo10b2o2bo12b2o11b2o8bo15b2o57b3o7b2o29bo\$17bo11b3obo9bo22b3o3bobob3obo2b4o8b2o3b3o36bo19bob2o19bobo7b3o4b3o\$17bo12b3o2bo9b4o18bobo2bo7bo7bo6b2o5bo37bo18bo2bo18bo9bo2bo7bo\$18bob3o10bobo7bob2o17b2obobo2bo3bo3bo5b2o6b2o6b2o48bobo2bo2bo20bo2bo6bo6bo2b2o\$18bobobo11bo11bobo4bobo9bo3bo2bo2bobob2ob2o2b2o7b2o4b2o57bobo17bo9bo12bo\$20bobo20bob2o17b2obobo2bo3bo3bo5b2o6b2o6b2o48bobo2bo2bo20bo2bo6bo6bo2b2o\$19bo25b4o18bobo2bo7bo7bo6b2o5bo37bo18bo2bo18bo9bo2bo7bo\$43bo22b3o3bobob3obo2b4o8b2o3b3o36bo19bob2o19bobo7b3o4b3o\$44b2o2bo12b2o11b2o8bo15b2o57b3o7b2o29bo\$44bo16b2o10bo63bo2bo17b4o7b2o\$30bo17b2o2bo57bo12bo34b3o\$5o26b2o15bo3bo55b3o26bo3bo18bo\$5bo7b2o14bo3bo13b2o4bo53bo4bo8bobo12bo3b2o\$5bo7b3obo11b3o16b5o54b2o3bo9b2o13bo\$o2b3o10b2o14bo76b2obo13bo\$18bo92bo10bo3bo\$14bo2bo\$14bo2bo\$15bo!`

Breeders
Here's a 3c/8-puffer based breeder, made by two of the 15c/30 spaceships:
`x = 149, y = 36, rule = B2ce3-ir4a5y/S2-c3-y112b2o\$112b2o27bobo\$126b2o8b2o3bobo\$125bobo7bo8bo\$115bo9b2o8bo2bo3bobo\$115bo8bo9bo2bo4bo2bo\$115bo9b2o8bo2bo3bobo\$125bobo7bo8bo\$126b2o8b2o3bobo\$112b2o27bobo\$112b2o15\$2o113b2o\$2o27bobo83b2o27bobo\$14b2o8b2o3bobo97b2o8b2o3bobo\$13bobo7bo8bo95bobo7bo8bo\$3bo9b2o8bo2bo3bobo85bo9b2o8bo2bo3bobo\$3bo8bo9bo2bo4bo2bo84bo8bo9bo2bo4bo2bo\$3bo9b2o8bo2bo3bobo85bo9b2o8bo2bo3bobo\$13bobo7bo8bo95bobo7bo8bo\$14b2o8b2o3bobo97b2o8b2o3bobo\$2o27bobo83b2o27bobo\$2o113b2o!`

There are two natural breeders, too:
`x = 16, y = 16, rule = B2ce3-ir4a5y/S2-c3-ybooooboboboobboo\$ooooobbbbbobobob\$obboboobbobboobo\$bbbboobobobbboob\$booobbbobobbboob\$boboooooobooooob\$ooboboobbobooobo\$bbooobbobbboboob\$oboboobooboooobo\$bobbboboboooobbb\$obboboobboobbbbb\$boboboboobbobbob\$obbbboboobbbbbbo\$bbobboboboboboob\$bobbboobobbboboo\$boobboobobboobob!`

`x = 16, y = 16, rule = B2ce3-ir4a5y/S2-c3-yooobboooboobobbo\$boobbobbbbobbbbo\$bbobooobbobobboo\$oobbbobobooboobb\$obbbbbobbbbbobbo\$oboboobbooobbboo\$ooooooboobbbbobo\$oboboooobbbooobo\$oooboooboboobobb\$ooobbobbbboobooo\$bbbboboboobobbob\$boobboobbobobooo\$obbbbobbooobobbo\$oobbboobboobobbb\$obooobobbobobobo\$bbbbbooobobboobb!`

They aren't very clean, and I'd love to see a breeder that's completely clean.
The Sawtooth
Here it is, the current extent of the engineering in this rule. Sawtooth 186 edited from 184 because BlinkerSpawn pointed out on the discord that the repeating cycle has an extra two cells:
`x = 132, y = 128, rule = B2ce3-ir4a5y/S2-c3-y84bobo\$50bobo32bo\$51bo33bo\$51bo9\$82bobobobo\$48bobobobo5\$82bobobobo\$48bobobobo6\$85bo\$51bo32bobo\$50bobo31bobo\$50bobo31bobo\$50bobo27bo4bo\$51bo4bo21b2o\$57b2o21bo\$56bo16\$113bo5bo\$17bo5bo\$76bo26b3o7bo5bo11bo\$5bo11bo5bo7b3o26bo16b2obo21bo3bo22b2o\$6b2o22bo3bo21bob2o16bo5bo20b3o7bo5bo11bo\$5bo11bo5bo7b3o20bo5bo\$113bo5bo\$17bo5bo\$100bobo\$34bobo64bo\$35bo65bo\$35bo3\$25bo\$23b2o64bobo3bo\$25bo70bobo\$99bo\$96bobo\$90bo4bo\$90bo\$30bobo56bobo\$31bo\$31bo2\$12bobo3bobo\$2bo24b3o19b3o3bo\$2o8bo11bo2bo2bo24bo2b2o\$2bo24b3o21bo3bo\$12bobo3bobo18\$53bo\$51b2o\$53bo\$46bobo\$46b3o\$46bobo2\$47bo3\$47bo2\$45bo3bo2\$45bo3bo4\$45bo3bo2\$45bo3bo2\$47bo8\$46bobo\$47bo\$47bo!`

Here's a variant that is only barely different, yet also has a weirder growth rate. I don't know if it counts as a sawtooth:
`x = 132, y = 128, rule = B2ce3-ir4a5y/S2-c3-y84bobo\$50bobo32bo\$51bo33bo\$51bo9\$82bobobobo\$48bobobobo5\$82bobobobo\$48bobobobo6\$85bo\$51bo32bobo\$50bobo31bobo\$50bobo31bobo\$50bobo27bo4bo\$51bo4bo21b2o\$57b2o21bo\$56bo16\$113bo5bo\$17bo5bo\$76bo26b3o7bo5bo11bo\$5bo11bo5bo7b3o26bo16b2obo21bo3bo22b2o\$6b2o22bo3bo21bob2o16bo5bo20b3o7bo5bo11bo\$5bo11bo5bo7b3o20bo5bo\$113bo5bo\$17bo5bo\$100bobo\$34bobo64bo\$35bo65bo\$35bo3\$25bo\$23b2o64bobo2bo\$25bo69bobo\$98bo\$95bobo\$90bo3bo\$90bo\$30bobo56bobo\$31bo\$31bo2\$12bobo3bobo\$2bo24b3o19b3o3bo\$2o8bo11bo2bo2bo24bo2b2o\$2bo24b3o21bo3bo\$12bobo3bobo18\$53bo\$51b2o\$53bo\$46bobo\$46b3o\$46bobo2\$47bo3\$47bo2\$45bo3bo2\$45bo3bo4\$45bo3bo2\$45bo3bo2\$47bo8\$46bobo\$47bo\$47bo!`

-

(Can someone put together all 2G collisions?)
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y

drc

Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

### Re: B2ce3-ir4a5y/S2-c3-y

1-cell reduction to the sawtooth using the 2-stage eater's 3-cell phase, instead of the 4-cell normal eater:
`x = 132, y = 128, rule = B2ce3-ir4a5y/S2-c3-y84bobo\$50bobo32bo\$51bo33bo\$51bo9\$82bobobobo\$48bobobobo5\$82bobobobo\$48bobobobo6\$85bo\$51bo32bobo\$50bobo31bobo\$50bobo31bobo\$50bobo27bo4bo\$51bo4bo21b2o\$57b2o21bo\$56bo16\$113bo5bo\$17bo5bo\$76bo26b3o7bo5bo11bo\$5bo11bo5bo7b3o26bo16b2obo21bo3bo22b2o\$6b2o22bo3bo21bob2o16bo5bo20b3o7bo5bo11bo\$5bo11bo5bo7b3o20bo5bo\$113bo5bo\$17bo5bo\$100bobo\$34bobo64bo\$35bo65bo\$35bo3\$25bo\$23b2o64bobo3bo\$25bo70bobo\$99bo\$96bobo\$95bo2\$30bobo\$31bo58bobo\$31bo\$90bo\$12bobo3bobo\$2bo24b3o19b3o3bo\$2o8bo11bo2bo2bo24bo2b2o\$2bo24b3o21bo3bo\$12bobo3bobo18\$53bo\$51b2o\$53bo\$46bobo\$46b3o\$46bobo2\$47bo3\$47bo2\$45bo3bo2\$45bo3bo4\$45bo3bo2\$45bo3bo2\$47bo8\$46bobo\$47bo\$47bo!`

BlinkerSpawn pointed out on the discord that this would be actually sawtooth 185, and the other sawtooth 186. Above is the canonical representation
I can't figure out how to make it any smaller by replacing the y's catalyzing the three extra gliders in the p384 gun with a 2-stage eater,
There also might be a smaller sawtooth by this mechanism:
`x = 116, y = 79, rule = B2ce3-ir4a5y/S2-c3-y68bobo\$69bo\$69bo10\$66bobobobo6\$66bobobobo5\$50bobo\$51bo\$51bo17bo\$68bobo\$68bobo\$68bobo\$64bo4bo\$62b2o\$64bo4\$48bobobobo6\$48bobobobo7\$51bo45bo5bo\$50bobo\$50bobo7bo26b3o7bo5bo11bo\$50bobo8b2obo21bo3bo22b2o\$51bo4bo3bo5bo20b3o7bo5bo11bo\$57b2o\$56bo40bo5bo2\$84bobo\$85bo\$85bo6\$98bo2\$12bo5bo79bo2\$o11bo5bo7b3o\$b2o22bo3bo\$o11bo5bo7b3o45bo\$74bo\$12bo5bo33bo20bobo2\$29bobo19bo\$30bo\$30bo20bo\$51bo\$50bobo!`

Growing spaceship:
`x = 84, y = 19, rule = B2ce3-ir4a5y/S2-c3-y56b3o\$59bo\$54b5o3\$78bo2bo\$31b11o18bo2bo6bo2bo7bo\$b2o28bo9bo17bo9bo3bo4bo3bo\$o3bo26bo2bo6bo17bo5bo3bo2bo4bo4bo\$o2bo27bo9bo16bo9bo2bo11bo\$o3bo26bo2bo6bo17bo5bo3bo2bo4bo4bo\$b2o28bo9bo17bo9bo3bo4bo3bo\$31b11o18bo2bo6bo2bo7bo\$78bo2bo3\$54b5o\$59bo\$56b3o!`

There's probably a 6G-8G synthesis of the statorless hexapole in here:
`x = 11, y = 7, rule = B2ce3-ir4a5y/S2-c3-y5o\$bobo4\$7bobo\$6b5o!`

Apple Bottom found a c/25 diagonal spaceship!:
`x = 9, y = 9, rule = B2ce3-ir4a5y/S2-c3-y8bo\$b2o\$b2o5bo2\$7bo\$6bo\$5bo\$4bo\$obo!`

And some new clean puffers came out of soup:
`x = 15, y = 26, rule = B2ce3-ir4a5y/S2-c3-yb7o\$o7bo\$2bo3bobo\$bo4bo2bo\$6bobo\$8bo\$5b3o14\$3b12o\$2b2o3bo5bo\$o3bo3bo5bo\$obo5bo5bo\$bobo3bo5bo\$5b10o!`

Some new c/2 spaceships appeared, too:
`x = 27, y = 54, rule = B2ce3-ir4a5y/S2-c3-y5b3o\$obo5bo\$4b4o\$obo\$obo\$4b4o\$obo5bo\$5b3o4\$10bo2bo\$b2o2bo7bo\$bo3bo4bo3bo\$o3bo4bo4bo\$15bo\$o3bo4bo4bo\$bo3bo4bo3bo\$b2o2bo7bo\$10bo2bo5\$2bo2bo\$bo3bo\$o\$5bo11b3o3b3o\$bo14bo3bobo3bo\$2bo8b2o4b3o3b3o\$5bo5b2o\$3b2o\$3b2o\$5bo5b2o\$2bo8b2o4b3o3b3o\$bo14bo3bobo3bo\$5bo11b3o3b3o\$o\$bo3bo\$2bo2bo5\$b3o9b2o4b3o\$o13bobobo3bo\$b2o3bo4bo2bo4b3o\$3bobo3\$9b2o\$9b2o8b2o3b3o\$5bo2bobo2bobob2o3bo2bo\$19b2o3b3o!`

-CATALYST WORK-
p32 'injector' using some y's:
`x = 18, y = 15, rule = B2ce3-ir4a5y/S2-c3-y11bobo\$12bo\$12bo4\$o7b3o3b3o\$b2o4bo3bobo3bo\$o7b3o3b3o4\$12bo\$12bo\$11bobo!`

I tried making a 'flipper' gun, but failed:
`x = 37, y = 85, rule = B2ce3-ir4a5y/S2-c3-y28bo\$28bo\$27bobo4\$27bobo\$27b3o\$27bobo2\$28bo2\$22bo5bo5bo\$20b2o13b2o\$22bo5bo5bo2\$28bo2\$27bobo\$27b3o\$27bobo15\$11bobo\$12bo\$12bo4\$o11b3o7b2o2b3o\$b2o8bo4bo8bo3bo\$o11b3o7b2o2b3o4\$12bo\$12bo14bobo\$11bobo13b3o\$27bobo\$27b3o\$27bobo12\$27bobo\$27b3o\$27bobo2\$28bo2\$22bo5bo5bo\$20b2o13b2o\$22bo5bo5bo2\$28bo2\$27bobo\$27b3o\$27bobo4\$27bobo\$28bo\$28bo!`
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y

drc

Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

### Re: B2ce3-ir4a5y/S2-c3-y

p160 gun from the p32 injector:
`x = 35, y = 17, rule = B2ce3-ir4a5y/S2-c3-y13bo19bo\$13bo19bo\$12bobo17bobo4\$31bo\$2bo5b11o14b2o\$2o7bobo3bobo10bo4bo\$2bo5b11o14b2o\$31bo4\$12bobo17bobo\$13bo19bo\$13bo19bo!`

EDIT: Sawtooth 47 using the gun; hits minimum population at time T(n) = 105.6(11^n - 1):
`x = 75, y = 15, rule = B2ce3-ir4a5y/S2-c3-y11bobo17bobo\$12bo19bo\$12bo19bo3\$8bo7b2o\$o17b3ob2o\$b2o3bobo7bo7bo45bo\$o17b3ob2o47bobo\$8bo7b2o56bo\$71bobo\$70bo\$12bo19bo\$12bo19bo\$11bobo17bobo!`

T(1) = 1056
T(2) = 12672
T(3) = 140448
T(4) = 1545984
etc.
EDIT 2: Sawtooth 45; T(n) = 25.6(11^n - 1):
`x = 45, y = 17, rule = B2ce3-ir4a5y/S2-c3-y13bo19bo\$13bo19bo\$12bobo17bobo5\$2bo3b3o9b3o\$2o5bo2bobobobo2bo20bo\$2bo3b3o9b3o20bobo\$44bo\$41bobo\$40bo2\$12bobo17bobo\$13bo19bo\$13bo19bo!`
Last edited by BlinkerSpawn on October 23rd, 2017, 7:32 pm, edited 1 time in total.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Posts: 1883
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

### Re: B2ce3-ir4a5y/S2-c3-y

Shouldn't that be "T(1) = 1056"?
`x = 81, y = 96, rule = LifeHistory58.2A\$58.2A3\$59.2A17.2A\$59.2A17.2A3\$79.2A\$79.2A2\$57.A\$56.A\$56.3A4\$27.A\$27.A.A\$27.2A21\$3.2A\$3.2A2.2A\$7.2A18\$7.2A\$7.2A2.2A\$11.2A11\$2A\$2A2.2A\$4.2A18\$4.2A\$4.2A2.2A\$8.2A!`
Gamedziner

Posts: 775
Joined: May 30th, 2016, 8:47 pm
Location: Milky Way Galaxy: Planet Earth

### Re: B2ce3-ir4a5y/S2-c3-y

Gamedziner wrote:

Shouldn't that be "T(1) = 1056"?

Ah yes, my mistake: starting my indices at 0 comes naturally when I refer to series but that doesn't fit the formula.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Posts: 1883
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

### Re: B2ce3-ir4a5y/S2-c3-y

Woah, that sawtooth is amazing! Here's a bounding box reduction:
`x = 42, y = 17, rule = B2ce3-ir4a5y/S2-c3-y13bo19bo\$13bo19bo\$12bobo17bobo5\$2bo3b3o9b3o\$2o5bo2bobobobo2bo\$2bo3b3o9b3o3\$37bo\$38bobo\$12bobo17bobo6bo\$13bo19bo4bobo\$13bo19bo3bo!`

Here's the 'weird'/2x variant, it hits 45 cells at 0,512,11264,237056,..., leading to the T(n) = (128/105)(-21+21^n):
`x = 43, y = 17, rule = B2ce3-ir4a5y/S2-c3-y13bo19bo\$13bo19bo\$12bobo17bobo5\$2bo3b3o9b3o\$2o5bo2bobobobo2bo18bo\$2bo3b3o9b3o18bobo\$42bo\$39bobo\$38bo2\$12bobo17bobo\$13bo19bo\$13bo19bo!`

And the p160 gun is quite radical too. Here's a p96 2c/4 firing relative using a simple R(ep)->R+G conduit a la the p48 gun:
`x = 51, y = 17, rule = B2ce3-ir4a5y/S2-c3-y13bo19bo\$13bo19bo\$12bobo17bobo13bobo\$49bo\$49bo3\$2bo3b3o9b3o\$2o5bo2bobobobo2bo\$2bo3b3o9b3o5\$12bobo17bobo\$13bo19bo\$13bo19bo!`

p6 oscillator puffer and related 12c/24 ship:
`x = 18, y = 33, rule = B2ce3-ir4a5y/S2-c3-y10b2o\$9bo2bo\$10bobo\$9bo3bo\$10b4o\$15b2o\$17bo\$15b2o\$10b4o\$9bo3bo\$10bobo\$9bo2bo\$10b2o8\$10b2o\$4bo4bo2bo\$10bobo\$o3bo4bo3bo\$10b4o\$o14b2o\$17bo\$o14b2o\$10b4o\$o3bo4bo3bo\$10bobo\$4bo4bo2bo\$10b2o!`

Also a 24c/48 rep-based ship showed up under ov_p0:
`x = 94, y = 18, rule = B2ce3-ir4a5y/S2-c3-y60bo5bo2\$39bo9b2ob2o4bo3bobo3bo4b2ob2o\$48bo5bo17bo5bo\$39bo9b2ob2o4bo3bobo3bo4b2ob2o2\$60bo5bo2\$26bo17bo39bo\$41bo4bo\$26bo14bo12bo5bo15b2ob3o2bo2b3ob2o\$2o51bo21bo17bo\$3bo37bo18bo15b2ob3o2bo2b3ob2o\$22b3o17bo6bo\$20bo2bo20b2ob2o35bo\$25bo20bo\$21b2o3bo\$21bo3bo!`
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y

drc

Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA